Dynamical Systems

Numerical Projects : The problems combine numerics and analytical calculations.

1 Hopf and nomal form

Consider the following dynamical system :

$$\dot{x} = rx(\alpha + x)(1 - x) - cxy \tag{1}$$

$$\dot{y} = -\alpha\delta y + (c - \delta)xy \tag{2}$$

where r, c, δ are real, positive constants and $c > \delta$. Use α as control parameter.

- 1. There is a fixed point that undergoes a Hopf bifurcation. Make a change of variable to place that point at the origin. Verify the transversality condition.
- 2. Perform a formal form reduction and eliminate "non-resonance" non-linear terms.
- 3. Obtain a phase portrait of the system numerically, before and after the bifurcation.

2 A closed manifold

Consider the following dynamical system :

$$\dot{x} = y \tag{3}$$

$$\dot{y} = x - \gamma y - x^3 + xy + \epsilon_1 + \epsilon_2 x^2, \qquad (4)$$

where ϵ_1 , ϵ_2 and γ are real and positive constants.

- 1. Compute fixed points. Using $\gamma = 1$, find an analytical expression for the curve that separates region in parameter (ϵ_1, ϵ_2) with one and three fixed points.
- 2. Integrate numerically the system for different initial condition in the region with one fixed point. Describe the observed behavior.
- 3. Study the behavior of the system when $\epsilon_2 = 0.45$ and ϵ_1 varies between 0.25 and 0.28. Similarly, for $\epsilon_1 = 0.25$ when ϵ_2 varies between 0.28 and 0.36. Discuss the change of behavior observed. Compute the stable and unstable manifold associated to the saddle point in the last case.
- 4. Verify numerically that in the limit $\gamma \to \infty$ all orbits collapse to a closed manifold. Discuss whether the behavior of the manifold is analogous to $\dot{\theta} = \mu \cos(\theta)$.

3 Poincaré map

From the following dynamical system :

$$\dot{\rho} = \rho(\alpha - \rho^2) \tag{5}$$

$$\dot{\phi} = 1, \tag{6}$$

where α is a positive constant, build a Poincaré map.

1. Show that the system has the following solution for $\alpha > 0$:

$$\rho(t) = \left(\frac{1}{\alpha} + \left(\frac{1}{\rho_0^2} - \frac{1}{\alpha}\right)e^{-2\alpha t}\right)^{-1/2} \\ \phi = t + \phi_0 ,$$

- 2. Define a section Π orthogonal to the flux given by Eqs. (5) and (6) and build the map $\Pi \to \Pi$.
- 3. Compute the fixed points and stability of the map.

4 The logistic map

Consider the following dynamical system :

$$x_{n+1} = r x_n (1 - x_n) \tag{7}$$

where $0 \le r \le 4$ and $0 \le x \le 1$.

- 1. Construct the cobweb associated to Eq. (7) for a given value of r and initial condition.
- 2. Compute the value of r at which orbits of period 2, 4, 8, and 16 emerge.
- 3. Build the bifurcation diagram $(x^* \text{ vs } r)$ including orbits of all periods.
- 4. Discuss what happens with the Lyapunov exponent.