M1 Systèmes dynamiques

Raphaël KRIKORIAN

Chapitre 1 Rappels

M1 Systèmes dynamiques

Introduction, rappels

1 / 36

Plan du cours de Systèmes Dynamiques

- ODE non-linéaires : linéarisation et théorie des perturbations.
- Flots, champs de vecteurs, application de premier retour, application à la stabilité.
- Sous-variétés, espace tangent, point critique, champs de vecteurs sur les sous-variétés, sous-variétés à bord.
- Stabilité (critère de Routh, fonctions de Lyapunov), champs de vecteurs en dimension 2 (perturbations des applications conservatives et théorème de Poincaré-Bendixon)
- Redressement des flots, points fixes hyperboliques. Le théorème de la variété stable, théorème de Hartman-Grobman.
- Régularité et chaos.

Plan du cours de Systèmes Dynamiques

- Introduction générale : divers exemples d'EDO, linéaire vs. non-linéaire, stabilité.
- Rappels de topologie, d'algèbre linéaire et de calcul différentiel.
- Théorème du point fixe de Picard et théorèmes des fonctions implicites et d'inversion locale.
- Théorème d'existence de Cauchy-Lipschitz, critère d'existence et d'unicité globales, dépendance par rapport aux paramètres (cas linéaire)
- E.D.O. à coefficients constants.
- E.D.O. linéaires : résolvante, théorie des perturbations.
- E.D.O. linéaires à coefficients périodiques. Théorème de Floquet, résonnance paramétrique.
- Temps de vie des solutions, intervalle maximal, estimation de temps de vie.

M1 Systèmes dynamiques Introduction, rappels 2 / 3

Plan cours

Sommaire

1 Plan cours 1

Rappels de topologie

3 Rappels d'algèbre linéaire

4 Rappels de calcul différentiel

M1 Systèmes dynamiques Plan cours 1 Introduction, rappels 3 / 36 M1 Systèmes dynamiques Plan cours 1 Introduction, rappels 4 / 3

Plan du chapitre 1

- Rappels d'algèbre linéaire
 - Changements de bases
 - Déterminants, traces
 - Réduction des endomorphismes
 - Exponentielle de matrice
- Rappels de calcul différentiel
 - Application linéaire tangente (dérivée)
 - Applications de classe C^p
 - Exemples
 - Propriétés utiles

Introduction, rappels

Rappels de topologie

Rappels de topologie

Pour plus de détails sur cette section consulter Fondements de l'Analyse moderne, Tome 1, Jean Dieudonné.

Sommaire

- 1 Plan cours 1
- Rappels de topologie
 - Espaces métriques
 - Ouverts, fermés
 - Espaces complets
 - Espaces compacts
 - Espaces connexes
- Rappels d'algèbre linéaire
- 4 Rappels de calcul différentiel

Introduction, rappels

Rappels de topologie Espaces métriques

Espaces métriques

Un espace métrique (X, d) est la donnée d'un ensemble X et d'une distance $d: X \times X \to [0, \infty[$ telle que pour tous $x, y, z \in X:$

- (i) d(x, y) = 0 ssi x = y
- (ii) d(x, y) = d(y, x)
- (iii) $d(x,z) \leq d(x,y) + d(y,z)$

Un exemple important est celui des espaces (vectoriels) normés : E est un \mathbb{R} ou \mathbb{C} -espace vectoriel et $\|\cdot\|: E \to [0, \infty[$ vérifie pour tous $u, v \in E, \lambda$ scalaire

- (i) ||u|| = 0 ssi u = 0
- (ii) $\|\lambda u\| = |\lambda| \|u\|$
- (iii) $||u + v|| \le ||u|| + ||v||$.

Dans ce cas d(u, v) = ||u - v|| est une distance.

