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Résumé. Comment fonctionne le cerveau? Peut-on créer un cerveau artificiel? Une étape
essentielle en vue d’obtenir une réponse a ces questions est la modélisation mathématique des
phénomeénes a I'ceuvre dans le cerveau. Ce manuscrit se focalise sur ’étude de modéles de réseaux
de neurones inspirés de la réalité. Cette thése se place a la rencontre entre trois grands domaines
des mathématiques - 1'étude des équations aux dérivées partielles (EDP), les probabilités et la
statistique - et s’intéresse a leur application en neurobiologie.

Dans un premier temps, nous établissons les liens qui existent entre deux échelles de modé-
lisation neurobiologique. A un niveau microscopique, I’activité électrique de chaque neurone est
représentée par un processus ponctuel. A une plus grande échelle, un systéme d’EDP structuré
en age décrit la dynamique moyenne de ces activités. Il est alors montré que le modéle macrosco-
pique (systéme d'EDP) peut se retrouver de deux maniéres distinctes : en étudiant la dynamique
moyenne d’un neurone typique ou bien en étudiant la dynamique d’un réseau de n neurones en
champ-moyen quand n tend vers +o0o. Dans le second cas, la convergence vers une dynamique
limite est démontrée et les fluctuations de la dynamique microscopique autour de cette limite sont
examinées.

Dans un second temps, nous construisons une procédure de test d’indépendance entre processus
ponctuels, ces derniers étant destinés & modéliser ’activité de certains neurones. Ses performances
sont contrélées en termes de niveau asymptotique grice a une approximation gaussienne valide
sous I’hypothése que les processus ponctuels sont des processus de Poisson homogénes. Cette
validité théorique est vérifiée d’'un point de vue pratique par une étude par simulations. Pour finir,
notre procédure est appliquée sur de vraies données.

Abstract. How does the brain compute complex tasks? Is it possible to create en artificial
brain? In order to answer these questions a key step is to build mathematical models for in-
formation processing in the brain. Hence this manuscript focuses on biological neural networks
and their modelling. This thesis lies in between three domains of mathematics - the study of
partial differential equations (PDE), probabilities and statistics - and deals with their application
to neuroscience.

On the one hand, the bridges between two neural network models, involving two different
scales, are highlighted. At a microscopic scale, the electrical activity of each neuron is described
by a temporal point process. At a larger scale, an age structured system of PDE gives the global
activity. There are two ways to derive the macroscopic model (PDE system) starting from the
microscopic one: by studying the mean dynamics of one typical neuron or by investigating the
dynamics of a mean-field network of n neurons when n goes to infinity. In the second case, we
furthermore prove the convergence towards an explicit limit dynamics and inspect the fluctuations
of the microscopic dynamics around its limit.

On the other hand, a method to detect synchronisations between two or more neurons is
proposed. To do so, tests of independence between temporal point processes are constructed. The
asymptotic level of the tests are controlled thanks to a Gaussian approximation which is valid as
soon as the point processes are stationary Poisson processes. This theoretical control as well as
the practical validity of the method are illustrated by a simulation study. Finally, the method is
applied on real data.

Keywords: Partial differential equations. Age structured equations, measure solutions,
mean-field system. Probabilities. Temporal point processes, Hawkes process, Poisson process,
law of large numbers, mean-field interacting particle system, propagation of chaos, central limit
theorem. Statistics. Independence test, multiple tests. Neuroscience. Neural network, multi-
scale modelling, neuronal assemblies, Unitary Events method, coincidence pattern.
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NOTATIONS

number of neurons.

the sets of real numbers, of integers and of natural numbers.

the Borelian sigma-algebra on R.

the indicator function of the set A.

the Dirac mass concentrated at x.

the spaces of cadlag (right continuous with left limits) functions,
of continuous functions and of functions that are k times continu-
ously differentiable.

weighted Sobolev spaces. p-134
the natural norm associated with a normed space F.

particular test function spaces. p.44
the spaces of Radon measures and of probability measures on E.

the space of bounded continuous curves on M(FE). p.92

the dual action of w in the dual of E over e € E.

the cardinal of a set A.

the relative complement of B in A, i.e. {z € A,z ¢ B}.

the symmetric difference between A and B, ie. A\ BU B\ A.

a probability space.

a filtration on (Q, F,P).

the expectation and the variance of a real random variable Y.

the standard Gaussian distribution with mean m and variance 2.

angle bracket associated with a square integrable martingale
(Mi)i>o-

Doob-Meyer process associated with a square integrable Hilbert p.143
space valued martingale (M;);>o.

Point processes

N
N(A), N(dt)

N_, N,

(N
(St)i>0
(Si=)i>0
(Af)iz0
(At)i=0
11

a point process on R equipped with the Borelians B(R).

the number of points in N N A and the point measure associated  p.39
with N.

the trace of NV on the non-positive times, that is N N (—oo, 0] and

the trace of N on the positive times, that is N N (0, 4+00).

the distribution of the trace N_.

the standard age process associated with a point process N. p.40
the predictable age process associated with a point process V. p-40
the successive age processes associated with a point process N. p.41
the stochastic intensity of a point process N. p-39
a Poisson process with intensity equal to one on Ry x R. p-43

9
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Statistics

A a subset of {1,...,n} corresponding to the neurons whose independence p.169
is tested.

M sample size, that is the number of trials. p.171

Ho, H1  the null and alternative hypotheses. p.171
; the different simulation frameworks used. p.175
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Cette these s’inscrit dans 1’étude théorique des processus ponctuels temporels tant d’un
point de vue probabiliste que statistique. Ceux-ci permettent la modélisation des temps
d’occurrence de certains phénomeénes physiques ou biologiques (naissance, mort, stimulus,
etc). Les travaux de cette thése portent sur leur utilisation en neurosciences, et plus par-
ticulierement sur la modélisation des trains de décharge caractérisant la transmission d’un
signal au sein d'un réseau de neurones.

La premiére partie de ce manuscrit, correspondant aux chapitres 2, 3 et 4, vise a établir
un lien rigoureux entre ce point de vue probabiliste microscopique, dans lequel les neurones
individuels forment 1’échelle de base, et les modéles macroscopiques, de nature déterministe,
utilisés en analyse et attachés a la description collective du réseau, tel le systéme d’équations
aux dérivées partielles introduit par Pakdaman, Perthame et Salort dans [114]. D’une part,
les résultats du chapitre 2 portent sur des réseaux de neurones indépendants modélisés
par des processus ponctuels trés généraux. D’autre part, les chapitres 3 et 4 proposent

11



12 1. INTRODUCTION

d’étudier des réseaux de neurones modélisés par des processus de Hawkes en interaction
de type champ-moyen : un phénoméne de propagation du chaos (loi des grands nombres)
est mis en évidence dans le chapitre 3 et 'étude des fluctuations (théoréme central limite
associé) est menée dans le chapitre 4.

Dans une seconde partie, correspondant au chapitre 5 de ce manuscrit, nous étudions la
problématique de la détection de synchronisations dans les activités d’'un petit nombre de
neurones. Dans la lignée de la méthode introduite par Tuleau-Malot et ses co-auteurs pour
deux neurones [158], nous y répondons en développant une méthode statistique capable de
tester 'indépendance entre plusieurs processus de Poisson.

Les deux parties décrites ci-dessus sont indépendantes mais s’inscrivent toutes les deux
dans le cadre de la modélisation de neurones a 1’aide de processus ponctuels.

1.1 Processus ponctuels temporels : modélisation des
temps d’occurrence de phénoménes aléatoires

Les processus ponctuels temporels sont utilisés dans des domaines d’application trés variés
pour modéliser les temps d’occurrence de phénomeénes purement aléatoires ou dont la dy-
namique déterministe sous-jacente n’est pas connue/observable. Citons par exemple le cas
historique des processus de naissance et mort [37, Chapter 1], la modélisation des temps
d’arrivée a une file d’attente [16] ou encore le temps d’entrée d’une particule radioactive
dans un compteur Geiger [157]|. Cette liste ne se veut en aucun cas exhaustive : d’autres
champs d’application des processus ponctuels, et en particulier des processus de Hawkes,
sont exposés dans la section 1.1.c). Toutefois, il est important de rappeler que le cadre
d’application privilégié de ce manuscrit est la modélisation des temps d’occurrence de po-
tentiels d’action pour des neurones en interaction. Ce dernier sera amplement développé
dans la section 1.2.

1.1.a) Définitions et notations

Commencons par quelques notations relatives aux processus ponctuels temporels. Tout au
long de cette thése, nous nous intéressons a des processus ponctuels simples et localement
finis', généralement notés N, sur R muni de sa tribu borélienne B(R). Autrement dit, N est
un ensemble aléatoire de points de R tel que, pour toute partie mesurable bornée A C R,
le cardinal (aléatoire) de I'ensemble N N A est fini presque strement (p.s.). Ainsi, N peut
étre associé a une suite de temps croissants que nous notons (7},),ez et nous supposerons
que Ty < 0 < Ti. Pour tout A dans B(R), nous notons N(A) le cardinal de N N A. De plus,
nous notons N (dt) la mesure ponctuelle associée a N, i.e. la mesure sur (R, B(R)) telle que
pour toute fonction mesurable positive f, [ f(t)N(dt) =3 ,c, f(T;).

Dans ce manuscrit, nous nous intéressons plus particuliérement au comportement de
N pour les temps strictement positifs : nous supposerons que la trace de N sur les temps
négatifs est caractérisée par sa loi notée (n_. Ainsi, nous nous intéressons de maniére
équivalente au processus ponctuel N ou au processus de comptage (N;);>o associé, défini
par N; := N(]0,¢]). Nous utilisons un espace probabilisé¢ filtré (2, F, (F;)i>0,P) tel que
la filtration canonique associée a N, i.e. (F¥)i>o définie par F := o(NN] — oo, t]), est
contenue dans la filtration F := (F;);>¢ au sens ou pour tout ¢ > 0, FN C F;. Introduisons
également les processus d’age (standard et prévisible) associés a un processus ponctuel N :

e qualificatif localement fini peut, de maniére équivalente, étre remplacé par non explosif.
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e le processus d’dge associé¢ & N, noté (S;);>o, est défini par

Sy:=t—sup{T' € N, T <t} =t—1Tx, pour toutt>0. (1.1)

e le processus d’dge prévisible associé & N, noté (S;_)i>o, est défini par
Si_i=t—sup{T € N, T <t}=t—Ty,, pourtoutt >0, (1.2)

et étendu par continuité en t = 0, ou N,_ = N(]0,¢]). En particulier, So— = Sy =
t—"1Tp.

Remarquons que (S;- )0 est la version continue a gauche du processus d’age standard.

Il est commun de simplifier I’étude d’un processus de comptage a celle de son inten-
sité stochastique. Tout processus F-prévisible (A;)i>o tel que (N — fg Asd$)i>0 est une
F-martingale locale est appelé F-intensité? (prévisible) de N (sur |0, +oo[). De maniére
informelle, A\;dt représente la probabilité que le processus N admette un nouveau point
dans l'intervalle [t, 4 dt] sachant F;_, et ce conditionnement permet en particulier de mo-
déliser des interactions (attirance, répulsion) entre les différents points du processus. Sous
certaines hypothéses qui seront vérifiées tout au long de cette thése, un tel processus existe,
est essentiellement unique et caractérise la loi du processus de comptage (Ny)¢>o (voir [16]).
En particulier, sous ces hypothéses, la probabilité qu'un temps quelconque ty > 0 fixé ap-
partienne au processus ponctuel N est nulle. Finalement, il est important de noter les faits
suivants concernant les processus d’age qui sont centraux dans cette thése :

e les deux processus d’age (adapté et prévisible) sont égaux pour tout ¢ > 0 sauf si ¢
est un point de N (ces derniers forment p.s. un ensemble de mesure nulle dans R ),

e pour tout t > 0, S;_ = S; p.s. (car N admet une intensité),

e la valeur Sy = ) est déterminée par N_ := NNR_ et elle est finie s’il y a au moins
un point dans ce dernier.

1.1.b) Exemples de processus ponctuels temporels

Nous donnons ici quelques familles de processus ponctuels en donnant la forme de leur
intensité stochastique qui, nous le rappelons, caractérise la loi d’un processus ponctuel.

e Processus de Poisson : un processus de Poisson se caractérise par une intensité sto-
chastique qui est une fonction déterministe de la variable temporelle t. Ce modéle
posséde des propriétés trés intéressantes d’un point de vue mathématique, notam-
ment 'indépendance entre les points du processus : le taux d’apparition d’un point
n’est nullement influencé par les autres points. En particulier, pour peu que l'intensité
soit non nulle, il est possible de trouver deux points arbitrairement proches.

e Processus de renouvellement : comme son nom l'indique, la dynamique est renouvelée
aprés 'apparition d’'un nouveau point du processus. Son intensité au temps ¢ dépend
du délai depuis l'apparition du dernier point (strictement avant le temps t), i.e.
S;_. Ce dernier étant aléatoire, 'intensité est bien stochastique ici. Notons que le

2L’intensité peut, de maniére équivalente, se définir comme la projection prévisible de N. C’est a dire le
processus F-prévisible (A\;);>0 tel que pour tout processus positif et F-prévisible (Cy);>0, E] 0+°O CyN(dt)] =
E[ 0+°° CiAdt]. Notons que cette derniére est la définition adoptée dans [16].
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renouvellement du processus peut également se décrire par des délais inter-points
(les variables T; 1 — T;) qui forment une famille de variables aléatoires indépendantes
et identiquement distribuées (i.i.d.). L’équivalence entre ces deux descriptions est
abordée dans la section 2.3.b).

e Processus de Wold et généralisations : ces derniers peuvent se voir comme la générali-
sation des processus de renouvellement. Dans le cas du processus de Wold, en plus de
dépendre de S;_, l'intensité dépend du délai inter-points précédent, i.e. T, —Tn, 1.
Plus généralement, on pourrait penser & un modéle dont 'intensité dépend de S;_
ainsi que des k délais inter-points précédents, ou k£ est un parameétre entier du modéle.

e Processus de Hawkes : ce processus permet de modéliser des phénomeénes d’auto-
interaction a longue mémoire. Dans le cas général (non linéaire), son intensité est de
la forme

Aﬁ:¢(AFh@—zﬂw¢@), (1.3)

ou ®: R — R, et h : R, — R sont respectivement appelées fonction intensité et
fonction d’auto-interaction. Pour des raisons de stabilité, la fonction ® est en général
supposée étre lipschitzienne. Notons que dans sa variante linéaire, c¢’est-a-dire quand
® est une fonction affine et h est une fonction positive, il existe une représentation
du processus de Hawkes par un processus de branchement : chaque point donne
“naissance” a des points dans le futur selon un processus de Poisson d’intensité h(t)
(voir |71, 138] ou bien la section 2.8.c)).

Pour de plus amples informations sur les processus ponctuels (exemples, applications, ré-
sultats généraux, etc), nous renvoyons vers les deux tomes de Daley et Vere-Jones 37, 38|.
Les exemples de processus ponctuels définis ci-dessus sont plus intensivement décrits dans
le chapitre 2. Notons tout de méme que les processus de Poisson et de Hawkes sont centraux
dans ce manuscrit et se retrouvent tout au long des chapitres. De plus, la présentation de
la classe des processus de Hawkes, ainsi que leurs généralisations, fait I'objet de la section
suivante.

1.1.c) Processus de Hawkes

Le processus de Hawkes a été introduit par Hawkes [70] dans sa forme linéaire, c’est-a-dire
(en comparaison avec (1.3))

M:u+/¢h@—@Nua, (1.4)

pour modéliser le phénomeéne de réplique sismique. Le parameétre réel positif u est appelé
taux d’apparition spontanée et représente l'intensité du processus en ’absence de points.
Le processus de Hawkes, et plus globalement toutes ses généralisations, posséde un champ
d’application trés diversifié. De maniére non exhaustive, ces processus sont utilisés pour
modéliser :

e les temps d’occurrence de séismes en sismologie pour prendre en compte le phénomeéne
de réplique, [85] ou [111] (modéle ETAS);

e les localisations d’un géne sur un brin d’ADN en génomique [67, 139];
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e les temps d’occurrence de vols en criminologie [104];
e les processus d’achat et vente en finance |7, 8|;

e les temps d’occurrence de potentiel d’action en neurosciences [31, 68, 123, 136]. Nous
rappelons que c’est ce dernier usage des processus de Hawkes qui est privilégié dans
ce manuscrit.

On utilise trés souvent la version multivariée des processus de Hawkes pour modéliser des
phénomeénes d’interactions. Un processus de Hawkes multivarié est un processus ponctuel
multivarié, c¢’est-a-dire une famille finie de processus ponctuels possiblement dépendants,
noté (N',..., N™) dont les intensités respectives pour i = 1,...,n sont données par

N = &, (Zn: / byt — 2N (dz)) , (1.5)

ou ®; : R — R, est la fonction intensité associée a la coordonnée i et h;_,; est la fonction
d’interaction entre les coordonnées j et i décrivant I'influence de chaque point de N7 dans
le passé sur le taux d’apparition d’un nouveau point de N?, via la valeur de 'intensité
M. Dans la veine des généralisations des processus de Hawkes, signalons les systémes de
processus en interaction & mémoire variable étudiés dans [54] qui peuvent s’apparenter a
la forme suivante d’intensité, en comparaison avec (1.5),

n t—
A= @, (Z / | hﬁi(t—z)Nﬂ‘(dg)»
=1 Jt=Si_

ol (S¢_)i>o est le processus d’age prévisible associé a N°. Ici, la propriété de longue mé-
moire des processus de Hawkes est altérée : seule la dynamique depuis le dernier point du
processus est intégrée.

Les propriétés théoriques de la classe des processus de Hawkes ont été largement étudiées
ces derniéres années :

e structure de branchement du processus de Hawkes linéaire (1.4) par Hawkes et Oakes
[71] (voir également la section 2.8.c));

e stationnarité et stabilité [17];
e asymptotique en temps long [80, 163 ;
e estimation des fonctions d’interaction [7, 68, 139];

e algorithmes de simulation [105, 106, 110] ;

calcul des cumulants du processus de Hawkes linéaire [83].

Notons également le récent intérét porté a I’approximation des processus de Hawkes
multivariés dans un régime d’interaction de type champ-moyen [43, 44]. C’est dans cette
lignée que s’inscrivent les chapitres 3 et 4.
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1.1.d) Méthode de thinning

Bien que caractérisant la loi d'un processus ponctuel, son intensité stochastique ne donne
pas directement d’informations sur la dynamique trajectorielle d'un processus ponctuel.
La méthode de thinning permet en particulier de faire un lien entre la trajectoire d'un
processus ponctuel et la trajectoire correspondante de son intensité. Le lien donné par
cette approche est utilisé tout au long de cette thése. Nous choisissons donc de donner ici
quelques informations a propos de la méthode de thinning.

Les origines de cette méthode remontent & un article de Lewis et Shedler en 1978
[92] dans lequel est proposée une nouvelle technique de simulation de processus de Poisson
inhomogéne. Cette procédure de simulation a rapidement été généralisée par Ogata en 1981
[110] pour des processus ponctuels trés généraux. Mais, en plus de fournir des algorithmes
de simulation de processus ponctuels, 'approche par thinning permet, sur un plan plus
théorique, de donner une représentation (trajectorielle) d’un processus ponctuel général
en dimension 1 en fonction d'un processus de Poisson homogéne en dimension 2. En effet,
supposons que ’on s’intéresse au processus N d’intensité (\;)¢>o. De maniére informelle, il
existe un processus de Poisson d’intensité 1 sur R, x R, noté II tel que presque stirement,
pour tout ¢ > 0, Ny est le nombre de points de II dans la bande B sous le graphe de
intensité (A¢)i>o, ¢’est-a-dire,

Ny =Card(ITN B) avec B ={(t,z) € [0,¢] x Ry, x < A}

Cette représentation permet donc, dans une certaine mesure, de se ramener a 1’étude beau-
coup plus simple d’un processus de Poisson d’intensité 1.
La méthode de thinning est principalement utilisée dans ce manuscrit pour :

e décrire la dynamique du processus d’age au moyen d’une équation aux dérivées par-
tielles stochastique dirigée par un bruit poissonien (2.12)-(2.14),

e et pour fournir un couplage adéquat entre processus ponctuels, voir par exemple le
couplage (3.38)-(3.39).

Pour finir, précisons tout de méme que dans un but pédagogique, la description de la
méthode du thinning ci-dessus utilise en fait le sens direct ainsi que sa réciproque. Dans un
but de clarté, nous choisisons de ne pas les expliciter ici. L’énoncé du sens direct et sa preuve
se trouvent dans la section 2.8.d). L’énoncé de la réciproque et sa preuve, accompagnés de
compléments historiques, se trouvent dans ’annexe A.1. Nous fournissons dans ce manuscrit
des preuves de ces deux résultats classiques compte tenu de la difficulté a en trouver des
preuves détaillées dans la littérature.

1.1.e) Quid des processus ponctuels spatiaux ?

Finissons cette section en précisant que la famille des processus ponctuels est beaucoup plus
large que les seuls processus ponctuels temporels. Les processus ponctuels spatiaux sont
largement étudiés et peuvent modéliser la position d’arbres en sylviculture (en dimension
2), la position des agrégats et poches d’air dans un bloc de béton ou encore la position
de neurones dans le cortex [131] (en dimension 3). Nous renvoyons vers les références
[75] et [107] pour plus de détails sur les processus ponctuels spatiaux. L’exemple le plus
simple est la généralisation du processus de Poisson aux dimensions supérieures®. L’absence

3Notons ici que nous utiliserons dans ce manuscrit un processus ponctuel spatial, & savoir le processus
de Poisson d’intensité 1 en dimension 2, pour le thinning.
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d’interaction (spatiale cette fois-ci) entre les points rend bien entendu son usage limité dans
le cadre de l'analyse de configurations de points qui, la plupart du temps, exhibent des
phénomeénes d’attraction ou de répulsion entre les points. Parmi la pléthore de modéles de
processus ponctuels spatiaux, notons la présence des processus de Gibbs [107] et processus
déterminantaux [90] permettant de prendre en compte les dépendances entre points qui
connaissent un essor récent.

