
Dynamical Systems

Bifurcations

1 Loss of balance in the forced pendulum

1. Show that the differential equation describing the dynamics of the pendulum, represented in Fig. 1,

reads : I d
2Θ
dt2 = Mgr −mgl sin(Θ)− γl2 d

Θ

dt .

Write the equation in dimensionless form with two dimensionless numbers (ν,Γ) : ν = γl2√
mglI

and

Γ = Mr
ml .

2. Recall how the stationary states of the dimensionless equation can be solved graphically. Deduce that
this system has a saddle-node bifurcation for a critical value Γc. This point corresponds to a critical
equilibrium Θ∗c .

3. Perform a change of variable in the neighborhood of the equilibrium corresponding to the pendulum
forced by the critical moment of force (torque) Γc. Show that the dynamical system can be written
in the normal form of a saddle-node bifurcation :

Ψ̈ + νΨ̇ = ε+ Ψ2 ,

where ε = (Γ− Γc)/2 et Ψ = (Θ−Θ∗c)/2

4. We want to study the behavior of the pendulum around its stable equilibrium, Ψ = Ψs + η, within
the limit where |ε| � 1. Show that we obtain the linear equation : η̈ + νη̇ + 2

√
|ε|η = 0.

5. Show that when |ε| is small enough the return to stable equilibrium occurs exponentially with a

characteristic time proportional to |ε|− 1
2 .

6. (*) Discuss how the situation changes from the previous point, in the absence of viscous friction,
ν = 0.

2 The “catastrophe” of a ball attached by a spring on an inclined
rail

We consider a ball of mass m which can slide on an inclined rail with an angle θ (see figure 2). The ball is
subjected to a viscous friction, with viscosity constant γ. The ball is also attached to a spring of constant
k and length at rest l0. The other end of the spring is attached to to the surface in such a way that length
of the spring is equal to l1 when the latter is perpendicular to the rail. This position corresponds to z = 0.
Depending on whether the ratio R = l0

l1
is smaller or greater than 1, the position z = 0 will correspond to a

stretched or compressed spring.

Figure 1 – Forced pendulum
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Figure 2 – A ball attached by a spring on an inclined rail

1. Show that the equation of motion of the ball is :

m
d2z

dt2
+ γ

dz

dt
= mg sin(θ)− k

(√
l21 + z2 − l0

)
z√

l21 + z2

2. To adimensionalize the equation, we consider the variable u = z/a and the dimensionless parameters
R = l0/l1, b = mg sin(θ)/kl1 and ν = τi/τv, where τi =

√
m/k and τv = γ/k. Let us assume that the

viscous friction is quite high (ν � 1) and z � l1. With these assumptions, show that we can choose
a to simplify the equation of the dynamical system in the form :

u̇ = b+ (R− 1)u− R

2
u3 ,

where u̇ is the derivative of u with respect to the dimensionless time t/τv. Indication : (1 +u2)−1/2 ∼
1− u2

2 + · · · as u→ 0.

3. Find a change in variable u = q x (determine q) allowing to further simplify the previous equation in
order to put it in the normal form of the imperfect pitchfork bifurcation (often called catastrophe) :

ẋ = h+ r x− x3 (1)

4. What happens to the equation (1) in the case of the horizontal rail ? Represent the stationary solutions
of the system in a bifurcation diagram and provide a physical interpretation. Perform a linear stability
study of the obtained equilibria.

5. How do the stationary states of the system move when the rail is tilted slightly ? Using equation
(1), show that there exists a critical value hc(r) > 0 such that equilibrium positions disappear when
h > hc(r). What type of bifurcation is it ? Determine an analytical expression (according to all the
parameters of the system) of the critical angle of inclination θc beyond which the ball can no longer
have an equilibrium position with z < 0.

6. Draw a phase diagram in parameter space (r, h) and indicate the regions of this space where there
are, respectively, 1, 2, or 3 equilibrium positions of the ball on the rail. Next, represent a bifurcation
diagram of stationary solutions as a function of h with r > 0 fixed, then a bifurcation diagram as a
function of r, with h > 0 fixed. Use the former to describe how it is possible to observe a phenomenon
of hysteresis in this dynamic system.

3 Nonlinear study of a dynamical system

For the following dynamical systems :

ẋ = a+ x− ln(1 + x) (2)

ẋ = −a x+
x2

1 + x2
(3)

ẋ = a x− sinhx (4)

2



1. Determine the fixed points (x∗) as a function of a and identify the critical point (or critical parameter)
ac.

2. Assume that x = x∗ + δ(t) and a = ac + ε and find the equation for the time evolution of δ(t) and
determine the type of bifurcation.
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