Rappels de topologi

uverts, fermés

Rappels de topologi

Ouverts, ferme

Ouverts, fermés

- Un ouvert U de X est un ensemble tel que pour tout $x \in U$ il existe r > 0 tel que $B(x, r) \subset U$ (B(x, r) est la boule ouverte de centre x et de rayon r $B(x, r) := \{y \in X : d(x, y) < r\}$).
- Un ensemble est fermé ssi son complémentaire est ouvert.
- Une union (resp.intersection) quelconque d'ouverts (resp. fermés) est ouverte (resp.fermée); une intersection (resp. union) finie d'ouverts (resp fermés) est ouverte (resp. fermée).
- Une application $f: X \to Y$ est continue ssi pour tout $V \subset Y$ ouvert (resp. fermé) l'ensemble $f^{-1}(V) = \{x \in X : f(x) \in V\}$ est ouvert (resp. fermé).
- De façon équivalente f est continue si pour toute suite (x_n) de X qui converge on a $\lim_{n \to \infty} f(x_n) = f(\lim_{n \to \infty} x_n)$.

M1 Systèmes dynamiques

Rappels de topologie

Introduction, rappels

9 / 36

Rappels de topologi

Ouverts fermé

Remarque : topologie sur X

- La collection de tous les ouverts d'un espace métrique s'appelle sa topologie.
- De façon générale une topologie sur un ensemble X est une collection d'ensembles (les ouverts de la topologie) qui contient l'ensemble vide et X, qui est stable par unions quelconques et stable par intersections finies.
- Si (X, d) est un espace métrique et Y ⊂ X, la restriction de d à Y × Y est encore une distance dite distance induite. Les ouverts de (Y, d) sont les intersections des ouverts de X avec Y. On dit que la topologie de (Y, d) est induite par celle de X.

Intérieur, fermeture

- L'intérieur \mathring{A} d'un ensemble $A \subset X$ est le plus grand ouvert de X (pour l'inclusion) inclus dans A. On a $\mathring{A} = \{x \in A : \exists r > 0, B(x,r) \subset A\}$. L'ensemble $A \subset X$ est ouvert dans X si $\mathring{A} = A$.
- L'adhérence \overline{A} (ou la fermeture) de $A \subset X$ est le plus petit fermé de X contenant A. On a $\overline{A} = \{x \in X, \ \exists (a_n) \in A^{\mathbb{N}}, \ \text{lim } a_n = x\}$. L'ensemble $A \subset X$ est fermé dans X si $\overline{A} = A$.

M1 Systèmes dynamique

Rappels de topologie

and advanced a

le 10

Rappels de topologi

Espaces comple

Espaces métriques complets

Si (X, d) est métrique :

- Une suite de Cauchy (u_n) est par définition une suite telle que : pour tout $\epsilon > 0$ il existe $N \in \mathbb{N}$ tel que pour tous $n, m \geqslant N$, on ait $d(u_n, u_m) \leqslant \epsilon$.
- Un espace métrique (X, d) est dit complet si toute suite de Cauchy converge.
- Un espace vectoriel normé $(E, \|\cdot\|)$ est dit de Banach s'il est complet.

M1 Systèmes dynamiques Rappels de topologie Introduction, rappels 11/36 M1 Systèmes dynamiques

pels de topologie Introduction

Espaces métriques complets

Exemples

Exemples

- Si E est un espace vectoriel de dimension finie (sur \mathbb{R} où \mathbb{C}), il est complet pour n'importe laquelle de ses normes.
- Si U est un ouvert de l'EVN E et si F est un Banach alors l'ensemble $C^0(U,F)$ des applications continues $f:U\to F$ telles que $\sup_{x \in U} \|f(x)\| < \infty$, muni de la norme $\|f\| = \sup_{x \in U} \|f(x)\|$ est un espace de Banach.

Rappels de topologie Espaces compacts

Espaces métriques compacts

- Un espace métrique (X, d) est compact si de tout recouvrement ouvert $X \subset \bigcup_{i \in I} U_i$ de X on peut extraire un sous-recouvrement fini : $X \subset U_{i_1} \cup \cdots \cup U_{i_n}$
- Un compact est toujours fermé et borné et un fermé dans un compact (muni de la distance induite) est compact.
- Si X, Y sont deux espaces métriques, si X est compact et si $f: X \to Y$ est continue alors f(X) est compact (très utile).
- Critère séquentiel (X, d) est compact \iff de toute suite on peut extraire une sous-suite convergente. La preuve de ← repose sur le lemme de recouvrement de Lebesgue utile en soit : si X est compact et $(U_i)_{i \in I}$ est un recouvrement ouvert de X, il existe $\rho > 0$ tq pour tout $x \in X$, la boule $B(x, \rho)$ appartienne à au moins un des U_i .
- Une intersection décroissante de fermés non-vides dans un compact (X, d) est compacte et non-vide.
- Un produit quelconque de compacts est compact (topologie produit).
- En dimension finie $X \subset \mathbb{R}^n$ est compact ssi il est fermé et borné.