1.2 Cadre d’application : modélisation de réseaux de
neurones

La compréhension du fonctionnement du cerveau passe par ’analyse du réseau de neurones
formé par celui-ci. Ce manuscrit se focalise sur sa modélisation par le biais de processus
ponctuels temporels a I’échelle (microscopique) des neurones et de systémes d’équations
aux dérivées partielles a une échelle plus macroscopique.

1.2.a) Cadre neurobiologique

Au sein d’un réseau de neurones, I'information est transmise par I'intermédiaire de signaux
électriques et chimiques émis et regus par les neurones. Les potentiels d’actions constituent
le substrat électrique de ce transport d’information. Un potentiel d’action correspond a
une dépolarisation bréve et stéréotypée (un méme neurone génére les mémes impulsions
au cours du temps) du potentiel de la membrane plasmique d’un neurone en réponse a un
stimulus, selon une loi du tout ou rien.

Dengrltes Potentiel
™\ d'action
. +40
Corps cellulaire
S
) Initiations
5 0 manquées
g
3
A~
, 55 Seuil .
epos
=-70 =
/ Vi / Période
/ . réfractaire
Noyau '!, Stimulus
) |74 R
Synapses 0 1 2 3 4 5

Temps (ms)

FIGURE 1.1 : Gauche : schéma classique d’un neurone. Droite : potentiel d’action.

La genése d'un potentiel d’action a lieu au niveau du corps cellulaire du neurone. Il se
manifeste ensuite sous la forme d’un signal électrique unidirectionnel transmis par ’axone,
et on dit alors que le neurone décharge. Ce signal électrique se propage jusqu’aux synapses
(voir la figure 1.1) ou il provoque la libération de neurotransmetteurs. Ces neurotrans-
metteurs se fixent sur les dendrites des neurones voisins qualifiés de post-synaptiques.
La fixation des neurotransmetteurs se traduit par la création d’'un signal électrique au
niveau du corps cellulaire du neurone post-synaptique concerné. En changeant de point
de vue, un neurone (post-synaptique) regoit, via ses dendrites et de maniére cumulative,
les informations émanant de plusieurs neurones qualifiés de pré-synaptiques. Si celui-ci
est suffisamment sollicité par ce phénomene d’intégration synaptique, alors il émet & son
tour un potentiel d’action. Ainsi se déroule le transport de I'information pour une relation
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“pere-fils” - au sens ot il y a une connexion dirigée du pére vers le fils. Cette opération
se répétant de pére en fils, 'information peut ainsi se transmettre. Notons qu'un méme
neurone peut étre qualifié de pré-synaptique (pére) ou bien de post-synaptique (fils) se-
lon la connexion étudiée. L’information nécessaire a la compréhension du réseau peut étre
réduite a la connaissance des séquences des temps d’occurrence de ces potentiels d’action
également appelés trains de spikes (un spike correspondant au temps d’occurrence d’un
potentiel d’action). Le nombre moyen de spikes par unité de temps est appelé tauz de
décharge.

Outre les interactions décrites dans le paragraphe précédent, il faut également noter la
présence, a 1’échelle d’un neurone individuel, du phénomeéne de période réfractaire. La pé-
riode réfractaire d’un neurone est 'intervalle de temps qui suit immédiatement sa décharge
et au cours duquel il est peu enclin a, voire incapable, d’émettre un nouveau potentiel d’ac-
tion (voir la figure 1.1).

Dans la suite, nous nous attacherons a proposer des modéles en accord avec les deux
contraintes neuro-physiologiques que sont l'intégration synaptique et la période réfractaire.

1.2.b) Modélisation mathématique : plusieurs échelles possibles

Les structures neuronales présentent naturellement plusieurs échelles d’étude ot dyna-
miques déterministes et stochastiques s’entremélent. Par exemple, nous avons, de maniére
non exhaustive et selon une échelle croissante :

e les canaux ioniques, qui sont des portes perméables permettant le passage de parti-
cules chargées a travers la membrane d’un neurone. Leurs perméabilités aux différents
ions (sodium, potassium, etc) varient au cours du temps, et cette dynamique est en
fait responsable de la création d'un potentiel d’action [129]. Les canaux ioniques sont
communément modélisés par des processus stochastiques [151].

e les neurones, qui communiquent grace a 1’émission de potentiels d’actions. En considé-
rant qu’un neurone admet une infinité de canaux ioniques, la dynamique du potentiel
de membrane peut étre décrite par des systémes dynamiques déterministes tels que
le systéeme de Hodgkin-Huxley |74] par exemple. Il est commun d’introduire du bruit
stochastique dans ces systémes dynamiques pour prendre en compte la dynamique
(non observable) des canaux ioniques. En effet, le nombre de canaux ioniques étant
fini, leur perméabilité moyenne fluctue (aléatoirement) autour de sa valeur limite
(atteinte quand le nombre de canaux est supposé infini).

e les régions corticales décrites par le local field potential (potentiel de champ local),
c’est-a-dire la somme des signaux électriques émanant de neurones localisés dans une
petite zone de tissu nerveux. A cette échelle, la dynamique peut étre décrite par
des équations aux dérivées partielles o, une fois de plus, du bruit stochastique peut
étre introduit afin d’inclure ’aléa des neurones contribuant au local field potential. La
encore, le nombre de neurones étant fini, leur activité moyenne fluctue (aléatoirement)
autour de sa valeur limite (atteinte quand le nombre de neurones est supposé infini).

A Theure actuelle, la dynamique exacte du potentiel de membrane ne peut pas étre
mesurée de maniére précise pour plus d’une poignée de neurones en simultané. Mais, comme
nous I'avons déja mentionné, la connaissance des trains de spikes (plusieurs dizaines de
trains peuvent étre enregistrés simultanément) est suffisante pour étudier un réseau de
neurones et plus particuliéerement le transport d’informations au sein de ce réseau. Dans
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ce cadre la, les neurones individuels peuvent étre modélisés par des processus ponctuels
temporels qui décrivent exactement les trains de spikes correspondants et c’est ce que I'on
fait dans cette these.

1.2.c) Deux échelles en particulier

Dans cette section, les deux échelles suivantes sont décrites : I’échelle microscopique des
neurones modélisés par des processus ponctuels temporels (voir la section 1.1.a) pour les
définitions et notations a ce sujet) et 1’échelle macroscopique du réseau de neurones tout
entier dont la dynamique est modélisée par un systéme d’équations aux dérivées partielles
(EDP) structuré en age.

Echelle microscopique. Nous faisons ici I'inventaire des exemples de processus ponc-
tuels temporels présentés dans la section 1.1.b) mais du point de vue de la modélisation
de neurones.

Le modéle le plus simple rencontré dans la littérature est le processus de Poisson ho-
mogéne qui suppose un taux de décharge constant (voir le chapitre 5 ou [40, 66, 158]). Son
intensité est donnée par \; = A constante. Cependant, de tels processus présentent 1'in-
convénient de ne pas reproduire le phénomeéne de période réfractaire. De plus, sur certains
jeux de données réelles, 'hypothése d’adéquation au modeéle poissonien est rejetée [136].

En revanche, le processus de renouvellement, pour lequel le taux de décharge ne dépend
que du dernier spike dans le passé, i.e. A, = f(S;_) pour f une fonction mesurable donnée,
permet, dans un cadre assez simple, d’imiter la période réfractaire. En effet, pour les
processus de renouvellement, la loi du délai entre deux points consécutifs (ou inter-spike
interval (ISI) dans notre cadre) est une donnée du modéle. Il suffit alors de prendre une
loi qui ne charge pas les petits délais pour modéliser une période réfractaire. Dans le méme
esprit, le processus de Wold [89], un peu plus compliqué et pour lequel le taux de décharge
ne dépend que des deux derniers spikes dans le passé, a montré de bons résultats d'un
point de vue statistique [127].

Les trois modéles présentés ci-dessus ne permettent pas de prendre en compte les in-
teractions entre neurones. Il existe plusieurs démarches visant & modéliser l'intégration
synaptique dans le cadre de processus ponctuels. Parmi celles-ci, mentionnons la classe des
processus de Hawkes abondamment utilisée dans le cadre de la modélisation de neurones
[31, 88, 119, 136]. Rappelons ici la définition d’un processus de Hawkes multivarié. C’est un
processus ponctuel multivarié (N1, ..., N™) dont les intensités respectives pour i = 1,...,n
sont données par

N = ®, (i /t— hj it — z)Nj(dz)> .

Ici, le taux de décharge dépend de tous les spikes de tous les neurones avant le temps ¢. La
fonction hj_,; décrit I'influence de 'excitation du neurone j sur le potentiel de membrane,
et donc sur le taux de décharge, du neurone i. La norme L' de h;_;, pour j # i, peut
étre rattachée au poids synaptique du neurone j sur le neurone 7, c¢’est-a-dire la force de
I'influence du neurone j sur le neurone ¢ au travers de leur connexion synaptique.

Notons également 1'utilisation de modéles linéaires généralisés dans le cadre de la modé-
lisation de neurones [123]. Ceux-ci s’apparentent le plus souvent & des versions discrétisées
d’un processus de Hawkes avec ¢ égal a la fonction exponentielle.
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Echelle macroscopique. A un niveau macroscopique, nous nous concentrons sur le
point de vue proposé par Pakdaman, Perthame et Salort dans une série d’articles [114, 115,
116]. Ils proposent le systéme d’équations aux dérivées partielles (non-linéaires) structuré
en age suivant pour décrire la dynamique des spikes des neurones de tout le réseau :

on (t,s) n on (t, s)
ot Os

+0o0
m(t) :=n(t,0) = /0 p(s, X (t))n(t,s)ds.

+p(s, X (t))n(t,s) =0,
(PPS)

Ici, n(t, s) représente la densité de probabilité de trouver un neurone (typique du réseau)
d’age s au temps t, I’age d’un neurone étant le délai depuis sa derniére décharge. Bien
entendu, la définition de ’age d’un neurone correspond a la définition du processus d’age
associé a un processus ponctuel (voir I'équation (1.1)) dés I'instant ou ce dernier modélise le
train de spikes dudit neurone. La fonction p représente le taux de décharge d’un neurone qui
dépend donc de son age s. Notons que cette dépendance permet de modéliser le phénomeéne
de période réfractaire en prenant, par exemple, p(s,z) = 1,55 pour un certain parameétre
0 représentant la durée de la période réfractaire. De plus, la fonction p dépend également
de la variable X (¢) représentant I'activité globale du réseau au temps ¢, sous la forme

X(t) ::/O d(t — z)n(z,0)dz, (1.6)

pour d une certaine fonction de délai. Cette intégrale de convolution modélise le temps de
propagation de la décharge d’un neurone au reste du réseau.

Le systéme (PPS) décrit une dynamique de croissance/réinitialisation de la maniére
suivante : ’age s d’un neurone au temps ¢ peut

e augmenter linéairement avec vitesse 1 (si le neurone ne décharge pas au temps t),
e ou bien étre réinitialisé en s = 0 (si le neurone décharge au temps t).

Bien entendu, cette dynamique conserve la masse dans le sens ou pour tout ¢ > 0,
fOJrOO n(t,s)ds = f0+oo n(0, s)ds.

La présence d’oscillations ainsi que la relaxation a I’'équilibre ont été étudiées pour ce
systéme [114, 115, 116]. Bien que présentant des caractéristiques qualitatives intéressantes
du point de vue de la modélisation de réseaux de neurones, ce systéme a été justifié par
une approche heuristique se basant sur ’étude du modéle Intégre-et-décharge effectuée dans
[122]|. Nous choisissons donc de donner ici quelques détails concernant le modéle intégre-
et-décharge. Dans sa forme la plus simple, ce modéle décrit la dynamique du potentiel de
membrane d’un neurone, noté V(¢), au moyen de ’équation différentielle ordinaire,

Omcil_‘t/ =—g,(V =Vy)+1(2). (1.7)
Ici, C,, est la capacité (de charge) de la membrane, g;, est la conductance de fuite (de
I'intérieur du neurone vers la matrice extérieure) et V, est le potentiel de repos (atteint
pour l'état stationnaire avec I(t) = 0). Le courant synaptique I(t) décrit I'influence des
décharges des neurones pré-synaptiques sur le neurone dont le potentiel de membrane est
modélisé par V(¢). Pour finir, la dynamique de décharge suivante est ajoutée : si V()
dépasse un certain seuil 6, le neurone décharge et V(t) est réinitialisé en la valeur de
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potentiel V,.. La différence de valeur entre le potentiel de repos Vi, et le potentiel de ré-
initialisation V,. permet de modéliser le phénoméne de période réfractaire : pour cela, on
suppose que V, < Vi, < @ (voir la figure 1.1). Dans le cas particulier étudié¢ dans [122], la
solution explicite du modéle est donnée par

t
V(t) =V 4 (V, — Vp)e tT/mm 4 / d(t — 2) Ninpus (d2). (1.8)
T

Ici, T représente le dernier spike du neurone, 7, = C,,/gr est la constante de temps
du systéme, la fonction d représente le potentiel excitateur post-synaptique (EPSP en
anglais) et Nipu est la somme des masses de Dirac localisées sur les spikes des neurones
pré-synaptiques. Ainsi, notons que le terme intégral dans (1.8) modélise le phénoméne
d’intégration synaptique et en ce sens peut étre rapproché de X ().

Signalons que la famille des modéles de type intégre-et-décharge est vaste et ne se résume
pas au cadre décrit ci-dessus. En particulier, comme noté ci-dessous dans la section 1.3.d),
des approches de type champ-moyen sont possibles pour des neurones de type intégre-
et-décharge en interaction. Dans l'optique de l'utilisation de tels modéles & des données
expérimentales, notons que ces derniéres exhibent en général des constantes de temps qui
varient au cours de l'expérience, et surtout un seuil gradué [79]. Or, un seuil (strict) de
décharge est considéré dans le cadre de base du modéle intégre-et-décharge.

1.3 Premiére partie : lien entre deux échelles

La premiére partie de cette thése a pour but de faire le lien entre, d’'une part, certains
types de processus ponctuels et, d’autre part, le systéme non-linéaire (PPS) en partant de
la constatation suivante : la mesure N (dt) représente l'activité (stochastique) d’un neurone
selon la loi du tout ou rien et n(t,0) représente I’activité moyenne d’un neurone typique.
Ainsi, le processus de Hawkes (1.3) et le systéme (PPS) font tous les deux intervenir
une intégrale de convolution entre une fonction de délai, h et d respectivement, et une
représentation de l'activité instantanée des neurones, N (dt) et n(t,0) respectivement. Cette
ressemblance est également visible avec le terme intégral apparaissant dans (1.8). Nous
montrerons que cette ressemblance obéit en réalité a une correspondance mathématique,
que nous expliciterons dés que possible dans cette section.

1.3.a) Lois probabilistes et équations aux dérivées partielles

Dans de nombreux domaines d’application, les équations aux dérivées partielles (EDP)
décrivent la dynamique globale/moyenne (observable le plus souvent) associée a une dyna-
mique plus individuelle souvent non observable compte tenu du nombre d’individus mis en
jeu ou bien de leur taille microscopique par exemple. Le lien historique entre EDP et modé-
lisation probabiliste (microscopique) remonte & 'intuition de Einstein (1905) qui consiste
a voir le mouvement brownien (observé par Brown sur des grains de pollen) comme la
dynamique microscopique sous-jacente a la diffusion modélisée par I’équation de la cha-
leur. Plus formellement, ce lien s’écrit de la maniére suivante : soit (B;);>0 un mouvement
brownien et ™ : R — R une fonction bornée. Alors, la fonction u : R, x R — R définie
par u(t,z) := E[u™(z + B;)| est solution de I'équation de la chaleur :

1
au(t, x) = §Au(t, x),
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avec pour condition initiale (0, z) = u'™(x). Ainsi, la “diffusion moyenne” d’une particule
typique dans le milieu est décrite par I’équation de la chaleur. Ce résultat provient de la
propriété de Markov du mouvement brownien. Plus généralement, il existe un lien étroit
entre processus markoviens et équations aux dérivées partielles donné par I'équation de
Fokker-Planck.

Entre les processus de diffusion (plus réguliers) et les processus de comptage (processus
de saut pur) que nous étudions dans ce manuscrit, notons la présence des processus mar-
koviens déterministes par morceaux (PDMP en anglais) introduits par Davis [39]. Dans ce
cas, la dynamique d’une particule est dirigée par un flot déterministe jusqu’a 'apparition
d’un “saut”. Le taux d’apparition de ce “saut” ne dépend que de la position de la particule.
Un “saut” peut correspondre a la fois & un saut de la position de la particule mais égale-
ment & une transition de la dynamique déterministe de la particule, ¢’est-a-dire que le flot
directeur de la dynamique peut étre altéré par I'apparition d’un “saut”. Dans le cadre de
I’étude de cette theése, précisons que des liens entre des modeles PDMP et des systémes
d’EDP ou d’équations différentielles ordinaires ont été étudiés récemment : communautés
proies-prédateurs et le systéme de Lotka-Volterra [34], systéme de Hodgkin-Huxley pour la
modélisation du potentiel de membrane d’un neurone [140].

A notre connaissance, la littérature traitant du lien entre processus ponctuels généraux
et EDP est faible voire inexistante. La raison principale étant que les techniques usuelles
utilisent I'’hypothése de Markov, et celle-ci n’est en général pas vérifiée par un processus
ponctuel.

1.3.b) Approche par espérance mathématique

L’idée générale de la premiére approche développée dans le chapitre 2 réside sur le fait
suivant :

Une quantité déterministe qui décrit simplement le comportement moyen d’un
variable aléatoire X est son espérance E[X].

Ainsi, cette premiére approche consiste a voir la quantité n(t, s) qui apparait dans le sys-
téme (PPS) comme lespérance de son pendant aléatoire. Nous supposerons que la dyna-
mique stochastique sous-jacente est caractérisée par un processus ponctuel N, d’intensité
(At)t>0, qui modélise le train de spikes d’un neurone typique du réseau.

Contributions de la thése. Dans le chapitre 2 de ce manuscrit, nous étudions la loi
de probabilité de I'age S; (ou de maniére équivalente de S;_ puisque ces deux variables
sont égales presque strement, comme nous ’avons vu dans la section 1.1.a)) associé a un
processus ponctuel N admettant une intensité (A\;);>o trés générale. Plus précisément, nous
cherchons a caractériser sa dynamique, en fonction du temps ¢, au moyen d’'une EDP qui
se rapproche de (PPS).

Nous construisons dans un premier temps, de maniére ad hoc, une mesure (aléatoire) en
temps t et en age s, notée U(dt,ds), qui se veut étre 'analogue aléatoire de n(t, s). Celle-
ci est construite a partir de ses marginales en temps et en age et vérifie, en particulier,
pour tout ¢t > 0, U(t,ds) = dgs,_(ds) ou U(t,ds) est la marginale au temps ¢ de la mesure
U(dt,ds). Cette construction est possible grace & une propriété de Fubini vérifiée par les
marginales en temps et en age (voir la section 2.4.a)). La procédure de thinning, présentée
dans la section 1.1.d) (avec quelques compléments en annexe A.l), permet d’écrire un
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systéme d’équations aux dérivées partielles stochastiques vérifié, au sens faible*, par la
mesure U (voir la proposition 2.4.1).
De plus, sous certaines hypothéses d’intégrabilité sur l'intensité (\;);>o, l'espérance
de la mesure U est bien définie et nous la notons u. En particulier, pour tout ¢t > 0,
u(t,ds) = E[dg,_(ds)] c’est-a-dire que u(t, ds) est la loi de probabilité de 1’age au temps t.
Le théoréme 2.4.4 montre que cette mesure u satisfait, au sens faible, le systéme d’équa-
tions aux dérivées partielles (déterministe) suivant :

2u (dt,ds) + 2u (dt,ds) + prcy (t,s)u(dt,ds) =0,

ot &8 (1.9)
u (dt,0) :/ Pacn (ts)u(t, ds) dt,
0
ol prcy (t,8) = E[N|S;— = s]. Notons que py¢, dépend de l'intensité du processus

ponctuel sous-jacent ainsi que de la condition initiale (y_ (& savoir, la loi de NN R_). En
comparant les systémes (PPS) et (1.9), il apparait que n(t, s) est remplacé par u(dt, ds) et
que le terme p(s, X (t)) est remplacé par py¢, (t,s). Le premier remplacement découle de
la construction de u. Le second remplacement par I’espérance conditionnelle sachant 1’age
S;_ est expliqué par le fait que la mesure u(t,-) est la loi de S;_ : pour connaitre le taux
de décharge moyen d’un neurone d’age s, on conditionne par I’événement S;_ = s.

A notre connaissance, le coefficient prcy (t,s) ne peut pas étre explicité dans le cas
général. Cependant, si 'intensité ne dépend que du temps ¢ et du dernier point, i.e. Ay =
f(t,Si-), alors, quelque soit Cn_, pacy (£,5) = f(t,s) et le systéme (1.9) est linéaire. Dans
ce cas particulier, le processus d’age prévisible est markovien et le résultat donné par le
théoréme 2.4.4 peut étre obtenu plus simplement en utilisant le générateur infinitésimal
de (S;-)i>0 et I'équation de Fokker-Planck (voir la section 2.5.a)). Ainsi, le théoréme 2.4.4
peut étre vu comme la généralisation de ce résultat & des dynamiques sous-jacentes non
markoviennes, ce qui est le cas pour les processus de Hawkes.

Le coefficient py ¢, (t,s) n’étant pas explicite dans le cas des processus de Hawkes (I'in-
tensité dépend de tous les points du passé et pas simplement du dernier), une idée possible
est d’approcher la dynamique associée a un processus de Hawkes par une dépendance par
rapport aux k derniers spikes du neurone avec k suffisamment grand. Ceci améne a gé-
néraliser le systéme (1.9) qui porte sur la loi de I’age, autrement dit du dernier spike du
neurone, au systéme (2.27)-(2.29) qui donne la dynamique de la loi jointe des k derniers
spikes.

