M1 Systèmes dynamiques

Raphaël KRIKORIAN

Chapitre 4
EDO linéaires à coefficients constants

M1 Systèmes dynamiques

EDO linéaire à coeff. cst.

/ 30

Plan du cours de Systèmes Dynamiques

- ODE non-linéaires : linéarisation et théorie des perturbations.
- Flots, champs de vecteurs, application de premier retour, application
 à la stabilité.
- Sous-variétés, espace tangent, point critique, champs de vecteurs sur les sous-variétés, sous-variétés à bord.
- Stabilité (critère de Routh, fonctions de Lyapunov), champs de vecteurs en dimension 2 (perturbations des applications conservatives et théorème de Poincaré-Bendixon)
- Redressement des flots, points fixes hyperboliques. Le théorème de la variété stable, théorème de Hartman-Grobman. Régularité et chaos.

Plan du cours de Systèmes Dynamiques

- Introduction générale : divers exemples d'EDO, linéaire vs. non-linéaire, stabilité.
- Rappels de topologie, d'algèbre linéaire et de calcul différentiel.
- Théorème du point fixe de Picard et théorèmes des fonctions implicites et d'inversion locale.
- Théorème d'existence de Cauchy-Lipschitz, critère d'existence et d'unicité globales, dépendance par rapport aux paramètres (cas linéaire)
- E.D.O. à coefficients constants.
- E.D.O. linéaires : résolvante, théorie des perturbations.
- E.D.O. linéaires à coefficients périodiques. Théorème de Floquet, résonnance paramétrique.
- Temps de vie des solutions, intervalle maximal, estimation de temps de vie.

M1 Systèmes dynamiques EDO linéaire à coeff. cst. 2 / 3

L'exponentie

Sommaire Plan du chapitre 4

1 L'exponentielle

2 Résolution par la réduction des endomorphismes

3 Décomposition dynamique

4 Stabilité

5 Exemples en dimension 2

6 Variation de la constante

M1 Systèmes dynamiques L'exponentielle EDO linéaire à coeff. cst. 3 / 30 M1 Systèmes dynamiques L'exponentielle EDO linéaire à coeff. cst. 4 /

Equations linéaires à coefficients constants

On suppose à présent $E = \mathbb{K}^n$ (où $\mathbb{K} = \mathbb{C}^n$ ou \mathbb{R}^n) et que $A(\cdot) = \text{constante} = A \in M(n, \mathbb{R})$ et $b(\cdot) = 0$:

$$\begin{cases} \dot{X}(t) = AX(t) \\ X(t_0) = X_0 \end{cases}$$

La solution est facile à écrire :

$$X(t) = e^{(t-t_0)A} X_0$$

où on définit pour $B \in M(n, \mathbb{K})$:

$$e^B = \exp(B) = \sum_{k=0}^{\infty} \frac{B^k}{k!} \in GL(n, \mathbb{K})$$

M1 Systèmes dynamiques

L'exponentielle

EDO linéaire à coeff. c

5 / 30

'exponentielle

EDO à coeff. constants : l'exponentielle

Propriétés de l'exponentielle : Pour $A, B \in M(n, \mathbb{K})$

- \bullet exp $(A) \in GL(n, \mathbb{K})$ (i.e. est inversible) et on a, exp $(A)^{-1} = \exp(-A)$.
- 3 L'application exponentielle est \mathbb{K} -analytique (et donc de classe C^{∞})
- **1** L'application linéaire tangente de l'exponentielle en 0 est l'identité : $D \exp(0) \cdot H = H$, $\forall H \in M_n(\mathbb{K})$.
- **Si** $A, B ∈ M_n(\mathbb{K})$ commutent, i.e. AB = BA, on a, $\exp(A + B) = \exp(A) \exp(B)$. (faux en général)
- **o** Si $P \in GL(n, \mathbb{K}), Pe^{A}P^{-1} = e^{PAP^{-1}}$.
- **3** Si Δ est une matrice diagonale d'éléments diagonaux $\lambda_1, \ldots, \lambda_n$ alors e^{Δ} est diagonale d'éléments diagonaux $e^{\lambda_1}, \ldots, e^{\lambda_n}$

Equations linéaires à coefficients constants

En effet, en utilisant le point (6) du transparent suivant :

$$\frac{d}{dt}(e^{tA}X_0) = \left(\sum_{k=1}^{\infty} k \frac{t^{k-1}}{k!} A^k\right) X_0 = A\left(\sum_{l=0}^{\infty} \frac{t^l}{l!} A^l\right) X_0 = A(e^{tA}X_0).$$