Espaces métriques complets

Exemples

- L'espace vectoriel des applications linéaires continues de $E \to F$, noté $L_c(E,F)$, muni de la norme d'opérateur est un espace de Banach si F est de Banach : la norme d'opérateur est définie par : si $T \in L_c(E, F), ||T|| = \sup_{x \in E - \{0\}} \frac{||Tx||_F}{||x||_F}$
- La norme d'opérateur vérifie : si $T, S \in L_c(E, E)$, $||T \circ S|| \leq ||T|| \times ||S||$
- L'ensemble des opérateurs linéaires continus inversibles (et d'inverse continu) d'un Banach E dans lui même est un ouvert de $L_c(E, E)$ (muni de la norme d'opérateurs) : par ex. la boule de centre id et de rayon r < 1 dans $L_c(E, E)$ est constitué d'opérateurs inversibles et d'inverse continu en effet : $(id - U)^{-1} = \sum_{k=0}^{\infty} U^k$, si $||U|| \le r < 1$.

Espaces métriques connexes

- Un espace métrique (X, d) est connexe ssi on ne peut pas l'écrire comme union disjointe de deux ouverts (resp. deux fermés) non-vides.
- Il est équivalent de dire que toute application continue de X dans un ensemble fini (p. ex. $\{0,1\}$) est constante.
- Si $A \subset X$ on dit que A est connexe s'il est connexe pour la topologie induite ((A, d) est connexe) ou de façon équivalente si toute application continue de (A, d) dans $\{0, 1\}$ est constante.
- Si $A \subset X$ est connexe alors \overline{A} est connexe : en effet si $f : \overline{A} \to \{0,1\}$ est continue alors f|A est continue et f(A) ne contient qu'un seul point (A connexe) et comme tout point de \overline{A} est une limite de points de A, il en est de même de $f(\overline{A})$.

Rappels de topologie Rappels de topologie Rappels de topologi

spaces connexes

Espaces métriques connexes

- L'image d'un connexe par une application continue est connexe (très utile).
- Les connexes de \mathbb{R} sont les intervalles.
- On dit qu'un ensemble X est connexe par arcs si pour tous $x,y\in X$ il existe $\gamma:[0,1]\to X$ continue telle que $\gamma(0)=x$ et $\gamma(1)=y$. Un ensemble connexe par arcs est connexe.
- Un ouvert d'un EVN est connexe par arcs ssi il est connexe.

M1 Systèmes dynamiques

Rappels de topologie

ntroduction, rappe

17 / 36

Rappels de topologi

Espaces connexe

Composantes connexes

- Si $A \subset X$, les composantes connexes de A sont définies comme les composantes connexes de A pour la topologie induite.
- Une composante connexe est toujours fermée (l'adhérence d'une telle c.c. est connexe et par maximalité égale à la c.c.) .
- Dans \mathbb{R}^n muni d'une norme (et de la distance associée) un ouvert U admet un nombre dénombrable de composantes connexes qui sont des ouverts de l'espace ambiant \mathbb{R}^n : en effet si $x \in C$ où C est une c.c. de U alors $\exists r > 0$ t.q. la boule ouverte de \mathbb{R}^n , $B(x,r) \subset U$ est un connexe (par arcs) de U et contient x; elle est donc nécessairement incluse dans C (par maximalité de C); ainsi C est ouverte. L'ensemble des composantes connexes de U forme donc une partition en ouverts de U. On peut donc choisir dans chaque C un point à coordonnées rationnelles. Ce codage démontre que la partition est au plus dénombrable.