Cependant, dans le cas particulier ot le processus ponctuel sous-jacent est un proces-
sus de Hawkes linéaire (1.4), sa structure de branchement (voir la section 2.8.c)) permet
de mieux appréhender 'espérance conditionnelle E[\;|S;_ = s]. La conséquence pour le
systéme (1.9) est la suivante (voir la proposition 2.5.4) :

La fonction (de survie) v définie par v(t,s) := f:oo u(t, do) vérifie un systéme

d’EDP fermé (ce qui n’est pas le cas pour le systéme (1.9)).
Notons en particulier que I'interprétation de X (), défini par 'équation (1.6), comme l'in-
tégrale intervenant dans l'intensité d’'un processus de Hawkes n’est pas vérifiée ici malgré
la ressemblance mise en évidence a la fin de la section 1.2.c).
Finalement, il est possible de voir le systéme (1.9) comme le systéme vérifié (dans la li-
mite d'une grande population de neurones) par la proportion de neurones d’age s au temps

4La notion de solution au sens faible est précisée dans la proposition 2.4.1 pour ce cas particulier. Dans
un cadre plus général, I’Appendice A.2 donne des précisions a ce sujet.
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t dans le cas d’un réseau de n neurones modélisés par des processus ponctuels (trés géné-
raux) N (i = 1,...,n) indépendants et de méme loi que N. Ce résultat est explicité dans
le corollaire 2.4.5 et repose sur la loi des grands nombres pour les variables aléatoires réelles.

Cependant, cette hypothése d’indépendance des neurones est trop forte (comme il ap-
parait clairement dans le chapitre 5). Nous nous sommes donc tournés vers une approche
par limite de champ-moyen ou des interactions entre les neurones sont considérées.

1.3.c) Généralités sur les limites de champ-moyen

Une limite de champ-moyen se propose d’étudier un systéme de n particules® en interactions
symétriques, décrites par le n-uplet (X', ..., X;""), lorsque n est trés grand (n — +00).
L’indice n dans X" 1 par exemple, souligne le fait que la dynamique des particules dépend
du nombre de particules dans le systéme : le fait de rajouter une particule perturbe la
dynamique des autres particules car elles sont en interaction. En général, le systéme de
particules est supposé étre homogeéne (les particules sont échangeables®) et les interactions
sont calibrées de telle sorte que la force d’interaction subie par une particule est asymp-
totiquement d’ordre 1. Par homogénéité, le terme d’interaction peut s’écrire comme une
fonction de la mesure empirique des particules, disons g(n™* 3, 5th,¢). La force d’in-
teraction entre deux particules données tend vers 0 & mesure que la taille du systéme n
tend vers +o00, ce qui suggéere I'indépendance asymptotique entre deux particules données
si celles-ci ont été initialisées de maniére indépendante. Ce phénomeéne est communément
appelé propagation du chaos et se trouve étre intimement lié a la convergence de la mesure
empirique des particules vers une loi limite (voir [101, Proposition 4.2] par exemple). De
plus, la loi limite commune de toutes les particules est généralement caractérisée comme
étant la solution d’'une EDP non-linéaire. Cette non-linéarité, communément qualifiée de
type McKean-Viasov, provient du remplacement du terme d’interaction g(n='> 7" | 0 th,i)
par g(F;), ou P, est la loi limite d’une particule au temps ¢. Sous réserve d’hypothése
de continuité sur la fonction g, cela s’explique par I'heuristique suivante : I'indépendance
asymptotique des particules, suggérée par la propagation du chaos, associée a la loi des
grands nombres donne la convergence de la mesure empirique n=' > |0 xi Vers P,.

D’un point de vue technique, deux méthodes sont principalement utilisés : raisonnement
par compacité ou bien argument de couplage (voir Particle fondateur de Sznitman [156]).
Dans le premier cas, les preuves suivent le schéma suivant [101, 155] :

1. Montrer la tension (i.e. compacité faible) de la suite des mesures empiriques.
2. Identifier une équation vérifiée par tout point d’adhérence de cette suite.
3. Caractériser le point limite en prouvant 'unicité des solutions de cette équation.

4. La compacité combinée a 'unicité du point limite donne la convergence.

5Notons que la terminologie “particule” vient du fait que, & I’origine, les limites de champ-moyen concer-
naient principalement des systémes de particules physiques. Ces particules en interaction hamiltonienne
sont décrites a la limite par une équation cinétique (Boltzmann, Vlasov). La littérature sur ce sujet est
trés dense [84, 101, 152, 153, 156].

6La loi (X{"',..., X["™) est stable sous I'action d’une permutation des coordonnées.
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Bien que fonctionnant dans des cadres trés généraux, cette méthode a un caractére abstrait.
En particulier, elle ne donne pas de vitesse de convergence. Par ailleurs, les preuves par
couplage suivent le schéma suivant :

1. Trouver (souvent de maniére heuristique dans un premier temps) un processus adé-
quat représentant la dynamique limite. Notons-le (X);> ici. La recherche de ce can-
didat repose sur I'heuristique de la loi des grands nombres décrite ci-dessus. Notons
que la mesure limite P, sera la loi de X.

2. Montrer que ce processus est bien défini. Cette étape, commune avec I’approche par
compacité, n’est pas triviale en général car la définition du processus limite (X¢)¢>o
fait intervenir un probléme de point fixe de type McKean-Vlasov.

3. Coupler la “vraie” dynamique avec la dynamique limite de maniére astucieuse. Pour
cela, il faut construire des copies i.i.d. du processus limite (X;);0, notons-les (yz)tzo
pour tout entier ¢ > 1, qui soient proches des processus dirigés par la “vraie” dyna-
mique, i.e. les (X;"");>0. Informellement, on cherche, en général, a diriger (X,);>o par
le bruit de (X;"")¢=0. Remarquons ici que les processus limites (X)e>0 ne dépendent
pas de n contrairement aux (X;"");>o.

4. Finalement, si le processus limite trouvé a la premiére étape est bon et que le couplage
a été bien fait, il est alors possible de montrer la convergence des (X;"");>o vers les

copies i.i.d. (7;),20. En général, la distance entre les deux processus est quantifiable
ce qui permet d’en déduire un majorant d'une distance de couplage (distance de
Wasserstein par exemple) entre les deux distributions correspondantes.

Cette seconde méthode a I'avantage de fournir une vitesse de convergence, mais requiert
en général des hypotheses plus fortes sur le modeéle. Dans ce manuscrit, nous utilisons un
argument de couplage pour montrer un résultat de type “loi des grands nombres” dans
le chapitre 3 et la vitesse de convergence obtenue sert de pierre angulaire & 1’étude du
“théoréeme central limite” associé effectuée dans le chapitre 4.

1.3.d) Approche par limite de champ-moyen

Bien qu’étant particuliérement adaptées a I’étude de systémes de particules physiques (gaz,
plasma, ...), les approches de type champ-moyen (voir la section 1.3.c) pour plus de détails)
sont courantes dans 'étude de grands réseaux de neurones en interaction’. Distinguons
quatre types de modeles : les systémes dynamiques qui générent des spikes de maniére
intrinséque (FitzHugh—Nagumo [96, 97|), les modéles qui générent des spikes par seuillage
(integre-et-décharge [22, 41, 42, 76]), les oscillateurs couplés (Kuramoto [58, 59]) et les
processus ponctuels ([52] ou [55, 73| qui proposent des modeéles différents).

Les chapitres 3 et 4 de ce manuscrit proposent d’étudier la limite de champ-moyen
d’un réseau de processus de Hawkes dépendants de 1'age (voir la définition 1.3.1 plus
bas). La premiére partie de cette étude (i.e. le chapitre 3) est inspirée de ’étude d’un
réseau de processus de Hawkes standards effectuée par Delattre, Fournier et Hoffmann

"L’hypothése d’échangeabilité des neurones semble raisonnable dans certaines régions du systéme ner-
veux. De plus, le réseau neuronal est trés connecté (voir [49] pour plus de détails sur les approches de type
champ-moyen en neurosciences).
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dans [43]. Ils montrent que des processus de Hawkes en interaction de type champ-moyen
(N™1 ..., N™") dont les intensités sont données par

AP =@ (% Xn: /t_ h(t — Z)Nn’j(dz)> : (1.10)

peuvent étre approximés (quand n — +00) par des processus de Poisson inhomogénes
indépendants. Dans le modeéle (1.10), en comparaison avec (1.5), les fonctions intensités ®;
sont toutes égales ainsi que les fonctions d’interaction h;_,;. En particulier, le graphe d’in-
teraction entre les processus est le graphe complet et la valeur de I'intensité stochastique
est la méme pour tous les processus, d’ou 1'échangeabilité de (N™! ... N™"). Originelle-
ment destinés a des applications en mathématiques financiéres, les résultats énoncés dans
[43] ont été généralisés & un nombre fini de grandes populations de neurones par Ditlevsen
et Locherbach dans [44], chaque population pouvant étre résumée, asymptotiquement, par
son activité moyenne. Dans le cadre de plusieurs populations en interaction, un phénomeéne
d’oscillations auto-entretenues peut apparaitre. D’un point de vue biologique, ce phéno-
meéne peut permettre de comprendre comment le cerveau controle les rythmes biologiques
(rythme cardiaque, pulmonaire, cycle de veille, etc).

Contributions de la thése. Par souci de clarté, une version simplifiée® du modéle étudié
dans les chapitres 3 et 4 est présentée ici. Ce modéle est basé sur les processus de Hawkes
en interaction de type champ-moyen (1.10) qu'il généralise en ajoutant, entre autres, une
dépendance par rapport a I’age du processus lui-méme. L’ajout de cette dépendance permet
de contrecarrer I'une des principales carences du processus de Hawkes dans son utilisation
en neurosciences : ’absence d’une description simple du phénoméne de période réfractaire.

Définition 1.3.1. Un réseau de processus de Hawkes dépendants de l’dge (ADHP) de
parameétres (n,h, V) est un processus ponctuel multivarié (N™);_y _,, dont les intensités
sont respectivement

n t—
A =0 (SZ”, % Z/O h(t — Z)N”’j(d2)> 7 (1.11)
j=1

ot (Si")i>o est le processus d’dge prévisible associé a N™".

Le terme intégral dans (1.11) est homogéne en i ce qui implique I’échangeabilité de
(N™1 ..., N™"). Par souci de simplicité, nous ne spécifions pas ici toutes les hypothéses
techniques (qui sont décrites dans le chapitre 3), mais précisons tout de méme ’hypothése
principale du modéle : la fonction W est lipschitzienne en sa seconde variable (uniformément
par rapport a la premiére).

Basé sur un argument de couplage, inspiré de [43] et reposant sur la méthode de thinning
(introduite dans la section 1.1.d)), le théoréme 3.4.1 montre que des ADHP peuvent étre
approchés par des processus ponctuels indépendants et identiquement distribués N, i > 1.
L’intensité de Nl, notée (th )t>0, est une fonction du temps t et de 'age prévisible associé
§iﬁ. En particulier, si les processus N™* présentent des périodes réfractaires, alors il en va

A . . v
de méme pour les processus limites N .

8Précisons ici que, en comparaison avec (1.10), le graphe d’interaction associé¢ au modéle étudié dans le
chapitre 3 peut étre de type ErdGs-Rényi par exemple plutét que complet.
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Les processus d’age (standards) associés aux ADHP, notés (S7"")i>0, peuvent également

étre approximés et le corollaire 3.4.5 donne le résultat de type “loi des grands nombres”
suivant : la mesure empirique des ages g, := nty L6 gpi Converge vers P, qui est la loi
de I'age gi associé a N .

Le lien avec une EDP se fait via le processus limite. En effet, Uintensité (), );>o vérifie
I’équation de point fixe de type McKean-Vlasov suivante :

% - (s / it - 2 ER:).

L’intensité dépend de la propre loi du processus et cette dépendance ressemble fortement
a la non-linéarité présente dans le systéme (PPS). En particulier, la proposition 3.3.8 (qui
utilise des résultats du chapitre 2) montre que :

Si la condition initiale u(0,-) = u'™ est une densité, alors I'unique solution u du
systéme suivant,

ou (t,s) N ou (t,s)
ot 0s
u(t,0) = /ER U (s, X(t)ul(t,s)ds,

+ U (s, X(t)u(t,s) =0,
(1.12)

ou X(t) = fot h(t — z)u(z,0)dz, est telle que u(t, -) est la densité de P; (la loi de
l'age gtl)

Notons que le systéme ci-dessus est identique au systéme (PPS) a condition de remplacer
u(t, s) par n(t,s), U par p et h par d. Toutefois, nous avons choisi d’utiliser des notations
différentes car les hypothéses supposées sur les fonctions ¥ et h dans ce manuscrit différent
de celles supposées sur p et d dans [114]|. En particulier, les études de 'existence et de
I'unicité des solutions de (PPS) et (1.12) différent (légérement). Nous démontrons dans ce
manuscrit 'unicité des solutions de (1.12) pour des solutions & valeur mesure et 1’existence
d’une solution & valeur densité (voir le théoréme 3.3.5). Finalement, le résultat de conver-
gence de frg, vers la loi P, combiné avec l'identification de P, comme la solution de (1.12)
permet de faire le lien entre les deux échelles de modélisation présentées en section 1.2.c) :

fis, 7o ult, ).

De plus, la ressemblance entre la variable X (¢) et 'intégrale intervenant dans l'intensité
d’un processus de Hawkes, constatée a la fin de la section 1.2.c), est ici explicite.

Ayant obtenu un résultat de type “loi des grands nombres” pour la mesure empirique
des ages, il est naturel de chercher le résultat de type “théoréme central limite” associé.
C’est 'analyse menée dans le chapitre 4. L’étude porte donc sur les “petites” fluctuations
de fig, autour de sa limite P,. Considérons le processus de fluctuation (7;');>o défini par
ny = /n(@e, — P;). Précisons ici que n;* est une mesure sur U'espace d’état des ages, a savoir
R, . Une maniére d’étudier cette mesure est donc de I’évaluer contre des fonctions test.
En s’'inspirant de travaux de Méléard et de ses co-auteurs [50, 82, 101], nous utilisons des
fonctions tests ¢ dans un espace de Sobolev a poids. Plus précisément, nous considérons les
espaces W(]f * pour k entier (représentant 'ordre de régularité) et aw dans R (représentant
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le poids), définis comme la complétion de l'espace des fonctions C* a support compact

pour la norme suivante
k , 1/2
@)
o = —dx )
k, (Z R 1 + ’x‘Qa

k'=0

In

Ainsi, la mesure 7' peut étre vue comme une forme linéaire sur ces espaces Wg * (pour
des valeurs particuliéres de k et o que nous choisissons de ne pas préciser ici). De maniére
équivalente, nous considérons 7' comme un élément du dual de Wi®, noté W;*. La
suite repose sur un raisonnement par compacité. Nous montrons que le processus (n}");>o,
qui prend ses valeurs dans W, Ba st tendu (théoréme 4.4.14). De plus, le théoréme 4.5.6
montre que tout point limite n vérifie un systéme de deux équations faisant intervenir un
deuxiéme processus I' (qui est & valeurs réelles et que nous choisissons de ne pas expliciter
dans cette introduction). Finalement, 'unicité des solutions de ce systéme (proposition
4.5.11) implique l'unicité des points limites de (n™),>1 et donc la convergence de cette
suite (théoréeme 4.5.12).

Pour finir, notons que ce résultat, bien que technique, ouvre la voie pour établir des
procédures statistiques tels que des tests d’adéquation.

1.4 Seconde partie : détection de synchronisations entre
neurones

Le chapitre 5 s’intéresse a la détection de motifs de dépendance dans l'activité électrique
de neurones d’un point de vue statistique. Les résultats présentés reposent sur des travaux
débutés lors du stage de Master 2 précédant cette thése et se rapprochent des autres
chapitres de ce manuscrit de part le fait qu’ils concernent des processus ponctuels dans le
cadre de la modélisation de neurones.

1.4.a) Motivations biologiques

Historiquement, les neurones étaient considérés comme des entités agissant de maniére in-
dépendante [10]. Cette conception est principalement due au fait que pour des raisons tech-
nologiques, les neurobiologistes ne pouvaient enregistrer que ’activité d’'un seul neurone a la
fois®. Depuis 1'utilisation de multi-électrodes, de nombreuses études ont porté sur les inter-
actions entre les neurones et notamment leur synchronisation. Ces multi-¢électrodes (amas
de plusieurs électrodes dans une petite région du cortex) enregistrent le potentiel électrique
en des points trés proches. Les potentiels d’action générés par les neurones proches du point
d’implantation de 1’électrode se retrouvent dans la dynamique du potentiel enregistré sous
la forme de pics. Une triangulation spatiale, possible grace a ’enregistrement redondant
des multi-électrodes, permet de classifier les spikes selon le neurone qui les a générés (al-
gorithme de spike sorting, voir [127]). Dans la suite, nous supposerons avoir accés a des
données ayant subi cette classification comme pré-traitement. Ainsi, les données qui nous
intéressent sont formées par les trains de spikes correspondant a un petit nombre n > 2 de

9Notons que deux neurones appartenant a une région corticale présentant de nombreux neurones en
interaction de type champ-moyen peuvent présenter des activités électriques indépendantes (cf le phéno-
meéne de propagation du chaos présenté en section 1.3.d)). Réciproquement, I’hypothése de champ-moyen
n’est pas réaliste lorsque des neurones se synchronisent & certains moments au cours d’une tache.
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neurones enregistrés au cours d’une tache sensori-motrice. De plus, nous supposerons avoir
accés a M enregistrements indépendants et identiquement distribués correspondant a M
répétitions de cette tache.

Une assemblée neuronale est un groupe de neurones qui montrent une certaine tendance
a exhiber des activités électriques synchronisées. Cette notion a été proposée dans [72]
pour décrire le codage et le traitement de I'information par les neurones. La détection de
synchronisations entre neurones a donc pour objectif d’identifier des assemblées neuronales
intervenant a certains moments précis au cours de I'éxécution d’une tache. Pour ce faire,
de nombreuses méthodes sont possibles.

Une des méthodes les plus populaires a ce jour est la méthode des Unitary Events
(UE) introduite dans la thése de Griin [62]. Cette méthode est basée sur 'idée qu’une
dépendance excitatrice du neurone A vers le neurone B doit étre caractérisée par une
surabondance du motif suivant : spike du neurone A suivi (dans un délai trés court de
lordre de la milliseconde) d’'un spike du neurone B. Si un tel motif est sur-représenté,
alors il est qualifié de Unitary Event. Utilisables sur des données discrétisées en temps, les
différentes méthodes proposées par Griin et ses collaborateurs (par exemple [63, 64, 65, 66])
ont récemment été généralisées au cadre des processus ponctuels (données continues en
temps) sous le nom de “Multiple Tests based on a Gaussian Approximation of the Unitary
Events” (MTGAUE) dans un article de Tuleau-Malot et ses co-auteurs [158]. La méthode
MTGAUE est construite pour tester I'indépendance entre deux processus ponctuels.

1.4.b) Contributions de la thése

Nous généralisons (en partie) la méthode statistique introduite dans [158] au cas de n > 2
processus ponctuels représentant les trains de spikes de n neurones. Pour Ny,..., N, des
processus ponctuels sur [a,b] et £ un sous-ensemble de {1,...,n} donné, nous donnons
une réponse statistique a la question suivante : est-ce que les processus N, | € £, sont
indépendants ?

Nous répondons a cette question en construisant un test statistique de décision entre
les deux hypotheses :

(Ho) “Les processus N;, | € £ sont indépendants.”
(H1) “Les processus N, | € Z ne sont pas indépendants.”

La méthode MTGAUE de [158] est basée sur la notion de coincidence avec délai entre
deux neurones définie de la maniére suivante : pour un paramétre § > 0, la variable

X{ljg} = X{LQ}((S) = / , 1‘x_y|§5N1(de‘)N2(dy) = Z Z 1|X—Y|§6

[a,b] X€EN; YEN,

désigne le nombre de coincidences (de délai 0) entre les processus ponctuels Ny et N,. La
généralisation & n processus que nous proposons est donnée par la définition qui suit.

Définition 1.4.1. Soit £ un sous-ensemble de {1,...,n}. Notons L > 2 son cardinal
et L ={iy <--- <ig}. Pour § >0, le nombre Xy de coincidences de délai 6 entre les
processus Ny, ..., N;, est défini par :

[a,b]"
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Cette notion de coincidence entre plus de deux neurones est détaillée dans la section

5.2.b).
Sous (Hy), en supposant que les processus Ny, ..., N, sont des processus de Poisson
homogenes d’intensités respectives Aj,..., A, sur [a,b], il est possible (voir le théoréme

5.3.1 et proposition 5.3.2) de calculer explicitement l'espérance et la variance de X ¢ en
fonction des parameétres, c’est-a-dire

Var(Xg) =vo(n, L,0,a,b,A\1,...,\)

E[Xg| =mo(n,L,6,a,b,\,...,\,) = mg

. An) = Vo-

De plus, si (Nl(k), e ,Ny(Lk))lngM désigne M essais indépendants et de méme loi que
(N1,...,N,), alors le théoréme central limite donne la convergence en loi suivante!® :

\/M(m—mo) ]\% N(O,UQ),

— M k k . . <
oum = % D he1 XE_(%), et X,,(z’) est le nombre de coincidences au k¢ essai, c’est-a-dire entre

les processus Ni(lk), e ,Ni(Lk). Cette convergence n’est pas directement utilisable d’un point
de vue pratique car les intensités ne sont pas observables. Cependant, le lemme de Slutsky
allié a la méthode delta garantit que le remplacement des vraies intensités A; par leurs
estimateurs \; := m SM Nl(k)([a, b]) ne compromet pas le comportement gaussien de
la limite, quitte a changer la variance. Plus précisément, nous montrons la convergence en
loi suivante : o
m —1m i
Vi mo) o, N(0,1),
\/ 5-2 M—o0

ot mg := mg(n, L, d, a,b, A,y ,;\n), Vg 1= Uo(n,L,é,a,b,;\l, .. ,S\n) et

~

6% =109 — f(n,L,8,a,b, A1, .., \n),

pour une certaine fonction positive f explicite. Cette modification de la variance provient
du fait que les vraies intensités sont remplacées par leurs estimateurs. La valeur quantitative
de cette modification est donnée par la méthode delta.