M1 Systèmes dynamique

L'exponentiell

DO linéaire à coeff ce

- / --

Résolution de X' = A

Sommaire Plan du chapitre 4

- 1 L'exponentielle
- 2 Résolution par la réduction des endomorphismes
- 3 Décomposition dynamique
- 4 Stabilité
- 5 Exemples en dimension 2
- 6 Variation de la constante

Equations linéaires à coefficients constants

Etude de la dynamique

Mise sous forme normale : si $A \in M(n, \mathbb{C})$ elle s'écrit toujours de façon unique A = S + N avec : S diagonalisable : $S = P \operatorname{diag}(\lambda_1, \dots, \lambda_n) P^{-1}$, Nnilpotente : $\exists k \in \mathbb{N}^*$, $N^k = 0$ et S et N commutent (SN = NS); en fait S et N sont polynomiales en A.

Donc

$$e^{tA} = e^{tS}e^{tN}$$
 (S et N commutent) = $Pe^{\operatorname{diag}(t\lambda_1,...,t\lambda_n)}P^{-1}e^{tN}$

avec $e^{tN} = I + tN + \cdots + rac{t^{k-1}}{(k-1)!}N^{k-1}$: donc polynôme en t et $e^{\operatorname{diag}(t\lambda_1,\ldots,t\lambda_n)}=\operatorname{diag}(e^{t\lambda_1},\ldots,e^{t\lambda_n}).$

Conclusion:

Théorème

Les coefficients de e^{tA}X₀ sont des combinaisons linéaires de termes de la forme $t^p e^{t\lambda_q}$, $(0 \le p \le k-1, 1 \le q \le n)$

EDO linéaire à coeff. cst.

Espaces caractéristiques

Théorème

Si le polynôme minimal de A est de la forme $\mu_A(X) = \prod_{i=1}^r (X - \lambda_i)^{m_i}$, les coefficients de e^{tA}X₀ sont des combinaisons linéaires de termes de la forme $t^p e^{t\lambda_i}$, $(0 \le p \le m_i - 1, 1 \le i \le r)$

Démonsration Utiliser le fait que

$$\begin{split} \exp(\lambda_i \mathrm{id}_{\Gamma_i} + n_i) &= e^{t\lambda_i} \exp(tn_i) \\ &= e^{t\lambda_i} \sum_{k=0}^{\infty} \frac{(tn_i)^k}{k!} \\ &= e^{t\lambda_i} \sum_{k=0}^{m_i - 1} \frac{(tn_i)^k}{k!} \end{split}$$

car n_i est m_i -nilpotent.

Espaces caractéristiques

On peut en fait être plus précis.

Origine géométrique/algébrique de la décomposition A = S + N. Soit $\mu_A(X)$ le polynôme minimal de A : le polynôme de plus petit degré (normalisé) qui annule A ($\mu_A(A) = 0$).

 $\mu_A(X) = \prod_{i=1}^r (X - \lambda_i)^{m_i}$ où λ_i , $1 \le i \le r$ sont les valeurs propres de A (on a toujours $1 \le \alpha_i \le m_i$ où m_i multiplicité de λ_i dans le polynôme caractéristique $det(A - X \cdot I)$ de A).

Alors (Théorème de décomposition des noyaux)

- $\mathbb{C}^n = \bigoplus_{i=1}^r \ker(A \lambda_i I)^{m_i}$;
- $\Gamma_{\lambda_i} = \ker(A \lambda_i I)^{m_i}$ est invariant par A (espaces caractéristiques);
- A restreinte à $\Gamma_{\lambda_i} = \ker(A \lambda_i I)^{m_i}$ est de la forme $\lambda_i \operatorname{id}_{\Gamma_i} + n_i$ où $n_i \in \text{End}(\Gamma_{\lambda_i})$ est nilpotent d'ordre α_i $(n_i^{m_i-1} \neq 0, n_i^{m_i} = 0)$.

Sommaire Plan du chapitre 4

- L'exponentielle
- Oécomposition dynamique
- 4 Stabilité

EDO à coeff. constants : Décomposition dynamique

La décompositon géométrique précédente a un sens dynamique :

Théorème

On a $\mathbb{K}^n = \Gamma_s \oplus \Gamma_u \oplus \Gamma_c$ (espaces stable, instable, central) ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}) où

$$\bullet \ \Gamma_s(A) := \bigoplus_{\Re \lambda_i < 0} \ker(A - \lambda_i I)^{\alpha_i} \cap \mathbb{K}^n = \{ v \in \mathbb{K}^n : \lim_{t \to \infty} \lVert e^{tA} \cdot v \rVert = 0 \}$$

$$\bullet \ \Gamma_u(A) := \bigoplus_{\Re \lambda_i > 0} \ker (A - \lambda_i I)^{\alpha_i} \cap \mathbb{K}^n = \{ v \in \mathbb{K}^n : \lim_{t \to -\infty} \lVert e^{tA} \cdot v \rVert = 0 \}$$