Composantes connexes

- On dit que C est une composante connexe de X si c'est un sous-ensemble connexe de X, maximal pour cette propriété (pour l'inclusion).
- Si x ∈ X, la composante connexe de x est le plus grand sous-ensemble connexe de X contenant x : c'est l'union de tous les connexes de X contenant x. Cet ensemble est non vide ({x} est un connexe contenant x) et est bien connexe : il suffit de vérifier qu'une union de connexes d'intersection non-vide est connexe (si f est une application continue de cette union dans {0,1} elle est constante sur chacun des connexes de l'union; comme ces connexes ont une intersection non vide, ces valeurs constantes coïncident sur tous ces connexes : le critère de connexité est vérifié).
- L'ensemble des composantes connexes de X forme une partition de X et on peut donc définir une relation d'équivalence x ~ y ssi x et y sont dans la même composante connexe de X.

M1 Systèmes dynamique

appels de topologie

roduction, rappels

oels 1

Rappels de topologi

Espaces connex

Composantes connexes

On peut de la même façon définir la notion de composantes connexes par arcs (pour un ouvert de \mathbb{R}^n ces deux notions coïncident).

M1 Systèmes dynamiques Rappels de topologie Introduction, rappels 19 / 36

Introduction, rappels

Sommaire

- Rappels d'algèbre linéaire
 - Changements de bases
 - Déterminants, traces
 - Réduction des endomorphismes
 - Exponentielle de matrice

Rappels d'algèbre linéaire Changements de bases

Rappels d'algèbre linéaire

- Quand E = F on parle d'endomorphisme. Quand on représente un endomorphisme par une matrice on choisit $\mathcal{B}_F = \mathcal{B}_F$. Après changement de la base \mathcal{B}_F de E la matrice A devient $P^{-1}AP$ où Pest la matrice de changement de base.
- On dit que l'endomorphisme f est un automorphisme s'il est inversible : existence de f^{-1} (resp. A) tg $f \circ f^{-1} = f^{-1} \circ f = id$ (resp. $A^{-1}A = A^{-1}A = I$).
- $A \in M_n(K)$ est inversible \iff det $A \neq 0$. Si c'est le cas

$$A^{-1} = (\det(A))^{-1} \times {}^{t}Co(A)$$
 $({}^{t}B = B^{T} = \operatorname{transpos\acute{e}e} \ \operatorname{de} \ B)$

où Co(A) est la co-matrice de A c'est-à-dire la matrice $n \times n$ dont le coefficient (i, j) égale $(-1)^{i+j}$ multiplié par le déterminant de la matrice $(n-1) \times (n-1)$ obtenue à partir de A en éliminant le coefficient A_{ii} .

Rappels d'algèbre linéaire

- ullet Si ${\mathcal B}$ est une base d'un K-espace vectoriel E on représente un vecteur v de E dans la base \mathcal{B} par une matrice colonne X dont les coefficients sont les coordonnées de ν dans \mathcal{B} .
- Si \mathcal{B} et \mathcal{B}' sont deux bases de E, on appelle matrice de changement de base de \mathcal{B} vers \mathcal{B}' la matrice $P_{\mathcal{B},\mathcal{B}'}$ dont les colonnes sont les coordonnées des vecteurs de \mathcal{B}' dans la base \mathcal{B} .
- Si X représente v dans \mathcal{B} et X' représente v dans \mathcal{B}' on a $X = P_{\mathcal{B},\mathcal{B}'}X'$.
- On identifie une application linéaire $f: E \to F$ entre deux K-espaces vectoriels E et F de dimensions respectives n et m et dont on a fixé des bases \mathcal{B}_F et \mathcal{B}_F , à une matrice A de $M_{m,n}(K)$ (m lignes et n colonnes).
- Quand on change de bases dans E et F la matrice A représentant f dans ces nouvelles bases est de le forme $P^{-1}AQ$ où P et Q sont les matrices de changement de base dans E et F.