Cette étude asymptotique de la moyenne empirique du nombre de coincidences permet
de construire un test dont le niveau'! asymptotique est controlé (voir la définition 5.3.4 et le
corollaire 5.3.5). De plus, nous mettons en place une procédure de tests multiples, & partir
de la procédure de test simple décrite ci-dessus, qui permet de détecter les sous-ensembles
£ de neurones montrant des évidences statistiques de dépendance. Cette procédure de
tests multiples est basée sur la procédure de Benjamini-Hochberg [11].

L’utilisation de ces résultats théoriques sur des données simulées (n = 4 neurones dont
les taux de décharges sont cohérents avec ceux mesurés expérimentalement) nous a permis
de montrer que :

e 'approximation gaussienne est valide a partir d’'un nombre d’essais M de l'ordre de
50;

e notre procédure reste raisonnable en pratique dans le cadre plus général des processus
de Hawkes (modéle plus fidele dans le cadre de la modélisation de neurones) ;

10a notation N'(m,o?) désigne la loi normale de moyenne m et variance o2.

HProbabilité de rejeter 'hypothése (H) alors que celle-ci est vraie.
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e notre procédure de test simple semble aussi performante que la méthode UE dé-
crite dans [64] en termes de puissance'? (empirique) tout en garantissant le niveau
(empirique), ce qui n’est pas le cas de la méthode UE;

e la procédure de tests multiples sur tous les différents sous-ensembles & C {1,...,n}
montre des résultats satisfaisant (la multiplicité du test est 2% —4 — 1 = 11 ici).

Notons tout de méme que le nombre de tests simultanés possibles avec la méthode de tests
multiples est clairement limité (moins de trente). Cela provient du fait que I’approximation
gaussienne n’est pas assez précise et que la fiabilité de la procédure n’est plus assurée.

Finalement, notre procédure est appliquée a des données issues d’une expérimentation
effectuée sur un singe rhésus entrainé a répondre & des stimuli visuels. Le protocole ex-
périmental est détaillé dans la section 5.6. Les résultats retournés par notre procédure
suggérent la présence de synchronisations lors d’'un moment-clé de la tache et que ces syn-
chronisations ne sont pas présentes lors des moments de repos. Ces résultats sont en accord
avec d’autres études effectuées sur les mémes données [61, 158|.

1.5 Etat des lieux

A T’heure de ’écriture de ce manuscrit :

e Le chapitre 2 correspond a des travaux, effectués en collaboration avec Maria José
Caceres'®, Marie Doumic'*' et Patricia Reynaud-Bouret!S. Ils ont fait 'objet d'une
publication a Mathematical Models and Methods in Applied Sciences [29].

e Le chapitre 3 correspond & une pré-publication disponible sur ArXiv [28| et soumise
a un journal.

e Le chapitre 4 correspond a des travaux en cours et fera trés prochainement l'objet
d’une future soumission.

e Le chapitre 5 correspond a des travaux, effectués en collaboration avec Thomas
Laloé'®. Tls ont fait 'objet d’une publication a Biometrical Journal [30].

Nous avons laissé les chapitres 2, 3 et 5 sous leur forme d’article mise & part quelques
modifications dans le but de préserver une cohérence entre les chapitres. En particulier,
certaines considérations et définitions peuvent étre redondantes avec cette introduction.

12Probabilité de rejeter (Ho) quand (Hg) est effectivement erronée.

13Departamento de Mateméatica Aplicada , Universidad de Granada, Campus de Fuentenueva E-18071
Grenade, Espagne.

14Tnria Paris-Rocquencourt, Domaine de Voluceau BP 105, 78153 Le Chesnay, France.

ISUPMC Université Paris 6, JLLL, 4 place Jussieu 75005 Paris, France.
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CHAPTER

2 MICROSCOPIC APPROACH OF A TIME
ELAPSED NEURAL MODEL

Abstract. The spike trains are the main components of the information processing in
the brain. To model spike trains several point processes have been investigated in the liter-
ature. And more macroscopic approaches have also been studied, using partial differential
equation models. The main aim of the present chapter is to build a bridge between several
point processes models (Poisson, Wold, Hawkes) that have been proved to statistically fit
real spike trains data and age-structured partial differential equations as introduced by
Pakdaman, Perthame and Salort.

This chapter is the fruit of a collaboration with Maria José Caceres', Marie Doumic?3
and Patricia Reynaud-Bouret*. The corresponding article [29] is published in Mathematical
Models and Methods in Applied Sciences. However, the last section has not been published
and can be considered as a supplementary material.
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2.1 Introduction

In Neuroscience, the action potentials (spikes) are the main components of the real-time
information processing in the brain. Indeed, thanks to the synaptic integration, the mem-
brane voltage of a neuron depends on the action potentials emitted by some others, whereas
if this membrane potential is sufficiently high, there is production of action potentials.

To access those phenomena, schematically, one can proceed in two ways: extracellularly
record in vivo several neurons, at a same time, and have access to simultaneous spike trains
(only the list of events corresponding to action potentials) or intracellularly record the
whole membrane voltage of only one neuron at a time, being blind to the nearby neurons.

Many people focus on spike trains. Those data are fundamentally random and can
be modelled easily by time point processes, i.e. random countable sets of points on R,.
Several point processes models have been investigated in the literature, each of them re-
producing different features of the neuronal reality. The easiest model is the homogeneous
Poisson process, which can only reproduce a constant firing rate for the neuron, but which,
in particular, fails to reproduce refractory periods®. It is commonly admitted that this
model is too poor to be realistic. Indeed, in such a model, two points or spikes can be
arbitrary close as soon as their overall frequency is respected in average. Another more re-
alistic model is the renewal process [126], where the occurrence of a point or spike depends
on the previous occurrence. More precisely, the distribution of delays between spikes (also
called inter-spike intervals, ISI) is given and a distribution, which provides small weights to
small delays, is able to mimic refractory periods. A deeper statistical analysis has shown
that Wold processes is showing good results, with respect to goodness-of-fit test on real
data sets [127]. Wold processes are point processes for which the next occurrence of a spike
depends on the previous occurrence but also on the previous ISI. From another point of

5Biologically, a neuron cannot produce two spikes too closely in time.
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view, the fact that spike trains are usually non stationary can be easily modelled by inho-
mogeneous Poisson processes [159]. All those models do not reflect one of the main features
of spike trains, which is the synaptic integration and there has been various attempts to
catch such phenomenon. One of the main model is the Hawkes model, which has been
introduced in [31] and which has been recently shown to fit several stationary data [136].
Several studies have been done in similar directions (see for instance [18]). More recently
a vast interest has been shown to generalized linear models [123], with which one can infer
functional connectivity and which are just an exponential variant of Hawkes models.

There has also been several models of the full membrane voltage such as Hodgkin-
Huxley models. It is possible to fit some of those probabilistic stochastic differential equa-
tions (SDE) on real voltage data [78] and to use them to estimate meaningful physiological
parameters [45]. However, the lack of simultaneous data (voltages of different neurons at
the same time) prevent these models to be used as statistical models that can be fitted on
network data, to estimate network parameters. A simple SDE model taking synaptic in-
tegration into account is the well-known Integrate-and-Fire (IF) model. Several variations
have been proposed to describe several features of real neural networks such as oscillations
[21, 22]. In particular, there exists hybrid IF models including inhomogeneous voltage
driven Poisson process [78| that are able to mimic real membrane potential data. How-
ever up to our knowledge and unlike point processes models, no statistical test have been
applied to show that any of the previous variations of the IF model fit real network data.

Both, SDE and point processes, approaches are microscopic descriptions, where ran-
dom noise explains the intrinsic variability. Many authors have argued that there must be
some more macroscopic approach describing huge neural networks as a whole, using PDE
formalism [33, 150]. Some authors have already been able to perform link between PDE
approaches as the macroscopic system and SDE approach (in particular IF models) as the
microscopic model [99, 113, 134]. Another macroscopic point of view on spike trains is
proposed by Pakdaman, Perthame and Salort in a series of articles [114, 115, 116]. It uses
a nonlinear age-structured equation to describe the spikes density. Adopting a population
view, they aim at studying relaxation to equilibrium or spontaneous periodic oscillations.
Their model is justified by a qualitative, heuristic approach. As many other models, their
model shows several qualitative features such as oscillations that make it quite plausible
for real networks, but once again there is no statistical proof of it, up to our knowledge.

In this context, the main purpose of the present chapter is to build a bridge between
several point processes models that have been proved to statistically fit real spike trains
data and age structured PDE of the type of Pakdaman, Perthame and Salort. The point
processes are the microscopic models, the PDE being their meso-macroscopic counterpart.
In this sense, it extends PDE approaches for IF models to models that statistically fit true
spike trains data. In the first section, we introduce Pakdaman, Perthame and Salort PDE
(PPS) via its heuristic informal and microscopic description, which is based on IF models.
Then, in Section 2.3, we develop the different point process models, quite informally, to
draw the main heuristic correspondences between both approaches. In particular, we in-
troduce the conditional intensity of a point process and a fundamental construction, called
Ogata’s thinning [110], which allows a microscopic understanding of the dynamics of a
point process. Thanks to Ogata’s thinning, in Section 2.4, we have been able to rigorously
derive a microscopic random weak version of (PPS) and to propose its expectation deter-
ministic counterpart. An independent and identically distributed (i.i.d) population version
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is also available. Several examples of applications are discussed in Section 2.5. To facilitate
reading, technical results and proofs are included in two appendices. The present work is
clearly just a first to link point processes and PDE: there are much more open questions
than answered ones and this is discussed in the final conclusion. However, we think that
this can be fundamental to acquire a deeper understanding of spike train models, their
advantages as well as their limitations.

2.2 Synaptic integration and (PPS) equation

Based on the intuition that every neuron in the network should behave in the same way,
Pakdaman, Perthame and Salort proposed in [114] a deterministic PDE denoted (PPS)
in the sequel. The origin of this PDE is the classical (IF) model. In this section we
describe the link between the (IF) microscopic model and the mesoscopic (PPS) model,
the main aim being to show thereafter the relation between (PPS) model and other natural
microscopic models for spike trains: point processes.

2.2.a) Integrate-and-fire

Integrate-and-fire models describe the time evolution of the membrane potential, V' (¢), by
means of ordinary differential equations as follows

Cmcli—‘t/ =—g,(V=Vp)+1(t), (2.1)
where (), is the capacitance of the membrane, g;, is the leak conductance and Vj, is the
leak reversal potential. If V(¢) exceeds a certain threshold 6 > V7, the neuron fires / emits
an action potential (spike) and V() is reset to V, < Vi. The synaptic current I(t) takes
into account the fact that other presynaptic neurons fire and excite the neuron of interest,
whose potential is given by V (t).

As stated in [114], the origin of (PPS) equation comes from [122], where the explicit
solution of a classical IF model as (2.1) has been discussed. To be more precise the
membrane voltage of one neuron at time ¢ is described by:

t

V(t) = Vi + (Vy — Vi)e - Dim 4 / ot — 2)Nopur(d2), (2.2)
T

where T' is the last spike emitted by the considered neuron, 7, is the time constant of the
system (normally 7, = g1,/C,,), h is the excitatory post synaptic potential (EPSP) and
Ninput is the sum of Dirac masses at each spike of the presynaptic neurons. Since after
firing, V'(¢) is reset to V,. < V7, there is a refractory period when the neuron is less excitable
than at rest. The constant time 7,,, indicates whether the next spike can occur more or less
rapidly. The other main quantity, f;, h(t — 2) Ninput(dz), is the synaptic integration term.

In [122], they consider a whole random network of such IF neurons and look at the
behavior of this model, where the only randomness is in the network. In many other studies
[21, 22, 23, 25, 99, 113, 150] IF models as (2.1) are considered to finally obtain other systems
of partial differential equations (different to (PPS)) describing neural networks behavior.
In these studies, each presynaptic neuron is assumed to fire as an independent Poisson
process and via a diffusion approximation, the synaptic current is then approximated by a
continuous in time stochastic process of Ornstein-Uhlenbeck.
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2.2.b) The (PPS) equation

The deterministic PDE proposed by Pakdaman, Perthame and Salort, whose origin is also
the microscopic IF model (2.2), is the following:

on(t,s) Onf(t,s)
ot * ds
m(t) :=n(t,0) = /0 p(s, X (t))n(t,s)ds.

In this equation, n(t, s) represents a probability density of neurons at time ¢ having dis-
charged at time ¢t — s for the last time. Therefore, s represents the time elapsed since
the last discharge. The fact that the equation is an elapsed time structured equation is
natural, because the IF model (2.2) clearly only depends on the time since the last spike.
More informally, the variable s represents the "age" of the neuron.

The first equation of the system (PPS) represents a pure transport process and means
that as time goes by, neurons of age s and past given by X (¢) are either aging linearly or
reset to age 0 with rate p (s, X (¢)).

The second equation of (PPS) describes the fact that when neurons spike, the age (the
elapsed time) returns to 0. Therefore, n(t,0) depicts the density of neurons undergoing a
discharge at time ¢ and it is denoted by m(t¢). As a consequence of this boundary condition,
for n(-,-) at s = 0, the following mass-conservation law is obtained:

+oo +oo
/ n(t,s)ds = / n(0,s)ds
0 0

This means that if n (0,-) is a probabilistic density then n (¢, ) can be interpreted as a
density at each time ¢. Denoting by d¢ the Lebesgue measure and since m(t) is the density
of firing neurons at time ¢ in (PPS), m(¢)dt can also be interpreted as the limit of Ny, (dt)
in (2.2) when the population of neurons becomes continuous.

The system (PPS) is nonlinear since the rate p (s, X(t)) depends on n(t,0) by means
of the quantity X (t):

£p(5.X (1) nt,5) = 0
(PPS)

X(t) = /0 Ch(tymit — #)dt' = /0 t h(t)n(t —t',0)dt. (2.3)

The quantity X (¢) represents the interactions between neurons. It "takes into account the
averaged propagation time for the ionic pulse in this network" [114]. More precisely with
respect to the IF models (2.2), this is the synaptic integration term, once the population
becomes continuous. The only difference is that in (2.2) the memory is cancelled once the
last spike has occurred and this is not the case here. However informally, both quantities
have the same interpretation. Note nevertheless, that in [114], the function h can be much
more general than the h of the IF models which clearly corresponds to EPSP. From now
on and in the rest of the chapter, h is just a general non negative function without forcing
the connection with EPSP.

The larger p (s, X(t)) the more likely neurons of age s and past X (¢) fire. Most of the
time (but it is not a requisite), p is assumed to be less than 1 and is interpreted as the
probability that neurons of age s fire. However, as shown in Section 2.4 and as interpreted
in many population structured equation [32, 47, 121|, p(s, X (t)) is closer to a hazard rate,
i.e. a positive quantity such that p (s, X(¢)) dt is informally the probability to fire given
that the neuron has not fired yet. In particular, it could be not bounded by 1 and does not
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need to integrate to 1. A toy example is obtained if p (s, X(¢)) = A > 0, where a steady
state solution is n(t,s) = Ae *145¢: this is the density of an exponential variable with
parameter \.

However, based on the interpretation of p (s, X (¢)) as a probability bounded by 1, one of
the main model that Pakdaman, Perthame and Salort consider is p (s, X (t)) = Liso(x )
This again can be easily interpreted by looking at (2.2). Indeed, since in the IF models the
spike happens when the threshold @ is reached, one can consider that p (s, X (¢)) should be
equal to 1 whenever

V() =V 4+ (V, = Vp)e D™ L X (1) > 6,

and 0 otherwise. Since V,, —V, <0, p(s, X(t)) = 1 is indeed equivalent to s = ¢ — T larger
than some decreasing function of X (¢). This has the double advantage to give a formula
for the refractory period (o(X(t))) and to model excitatory systems: the refractory period
decreases when the whole firing rate increases via X (t) and this makes the neurons fire even
more. This is for this particular case that Pakdaman, Perthame and Salort have shown
existence of oscillatory behavior [115].

Another important parameter in the (PPS) model and introduced in [114] is J, which
can be seen with our formalism as | h and which describes the network connectivity or the
strength of the interaction. In [114] it has been proved that, for highly or weakly connected
networks, (PPS) model exhibits relaxation to steady state and periodic solutions have also
been numerically observed for moderately connected networks. The authors in [115] have
quantified the regime where relaxation to a stationary solution occurs in terms of J and
described periodic solution for intermediate values of J.

Recently, in [116], the (PPS) model has been extended including a fragmentation term,
which describes the adaptation and fatigue of the neurons. In this sense, this new term
incorporates the past activity of the neurons. For this new model, in the linear case
there is exponential convergence to the steady states, while in the weakly nonlinear case
a total desynchronization in the network is proved. Moreover, for greater nonlinearities,
synchronization can again be numerically observed.

2.3 Point processes and conditional intensities as mod-
els for spike trains

We first start by quickly reviewing the main basic concepts and notations of point processes,
in particular, conditional intensities and Ogata’s thinning [110]. We refer the interested
reader to [16] for exhaustiveness and to [19] for a much more condensed version, with the
main useful notions.

2.3.a) Counting processes and conditional intensities

We focus on locally finite point processes on R, equipped with the Borelians B(R).

Definition 2.3.1 (Locally finite point process). A locally finite point process N on R is a
random set of points such that it has almost surely (a.s.) a finite number of points in finite
intervals. Therefore, associated to N there is an ordered sequence of extended real valued
random times (1,),ez: -+ <T 1 <Tp <0<Ty <---
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For a measurable set A, N4 denotes the number of points of NV in A. This is a random
variable with values in NU {+o00}.

Definition 2.3.2 (Counting process associated to a point process). The process on R
defined by t — Ny := Ny is called the counting process associated to the point process N.

The natural and the predictable filtrations are fundamental for the present work.

Definition 2.3.3 (Natural filtration of a point process). The natural filtration of N is the
family (Ffv)teR of o-algebras defined by FY = o (N N (—o0,1]).

Definition 2.3.4 (Predictable filtration of a point process). The predictable filtration of
N s the family of o-algebra (FY), . defined by FX = o (N N (—o0,t)).

teR

The intuition behind this concept is that F¥ contains all the information given by the
point process at time t. In particular, it contains the information whether ¢ is a point
of the process or not while 7~ only contains the information given by the point process
strictly before t. Therefore, it does not contain (in general) the information whether ¢ is a
point or not. In this sense, F}¥ represents (the information contained in) the past.

Under some rather classical conditions [16], which are always assumed to be satisfied
here, one can associate to (IV;);>o a stochastic intensity A\, which is a non negative random
quantity. The process (N; — fot Audu)>o forms a local martingale [16]. Informally, \,d¢
represents the probability to have a new point in the interval [t,¢ + dt) given the past.
Note that \; should not be understood as a function, in the same way as density is for
random variables. It is a "recipe" explaining how the probability to find a new point at
time ¢t depends on the past configuration: since the past configuration depends on its own
past, this is closer to a recursive formula. In this respect, the intensity should obviously
depend on N N (—o0,t) and not on N N (—o0, t] to predict the occurrence at time ¢, since
we cannot know whether ¢ is already a point or not.

The distribution of the point process N on R is completely characterized by the knowl-
edge of the intensity A\; on R, and the distribution of N_ = N N R_, which is denoted
by (n_ in the sequel. The information about (y_ is necessary since each point of N may
depend on the occurrence of all the previous points: if for all £ > 0, one knows the "recipe"
¢ that gives the probability of a new point at time ¢ given the past configuration, one still
needs to know the distribution of N_ to obtain the whole process.

Two main assumptions are used depending on the type of results we seek:

T
(Alill’:(f') for any T > 0, / Adt is finite a.s.
0
| T
(Aﬂi,sz p) for any 7> 0, E { / Atdt] is finite.
0

Clearly <A]l%;c’€xp ) implies <A]lilc’a's'>. Note that <A]l]j)lc’a's'> implies non-explosion in finite
time for the counting processes (IV;);>o-
Definition 2.3.5 (Point measure associated to a point process). The point measure as-

sociated to N is denoted by N(dt) and defined by N(dt) = > .., 0r,(dt), where 6, is the
Dirac mass in x.

1EL

SIn the article corresponding to this chapter, the intensity is denoted by A(t,F{¥) instead of \; to
emphasize its predictability.
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By analogy with (PPS), and since points of point processes correspond to spikes (or
times of discharge) for the considered neuron in spike train analysis, N(dt) is the micro-
scopic equivalent of the distribution of discharging neurons m(¢)d¢. Following this analogy,
and since Tl, is the last point less or equal to ¢ for every t > 0, the age S; at time ¢ is
defined by S; =t — Ty,. In particular, if ¢ is a point of N, then S; = 0. Note that S; is
FY measurable for every t > 0 and therefore, Sy = —Tj is F measurable. To define an
age at time ¢ = 0, one assumes that

(Ag,) | There exists a first point before 0 for the process N_, i.e. —oo < Tj.

As we have remarked before, the conditional intensity should depend on N N (—oo,t).
Therefore, it cannot be function of S;, since S; informs us if ¢ is a point or not. That is
the main reason for considering the predictable age process defined by, for all ¢ > 0,

Sy =t—Ty, (2.4)

where Ty,  is the last point strictly before ¢ (see Figure 2.1). Note also that knowing
(S;_)i>0 or (Ng)s>o is completely equivalent given JF2Y.

The last and most crucial equivalence between (PPS) and the present point process
set-up, consists in noting that the quantities p(s, X (¢)) and A; have informally the same
meaning: they both represent a firing rate, i.e. both give the rate of discharge as a function
of the past. This dependence is made more explicit in p(s, X (¢)) than in A;.

2.3.b) Examples

Let us review the basic point processes models of spike trains and see what kind of analogy
is likely to exist between both models ((PPS) equation and point processes). These informal
analogies are transformed, when possible, into exact mathematical results (see Section 2.5).