•
$$\Gamma_c(A) := \bigoplus_{\Re \lambda_i = 0} \ker(A - \lambda_i I)^{\alpha_i} \cap \mathbb{K}^n = \{ v \in \mathbb{K}^n : \exists C, M, \ \forall t \in \mathbb{R}, \ \|e^{tA} \cdot v\| \leqslant C(1 + |t|)^M \|v\|. \}$$

M1 Systèmes dynamique

Décomposition dynamique

EDO linéaire à coeff. cst

13 / 30

Stabilite

Sommaire Plan du chapitre 4

- L'exponentielle
- 2 Résolution par la réduction des endomorphismes
- 3 Décomposition dynamique
- 4 Stabilité
- Exemples en dimension 2
- 6 Variation de la constante

EDO à coeff. constants : Décomposition dynamique

On a alors le résultat plus précis suivant :

Théorème

Pour tous $0 < \lambda_s < \min_{\Re \lambda_i < 0} |\Re \lambda_i|$, $0 < \lambda_u < \min_{\Re \lambda_i > 0} \Re \lambda_i$, il existe C > 0 tel que

•
$$\forall v \in \Gamma_s(A), \ \forall t > 0, \ \|e^{tA} \cdot v\| \leqslant Ce^{-\lambda_s t} \|v\|, \ \|e^{-tA} \cdot v\| \geqslant Ce^{\lambda_s t} \|v\|$$

$$\bullet \ \forall v \in \Gamma_u(A), \ \forall t > 0, \ \|e^{-tA} \cdot v\| \leqslant Ce^{-\lambda_u t} \|v\|, \ \|e^{tA} \cdot v\| \geqslant Ce^{\lambda_u t} \|v\|$$

•
$$\forall v \in \Gamma_c(A), \ \forall t \in \mathbb{R}, \ C^{-1}||v|| \leq ||e^{tA}.v|| \leq C(1+|t|)^n||v||.$$

M1 Systèmes dynamique

Décomposition dynamique

EDO linéaire à coeff, cet

.

Stabi

EDO à coeff. constants : Stabilité et stabilité asymptotique

On dit que 0 est stable (au sens de Lyapunov) (quand $t \to +\infty$) pour l'E.D.O. X'(t) = AX(t) si toute solution de cette E.D.O. reste bornée quand t tend vers $+\infty$.

On dit que 0 est asymptotiquement stable (quand $t \to +\infty$) si toute solution de cette E.D.O. tend vers 0 quand t tend vers $+\infty$.

Théorème (Critère de Routh)

- l'origine est asymptotiquement stable (quand $t \to \infty$) ssi toutes les valeurs propres de A sont de parties réelles strictement négatives.
- l'origine est stable (quand $t \to \infty$) ssi toutes les valeurs propres de A sont de parties réelles négatives et celles λ_i qui sont de parties réelles nulles sont telles que pour tout $q \geqslant 1 \ker(A \lambda_i I)^q = \ker(A \lambda_i I)$ (on dit que A est diagonalisable en λ_i)

Demonstration. La démonstration est une conséquence du théorème de décomposition des noyaux.

Sommaire Plan du chapitre 4

- 1 L'exponentielle
- 2 Résolution par la réduction des endomorphismes
- 3 Décomposition dynamique
- 4 Stabilité
- **5** Exemples en dimension 2
- 6 Variation de la constante

M1 Systèmes dynamique

Exemples en dimension 2

EDO linéaire à coeff. cst.

17 / 30

Exemples en dimension 2

EDO à coeff. constants : Exemples en dimension 2

Si $\det A > 0$:

- deux v.p. imaginaires pures $\pm i\omega$
- $\mathbb{R}^2 = \Gamma_c(A)$;
- toutes les orbites sont des ellipses parcourues avec la même période : A est elliptique.
- L'origine est stable.
- Il existe $P \in GL(2,\mathbb{R})$ tel que $A = P \begin{pmatrix} 0 & -\omega \\ \omega & 0 \end{pmatrix} P^{-1}$
- On a alors $e^{tA} = P \begin{pmatrix} \cos(\omega t) & -\sin(\omega t) \\ \sin(\omega t) & \cos(\omega t) \end{pmatrix} P^{-1}$

