Dynamical Systems

Bifurcations

1 Loss of balance in the forced pendulum

- 1. Show that the differential equation describing the dynamics of the pendulum, represented in Fig. 1, reads: $I\frac{d^2\Theta}{dt^2} = Mgr mgl\sin(\Theta) \gamma l^2\frac{d^{\Theta}}{dt}$.
 - Write the equation in dimensionless form with two dimensionless numbers (ν, Γ) : $\nu = \frac{\gamma l^2}{\sqrt{mglI}}$ and $\Gamma = \frac{Mr}{ml}$.
- 2. Recall how the stationary states of the dimensionless equation can be solved graphically. Deduce that this system has a saddle-node bifurcation for a critical value Γ_c . This point corresponds to a critical equilibrium Θ_c^* .
- 3. Perform a change of variable in the neighborhood of the equilibrium corresponding to the pendulum forced by the critical moment of force (torque) Γ_c . Show that the dynamical system can be written in the normal form of a saddle-node bifurcation:

$$\ddot{\Psi} + \nu \dot{\Psi} = \epsilon + \Psi^2 \,,$$

where
$$\epsilon = (\Gamma - \Gamma_c)/2$$
 et $\Psi = (\Theta - \Theta_c^*)/2$

- 4. We want to study the behavior of the pendulum around its stable equilibrium, $\Psi = \Psi_s + \eta$, within the limit where $|\epsilon| \ll 1$. Show that we obtain the linear equation : $\ddot{\eta} + \nu \dot{\eta} + 2\sqrt{|\epsilon|}\eta = 0$.
- 5. Show that when $|\epsilon|$ is small enough the return to stable equilibrium occurs exponentially with a characteristic time proportional to $|\epsilon|^{-\frac{1}{2}}$.
- 6. (*) Discuss how the situation changes from the previous point, in the absence of viscous friction, $\nu = 0$.

2 The "catastrophe" of a ball attached by a spring on an inclined rail

We consider a ball of mass m which can slide on an inclined rail with an angle θ (see figure 2). The ball is subjected to a viscous friction, with viscosity constant γ . The ball is also attached to a spring of constant k and length at rest l_0 . The other end of the spring is attached to to the surface in such a way that length of the spring is equal to l_1 when the latter is perpendicular to the rail. This position corresponds to z = 0. Depending on whether the ratio $R = \frac{l_0}{l_1}$ is smaller or greater than 1, the position z = 0 will correspond to a stretched or compressed spring.

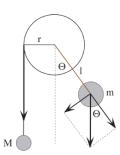


FIGURE 1 – Forced pendulum

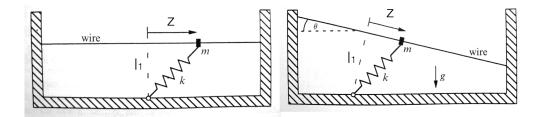


FIGURE 2 – A ball attached by a spring on an inclined rail

1. Show that the equation of motion of the ball is:

$$m\frac{d^2z}{dt^2} + \gamma \frac{dz}{dt} = mg\sin(\theta) - k\left(\sqrt{l_1^2 + z^2} - l_0\right) \frac{z}{\sqrt{l_1^2 + z^2}}$$

2. To adimensionalize the equation, we consider the variable u=z/a and the dimensionless parameters $R=l_0/l_1, b=mg\sin(\theta)/kl_1$ and $\nu=\tau_i/\tau_v$, where $\tau_i=\sqrt{m/k}$ and $\tau_v=\gamma/k$. Let us assume that the viscous friction is quite high $(\nu\gg 1)$ and $z\ll l_1$. With these assumptions, show that we can choose a to simplify the equation of the dynamical system in the form:

$$\dot{u} = b + (R - 1) u - \frac{R}{2} u^3$$
,

where \dot{u} is the derivative of u with respect to the dimensionless time t/τ_v . Indication : $(1+u^2)^{-1/2} \sim 1 - \frac{u^2}{2} + \cdots$ as $u \to 0$.

3. Find a change in variable u = q x (determine q) allowing to further simplify the previous equation in order to put it in the normal form of the imperfect pitchfork bifurcation (often called catastrophe):

$$\dot{x} = h + r \, x - x^3 \tag{1}$$

- 4. What happens to the equation (1) in the case of the horizontal rail? Represent the stationary solutions of the system in a bifurcation diagram and provide a physical interpretation. Perform a linear stability study of the obtained equilibria.
- 5. How do the stationary states of the system move when the rail is tilted slightly? Using equation (1), show that there exists a critical value $h_c(r) > 0$ such that equilibrium positions disappear when $h > h_c(r)$. What type of bifurcation is it? Determine an analytical expression (according to all the parameters of the system) of the critical angle of inclination θ_c beyond which the ball can no longer have an equilibrium position with z < 0.
- 6. Draw a phase diagram in parameter space (r, h) and indicate the regions of this space where there are, respectively, 1, 2, or 3 equilibrium positions of the ball on the rail. Next, represent a bifurcation diagram of stationary solutions as a function of h with r > 0 fixed, then a bifurcation diagram as a function of r, with h > 0 fixed. Use the former to describe how it is possible to observe a phenomenon of hysteresis in this dynamic system.

3 Nonlinear study of a dynamical system

For the following dynamical systems:

$$\dot{x} = a + x - \ln(1+x) \tag{2}$$

$$\dot{x} = -ax + \frac{x^2}{1+x^2} \tag{3}$$

$$\dot{x} = a x - \sinh x \tag{4}$$

- 1. Determine the fixed points (x^*) as a function of a and identify the critical point (or critical parameter) a_c .
- 2. Assume that $x=x^*+\delta(t)$ and $a=a_c+\epsilon$ and find the equation for the time evolution of $\delta(t)$ and determine the type of bifurcation.