Homogeneous Poisson process This is the simplest case where \; = A, with A a fixed
positive constant representing the firing rate. There is no dependence in time ¢ (it is
homogeneous) and no dependence with respect to the past. This case should be equivalent
to p(s, X(t)) = A in (PPS). This can be made even more explicit. Indeed in the case where
the Poisson process exists on the whole real line (stationary case), it is easy to see that

P (S;- > s) =P (Nj_ss) = 0) = exp(—DAs),

meaning that the age S;_ obeys an exponential distribution with parameter A, i.e. the
steady state of the toy example developed for (PPS) when p(s, X(t)) = .

Inhomogeneous Poisson process To model non stationarity, one can use A\, = A(t),
which only depends on time. This case should be equivalent to the replacement of p(s, X (t))
in (PPS) by A(%).

Renewal process This model is very useful to take refractory period into account. It
corresponds to the case where the ISIs (delays between spikes) are independent and identi-
cally distributed (i.i.d.) with a certain given density v on R, . The associated hazard rate
is
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when f:oo v(z)dz > 0. Roughly speaking, f(s)ds is the probability that a neuron spikes
with age s given that its age is larger than s. In this case, considering the set of spikes as
the point process IV, it is easy to show (see Section 2.8.a)) that its corresponding intensity
is \; = f(S;_) which only depends on the age”. One can also show quite easily that
the process (S;_)¢~0, which is equal to (S;);~o almost everywhere (a.e.), is a Markovian
process in time. This renewal setting should be equivalent in the (PPS) framework to
p(s, X (1)) = f(s).

Note that many people consider IF models (2.2) with Poissonian inputs with or without
additive white noise. In both cases, the system erases all memory after each spike and
therefore the ISIs are i.i.d. Therefore as long as we are only interested by the spike trains
and their point process models, those IF models are just a particular case of renewal
process (22, 24, 42, 122].

Wold process and more general structures Let A} be the delay (ISI) between the
last point and the occurrence just before (see also Figure 2.1), i.e. Al = Ty, — T, 1.
A Wold process [38, 89| is then characterized by A, = f(S;_, A}). This model has been
matched to several real data thanks to goodness-of-fit tests [127] and is therefore one of
our main example with the next discussed Hawkes process case. One can show in this
case that the successive ISI’s form a Markov chain of order 1 and that the continuous time
process (S;_, A}l) is also Markovian.

This case should be equivalent to the replacement of p(s, X (¢)) in (PPS) by f(s,a'),
with a! denoting the delay between the two previous spikes. Naturally in this case, one
should expect a PDE of higher dimension with third variable a'.

More generally, one could define

AY =Tny_—-1) — Ty -1, (2.5)

and point processes with intensity \; = f(S;_, A}, ..., AF). Those processes satisfy more
generally that their ISI’s form a Markov chain of order k£ and that the continuous time
process (S;_, Al ..., A¥) is also Markovian (see Section 2.8.b)).

Remark 2.3.6. The dynamics of the successive ages is pretty simple. On the one hand, the
dynamics of the vector of the successive ages (Sy_, AL, ..., AF)~q is deterministic between
two jumping times. The first coordinate increases with rate 1. On the other hand, the
dynamics at any jumping time T is given by the following shift:

the age process goes to 0, i.e. Sp =0,
the first delay becomes the age, i.e. Ay, = Sp_, (2.6)
the other delays are shifted, i.e. Afbr = AiT_l for alli < k.

Hawkes processes The most classical setting is the linear (univariate) Hawkes process,
which corresponds to

A= p+ /t_ h(t — z)N(dz),

where the positive parameter p is called the spontaneous rate and the non negative function
h, with support in R, is called the interaction function, which is generally assumed to

"Remark that the intensity depends on the predictable age processes and not the standard ones since
an intensity process must be predictable.
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satisfy fR+ h < 1 to guarantee the existence of a stationary version [38]. This model has
also been matched to several real neuronal data thanks to goodness-of-fit tests [136]. Since
it can mimic synaptic integration, as explained below, this represents the main example of
the present work.

In the case where T}y tends to —oo, this is equivalent to say that there is no point on
the negative half-line and in this case, one can rewrite

A=t /t h(t — 2)N(d2).

By analogy between N(dt) and m(t)dt, one sees that [~ h(t — z)N(dz) is indeed the
analogous of X (t) the synaptic integration in (2.3). So one could expect that the PDE
analogue is given by p(s, X (t)) = p+ X (¢). In Section 2.5, we show that this does not hold
stricto sensu, whereas the other analogues work well.

Note that this model shares also some link with IF models. Indeed, the formula for
the intensity is close to the formula for the voltage (2.2), with the same flavour for the
synaptic integration term. The main difference comes from the fact that when the voltage
reaches a certain threshold, it fires deterministically for the IF model, whereas the higher
the intensity, the more likely is the spike for the Hawkes model, but without certainty.
In this sense Hawkes models seem closer to (PPS) since as we discussed before, the term
p(s, X(t)) is closer to a hazard rate and never imposes deterministically the presence of a
spike.

To model inhibition (see [137] for instance), one can use functions h that may take
negative values and in this case

A = (u+/_; h(t—Z)N(dz)>+v

which should correspond to p(s, X (t)) = (1 + X (t)),. Another possibility is

M = exp (u 4 /t Bt — z)N(dz)) ,

—0o0

which is inspired by the generalized linear model as used by [123] and which should corre-
spond to p(s, X (t)) = exp (u + X (1)).

Note finally that Hawkes models in Neuroscience (and their variant) are usually mul-
tivariate meaning that they model interaction between spike trains thanks to interaction
functions between point processes, each process representing a neuron. To keep the present
analogy as simple as possible, we do not deal with those multivariate models in the present
chapter. Some open questions in this direction are presented in conclusion.

2.3.c) Ogata’s thinning algorithm

To turn the analogy between p(s, X(t)) and \; into a rigorous result on the PDE level, we
need to understand the intrinsic dynamics of the point process. This dynamics is often
not explicitly described in the literature (see e.g. the reference book by Brémaud [16])
because martingale theory provides a nice mathematical setting in which one can perform
all the computations. However, when one wants to simulate point processes based on the



2.4. FROM POINT PROCESSES TO PDE 43

knowledge of their intensity, there is indeed a dynamics that is required to obtain a prac-
tical algorithm. This method has been described at first by Lewis in the Poisson setting
[92] and generalized by Ogata in [110]. If there is a sketch of proof in [110], we have been
unable to find any complete mathematical proof of this construction in the literature and
we propose a full and mathematically complete version of this proof with minimal assump-
tions in Section 2.8.d). Let us just informally describe here, how this construction works.

The principle consists in assuming that is given an external homogeneous Poisson pro-
cess II of intensity 1 in R? and with associated point measure given by

I(dt,dz) = Y Seryy(dt, dx).
(T,V)ell

This means in particular that
E [T1(dt, dz)] = dt dz. (2.7)

Once a realisation of N_ fixed, which implies that F}¥ is known and which can be seen
as an initial condition for the dynamics, the construction of the process N on R, only
depends on II.

More precisely, if we know the intensity ); in the sense of the "recipe" that explicitly
depends on t and NN (—o0,t), then once a realisation of IT and of N_ is fixed, the dynamics
to build a point process N with intensity A\; for ¢ € R, is purely deterministic. It consists
(see also Figure 2.1) in successively projecting on the abscissa axis the points that are
below the graph of A;. Note that a point projection may change the shape of \;, just after
the projection. Therefore the graph of A\, evolves thanks to the realization of II. For a
more mathematical description, see Theorem 2.8.11 in Section 2.8.d). Note in particular
that the construction ends on any finite interval [0, 7] a.s. if (Ai‘;o‘z) holds.

Then the point process IV, result of Ogata’s thinning, is given by the union of N_ on
R_ and the projected points on R, . It admits the desired intensity A\; on R,. Moreover,
the point measure can be represented by

Lo N(dt)= > op(dt) ( /x_OH(dt,dx)). (2.8)

(T,X)ell /
X<
NB: The last equality comes from the following convention. If 04y is a Dirac mass in
(c,d) € RZ, then fm O(c,ay(dt, dz), as a distribution in ¢, is d.(dt) if d € [a,b] and 0O
otherwise.

a

2.4 From point processes to PDE

Let us now present our main results. Informally, we want to describe the evolution of the
distribution in s of the age S; according to the time ¢. Note that at fixed time ¢, S;_ = 5,
a.s. and therefore it is the same as the distribution of S;_. We prefer to study S;_ since
its predictability, i.e. its dependence in N N (—oo,t), makes all definitions proper from
a microscopic/random point of view. Microscopically, the interest lies in the evolution of
ds,_(ds) as a random measure. But it should also be seen as a distribution in time, for
equations like (PPS) to make sense. Therefore, we need to go from a distribution only in s
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A 4 \ 4 + A 4 L

Al S, time

Figure 2.1:  Example of Ogata’s thinning algorithm on a linear Hawkes process with
interaction function h(u) = e and no point before 0 (i.e. N_ = )). The crosses represent
a realization of II, Poisson process of intensity 1 on R2. The blue piecewise continuous
line represents the intensity A;, which starts in 0 with value p and then jumps each time
a point of II is present underneath it. The resulting Hawkes process (with intensity \;) is
given by the blue circles. Age S;_ at time ¢ and the quantity A} are also represented.

to a distribution in both s and ¢. Then one can either focus on the microscopic level, where
the realisation of II in Ogata’s thinning construction is fixed or focus on the expectation
of such a distribution.

2.4.a) A clean setting for bivariate distributions in age and time

In order to obtain, from a point process, (PPS) system we need to define bivariate dis-
tributions in s and ¢ and marginals (at least in s), in such a way that weak solutions of
(PPS) are correctly defined. Since we want to possibly consider more than two variables
for generalized Wold processes, we consider the following definitions.

In the following, < ¢, v > denotes the integral of the integrable function ¢ with respect
to the measure v.

Let k € N. For every bounded measurable function ¢ of (¢,s,as,...,a;) € R'f’?, one
can define

go%l)(s,al, woar) =@(t,s,ay,...,a;) and gogz)(t,al, wna) =@t s,aq, ..., ax).

Let us now define two sets of regularities for ¢.
The function ¢ belongs to M..,(R*™?) if
M C’b(R’fﬂ) e 0 is a measurable bounded function,
o there exists 7' > 0 such that for all ¢ > T, %E” =0.

The function ¢ belongs to CZ5(RY™?) if
e ( is continuous, uniformly bounded,
e ¢ has uniformly bounded derivatives of every order,

e there exists T > 0 such that for all ¢ > T, gpil) =0.

o (RE?)
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Let (1]),50 be a (measurable w.r.t. t) family of positive measures on RA* and (3) >0

be a (measurable w.r.t. s) family of positive measures R¥™. Those families satisfy the
Fubini property if

(PFubini)

for all ¢ € qu(R]fQ), /@,ﬁ”, Vit = /(909, vs)ds.

In this case, one can define v, measure on R¥"? by the unique measure on R such
that for any test function o in M, ,(R%™),

(,v) = / (o, yds = / (o), ) ds.

To simplify notations, for any such measure v(¢,ds,day, ..., day), we define

v(t,ds,day, ...,day) = vi(ds,day, ..., day),
v(dt,s,day, ...,day) = vi(dt,day, ..., dag).

In the sequel, we need in particular a measure on R, 7,, defined for any real = by its
marginals that satisfy (Prypini) as follows

Vit,s >0, Ne(t,ds) = 6;—p(ds)Li_yso and  7,(dt, s) = 0512 (dt)Ls>0. (2.9)

It represents a Dirac mass "travelling" on the positive diagonal originated in (z,0).

2.4.b) The microscopic construction of a random PDE

For a fixed realization of II, we therefore want to define a random distribution U(dt, ds) in
terms of its marginals, thanks to (Ppupini), such that, U(t, ds) represents the distribution
at time ¢ > 0 of the age S;_, i.e.

Vit >0, U(tds)=ds_(ds) (2.10)
and satisfies similar equations as (PPS). This is done in the following proposition.

Proposition 2.4.1. Let 11, 7Y and an intensity (\;),., be given as in Section 2.5.c) and

>0
satisfying (Ar,) and (AH/{;’O“C'S‘). On the event Q0 of probability 1, where Ogata’s thinning is
well defined, let N be the point process on R that is constructed thanks to Ogata’s thinning
with associated predictable age process (Si—)i>o and whose points are denoted (T5), ;.-

Let the (random) measure U and its corresponding marginals be defined by

“+00

U (dt, dS) = Z nr,; (dt, dS) ]IOStSTiJrl‘ (211)
i=0

Then, on Q, U satisfies (Ppupini) and U(t,ds) = dg,_(ds). Moreover, on 2, U is a solution
in the weak sense of the following system

At

%U(dt,ds) + %U(dt,ds) + (/ H(dt,d:z:)) U (t,ds) =0, (2.12)

=0

U (dt,0) = /SER ( / 8 H(dt,dx))U(t,ds)+50(dt)]lTO0, (2.13)

=0

U (0,ds) = 6_q,(ds) 1 zy<0 = U™ (ds)1 450, (2.14)
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where U (ds) = 0_g,(ds). The weak sense means that for any ¢ € CZ(R%),

0 )
/R+><R+ (a%p (t,s) + %QO (t, s)) U (dt, ds) +

| eo-pea( [ "I (@t.d) ) U (1,9

+><R+ =0
+ (0, —-Tp) = 0. (2.15)

The proof of Proposition 2.4.1 is included in Section 2.7.a). Note also that thanks to the
Fubini property, the boundary condition (2.13) is satisfied also in a strong sense.

System (2.12)—(2.14) is a random microscopic version of (PPS) if T, < 0, where n(s,t)
the density of the age at time ¢ is replaced by U(t,-) = ds,_, the Dirac mass in the age at
time t. The assumption 7j < 0 is satisfied a.s. if T{) has a density, but this may not be the
case for instance if the experimental device gives an impulse at time zero (e.g. [127] studied
Peristimulus time histograms (PSTH), where the spike trains are locked on a stimulus given
at time 0).

This result may seem rather poor from a PDE point of view. However, since this
equation is satisfied at a microscopic level, we are able to define correctly all the important
quantities at a macroscopic level. Indeed, the analogy between p(s, X (t)) and )\, is actually
on the random microscopic scale a replacement of p(s, X(¢)) by sztol_[(dt,dx), whose
expectancy given the past is, heuristically speaking, equal to A\; because the mean behaviour
of IT is given by the Lebesgue measure (see (2.7)). Thus, the main question at this stage
is : can we make this argument valid by taking the expectation of U? This is addressed in
the next section.

The property (Prupini) and the quantities ny, mainly allows to define U(dt,0) as well
as U(t,ds). As expected, with this definition, (2.10) holds as well as

U (dt,0) = 1,50 N(d?), (2.16)

i.e. the spiking measure (the measure in time with age 0) is the point measure.

Note also that the initial condition is given by FZ, since F{¥ fixes in particular the value
of Ty and (Ar,) is required to give sense to the age at time 0. To understand the initial
condition, remark that if Ty = 0, then U(0,-) = 0 # lim; ,o+ U(t, ) = dp by definitions of
nr, but that if Ty < 0, U(O, ) = limy;_,o+ U(t, ) = 5—T0'

The mass-conservativeness (i.e. for all ¢ > 0, f0+oo U(t,ds) = 1) is obtained by using (a
sequence of test functions converging to) ¢ = li<r.

Proposition 2.4.1 shows that the (random) measure U, defined by (2.11), in terms of
a given point process N, is a weak solution of System (2.12)-(2.14). The study of the
well-posedness of this system could be addressed following, for instance, the ideas given in
[26]. In this case U should be the unique solution of system (2.12)—(2.14).

As last comment about Proposition 2.4.1, we analyse the particular case of the linear
Hawkes process, in the following remark.

Remark 2.4.2. In the particular case of the linear Hawkes process,

M=t /t_ h(t — 2)N(d2).

—00
Thanks to (2.16) one decomposes the intensity into a term given by the initial condition
plus a term given by the measure U,

A= p+ Fo(t) + /t_ h(t — z)U(dz,0),
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where Fy(t) = f?oo h(t — 2)N_(dz) is (FY)-measurable and considered as an initial condi-
tion. Hence, (2.12)—(2.14) becomes a closed system in the sense that A\, is now an explicit
function of the solution of the system. This is not true in general.

2.4.c) The PDE satisfied in expectation

In this section, we want to find the system satisfied by the expectation of the random
measure U. First, we need to give a proper definition of such an object. The construction
is based on the construction of U and is summarized in the following proposition. (The
proofs of all the results of this subsection are in Section 2.7.a)).

Proposition 2.4.3. Let II, FY and an intensity (\;)
satisfying (Ar,) and (Aﬂglloecx P ) Let N be the process resulting of Ogata’s thinning and let

+=0 be given as in Section 2.5.c) and

U be the random measure defined by (2.11). Let E denote the expectation with respect to
IT and FY.

Then for any test function ¢ in M.,(R%), both expectations E U o(t, S)U(t,ds)} and
E[[ o(t,s)U(dtL, s)] are finite and one can define u(t,ds) and u(dt, s) by

Vit >0, /go(t, s)u(t,ds) =E /go(t, s)U(t,ds)|
Vs >0, /g&(t,s)u(dt, s)=E /cp(t,s)U(dt,s)

Moreover, u(t,ds) and u(dt, s) satisfy (Prupini) and one can define u(dt,ds) = u(t,ds)dt =
u(dt, s)ds on R2, such that for any test function ¢ in M,,(R%),

/ ot s)u(dt, ds) — E [ / o, s)U(dt,ds)] ,

quantity which is finite.

In particular, since [ o(t, s)u(t,ds) = E[[ (¢, s)U(t,ds)] = E[p(t, Si=)], u(t,-) is
therefore the distribution of S;_, the (predictable version of the) age at time ¢. Now let us
show that as expected, u satisfies a system similar to (PPS).

Theorem 2.4.4. Let 11, FY¥ and an intensity (\;)
satisfying (Ar,) and (AE[S?) . If N is the process resulting of Ogata’s thinning, (S;_)>o its

0 e given as in Section 2.5.c) and

associated predictable age process, U its associated random measure, defined by (2.11), and
u its associated mean measure, defined in Proposition 2.4.3, then, there exists a bivariate
measurable function pyc, satisfying

T
VT >0, / /p>\7CN_ (t,s)u(dt,ds) < 400,
0 s

(2.17)
pacy (t,s)=E [)\ (t, ]—"ﬁ) }St_ = s] u(dt, ds)-a.e
and such that u is solution in the weak sense of the following system
%u (dt,ds) + %u (dt,ds) + pacy (t,s)u(dt,ds) =0, (2.18)
u (dt,0) = / Pacy (t 8)u(t,ds) dt + o(dt)u™({0}), (2.19)
seR4

u (0,ds) = u™(ds) 140, (2.20)
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where u'™ is the law of —Ty. The weak sense means here that for any ¢ in C%(Ri),

o 0
/R+xR+ (& * @) p (t,s)u(dt,ds) +

/ [90@7 0) - gp(t, 3)]p)\,€1\7, (tv S)u(dt> ds) + / 90(07 S)Uln(ds> = 07 (2'21>
Ry xRy R,

Comparing this system to (PPS), one first sees that n(t,-), the density of the age at
time ¢, is replaced by the mean measure u(t,-). If v € L'(R,) we have u™({0}) = 0 so
we get an equation which is exactly of renewal type, as (PPS). In the general case where
u™ is only a probability measure, the difference with (PPS) lies in the term &y(d¢)u™({0})
in the boundary condition for s = 0 and in the term 1. in the initial condition for ¢ = 0.
Both these extra terms are linked to the possibility for the initial measure u™ to charge
zero. This possibility is not considered in [114] - else, a similar extra term would be needed
in the setting of [114] as well. As said above in the comment of Proposition 2.4.1, we want
to keep this term here since it models the case where there is a specific stimulus at time
zero [127].

In general and without more assumptions on A, it is not clear that u is not only a
measure satisfying (Prypini) but also absolutely continuous w.r.t. to dt ds and that the
equations can be satisfied in a strong sense.

Concerning p(s, X(t)), which has always been thought of as the equivalent of A, it is
not replaced by A;, which would have no meaning in general since this is a random quantity,
nor by E [\;] which would have been a first possible guess; it is replaced by E [A\;|S;— = s].

Indeed intuitively, since
At
E [ / T (dt, de)
=0

the corresponding weak term can be interpreted as, for any test function ¢,

E [/cp(t, ) (/;;H(dt,dx)) U(t,ds)}

- [ / o (t,s) )\tést(ds)dt} = / E[p (¢, Si-) Ae] dt

t

FN 1 = \dt,

~ [Elo(t.50)E NSt
t
which is exactly [ ¢(t, s)prcy (¢, s)u(dt,ds).

This conditional expectation makes dependencies particularly complex, but this also
enables to derive equations even in non-Markovian setting (as Hawkes processes for in-
stance, see Section 2.5). More explicitly, px ¢y (t,s) is a function of the time ¢, of the age
s, but it also depends on A, the shape of the intensity of the underlying process and on
the distribution of the initial condition N_, that is (y_. As explained in Section 2.3, it
is both the knowledge of (y_ and A that characterizes the distribution of the process and
in general the conditional expectation cannot be reduced to something depending on less
than that. In Section 2.5, we discuss several examples of point processes where one can
(or cannot) reduce the dependence.

Note that here again, we can prove that the equation is mass-conservative by taking (a
sequence of functions converging to) ¢ = 1;<7 as a test function.
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A direct corollary of Theorem 2.4.4 can be deduced thanks to the law of large numbers.
This can be seen as the interpretation of (PPS) equation at a macroscopic level, when the
population of neurons is i.i.d..

Corollary 2.4.5. Let (N")Z1 be some i.1.d. point processes with respective intensities given
by X on (0,+00) satisfying (Aﬂ)jjlffp) and associated predictable age processes (S}_)i>o-
Suppose furthermore that the distribution of N* on (—oc, 0] is given by (n_ which is such
that {y_(NL =0)=0.

Then there exists a measure u satisfying (Prupini), weak solution of Equations (2.18)
and (2.19), with pyc, defined by

pacn (ts) =E[N[SL =s], wu(dt,ds)-ae.

and with u™ distribution of the age at time 0, such that, for any ¢ € CSj,(]Ri),

1 a.s.
In particular, informally, the fraction of neurons at time ¢ with age in [s, s+ ds) in this
i.i.d. population of neurons indeed tends to u(t,ds).