EDO à coeff. constants : Exemples en dimension 2

Cas particulier important : $A \in sl(2,\mathbb{R}) := \{M \in M(2,\mathbb{R}) : \operatorname{tr}(M) = 0\}$. On a alors pour tout t, $e^{tA} \in SL(2,\mathbb{R}) := \{M \in M(2,\mathbb{R}) : \det M = 1\}$. Le cas général se ramène facilement à ce cas : si $A \in M(2,\mathbb{R})$, $\tilde{A} := A - (\operatorname{tr}(A)/2)I \in sl(2,\mathbb{R})$ et $e^{tA} = e^{t(\operatorname{tr}(A)/2)}e^{t\tilde{A}}$. Dans la suite on se concentre sur le cas où $A \in sl(2,\mathbb{R})$. On posera dans la suite $\omega = \sqrt{|\det A|}$.

M1 Systèmes dynamique

Exemples en dimension

DO linéaire à coeff est

. . . .

Exemples en dimension

EDO à coeff. constants : Exemples en dimension 2

Si $\det A < 0$:

- deux v.p. réelles opposées $\pm \omega$;
- $\mathbb{R}^2 = \Gamma_s(A) \oplus \Gamma_u(A)$ où $\Gamma_s = \mathbb{R} v_s$, $\Gamma_u = \mathbb{R} v_u$.
- Les orbites sont des hyperboles : A est hyperbolique
- L'origine est instable.
- Il existe $P \in GL(2,\mathbb{R})$ tel que $A = P \begin{pmatrix} \omega & 0 \\ 0 & -\omega \end{pmatrix} P^{-1}$
- ullet On a alors $e^{tA}=Pegin{pmatrix} e^{\omega t} & 0 \ 0 & e^{-\omega t} \end{pmatrix} P^{-1}$

M1 Systèmes dynamique

Exemples en dimension 2

EDO linéaire à coeff. cst.

19 /

M1 Systèmes dynamique

Evemples en dimensio

EDO linéaire à coeff. cst.

EDO à coeff. constants : Exemples en dimension 2

Si $\det A = 0$:

- deux v.p. nulles;
- $\mathbb{R}^2 = \Gamma_c(A)$ mais A est nilpotente d'ordre 2 ou égale à $\pm Id$
- A est dite parabolique
- L'origine est instable si $a \neq 0$ (stable sinon).
- Il existe $P \in GL(2,\mathbb{R})$ et $a \in \mathbb{R}$ tels que $A = P \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} P^{-1}$
- On a alors $e^{tA} = P \begin{pmatrix} 1 & ta \\ 0 & 1 \end{pmatrix} P^{-1}$.

M1 Systèmes dynamique

Exemples en dimension :

EDO linéaire à coeff. cst.

21 / 30

Exemples en dimension 2

Exemples

Ses racines sont

1 Si $\Delta = a^2 - 4b > 0$ distinctes et réelles < 0

$$\lambda_{\pm} = \frac{-a \pm \sqrt{a^2 - 4b}}{2} < 0$$

2 Si Δ < 0, distinctes de parties réelles < 0

$$\lambda_{\pm} = \frac{-a \pm i\sqrt{|a^2 - 4b|}}{2} < 0$$

3 Si $\Delta = 0$, égales à $\lambda = -a/2 < 0$.

Dans tous les cas, elles sont de parties réelles < 0 donc, d'après le **critère de Routh**, 0 est un équilibre asymptotiquement stable.

Exemples

1) Résoudre avec $a, b \in]0, \infty[$

$$x''(t) + ax'(t) + bx(t) = 0.$$

En posant $X(t) = \begin{pmatrix} x(t) \\ x'(t) \end{pmatrix}$, il est équivalent de résoudre

$$X'(t) = AX(t), \qquad A = \begin{pmatrix} 0 & 1 \\ -b & -a \end{pmatrix}$$

dont les solutions sont

$$X(t) = \exp(tA)X_0, \qquad X_0 \in \mathbb{R}^2.$$

Pour calculer l'exponentielle de matrice on tente de diagonaliser A. Son polynôme caractéristique est $\chi_A(T) = \det(T - A)$

$$\chi_A(T) = \det \begin{pmatrix} T & -1 \\ b & T+a \end{pmatrix} = T^2 + aT + b.$$