Rappels d'algèbre linéaire Déterminants, traces

Rappels d'algèbre linéaire

Déterminant

- Rappels : le déterminant d'une matrice est une forme linéaire alternée des colonnes de la matrice.
- Pour le calcul d'un déterminant il est souvent utile de le développer suivant une ligne ou une colonne.
- Connaître le déterminant et l'inverse (quand il existe) d'une matrice 2×2

$$\det\begin{pmatrix} a & c \\ b & d \end{pmatrix} = ad - bc, \quad \det\begin{pmatrix} a & c \\ b & d \end{pmatrix}^{-1} = (ad - bc)^{-1} \det\begin{pmatrix} d & -c \\ -b & a \end{pmatrix}$$

- Si $A, B \in M_n(K)$, on a det(AB) = det(A) det(B).
- Le déterminant d'une matrice A dont les colonnes sont les vecteurs colonnes v_1, \ldots, v_n représente le volume (avec un signe) du parallélépipède engendré par v_1, \ldots, v_n .
- On a $det(P^{-1}AP) = det A$ pour toute matrice P inversible. Le déterminant est donc invariant par changement de base (on peut ainsi définir le déterminant d'un endomorphisme).

Rappels d'algèbre linéaire

Rappels d'algèbre linéaire

Réduction des endomorphismes

Rappels d'algèbre linéaire

Trace

- La trace d'une matrice $A \in M_n(K)$ est la somme $\operatorname{tr}(A)$ de ses éléments diagonaux.
- Pour tout $P \in GL(n, K)$, on a $tr(P^{-1}AP) = tr(A)$. \longrightarrow permet de définit la trace d'un endomorphisme.

Rappels d'algèbre linéaire Réduction des endomorphismes

Rappels d'algèbre linéaire

Réduction de endomorphismes

- Une matrice n'est pas toujours diagonalisable. Exemple typique : les matrices nilpotentes càd matrices A tq pour un certain $p \in \mathbb{N}^*$ on ait $A^{p-1} \neq 0$ et $A^p = 0$.
- Si les racines de $\chi_A(T)$ sont toutes distinctes alors A est diagonalisable (cf. plus bas).
- Cayley Hamilton: Pour tout $A \in M_n(K)$, on a $\chi_A(A) = 0$.
- Polynôme minimal : c'est le polynôme unitaire de plus bas degré $\mu_A \in \mathbb{C}[X]$ tel que $\mu_A(A) = 0$. Il divise tout polynôme qui annule A, en particulier le polynôme caractéristique.
- Si $\chi_A(T) = \prod_{\lambda \in \operatorname{spec}(A)} (T \lambda)^{c_\lambda}$, $c_\lambda \in \mathbb{N}^*$ on a

$$\mu_A(T) = \prod_{\lambda \in \operatorname{spec}(A)} (T - \lambda)^{m_\lambda} \quad \text{avec} \quad 1 \leqslant m_\lambda \leqslant c_\lambda.$$

• Les espace $\Gamma_{\lambda} = \ker(A - \lambda)^{m_{\lambda}}$ s'appellent les espaces caractéristiques de A. Ils sont stables par $A: A(\Gamma_{\lambda}) \subset \Gamma_{\lambda}$.

Rappels d'algèbre linéaire

Réduction de endomorphismes

- Si $A \in M_n(\mathbb{C})$ on dit que $X \in \mathbb{C}^n$ est un vecteur propre de A s'il existe $\lambda \in \mathbb{C}$ (qu'on appelle valeur propre) telle que $AX = \lambda X$.
- Le spectre de A (noté $\operatorname{spec}(A)$,) c'est-à-dire ensemble des v.p. de A, coïncide avec l'ensemble des racines du polynôme de degré n

$$\chi_A(T) = \det(T \cdot I - A)$$
. Polynôme caractéristique

- Pour toute valeur propre λ de A on note E_{λ} l'espace propre associé $E_{\lambda} = \ker(A - \lambda \times I).$
- Si $\mathbb{C}^n = \bigoplus_{\lambda \in \operatorname{spec}(A)} E_{\lambda}$ on dit que A est diagonalisable. Il est équivalent de dire qu'il existe une matrice $P \in GL(n,\mathbb{C})$ telle que PAP^{-1} est diagonale.
- Les matrices d'une famille de matrices diagonalisables qui commutent sont diagonalisables dans une même base.

Rappels d'algèbre linéaire Réduction des endomorphismes

Rappels d'algèbre linéaire

Réduction de endomorphismes

• Théorème de décomposition des novaux : On a

$$\mathbb{C}^n = igoplus_{\lambda \in \operatorname{spec}(A)} \Gamma_{\lambda} = igoplus_{\lambda \in \operatorname{spec}(A)} \ker(A - \lambda)^{m_{\lambda}}.$$

• Corollaire (Dunford-Schwartz) : Toute matrice $A \in M_n(\mathbb{C})$ s'écrit de façon unique sous la forme

$$\begin{cases} A = S + N \\ SN = NS \end{cases}$$
 avec S diagonalisable, N nilpotente.