2.5 Application to the various examples

Let us now apply these results to the examples presented in Section 2.3.b).

2.5.a) When the intensity only depends on time and age

If \y = f(t,S:~) (homogeneous and inhomogeneous Poisson processes and renewal pro-
cesses are particular examples) then the intuition giving that p(s, X(¢)) is analogous to
Ar works. Let us assume that f(t,s) € L®(R2). We have E [\|S;— = s] = f(t,s). Under
this assumption, we may apply Theorem 2.4.4, so that we know that the mean measure
associated to the random process is a solution of System (2.18)—(2.20). Therefore the mean
measure u satisfies a completely explicit PDE of the type (PPS) with py¢, (¢,s) = f(t,s)
replacing p(s, X (¢)). In particular, in this case py¢, (t,s) depends on the initial distri-
bution (y_ only through the distribution of —Tj, that is the initial condition u™. Since
f(-,+) € L*=([0,T] x R.), assuming also u™ € L*(R.), it is well-known that there exists a
unique solution u such that (¢t — u(t,-)) € C([0,T], L'(R4)), see for instance [121] Section
3.3. p.60.

Note that, following [26], uniqueness for measure solutions may also be established,
hence the mean measure u associated to the random process is the unique solution of
System (2.18)—(2.20), and it is in C([0, 7], L*(R,)): the PDE formulation, together with
existence and uniqueness, has provided a regularity result on u which is obtained under
weaker assumptions than through Fokker-Planck / Kolmogorov equations. This is another
possible application field of our results: using the PDE formulation to gain regularity. Let
us now develop the Fokker-Planck / Kolmogorov approach for renewal processes.
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Renewal processes The renewal process, i.e. when A\, = f(S;_), with f a continuous
function on R, has particular properties. As noted in Section 2.3.b), the renewal age
process (S;_);~o is an homogeneous Markovian process. It is known for a long time that it
is easy to derive PDE on the corresponding density through Fokker-Planck / Kolmogorov
equations, once the variable of interest (here the age) is Markovian (see for instance [14]).
Here we briefly follow this line to see what kind of PDE can be derived through the
Markovian properties and to compare the equation with the (PPS) type system derived in
Theorem 2.4.4.
Since f is continuous, the infinitesimal generator® of (S;);~¢ is given by

(Go)(x) = ¢ (x) + f(2) (#(0) — ¢(x)) , (2.23)

for all ¢ € C'(R,) (see [15]). Note that, since for every ¢ > 0 S;_ = S; a.s., the process
(Si—)i>0 is also Markovian with the same infinitesimal generator.
Let us now define for all ¢ > 0 and all ¢ € C'(R.),

Pub(x) = E[6(5,)|S = ] = / o(5) a1, ds),

where z € Ry and wu,(t,-) is the distribution of S;_ given that Sy = x. Note that u,(t,ds)
corresponds to the marginal in the sense of (Prypini) of the mean measure wu, given by
Theorem 2.4.4 with py¢, (t,s) = f(s) and initial condition d,, i.e. Ty = —z a.s.

In this homogeneous Markovian case, the forward Kolmogorov equation gives

0
apt = Pg.

Let € C23(R%) and let ¢ > 0. This implies that

0 0
a (Pt@(t7 5)) = Ptg(p(ta 5) + Ptagp(tv 3)

= B gepltss) 4 16 (6l0.0) = )+ ()

Since ¢ is compactly supported in time, an integration with respect to ¢ yields

~Rup(0,9) = [P (G4 o) ettt [ R (o(e0) - pte. s

or equivalently

—p(0,2) = / (% + %) @ (t,s) uy (t,ds) dt—/(@(t, s)—(t,0)) f(s)u(t,ds)dt, (2.24)

in terms of u,. This is exactly Equation (2.21) with u'™ = 4,.
The result of Theorem 2.4.4 is stronger than the application of the forward Kolmogorov
equation on homogeneous Markovian systems since the result of Theorem 2.4.4 never used

8The infinitesimal generator of an homogeneous Markov process (Z;);>0 is the operator G which is
defined to act on every function ¢ : R®™ — R in a suitable space D by

E[p(Z)1%0 = ] - 9(z)
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the Markov assumption and can be applied to non Markovian processes (see Section 2.5.¢)).
So the present work is a general set-up where one can deduce PDE even from non Markovian
microscopic random dynamics. Note also that only boundedness assumptions and not
continuity ones are necessary to directly obtain (2.24) via Theorem 2.4.4: to obtain the

classical Kolmogorov theorem, one would have assumed f € C°(R%) rather than f €
L2(R2).

2.5.b)  Generalized Wold process

In the case where \; = f(S;_, AL, ..., AF), with f being a non-negative function, one can
define in a similar way wuy (¢, s, ay, ..., a;) which is informally the distribution at time ¢
of the processes with age s and past given by ay,...a; for the last k£ ISI's. We want to
investigate this case not for its Markovian properties, which are nevertheless presented in
Proposition 2.8.2 in the Proof Section for sake of completeness, but because this is the first
basic example where the initial condition is indeed impacting py ¢, in Theorem 2.4.4.

To do so, the whole machinery applied on wu(dt, ds) is first extended in the next result
to uy (dt, ds,dal, ... ,dak) which represents the dynamics of the age and the last k& ISI’s.
This could have been done in a very general way by an easy generalisation of Theorem
2.4.4. However to avoid too cumbersome equations, we express it only for generalized
Wold processes to provide a clean setting to illustrate the impact of the initial conditions
on pr¢y - Hence, we similarly define a random distribution U (dt,ds,day, ..., day) such
that its evaluation at any given time ¢ exists and is

Uk(t,ds,day, ... dag) = d(s,_ a1, ar)(ds,das, ..., dag). (2.25)
The following result states the PDE satisfied by u, = E [Uy].

Proposition 2.5.1. Let k be a positive integer and f be some non negative function on
R]fl. Let N be a generalized Wold process with predictable age process (S;—)i>0, associated

points (T;)iez and intensity Ny = f(S;—, A}, ..., AF) satisfying (Aﬂgllffp>, where A}, ..., A¥

are the successive ages defined by (2.5). Suppose that (n_ is such that (n_(T_p > —o0) = 1.
Let Uy, be defined by

00 k
Ui (dt,ds,day, ..., dag) = > nr,(dt, ds) HaAJ (daj) Lo<i<r,,, (2.26)
— o

If N is the result of Ogata’s thinning on the Poisson process 11, then Uk satisfies (2.25)
and (Prupini) a.s. in I and .7:N Assume that the initial condition up* deﬁned as the

distribution of (—Ty, Ag, - - ,Ak) which is a random vector in RF s such that u}*({0} x
R’i) = 0. Then Uy admits a mean measure u, which also satisfies (Prupini) and the
following system in the weak sense: on R, X ]lel,

o 0

a—i—&}uk(dt, ds,day,...,dag)+ f(s, ay, ..., ag)ug(dt, ds, day, ..., dag) = 0, (2.27)

uy (dt, 0,ds,day, ..., dax_1) = /f(s,al,...,ak)uk(t,ds,dal,...,dak) dt, (2.28)

CLk:O

ug (0,ds,day, . .., day) = ui® (ds,day, . .., day) . (2.29)
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We have assumed u{"({0}xRY) = 0 (i.e. Ty # 0 a.s.) for the sake of simplicity, but
this assumption may of course be relaxed and Dirac masses at 0 should then be added in
a similar way as in Theorem 2.4.4.

If f € L>°(R**™), we may apply Proposition 2.5.1, so that the mean measure uy, satisfy
System (2.27)-(2.29). Assuming an initial condition u{* € L'(R%™), we can prove exactly
as for the renewal equation (with a Banach fixed point argument for instance) that there
exists a unique solution wy, such that (¢ — uk(t,-)) € C(Ry, L'(R}*)) [121] to the general-
ized Wold case, the boundary assumption on the kth penultimate point before time 0 being
necessary to give sense to the successive ages at time 0. By uniqueness, this proves that the
mean measure uy is this solution, so that it belongs to C(R+, Ll(R’fl)) : Proposition 2.5.1
leads to a regularity result on the mean measure.

Now that we have clarified the dynamics of the successive ages, one can look at this
system from the point of view of Theorem 2.4.4, that is when only two variables s and ¢
are considered. In this respect, let us note that U defined by (2.11) is such that

U(dt,ds) = / Uk(dt,ds,day, ..., day).

ay,...,ak

Since the integrals and the expectations are exchangeable in the weak sense, the mean
measure u defined in Proposition 2.4.3 is such that

u(dt,ds) = / u(dt,ds,day, . .., dag).
al,...,a

But (2.27) in the weak sense means, for all ¢ € C3(RF2),

0 0
/ (a + a_) ot s,ar, o ar)ur (A, ds, day, ..., day)

+/[g@(t,0,a1,...,ak)—cp(t,s,al,...,ak)]f(s,al,...,ak)uk(dt,ds,dal,...,dak)
+/<p(0,s,a1,...,ak)u};" (ds,day, . ..,dax) = 0. (2.30)

Letting ¢ € C3(R?) and ¢ € C3(R"*?) being such that

Vi, s,an,... a5, @, s,a1,...,a;) =(t,s),
we end up proving that the function py¢, defined in Theorem 2.4.4 satisfies
Prcy (t,s)u(dt,ds) = / f(s,aq,...,ax) ug (dt,ds,day, ..., day), (2.31)
al,...,ak

u(dt, ds)-a.e. Equation (2.31) means exactly from a probabilistic point of view that
Prcy (t.8) =E[f(Si, Ay, AD)[Si— = 5], u(dt,ds)-a.e.

Therefore, in the particular case of generalized Wold process, the quantity py¢, depends
on the shape of the intensity (here the function f) and also on ug. But, by Proposition
2.5.1, u, depends on its initial condition given by the distribution of (=T, A}, ..., AF),
and not only —7j as in the initial condition for u. That is, as announced in the remarks
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following Theorem 2.4.4, py ¢, depends in particular on the whole distribution of the un-
derlying process before time 0, namely (_ and not only on the initial condition for w.
Here, for generalized Wold processes, it only depends on the last k points before time 0.

For more general non Markovian settings, the integration cannot be simply described by
a measure uy in dimension (k + 2) being integrated with respect to da'...da*. In general,
the integration has to be done on all the "randomness" hidden behind the dependence
of \; with respect to the past once S;_ is fixed and in this sense it depends on the whole
distribution (5 of N_. This is made even clearer on the following non Markovian example:
the Hawkes process.

2.5.c) Hawkes process

As we have seen in Section 2.3.b), there are many different examples of Hawkes processes

that can all be expressed as
t—
A=0¢ (/ h(t—x)N(dx)) )

where the main case is ¢(6) = u+ 6, for ;1 some positive constant, which is the linear case.
When there is no point before 0, A\, = (fo_ (t—z N(dx)). In this case, the in-

terpretation is so close to (PPS) that the first guess, which is wrong, would be that the
analogous in (PPS) is
p(s, X (1)) = (X (1)), (2.32)

where X (¢ [fo_ (t —x) } Jy h(t — x)u(dz,0). This is wrong, even in the

linear case since )\; depends on all the previous points. Therefore p, ¢, defined by (2.17)
corresponds to a conditioning given only the last point.

By looking at this problem through the generalized Wold approach, one can hope that
for h decreasing fast enough:

A= ¢ (h(Sim) + h(Sim + AD) + ..+ h(Sim + Ay + ..+ A7)

In this sense and with respect to generalized Wold processes described in the previous
section, we are informally integrating on "all the previous points" except the last one and
not integrating over all the previous points. This is informally why (2.32) is wrong even in
the linear case.

Actually, py ¢, is computable for linear Hawkes processes: we show in the next section

that
t

h(t — x)u(dz, 0)) =u+ /000 h(t — x)u(dz,0)

and that py ¢, explicitly depends on (y_.

Pacy (L, 5) # ¢</

—00

Linear Hawkes process

We are interested in Hawkes processes with a past before time 0 given by F2, which is not
necessarily the past given by a stationary Hawkes process. To illustrate the fact that the
past is impacting the value of p, ¢, , we focus on two particular cases:

(Al )| N ={Ty} a.s. and Ty admits a bounded density fo on R_
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(.A?\L) ‘ N_ is an homogeneous Poisson process with intensity o on R_

Before stating the main result, we need some technical definitions. Indeed the proof
is based on the underlying branching structure of the linear Hawkes process described in
Section 2.8.c) and the following functions (Ls, Gs) are naturally linked to this branching
decomposition (see Lemma 2.8.7).

Lemma 2.5.2. Let h € L*(R,) such that ||h||px < 1. For all s > 0, there exist a unique
solution (Ls, Gy) € L*(Ry) x L=(Ry) of the following system

(z—s)VO z
log(G4(x)) = /0 Gs(r — w)h(w)dw —/O h(w)dw, (2.33)
La(z) = / A (h () + Ly(w)) G(w)h(z — w) dw, (2.34)

where aVb (resp. aAb) denotes the maximum (resp. minimum) between a and b. Moreover,
Lz <s)=0,G,: R, —[0,1], and Ly is uniformly bounded in L'.

This result allows to define two other important quantities, K, and ¢, by, for all s, >
0,z e R,

(t—s)VvO
K(t,z) = /0 [h(t — x) + Ls(t — )] Gs(t — 2)h(z — 2)dx,

t (t—s)VO

log(q(t, s, 2)) ::—/ h(x — z)dx — / [1—Gs(t—2)|h(x — z)dz. (2.35)
(t—s)VO0 0

Finally, the following result is just an obvious remark that helps to understand the resulting

system.

Remark 2.5.3. For a non negative ® € L°(R,) and v € L™(R.), there exists a unique
solution v € L™(R2) in the weak sense to the following system,

0

0
aU(t7 s) + %v(t, s)+ ®(t, s)v(t, s) =0, (2.36)

v(t,0) =1 v(t =0,5) = v™"(s) (2.37)
Moreover t — v(t,.) is in C(R,, L}, (R)).

If v'™™ is a survival function (i.e. non increasing from 0 to 1), then v(t,.) is a survival
function and —0v is a probability measure for all t > 0.

Proposition 2.5.4. Using the notations of Theorem 2.4.4, let N be a Hawkes process with
past before 0 given by N_ satisfying either (A}Vf) or (.A?\L) and with intensity on R, given
by
.
At = 1 +/ h(t — x)N(dx),
where 1 is a positive real number and h € L*(R,) is a non-negative function with support
in Ry such that [h < 1.

Then, the mean measure u defined in Proposition 2.4.3 satisfies Theorem 2.4.4 and
moreover its integral v(t,s) = f;roo u(t,do) is the unique solution of the system (2.36)—
(2.37) where v'™™ is the survival function of —T,, and where ® = (I)th € L>*(R,) is defined
by

oLt = ot 4 o (2.38)

’CN77
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where, for all non negative s,t,
t
(L, s) = (1 +/ (h(x) + Ls(:v))GS($)dx) : (2.39)
SAL

and where, under Assumption (A}V_),

OA(t—s) . s
o (t,s):f‘“’ (h(t — to) + Ks(t,t0)) q(t, ,to)fo(to)dt()’ (2.40)

— (N —
) fi):ét : Q(t787t0)f0(t0)dt0

or, under Assumption (A%_),

ON(t—s)

@E,CN_ (t,s) = a/ (h(t — 2) + K4(t, 2)) q(t, s, z)dz. (2.41)

—0o0

In these formulae, Ly, Gs, K and q are given by Lemma 2.5.2 and (2.35). Moreover

+o00o +o0
Vs >0, / Pracy (B x)u(t,dz) = @gl’vh_ (t, 3)/ u(t, dx). (2.42)

The proof is included in Section 2.8.c). Proposition 2.5.4 gives a purely analytical
definition for v, and thus for u, in two specific cases, namely (.AJIV_) or (.A?V_). In the
general case, treated in Proposition 2.8.5, there remains a dependence with respect to the
initial condition (y_, via the function ®* Py

Remark 2.5.5. Contrarily to the general result in Theorem 2.4.4, Proposition 2.5.4 focuses
on the equation satisfied by v(dt, s) = f;roo u(dt, dz) because in Equation (2.36) the function
parameter ® = (I)th, may be defined independently of the definitions of v or u, which is not

the case for the rate py ¢, appearing in Equation (2.18). Thus, it is possible to depart from
the system of equations defining v, study it, prove existence, uniqueness and reqularity for
v under some assumptions on the initial distribution u'™ as well as on the birth function h,
and then deduce reqularity or asymptotic properties for u without any previous knowledge
on the underlying process.

In Sections 2.5.a) and 2.5.b), we were able to use the PDE formulation to prove that
the distribution of the ages u has a density. Here, since we only obtain a closed formula
for v and not for u, we would need to derive Equation (2.36) in s to obtain a similar
result, so that we need to prove more reqularity on @Z\fh_. Such regularity for <I>2LI’Vh_ s not
obvious since it depends strongly on the assumptions on N_. This paves the way for future
research, where the PDE formulation would provide regularity on the distribution of the
ages, as done above for renewal and Wold processes.

Remark 2.5.6. These two cases (A}V_) and (A?V_) highlight the dependence with respect
to all the past before time 0 (i.e. (n_) and not only the initial condition (i.e. the age at
time 0). In fact, they can give the same initial condition u™.

For instance, (Ajlv,) with =Ty exponentially distributed with parameter o > 0 gives the
same law for =Ty as (.A?Vf) with parameter a. However, if we fix some non-negative real

number s, one can show that <I>’17<N_ (0, s) is different in those two cases. It is clear from

the definitions that for every real number z, q(0,s,z) = 1 and K4(0,z) = 0. Thus, in the
first case,
oL M—to)aettodty [ h(2)ae*dz

—s +oco
-7 aectodt [ aerdz
—0oQ S

q)}i:CN, (O, 8)
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while in the second case,

(b}i:CN, (O, 5) = Oé/

—00

—S

h(—z)dz = a/:oo h(w)dw.

Therefore q)}i7<N_ clearly depends on (n_ and not just on the distribution of the last point
before 0, and 50 is prcy -

Remark 2.5.7. If we follow our first guest, py¢, would be either

t

o+ /Ot h(t — z)u(dz,0) or up+ / h(t — z)u(dz,0).

— 00

In particular, it would not depend on the age s. Therefore by (2.42), so would @Z]’ﬁ. But

for instance at time t = 0, when N_ is an homogeneous Poisson process of parameter o,
CID’EI’Vh (0,s) = p+ ozf;roo h(w)dw, which obviously depends on s. Therefore the intuition

linking Hawkes processes and (PPS) does not apply.

Remark 2.5.8. Since the mean measure u defined in Proposition 2.4.3 is, in the dis-
tribution sense, the opposite of the s—derivative of the unique solution of (2.36)-(2.37),
v e L®(R2), the regularity of v implies reqularity of u. In Hawkes processes with ®" ’ZN_ =
0 and spontaneous rate constant, p > 0, as in Proposition 2.8.5, u presents a discon-
tinuity for t = s. This happens because the probability to have a spike just before 0 or
gust after 0 may be different. However, if the spontaneous rate depends on time, i.e.
p is replaced by u(t), and p(0) = 0 this discontinuity disappears because ®*"(t,s) =
w(t) + fst (h(2) + Lo(2)) Go(2)u(t — 2)dz, when t > s and ®*"(t,s) = u(t) when s < t.
In the cases described in Proposition 2.8.10, where @’i”’éN # 0, some conditions have to be
guaranteed for u to be continous. For instance, if N_ is reduced to one point Ty, its density
fo should have support in (—oo,a] where a < 0 and the support of the interaction function

h should be in (0, —a).

Linear Hawkes process with no past before time 0

A classical framework in point processes theory is the case in (.A}V_) where Ty — —o0, or

equivalently, when N has intensity \; = pu + fot ~ h(t — 2)N(dz). The problem in this case
is that the age at time 0 is not finite. The age is only finite for times greater than the first
spiking time T7.

Here again, the quantity v(t, s) reveals more informative and easier to use: having the
distribution of Ty going to —oo means that Supp(u™) goes to +oo, so that the initial
condition for v tends to value uniformly 1 for any 0 < s < +o00. If we can prove that the
contribution of ®" ¢y Vvanishes, the following system is a good candidate to be the limit
system:

O e (t,s) + aﬁvoo (t,s) + " (¢, 5)v™® (t,5) = 0, (2.43)
S

ot
v (t,0) =1, v™>(0,s) =1, (2.44)

where <I>’fr’h is defined in Proposition 2.5.4. This leads us to the following proposition.
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Proposition 2.5.9. Under the assumptions and notations of Proposition 2.5.4, consider,
for all M > 0, vy the unique solution of system (2.36)-(2.37) with ® given by Proposi-
tion 2.5.4, case (A}V_), with Ty uniformly distributed in [—M — 1, —M]. Then, as M goes
to infinity, vy converges uniformly on any set of the type (0,7) x (0,.S) towards the unique
solution v™° of System (2.43)-(2.44).

2.6 Conclusion

We present in this chapter a bridge between univariate point processes, that can model the
behaviour of one neuron through its spike train, and a deterministic age structured PDE
introduced by Pakdaman, Perthame and Salort, named (PPS). More precisely Theorem
2.4.4 present a PDE that is satisfied by the distribution u of the age s at time ¢, where the
age represents the delay between time ¢ and the last spike before ¢. This is done in a very
weak sense and some technical structure, namely (Ppypini), is required.

The main point is that the "firing rate" which is a deterministic quantity written as
p(s, X(t)) in (PPS) becomes the conditional expectation of the intensity given the age at
time ¢ in Theorem 2.4.4. This first makes clear that p(s, X(t)) should be interpreted as a
hazard rate, which gives the probability that a neuron fires given that it has not fired yet.
Next, it makes clearly rigorous several "easy guess" bridges between both set-ups when
the intensity only depends on the age. But it also explained why when the intensity has a
more complex shape (Wold, Hawkes), this term can keep in particular the memory of all
that has happened before time 0.