M1 Systèmes dynamique

Exemples en dimension 2

EDO linéaire à coeff, cet

Exemples en dimension 2

Exemples

Dans le cas $\Delta \neq 0$, les vp λ_{\pm} de A sont distinctes et les solutions de

$$x''(t) + ax'(t) + bx(t) = 0$$

sont de la forme

$$x(t) = \mu_{+}e^{t\lambda_{+}} + \mu_{-}e^{t\lambda_{-}}$$

Dans le cas $\Delta = 0$ elles sont de la forme

$$x(t) = (\mu + \nu t)e^{t\lambda}.$$

Exemples

2) Oscillateur harmonique

$$x''(t) + \omega^2 x(t) = 0.$$

L'EDO s'écrit avec $X(t) = \begin{pmatrix} x(t) \\ x'(t) \end{pmatrix}$, sous la forme

$$X'(t) = AX(t), \qquad A = \begin{pmatrix} 0 & 1 \\ -\omega^2 & 0 \end{pmatrix}$$

dont les solutions sont

$$X(t) = \exp(tA)X_0, \qquad X_0 \in \mathbb{R}^2.$$

La matrice A est de trace nulle, donc dans $sl(2,\mathbb{R})$.

M1 Systèmes dynamiques

Exemples en dimension 2

EDO linéaire à coeff. cst.

25 / 30

Exemples en dimension

Exemples

En fait le calcul de l'exponentielle e^{tA} montre que

$$X(t) = \begin{pmatrix} x(t) \\ x'(t) \end{pmatrix} = \exp(tA)X_0 = \begin{pmatrix} \cos(\omega t) & \frac{1}{\omega}\sin(\omega t) \\ -\omega\sin(\omega t) & \cos(\omega t) \end{pmatrix} X_0$$

• Si $\omega=0$, $A=\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ est parabolique (elle est nilpotente), donc

$$X(t) = e^{tA}X(0) = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}X(0)$$

et les solutions de x''(t) = 0 sont de la forme

$$x(t) = \mu t + \nu.$$

Exemples

Comme det $A = \omega^2 \geqslant 0$ on a

• Si $\omega \neq 0$, la matrice A est elliptique et donc 0 est stable (on peut aussi remarquer que les vp de A sont distinctes et imaginaires pures et utiliser le critère de Routh). Les solutions de

$$X'(t) = AX(t), \qquad A = \begin{pmatrix} 0 & 1 \\ -\omega^2 & 0 \end{pmatrix}, \qquad X(t) = \begin{pmatrix} x(t) \\ x'(t) \end{pmatrix}$$

sont de la forme

$$X(t) = P \begin{pmatrix} \cos(\omega t) & -\sin(\omega t) \\ \sin(\omega t) & \cos(\omega t) \end{pmatrix} P^{-1} X_0$$

et celles de $x''(t) + \omega^2 x(t) = 0$ s'écrivent

$$x(t) = A\cos(\omega t + \varphi) = A_1\cos(\omega t) + A_2\sin(\omega t).$$

Elles sont toutes périodiques de période $2\pi/\omega$.

M1 Systèmes dynamique

Exemples en dimension 2

EDO linéaire à coeff. cst.

00 / 0

Exemples en dimensior

Exemples

3) Trouver la forme générale des solutions de l'EDO scalaire d'ordre n

$$x^{(n)}(t) + a_{n-1}x^{(n-1)}(t) + \dots + a_0x(t) = 0.$$
 (1)

On écrit l'EDO sous la forme X'=AX et on constate que A est une matrice compagnon et que son polynôme minimal égal

$$\mu_A(T) = T^n + a_{n-1}T^{n-1} + \cdots + a_0.$$

Si on factorise μ_A

$$\mu_{\mathcal{A}}(T) = \prod_{i=1}^{r} (T - \lambda_i)^{m_i}$$

on voit que les solutions de (1) sont des combinaisons linéaires de $t^p e^{t\lambda_i}$, $(0 \le p \le m_i - 1, 1 \le i \le r)$.

Variation de la constante

Sommaire Plan du chapitre 4

1 L'exponentielle

2 Résolution par la réduction des endomorphismes

3 Décomposition dynamique

4 Stabilité

5 Exemples en dimension 2

6 Variation de la constante

M1 Systèmes dynamiques

Variation de la constant

EDO linéaire à coeff. cst.

20 / 30

Variation de la const

Méthode de variation de la constante (I)

On veut résoudre à présent

$$\begin{cases} X'(t) = AX(t) + b(t) \\ X(0) = X_0 \end{cases}$$

Théorème (Variation de la constante)

On a pour tout t

$$X(t) = e^{(t-t_0)A}X_0 + \int_{t_0}^t e^{(t-s)A}b(s)ds.$$

Démonstration. En effet si on pose $Y(t) := e^{-tA}X(t)$ on a

$$Y'(t) = -Ae^{-tA}X(t) + e^{-tA}(AX(t) + b(t)) = e^{-tA}b(t).$$

M1 Systèmes dynamiqu

Variation de la constante

EDO linéaire à coeff. cst.

30 / 30