En outre S et N sont des polynômes en A.

• **Décomposition de Jordan :** Une matrice $A \in M_n(\mathbb{C})$ est semblable à une matrice diagonale par blocs dont chaque bloc a un même $\lambda \in \operatorname{spec}(A)$ sur la diagonale, des 1 sur la sur-diagonale et des 0 partout ailleurs (si ces blocs sont de taille 1 il n'y a pas de sur-diagonale). Pour tout $\lambda \in \operatorname{spec}(A)$ un tel bloc apparaît.

Rappels d'algèbre l<u>inéaire</u>

Rappels d'algèbre linéaire

Diagonalisation, trigonalisation

- Une matrice de $M_n(\mathbb{C})$ qui est annulée par un polynôme scindé à racines simples est diagonalisable.
- Une matrice symétrique réelle est toujours diagonalisable (en base orthonormale).

Parfois la trigonalisation rend des services équivalents à la décomposition S + N précédente.

- Une matrice de $M_n(\mathbb{C})$ est toujours trigonalisable càd conjuguée à une matrice triangulaire supérieure.
- L'ensemble des matrices diagonalisables sur \mathbb{C} est dense dans $M_n(\mathbb{C})$.
- Une famille de matrices qui commutent est trigonalisable dans une même base.

Rappels de calcul différentiel

Sommaire

- Rappels de calcul différentiel
 - Application linéaire tangente (dérivée)
 - Applications de classe C^p
 - Exemples
 - Propriétés utiles

Rappels d'algèbre linéaire

Exponentielle de matrice

• Par définition c'est la série normalement convergente :

$$\exp(A) = e^A = \sum_{k=0}^{\infty} \frac{A^k}{k!}.$$

- Si $A = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ on a $\exp(A) = \operatorname{diag}(e^{\lambda_1}, \dots, e^{\lambda_n})$
- Si A et B commutent $\exp(A+B) = \exp(A)\exp(B)$ mais si elles ne commutent pas, c'est en général faux.
- On a pour tout $P \in GL(n,\mathbb{R})$, $A \in M_n(\mathbb{R})$

$$\exp(PAP^{-1}) = P \exp(A)P^{-1}.$$

• det(exp(A)) = exp(tr(A)).

Rappels de calcul différentiel Application linéaire tangente (dérivée)

Rappels de calcul différentiel

Soient E, F deux Banach, U un ouvert de E, $x_0 \in U$ et $f: U \to F$.

Definition

L'application f est différentiable (ou encore dérivable) en x_0 s'il existe une application linéaire continue $A_{x_0}: E \to F$ (la continuité est automatique en dimension finie) telle que la limite suivante est nulle :

$$\lim_{v\to 0}\frac{\|f(x_0+v)-(f(x_0)+A_{x_0}.v)\|_F)}{\|v\|_F}=0.$$

Si elle existe, une telle application linéaire est unique. On note $A_{\mathsf{x}_0} = Df(\mathsf{x}_0)$

On a donc $f(x_0 + v) = f(x_0) + Df(x_0) \cdot v + o(||v||)$.

Rappels de calcul différentiel Rappels de calcul différentiel

Rappels de calcul différentiel

- On notera $Df(x_0) := A_{x_0}$ et on l'appellera l'application linéaire tangente ou la différentielle de f en x_0 .
- En d'autres termes, $f(x_0) + Df(x_0) \cdot v$ est, uniformément en v (au voisinage de v=0), une bonne approximation affine de $f(x_0+v)$ à I'ordre $o(||v_F||)$.
- L'application linéaire $Df(x_0)$ étant continue (i.e vérifiant $||Df(x_0).v||_F \leqslant C.||v||_E$) il est clair que f est alors continue en x_0 .
- Si f est dérivable en tout point de U et si l'application $x \mapsto Df(x)$ (de U dans $L_c(E,F)$ muni de la norme d'opérateurs) est continue on dit que f est C^1 .
- Si $x \mapsto Df(x)$ est dérivable son application linéaire tangente est une application continue de E dans $L_c(E,F)$ qu'on note $D^2f(x)$. Elle s'identifie avec une application bilinéaire continue de $E \times E \rightarrow F$.
- De la même façon on peut définir par récurrence la notion d'application de classe C^p ; $D^p f(x)$ est par nature une application p-linéaire continue de E^p dans F.