One of the main point of the present study is the Hawkes process, for which what was
clearly expected was a legitimation of the term X (¢) in the firing rate p(s, X (¢)) of (PPS),
which models the synaptic integration. This is not the case, and the interlinked equations
that have been found for the cumulative distribution function v(t,-) do not have a simple
nor direct deterministic interpretation. However one should keep in mind that the present
bridge, in particular in the population wide approach, has been done for independent
neurons. This has been done to keep the complexity of the present work reasonable as
a first step. But it is also quite obvious that interacting neurons cannot be independent.
So one of the main question is: can we recover (PPS) as a limit with precisely a term of
the form X (¢) if we consider multivariate Hawkes processes that really model interacting
neurons ?
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2.7 Proofs linked with the PDE

2.7.a) Proof of Proposition 2.4.1

First, let us verify that U satisfies Equation (2.10). For any ¢ > 0,
U(t’ dS) = Z nr, <t7 d3>]10§t§Ti+17
i>0
by definition of U. Yet, ny(t,ds) = §_1,(ds)l;>7,, and the only integer i such that
T; <t <Tiyisi= N;. So, for all t > 0, U(t,ds) = 6;_7,_(ds) = ds, (ds).
Secondly, let us check (Ppupini). Let ¢ € M. ,(R2), and let T be such that for all ¢ > T,
o' = 0. Then, since Ut,ds) = 375 nr,(t, ds) Lo<ier,

/R+ (/R+ p(t, s)U(t,ds)) dt‘ < /R+ (/R+ |p(t, s)] ZnTi(t,ds)]logtSTiH) dt

i>0
Tit1
—Z/ T)| Lo Lo<i<r,, dt = Z/ lp(t, t —T;)|dt
i>0 Ry i>0 max(0,T;)
1+1
- [Ceti-mre Y / t- Tt
0 1/0<T;<T

Since there is a finite number of points of N between 0 and T, on 2, this quantity is finite

and one can exchange ) .., and f;go ;;%O. Therefore, since all the nr, satisfy (Prupini)

and (t, s)Lo<i<z;,, 1s in M.,(R%), so does U.
For the dynamics of U, similar computations lead for every ¢ € C;’f;,(Rﬁ) to

Tiv1—T;
Z/ o (s+T;, ) ds.

i>0 max(0,—T;)

/go (t,s)U (dt,ds) =

We also have

0 0 Tipa1 =T 0 0
/(aﬂL%)(p(t,s)U(dt,ds)—;/max(& . (0t+8 )go(s—sz,s)d

=Y [ (Tin, Ty = T0) = ¢ (T, 0)] + (11, Ty = Tp) — (0, = Tp). (2.45)

i>1

It remains to express the term with fo:tO I (dt, dz) = 3,5, 0r;

i+1

/ @ (t,s)U (t,ds) > or,, (dt) = / ( / o (t, S)U(t,ds)) > or,, (dt)

i>0 i>0

= [0 (650 Y b i) = 3 o (T T = 1) (26)

i>0 i>0

(dt), that is

and, since [U (¢,ds) =1 for all t > 0,
// (£,0)U (t,ds) Y bz, (dt) Z (Ti41.0), (2.47)
>0

Identifying all the terms in the right-hand side of Equatlon (2.45), this lead to Equa-
tion (2.15), which is the weak formulation of System (2.12)—(2.14).
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2.7.b) Proof of Proposition 2.4.3

Let ¢ € M.,(R?%), and let T' be such that for all ¢ > T, cpgl) = 0. Then,

/’@(t75>|U(tad8) < |||l Lo<i<T, (2.48)

since at any fixed time ¢ > 0, [U(t,ds) = 1. Hence, the expectation E [ [ ¢(t, s)U(t, ds)]
is well-defined and finite and so u(t, .) is well-defined.
On the other hand, at any fixed age s,

+oo
/|g0(t,s)]U(dt, s) = Z lp(s + 15, 8)[Lo<s<ryy -3

= § lo(s 4+ Ti, 5) | Lo<syr<rLo<s<ty —Tis

>0

because for all t > T, gogl) = 0. Then, one can deduce the following bound

[ et os)

< lp(s + T, )1 mycscr—m Locoer, 1, + ) (s + T, 8)[LocscrIner
i>1

< HQOHL‘X’ (1—T0§SST—TO + NT]logng) .

Since the intensity is Lj,. in expectation, E[Nr] = E [ fOT )\tdt} < 4o00. So, the following
expectation

E {/ lp(t, s)|U(dt, S)} <|lellre (E[1-gy<scr—m) + E[Nr] Tocs<r) (2.49)

is well-defined and finite and so u(-, s) is well-defined.
Now, let us show (Prupini). First, Equation (2.48) implies

| [ 1ot si.as) d < Tlielon,

and Fubini’s theorem implies that the following integrals are well-defined and that the
following equality holds,

/E{/gp(t,s)U(t ds} U/ (t,5)U tdsdt] (2.50)

Secondly, Equation (2.49) implies

I [ [t s, s>] ds < |lglli~ (T + TE[Nq])

by exchanging the integral with the expectation and Fubini’s theorem implies that the
following integrals are well-defined and that the following equality holds,

/ E { / o(t, s)U(dt, s)] ds=E [ / / o(t, S)U(dL, s)ds] . (2.51)

Now, it only remains to use (Pgupini) for U to deduce that the right members of Equa-
tions (2.50) and (2.51) are equal. Moreover, (Prupin;) for U tells that these two quantities
are equal to E [ [ [ ¢(t, s)U(dt,ds)]. This concludes the proof.
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2.7.c) Proof of Theorem 2.4.4

Let p¢y be defined as follows, for every ¢ > 0 and s > 0,

E [)\t]1|5t_*8|<5]
' — 1 . f — .
Prov_(ts) = liminf grre =2

Since (A)i=0 and (S;_);>o are predictable processes, and a fortiori progressive processes
(see page 9 in [16]), prc, is a measurable function of (¢, s).

For every ¢t > 0, let u; be the measure defined by p:(A) = E [A\14(S:—)] for all mea-
surable set A. Since Assumption (AH;;’:CH” P ) implies that dt-a.e. E[\] < 400 and since

u(t,ds) is the distribution of S;_, p, is absolutely continuous with respect to wu(t,ds) for
dt-almost every t.

Let f; denote the Radon Nikodym derivative of u; with respect to u(t,ds). For u(t,ds)-
a.e. s, fi(s) = E[\|Si;— = s| by definition of the conditional expectation. Moreover,
a Theorem of Besicovitch [100, Corollary 2.14| claims that for u(t,ds)-a.e. s, fi(s) =

PACN_ (t> S)'
Hence, the equality pxc¢, (t,5) = E[A\]| Si— = s] holds u(t, ds)dt = u(dt, ds)-a.e. Next,
in order to use (Prupini), let us note that for any 7', K > 0,

o+ (t5) > (prca (8:5) A K) Tocier € Mey(R2). (2.52)

Hence, ffpf\(g];i (t,s)u(dt,ds) = [ (f pf’gvi (t, s)u(t,ds)) dt which is always upper
bounded by

/OT (/ Pacn_ S)u(t,ds)) dt = /OT e (R4 )dt = /OT]E[At] dt < +oo.

Letting K — +o0, one has that fOT [ pacy (t,s)u(dt,ds) is finite for all T > 0. Once
Prcy  correctly defined, the proof of Theorem 2.4.4 is a direct consequence of Proposition
2.4.1.

More precisely, let us show that (2.15) implies (2.21). Taking the expectation of (2.15)
gives that for all ¢ € C25(R?%),

B | o) - .01 ([ “n (@.40)) U (t.ds)] - [ 05" (@)

=0

- / (Op + 0s) p (t,s)u(dt,ds) = 0. (2.53)

Let us denote 9(t, s) := ¢(t,s) — ¢(t,0). Due to Ogata’s thinning construction,

At
/ II (dt, dl’) = N(dt)]lt>0

=0

where N is the point process constructed by thinning, and so,

E [ / (¢, s) ( / :)H(dt,dx)> U(t,ds)} _E l /t>0¢(t, S, ) N(d)] . (2.54)
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But (¢, S;_) is a (F}V)-predictable process and

T
E { / it st_mou} < |lli= E [ / Atdt] < too,

hence, using the martingale property of the predictable intensity,

U Y (t,Si-) } U Y (t, S ))\tdt} (2.55)

Moreover, thanks to Fubini’s Theorem, the right-hand term is finite and equal to
[ E[ (¢, S;—) M]dt, which can also be seen as

/ E [w (t,50-) prcy (L, st,)} dt = / U(t, $)pacy (t s)ult,ds)dt. (2.56)

For all K > 0, ((t,s) — (t, s) (PA,CN_ (t,s) A K)) € M.,(R%) and, from (Ppypini), it is
clear that

/ W(t, s) (mm (t,5) A K) ult, ds)dt = / b(t, 5) (pwf (t,s) A K) u(dt, ds).

For any K > 0, the right-hand side is upper-bounded in absolute value by
|¥]] Lo fOT [, Prex (t, s)u(dt, ds) which is finite. Letting &' — 400 one can show that

/w(t, S)pacn (t,s)u(t,ds)dt = /w(t,s)pMN (t, s)u(dt,ds). (2.57)

Gathering (2.54)-(2.57) with (2.53) gives (2.21).

2.7.d) Proof of Corollary 2.4.5

For all i € N*, let us denote N: = N* N (0,+oc0) and N° = N* NR_. Thanks to Theo-
rem A.1.1, the processes IV} can be seen as constructed via thinning of independent Poisson
processes on R%. Let (I’ )16N be the sequence of point measures associated to independent
Poisson processes of intensity 1 on R given by Theorem A.1.1. Let T denote the closest
point to 0 in N’. In particular, (T} )sen- is a sequence of i.i.d. random variables.

For each i, let U* denote the solution of the microscopic equation corresponding to IT?
and T¢ as defined in Proposition 2.4.1 by (2.11). Using (2.10), it is clear that > dgi (ds) =
o Ut(t,ds) for all ¢ > 0.

Then, for every ¢ € C23(R?),

/go(t,s) <%Zésé(ds)) _ %Z/go(t, U (1, ds).

The right-hand side is a sum n i.i.d. random variables with mean [ ¢(¢, s)u(t, ds), so (2.22)
clearly follows from the standard law of large numbers.
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2.8 Proofs linked with the various examples

2.8.a) Renewal process

Proposition 2.8.1. With the notations of Section 2.3, let N be a point process on R,
with predictable age process (Si_)i=o0, such that Ty = 0 a.s. The following statements are
equivalent:

(i) Ny = NN(0,400) is a renewal process with ISI’s distribution given by some density
78 R+ — R+.

(i) N admits \y = f(S¢—) as an intensity on (0,+00) and (N\),., satisfies (AH/{;’OGC'S), for
some f: Ry — R,.

In such a case, for all x > 0, f and v satisfy

o v(x) = f(x)exp(— /Ox f(y)dy) with the convention exp(—oo) = 0, (2.58)
o f(z)= % if /x v(y)dy # 0, else f(x) =0. (2.59)

Proof. For (ii) = (i). Since Ty = 0 a.s., Point (2) of Proposition 2.8.2 given later on for
the general Wold case implies that the ISI's of N forms a Markov chain of order 0 i.e. they
are i.i.d. with density given by (2.58).

For (i) = (ii). Let xy = inf{x > 0, f;oo v(y)dy = 0}. It may be infinite. Let us define
f by (2.59) for every 0 < z < x, and let N be a point process on R such that N_ = N_
and N admits A\, = f(SY) as an intensity on (0,400) where (SN )5 is the predictable
age process associated to N. Applying (ii) = (i) to N gives that the ISI’s of N are i.i.d.
with density given by

v(xr) = —y(x) exp | — x—y(y) d >
(x) f+OOV(y)dy p< /0 f;_OOV(Z)dZ vyl

xT

for every 0 <z < xy and v(x) = 0 for x > x¢. It is clear that v = ¥ since the function

1 v v
T —g———exp | — / midy
[ v(y)dy o J, T v(2)dz
is differentiable with derivative equal to 0. Since N and N are renewal processes with same
density v and same first point 7 = 0, they have the same distribution. Since the intensity
characterizes a point process, N also admits \; = f(SY) as an intensity on (0, +00).

Moreover, since N is a renewal process, it is non-explosive in finite time and so (\;),.

. Lla.s.
satisfies (A/\chs). m

2.8.b) Generalized Wold processes

In this Section, we suppose that there exists £ > 0 such that the underlying point process

N has intensity
)\t:f(stfaAtlv"'aAf% (260)

where f is a function and the A”’s are defined by Equation (2.5).



2.8. PROOFS LINKED WITH THE VARIOUS EXAMPLES 63

Markovian property and the resulting PDE

Let N be a point process of intensity given by (2.60). If T, > —oo, its associated age
process (S;); can be defined for all ¢ in (7_, +00). Then let, for any integer i > —k,

+1—

and denote (F*);>_j the natural filtration associated to (A;)i>_g.

For any ¢ > 0, and point process II on R?, let us denote I, (resp. II,) the restriction
to R% (resp. (0,+00) x Ry ) of the point process II shifted ¢ time units to the left on the
first coordinate. That is, IIs,(C x D) = II((t + C) x D) for all C € B(Ry),D € B(R,)

(resp. C' € B((0,400))).

Proposition 2.8.2. Let consider k a non-negative integer, f some non negative function
on ]Rffrl and N a generalized Wold process of intensity given by (2.60). Suppose that (xn_

is such that (n_(T_, > —o0) = 1 and that (\),., satisfies (A%;f) Then,

(i) If (X¢)es0 = ((Si—, A7, ...,Af))tzo, then for any finite non-negative stopping time T,
(X7 )is0 = (Xtar )0 is independent of FY  given X.,.

(ii) the process (A;)i>1 given by (2.61) forms a Markov chain of order k with transition
measure given by

v(dz,y1, ..., yx) = f(z, 91, ..., Yp) €XP (— /01‘ f(z,y1, ...,yk)dz> dx. (2.62)

If Ty =0 a.s., this holds for (A;);>o.

Furthermore, if f is continuous then G, the infinitesimal generator of (X;)i>o0, is given
by, for all ¢ in C*(REM),

(Go)(s,an, ..., ar) =

0

$¢<S7 A1y ..ey CLk) + f(87 A1y -eey CLk) (gb((), S,01, .- ak—l) - ¢(S) A1y -eny ak)) . (263)
Proof. First, let us show the first point of the Proposition. Let II be such that N is the
process resulting of Ogata’s thinning with Poisson measure II. The existence of such a
measure is assured by Theorem A.1.1. We show that for any finite stopping time 7, the
process (X7 )i>0 can be expressed as a function of X, and IIs, which is the restriction to
Ri of the Poisson process II shifted 7 time units to the left on the first coordinate. Let
e = (1,0,...,0) € RFL,

For all t > 0, let Y; = X, + te; and define

f(Yw)
Ry =1inf <t > 0, / / I, (dw,dz) =1 5.
[0,t] Jx=0

Note that Ry may be null, in particular when 7 is a jumping time of the underlying point
process . It is easy to check that Ry can be expressed as a measurable function of X, and
II>.. Moreover, it is clear that X[, p = Yiag, for all t > 0. So, Ry can be seen as the delay
until the first point of the underlying process N after time 7. Suppose that R, the delay
until the (p + 1)th point, is constructed for some p > 0 and let us show how R,.; can be
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constructed. For ¢t > R, let Z, = Q(Xﬁp) + tey, where 0 : (z1,...,x541) — (0,21,...,2%)
is a right shift operator modelling the dynamics described by (2.6). Let us define

(Zw
R,y = inf {t > R, / / (dw,dx) = 1} . (2.64)
(Rp,Rp+i]

Note that for any p > 0, R,+; cannot be null. It is coherent with the fact that the
counting process (N¢);so only admits jumps with height 1. It is easy to check that R,iq
can be expressed as a measurable function of (X} ) and Il ipg,. It is also clear that
Xirry.s = Zinryy, for all t > R, So, Rpy1 can be seen as the delay until the (p + 2)th
point of the process N after time 7. By induction, Xz can be expressed as a function of
X: and I, and this holds for R,1 and Xz too.

To conclude, remark that the process (X7 )¢ is a measurable function of X and all the
R,’s for p > 0. Thanks to the independence of the Poisson measure II, FV is independent
of [I>,. Then, since (X])i>o is a function of X, and IIs,, (X])i>o is independent of FY
given X, which concludes the first point.

For Point (i), fix ¢ > 1 and apply Point (i) with 7 = T;. It appears that in this case,
Ry =0 and Ry = A;. Moreover, R; = A; can be expressed as a function of #(X,) and II..
However, 0(X;) = (0,A;_1,...,A;_;) and F*, C fg. Since 7 = T;, II., is independent
of fg and so A; is independent of F# | given (A;_1,...,A; ;). That is, (A;);>; forms a
Markov chain of order k.

Note that if Ty = 0 a.s. (in particular it is non-negative), then one can use the previous
line of argument with 7 = 0 and conclude that the Markov chain starts one time step
earlier, i.e. (A;);>0 forms a Markov chain of order k.

To show (2.62), note that R; = A;, defined by (2.64), has the same distribution as
the first point of a Poisson process with intensity A(t) = f(¢, A;_1,...,A;_x) thanks to the
thinning Theorem. Hence, the transition measure of (A;);>; is given by (2.62).

Now that (X;);>o is Markovian, one can compute its infinitesimal generator. Sup-
pose that f is continuous and let ¢ € C}(RE™), The generator of (X;);>o is defined by

Go(s,aq,...,ax) = limy, o+ @qﬁ, where

Poo (s,a1,...,a;) = Elp(Xp)|Xo=(s,a1,...,a;)]
= E[¢ (Xn) Linqon=op| Xo = (s,a1,...,a;)]
+E [¢ (Xn) Lywo,n) >o}’Xo = (s,aq,... ,ak)]
= Eop+ Eso.

The case with no jump is easy to compute,
EO = ¢(S + hualu s ,CLk) (1 - f (s7a17 ce 7ak) h) + 0<h)7 (265)

thanks to the continuity of f. When h is small, the probability to have more than two
jumps in [0, k] is a o(h), so the second case can be reduced to the case with exactly one
random jump (namely 7',

Ewo = E[¢(Xn) Linqosn=13|Xo = (s,a1)] + o(h)
= E[¢(0(Xo+T)+ (h—T)er) Linnpon—ir1}| Xo = (s,ax)] + o(h)
= E[(¢(0,5 a,1) + o(1)) Linnpon—ir1]| Xo = (s,ar)] + o(h)
= ¢(0,s,a5_1) (f(s,a5) h) +o(h), (2.66)

with a; := (a1, ..., ax), thanks to the continuity of ¢ and f. Gathering (2.65) and (2.66)
with the definition of the generator gives (2.63). O
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Sketch of proof of Proposition 2.5.1

Let N be the point process construct by Ogata’s thinning of the Poisson process II and
U be as defined in Proposition 2.5.1. By an easy generalisation of Proposition 2.4.1, one
can prove that on the event €2 of probability 1, where Ogata’s thinning is well defined, and
where Ty < 0, Uy, satisfies (Prupini), (2.25) and on Ry x lel, the following system in the
weak sense

=0

f(s,a1,...,ax)
/ I (dt, dz) | U (¢, ds, da) |

o o f(s,a1,...,ar)
(E N 8_> Uy (dt, ds, da) + / I1(dt, dz) | Uy (£, ds, da) = 0.
S T

Uy (dt,0,ds,day, ...,dag_1) = /

ar€ER =0

'''''

Similarly to Proposition 2.4.3, one can also prove that for any test function ¢ in
Mep(RE?) E [[(t, s,a)Us(t,ds,da)] and E [ [ ¢(t, s,a)Uy(dt, s, da)] are finite and one
can define u(t,ds, da) and u(dt, s, da) by, for all ¢ in M, ,(RE"?),

/go(t, s, a)ug(t,ds,da) = E [/ o(t, s, a)Ug(t, ds,da)] ,

for all t > 0, and

/gp(t, s,a)ug(dt,s,da) =E {/ o(t,s,a)Ug(dt, s,da)} ,

for all s > 0. Moreover, uy(t,ds,da) and ug(dt, s,da) satisfy (Ppupini) and one can define
ug(dt,ds, da) = uy(t,ds,da)dt = u(dt, s,da)ds on R%, such that for any test function ¢
in Mcvb(R’fZ),

/ o(t, s, a)uy(dt, ds, da) = E [ / olt, s,a)Uk(dt,ds,da)] :

quantity which is finite. The end of the proof is completely analogous to the one of Theorem
2.4.4.

2.8.c) Linear Hawkes processes

Cluster decomposition

Proposition 2.8.3. Let g be a non negative L, (R.) function and h a non negative L*(R,)
function such that ||h||y < 1. Then the branching point process N is defined as U2 Ny the
set of all the points in all generations constructed as follows:

o Ancestral points are Ny, distributed as a Poisson process of intensity g; Ny := Ngpe
can be seen as the points of generation 0.

e Conditionally to Nype, each ancestor a € Ny, gives birth, independently of anything
else, to children points Ny, according to a Poisson process of intensity h(. — a);
N1 = Ugen,,.. N1,o forms the first generation points.

Then the construction is recursive in k, the number of generations:
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e Denoting Ny the set of points in generation k, then conditionally to Ny, each point
x € Ny gives birth, independently of anything else, to children points Ny o according
to a Poisson process of intensity h(. — x); Nkt1 = Uzen, Nkt1,. forms the points of
the (k + 1)th generation.

This construction ends almost surely in every finite interval. Moreover the intensity of N
exists and 1s given by

A =g(t) + /0 i h(t — z)N(dx).

This is the cluster representation of the Hawkes process. When g = v, this has been
proved in [71]. However up to our knowledge this has not been written for a general
function g.

Proof. First, let us fix some A > 0. The process ends up almost surely in [0, A] because
there is a.s. a finite number of ancestors in [0, A]: if we consider the family of points
attached to one particular ancestor, the number of points in each generation form a sub-
critical Galton Watson process with reproduction distribution, a Poisson variable with
mean [ h < 1 and whose extinction is consequently almost sure.