Rappels de calcul différentiel Exemples

Rappels de calcul différentiel

Exemples

- L'application $f: M(n,\mathbb{R}) \to M(n,\mathbb{R}), A \mapsto A^2$ est dérivable et son application linéaire tangente en A est l'application linéaire $M(n,\mathbb{R}) \to M(n,\mathbb{R})$ qui à H associe AH + HA. En effet, $(A + H)^2 = A^2 + AH + HA + H^2$ et $H^2 = o(||H||)$.
- L'application $GL(n,\mathbb{R}) \to GL(n,\mathbb{R})$, $A \mapsto A^{-1}$ est C^1 et sa différentielle en A est l'application linéaire $M(n,\mathbb{R}) \to M(n,\mathbb{R})$, $H \mapsto -A^{-1}HA^{-1}$
- L'application $M(n,\mathbb{R}) \to \mathbb{R}$, $A \mapsto \det(A)$ est C^1 et sa différentielle en A est l'application linéaire $M(n,\mathbb{R}) \to \mathbb{R}$, $H \mapsto \operatorname{tr}(Co(A)^T H)$ $(Co(A)^T$ est la transposée de la co-matrice de A).
- Exemple en dimension infinie : L'application $u \mapsto \int_0^1 K(y, u(y)) dy$ de $C^0([0,1],\mathbb{R})$ (muni de la norme du sup) vers \mathbb{R} est de classe C^1 si Kest elle-même C^1 .

Rappels de calcul différentiel

Exemples

- Si $f: E \times F \to G$ est telle que pour $y \in F$ fixé l'application $E \to G$, $x \mapsto f(x,y)$ est dérivable, on note $D_1 f(x,y)$ ou $\partial_x f(x,y)$ sa dérivée en x. On parle alors de dérivée partielle.
- En dimension finie, Si $f: \mathbb{R}^n \to \mathbb{R}^m$ $(x_1, \ldots, x_n) \mapsto (f_1(x_1, \ldots, x_n), \ldots, f_m(x_1, \ldots, x_n))$ est C^1 , Df(x)s'identifie avec la matrice jacobienne Jf(x):

$$Jf(x) = \left(\frac{\partial f_i}{\partial x_j}(x_1,\ldots,x_n)\right)_{1\leqslant i\leqslant m,1\leqslant j\leqslant n}.$$

• En outre en dimension quelconque si E, F, G sont des EVN, U ouvert de $E \times F$ et $f: U \rightarrow G$ f est de classe C^1 si et seulement si toutes ses dérivées partielles existent et sont continues sur U.

Rappels de calcul différentiel Propriétés utiles

Rappels de calcul différentiel

Quelques propriétés utiles

- Composition $D(g \circ f)(x) = Dg(f(x)) \circ Df(x) = Dg(f(x))Df(x)$
- Accroissements finis : Si U est un ouvert convexe, $a, b \in U$ alors $||f(b) - f(a)|| \leq \sup_{U} ||Df|| \cdot ||b - a||.$
- Théorème de Schwarz : Si f est p-fois dérivable $D^p f(x)$ est une application p-linéaire symétrique.
- Formules de Taylor (reste intégral) Si U est un ouvert convexe et $f: U \to F$ est de classe C^{p+1} : alors.

$$f(b) - f(a) - Df(a).(b-a) - \cdots + \frac{1}{p!}D^{(p)}f(a).((b-a))^p =$$

$$\int_0^1 \frac{(1-t)^p}{p!}D^{(p+1)}f(a+t(b-a)).((b-a))^{p+1}dt.$$

• L'espace $C^p(U, F)$ muni de la norme $||f||_p = \max_{0 \le k \le p} \sup_{x \in U} ||D^k f(x)||$ est un espace de Banach