Next, to prove that N has intensity

Ht) = g(t) + /0 bt — )N (da),

we exhibit a particular thinning construction, where on the one hand, N is indeed a branch-
ing process by construction as defined by the proposition and, which, on the other hand,
guarantees that Ogata’s thinning project the points below H(t). We can always assume
that h(0) = 0, since changing the intensity of Poisson process in the branching structure
at one particular point has no impact. Hence H (¢ )+ fo (t — x)N(dz).

The construction is recursive in the same Way le some realisation Il of a Poisson
process on R%.

For Ny, project the points below the curve ¢ — ¢(t) on [0, A]. By construction, Ny, is
a Poisson process of intensity ¢(t) on [0, A]. Note that for the identification (see Theorem
2.8.11) we just need to do it on finite intervals and that the ancestors that may be born
after time A do not have any descendants in [0, A], so we can discard them, since they do
not appear in H(t), for t < A.

Enumerate the points in Ngp. N[0, A] from T} to T,

e The children of Ty, Ny, are given by the projection of the points of II whose
ordinates are in the strip t — (g(t), g(t) + h(t — T1)]. As before, by the property of
spatial independence of I1, this is a Poisson process of intensity h(.—T}) conditionally
to Ngpe.

e Repeat until Ty, , where Ny,  are given by the projection of the points of II

whose ordinates are in the strip ¢ — (g(t)+ 0= h(t—T;), g(t) + Sn%= h(t—T;)].
As before, by the property of independence of 11, this is a Poisson process of intensity
h(. —Th,...) conditionally to N, and because the consecutive strips do not overlap,
this process is completely independent of the previous processes (Njr,)’s that have
been constructed.
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Note that at the end of this first generation, Ny = Upen,,. N1 1 consists of the projection
of points of I in the strip ¢ — (g(t) g(t)+ va %> h(t —T;)]. They therefore form a Poisson
process of intensity Zfﬁ’f’" h(t —T;) = [ h(t — 2) Nane(dz), conditionally to Ny

For generation k 4+ 1 replace in the previous construction N,. by N and g¢(t) by

Zf;éfh(t — u)dN;(u). Once again we end up for each point x in N, with a
process of children Nyi;, which is a Poisson process of intensity h(t — ) conditionally
to Nj and which is totally independent of the other Njy;,’s. Note also that as before,
Nit1 = Ugen, Nip1,2 18 a Poisson process of intensity [ h(t — z)Ny(dz), conditionally to
Ny, ..., Ni.

Hence we are indeed constructing a branching process as defined by the proposition.
Because the underlying Galton Watson process ends almost surely, as shown before, it
means that there exists a.s. one generation N« which will be completely empty and our
recursive construction ends up too.

The main point is to realize that at the end the points in N = U2 N}, are exactly the
projection of the points in II that are below

t— g(t) + Z/h(t — 2)Ni(dz) = g(t) + Z/Oth(t — 2)Ni(dz)

hence below ,
t— g(t) +/ h(t — z)N(dz) = H(t).

Moreover H(t) is F}¥ predictable. Therefore by Theorem 2.8.11, N has intensity H(t),
which concludes the proof. O]

A cluster process Nc, is a branching process, as defined before, which admits inten-
sity Ay = h(t) + [, h( N.(dz). Its distribution only depends on the function h. It
corresponds to the famlly generated by one ancestor at time 0 in Proposition 2.8.3. There-
fore, by Proposition2. 8 3, a Hawkes process N with empty past (N_ = () of intensity
A= g(t)+ fo_ (t—2)N(dz) can always be seen as the union of N,,. and of all the a+ N
for a € Ny, where the N2 are i.i.d. cluster processes.

For a Hawkes process N with non empty past, N_, this is more technical. Let N,
be a Poisson process of intensity g on R, and (N V) be a sequence of i.i.d. cluster
processes associated to h. Let also

VENan

Neo = Ngpe U ( U v+ NX) . (2.67)

VeNanc

As we prove below, this represents the points in /N that do not depend on N_. The points
that are depending on N_ are constructed as follows independently of N.q. Given N_, let
(N T)T N denote a sequence of independent Poisson processes with respective intensities

: T TV
Ar(v) = h(v — T)Lgeo)(v). Then, given N_ and (N )TGN , let (V] )VeNlT,TeN,
sequence of i.i.d. cluster processes associated to h. The points depending on the past N_
are given by the following formula as proved in the next Proposition:

be a

Ne=N_u| |J Nu| [JV+NY] L. (2.68)

TeN- VeNT
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Proposition 2.8.4. Let N = Ny U N+, where N~o and N<y are given by (2.67) and
(2.68). Then N is a linear Hawkes process with past given by N_ and intensity on (0, +00)
given by A\, = g(t) + f:o h(t — x)N(dx), where g and h are as in Proposition 2.8.3.

Proof. Proposition2.8.3 yields that N+ has .E]X> °-intensity
tf
0
and that, given N_, for any T € N_, NL = Nl U (UVGNIT V+ NCT’V> has fﬁg—intensity

AE Z h—T) + / bt — 2)NT(de), (2.70)

Moreover, all these processes are independent given N_. For any ¢ > 0, one can note that

Focg=r-v|\ 7",
TeEN_
and so N« has G,_-intensity
A=Y AVi — / h(t — 2)N<o(dz) (2.71)

TeEN_ o0

on (0, 4+00). Since this last expression is FtNSO—predictable, by [16, page 27|, this is also the
.Ftligo—intensity of N<y. Moreover, Ny and N- are independent by construction and, for

any t > 0, FN C ftNSO V F¥>° Hence, as before, N has F} -intensity on (0, 400) given by

t—

Mo = AV AN oy 1 / h(t — 2)N(dz).

—00

A general result for linear Hawkes processes

The following proposition is a consequence of Theorem 2.4.4 applied to Hawkes processes
with general past N_.

Proposition 2.8.5. Using the notations of Theorem 2.4.4, let N be a Hawkes process with
past before O given by N_ of distribution (n_ and with intensity on Ry given by

M= /t_ h(t — 2)N(dz),

where p 1s a positive real number and h is a non-negative function with support in Ry such
that f h < 1. Suppose that (n_ is such that

sup E [/0 h(t — a:)N_(dx)] < 400. (2.72)

t>0 —00
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Then, the mean measure u defined in Proposition 2.4.3 satisfies Theorem 2.4.4 and more-
over its integral v(t, s) := f:oou(t, do) is a solution of the system (2.36)—(2.37) where v
is the survival function of —T,, and where ® = @’g]’:i is given by @’SJ’Q = @i’h + (I)li’,}éw,’

with @’i’h given by (2.39) and (ID‘i’ZNi given by,

Vs, t>0, CD’i’ZN_ (t,s) =E {/t h(t — 2)N<o(dz)| N<o ([t — s,t)) = 0] . (2.73)

— 00

Moreover, (2.42) holds.

Proof of the general result of Proposition 2.8.5

Before proving Proposition 2.8.5, we need some technical preliminaries.

Events of the type {S;_ > s} are equivalent to the fact that the underlying process has
no point between t — s and t. Therefore, for any point process N and any real numbers
t,s >0, let

Eis(N)={NN[t—s,t)=0} (2.74)

Various sets & (V) are used in the sequel and the following lemma is applied several times
to those sets.

Lemma 2.8.6. Let Y be some random variable and 1(Y') some countable set of indices
depending on Y. Suppose that (Xi)ieI(Y) 1s a sequence of random wvariables which are
independent conditionally on'Y . Let A(Y') be some event depending on'Y and ¥V j € I(Y),
B; = B;(Y, X;) be some event depending on Y and X;. Then, for any i € I(Y), and for
all sequence of measurable functions (f;)ici(vy such that the following quantities exist,

E Z fi(Y, X;)| A#B| =E Z E[fi(Y, X)|Y, Bi)| A#B | ,
iel(Y) i€l(Y)

IE‘,[fi(Y,Xi)ILBi Y]

where Bfi(Y, X,) Y. B)) = o2l and AgB = A(Y) N (mje,(y) Bj>.

Proof. By definition,

E _ZieI(Y) [iY, Xi)Lawy [ere ]lB]}
P (A%DB)

E| > L(Y,X)|A#B| =

ieI(Y)

E _Zie](Y) E | fi(Y, Xi) [ Ljesv) Ls; Y} ]lA(Y)}
P (A#B)
E [ Sieron EU(Y. X5 VI TL . BOB,|Y ) Lagy) |

P (A#B) ’

thanks to the conditional independence of the X;’s (and so the B;’s) given Y. By definition,
E[f;(Y, X:)1p|Y] =E[fi(Y, X))|Y, B;]| P(B;|Y), and thanks to the definition of conditional
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probability, we end up with

B [Sieron E LAY XIY, B Ter POBIY ) Lagy) |
P(A#D)

E| Y LY, X)|A#B| =
i€I(Y)

B [Sicron B LAY, X0IY: B Tler 1, La |

P(A#B)

= E| ) E[fi(Y,X))|Y, B]|A#B
L ieI(Y)

The following lemma is linked to Lemma 2.5.2.

Lemma 2.8.7. Let N be a linear Hawkes process with no past before time 0 (i.e. N_ =)
and intensity on (0,+00) given by A\ = g(t) + fot_ h(t — x)N(dz), where g and h are as in
Proposition 2.8.3 and let, for any x,s > 0,

LoM(z) =F [/Oz h(x — z)N(dz) gx,s(N):|
GIM () =P (&,5(N)),
Then, for any x,s > 0,
LoM(z) = /: (h (z) + Lgh(z)) G (2)g(x — 2)dz, (2.75)
and (z—s)VO T
log(G9 () — /0 Ghh(z — 2)g(2)dz — /O g(2)dz. (2.76)

In particular, (L"" G"") is in L' x L™ and is a solution of (2.33)-(2.34).

Proof. The statement only depends on the distribution of N. Hence, thanks to Proposi-
tion 2.8.4, it is sufficient to consider N = Nype U (Uven,..V + NY).

Let us show (2.75). First, let us write L9 (z) = E [ vcy h(z — X)|E:5(V)] , and note
that L9" (z) = 0 if x < s. The following decomposition holds

LMa)=E | > |hz=V)+ Y bz =V -=W)||E(N)

VENane WeNY

According to Lemma 2.8.6 and the following decomposition,

gx,s(N) = 595,5(Nanc) N ( ﬂ gx—V,s(Ng/)) ) (277)

VeNanc

let us denote Y = Nype, Xyy = NY and By = E,_vs(NY) for all V € Ny, Let us fix
V € Ny and compute the conditional expectation of the inner sum with respect to the
filtration of N, which is

E| ) Wz-V-W)Y,By| = E

WeNY

D @ =V)=W)

WeN,
= LMz —V), (2.78)

ga:—V,s (Nc)]



2.8. PROOFS LINKED WITH THE VARIOUS EXAMPLES 71

since, conditionally on N, NCV has the same distribution as N, which is a linear Hawkes
process with conditional intensity A{ = h(t) + [, h(t — z)N.(dz). Using the conditional
independence of the cluster processes with respect to Ng,., one can apply Lemma 2.8.6
and deduce that

LMa)=E| Y (h(x=V)+Li"x-V))

VENanc

Ex,s(N>]

The following argument is inspired by Moller [105]. For every V' € Ng,., we say that V' has
mark 0 if V" has no descendant or himself in [z — s, z) and mark 1 otherwise. Let us denote
N? the set of points with mark 0 and N} . = N,,. \ N . For any V € Ny, we have

anc anc

P(V € N, o|Nane) = G2 (2 — V) Ljp_s2)c(V), and all the marks are chosen independently

anc

given N,p.. Hence, N2 ~and N} . are independent Poisson processes and the intensity of

N? . is given by A(v) = g(v)G™"(x — v)1jz—s4)c(v). Moreover, the event {N., . =0} can

anc

be identified to &, ;(N) and

L) = E| > (hlz=V)+ LMz —=V))|N},. =0
VeNy, .

= [ (hle =)+ 1 - 0) @G 0w

—00

(z—s)VO
- /O (h(z —w) + LMz — w)) G2 (2 — w)g(w) dw,

where we used the independence between the two Poisson processes. It suffices to substitute
w by z = ¥ — w in the integral to get the desired formula. Since G™" is bounded, it is
obvious that L™" is L.

Then, let us show (2.76). First note that if z < 0, G9"(z) = 1. Next, following (2.77)
one has G9"(z) = E [Le, ,(Nuno) [Lxen,,. L, .vx)] - This is also

GM(2) = E|lnrp-sms ] Lev.om] -

VENancﬂ[xfs,x)C

= E ]lNancﬂ[xfs,z):@ H Gg’h($—V) )

VGNancﬂ[ﬁ*S,x)c

by conditioning with respect to Nyn.. Since Ny, N [x — s, x) is independent of Ny, N [z —
s, )¢, this gives

Ga (o) = exp(= [ (210212 e [ s D)) |

This leads to log(G2"(z)) = — [T g(z)dz + f[w_s 3E)C(Gﬁf’h(x — z) — 1)g(z)dz, thanks to
Campbell’s Theorem [86]. Then, (2.76) clearly follows from the facts that if 2 > = > 0
then G""(z — 2) = 1 and g(z) = 0 as soon as z < 0. O

Proof of Lemma 2.5.2 In turn, we use a Banach fixed point argument to prove that
for all s > 0 there exists a unique couple (L, G,) € L'(R;) x L>®(R,) solution to these
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equations. To do so, let us first study Equation (2.33) and define Tz 5 : L°(Ry) — L>®(R,)
by

(z—s)VO T
Tes(f)(z) :=exp </ flz —2)h(z)dz — / h(z)dz).
0 0
The right-hand side is well-defined since h € L' and f € L>. Moreover we have
TG’ s(f)( ) ||f||Loo (f(z $)VO h(z)dz—for h(z)dz ) (”f”Loo 1) f(z $)VO h( Z)dz.
This shows that T s maps the ball of radius 1 of L* into itself, and more precisely into

the intersection of the positive cone and the ball. We distinguish two cases:

— If v < s, then T 5(f)(z) = exp(— fh )dz) for any f, thus, the unique fixed point is

given by G, : x — exp(— f h(z , which does not depend on s > x.

— And if = > s, the functlonal TG7S is a k—contraction in {f € L>®(R4), || f|lL~ < 1}, with
+o0

k < [ h(z)dz <1, by convexity of the exponential. More precisely, using that for all z, y,
0

e — ] < em@|g — y| we end up with, for || ], gl < 1,

x

—fh(z)dz f h(z)dz

(2—s)
TesN@) = Toslo)@)] < e ? I =gl [ s
< IS = gll= /R h(z)dx.

Hence there exists only one fixed point G that we can identify with G™" given in
Proposition 2.8.7 and G™" being a probability, G, takes values in [0, 1].
Analogously, we define the functional Ty ¢ : L'(R,) — L*(R,) by

Tou(f)(a) = / " (h(2) + £(2)) Gu(2hla — 2) dz,

AT
and it is easy to check that 77 , is well-defined as well. We similarly distinguish the two
cases:
— If x < s, then the unique fixed point is given by Lg(x) = 0.
+o00o
— And if x > s, thus T} 4 is a k—contraction with £ < [ h(y)dy <1 in L*((s,+00)) since
0
Gl <1

ITealh) = Teal@ls = [ | J(F(2) = 9(2)) Ga(2)h(a — 2)de|da

< NGl [ ] |7(2) - 9(2)|hla — 2)dzdz

AN

s —00

400
= |G|l |l f = gl Lr((s00)) Of h(y)dy

In the same way, there exists only one fixed point L, = L™" given by Proposition 2.8.7. In
particular Ls(x < s) = 0.

Finally, as a consequence of Equation (2.34) we find that if L is the unique fixed point
of T}, 5, then

(o7 h(y) dy)?

1- O+00 h(y> dy

and therefore L, is uniformly bounded in L' with respect to s.

| Ls|| 21 (ry) <
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Lemma 2.8.8. Let N be a linear Hawkes process with past before time 0 given by N_
and intensity on (0,400) given by A\ = pu + ff;o h(t — z)N(dx), where p is a positive real
number and h is a non-negative function with support in Ry, such that ||h||pr < 1. If the
distribution of N_ satisfies (2.72) then (A]ijlffp) is satisfied.

Proof. For all t > 0, let A(t) = E[\;]. By Proposition 2.8.4,

t—

Xt) = E {u + /0 Tt - w)N>0(dw)} +E [ / Wt — x)N<0(dx)1

—0o0

which is possibly infinite.
Let us apply Proposition 2.8.7 with ¢ = p and s = 0, the choice s = 0 implying that
Ei0(Nsp) is of probability 1. Therefore

E [u 4 /Ot_ Bt — x)N>0(da:)} — (1 4 /Ot(h(a:) 4 Lo(:z:))d:c> ,

where (Lo, Gy = 1) is the solution of Lemma 2.5.2 for s = 0, by identification of Proposition
2.8.7. Hence E [,u + fot* h(t — x)N>0(dx)] < u(X+ Al + || Lol z1)-
On the other hand, thanks to Lemma 2.8.9, we have

E l / T hi - x)NSO(dx)] _

—0o0

E E:(ﬁ@—T%+A%Mt—@+J@@—xﬂMx—Tﬁ{)

TeN_

Since all the quantities are non negative, one can exchange all the integrals and deduce
that

B[ [ He-0Na(n)] < 20+ bl + Lol

with M = sup,»oE [fi)oo h(t —z)N_ (dx)] which is finite by assumption. Hence, A(t) <

(u+ M)+ ]|h|[zr + ||Lol|L1), and therefore (A”;flfjp) is satisfied.
[l

Proof of Proposition 2.8.5 First, by Proposition 2.8.4
E [)\t’ St_ Z 8] ==

H+E [ /0 Rt — 2) N (d2) a,s(z\f)} +E [ / Rt — 2)Nay(d2)

—00

£u.(V)

,st,s(sz)] +E [ / Rt — 2)Nao(d2)

— 00

—u+E [/Ot h(t — 2)Nso(d2) St,s(NSO)]

By Lemma 2.8.7, we obtain E[\|S;- >s] = p+ Li(t) + ®" . (t,s). Identifying by
Lemma 2.5.2, Ly = L™" and G, = G!"", we obtain

E NS > 5] = @ (t,s) + " (t,5).
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Hence @’Zj’ﬁ (t,s) =E[M\| S > 3.
Lemma 2.8.8 ensures that the assumptions of Theorem 2.4.4 are fulfilled. Let u and
p’éj’vh_ = prcy_ be defined accordingly as in Theorem 2.4.4. With respect to the PDE system,

there are two possibilities to express [E [/\t]l{stizs}}. The first one involves py¢, and is
E [pé‘]’vhi (t, St_)]lgtizs} , whereas the second one involves CIDEI’Vhi and is @‘C‘]’V}i (t,s)P(S;- > s).
This leads to [ p‘g]’:l_ (t, 2)u(t,dx) = @gl’vh_ (t,5) [.7°° u(t,dz), since u(t,ds) is the dis-

S
tribution of S;_. Let us denote v(t,s) = f+°° u(t,dx): this relation, together with Equa-

S

tion (2.18) for w, immediately gives us that v satisfies Equation (2.36) with & = qﬂéxﬁ‘

Moreover, f0+°° u(t,dz) = 1, which gives us the boundary condition in (2.37).

Study of the general case for <I>’17<N7 in Proposition 2.8.5

Lemma 2.8.9. Let consider h a non-negative function with support in R, such that
[ h < 1, N_ a point process on R_ with distribution (n_ and N<o defined by (2.68).

If ot (ts)=E [ [t - z)Ngo(dz)‘ st,s(Ngo)] for all s,t > 0, then,

" (ts)=E | D (h(t—T)+ K(t,T))|E.(N<o) | (2.79)

TEN-
where K(t,u) is given by (2.35).

Proof. Following the decomposition given in Proposition 2.8.4, one has

o (s =E| ) <h(t—T)

TeEN-

+ 3 <h(t—V)+ > h(t—V—W))) Es(N<o) |

VenT wenNIV

where (c:t’S(NS()) = gt’s(N_) nT’EN, (gt,s(NlT) nvleNlT gt_VI’S(NCV/)) . Let us fix T c N_,

V € NI and compute the conditional expectation of the inner sum with respect to N_ and
NI, In the same way as for (2.78) we end up with

E| Y ht—V-—W)|N_ N & v (NIV)| =Lt -V),

WeNTV

since, conditionally on N_ and N{, N'V has the same distribution as N,. Using the condi-

tional independence of the cluster processes (NI'V),, . nr Wwith respect to (N_, (N)ren.),

one can apply Lemma 2.8.6 with Y = (N_,(N{)ren_) and X(7v) = NV and deduce
that

O (ts)=E| Y | h(t=T)+ ) (h(t=V)+ LIt~ V) ||Ens(N<o)

TeN- VeNT
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Let us fix T' € N_ and compute the conditional expectation of the inner sum with respect
to N_ which is

D=E | Y (h(t—V)+LE"(t—V))|N_,A]| (2.80)

VeNt

where Af, = & ,(N{) N (ﬂv,eNlT Et_v/vs(NcT’V/)) For every V € NI, we say that V has

mark 0 if V' has no descendant or himself in [t — s,¢) and mark 1 otherwise. Let us denote
N the set of points with mark 0 and N;"' = NT\ N/°.

For any V € NI P (V € NlT’O‘NlT) = G""(t — V)1j_sc(V) and all the marks are

chosen independently given N{. Hence, NlT Y and NlT ! are independent Poisson processes
and the intensity of N ° is given by A(v) = h(v — T) Lo 4+00) (V)GER(E — 0)Lp_s 19 (V).
Moreover, AES is the event {NlT’l = @}, SO

D= E| > (at—v)+ - vy {n =0}
ven°

— / ) [A(t —v) + LY (t — 0)] h(v — T)Ljg 400 (0) G2 (t — 0)L_s 1y (v)dv

—00

= K,(t,T).

Using the independence of the cluster processes, one can apply Lemma 2.8.6 with Y = N_
and X = (NlT, (NCTvV)VeNIT) and (2.79) clearly follows. O

Lemma 2.8.10. Under the assumptions and notations of Proposition 2.8.5 and Lemma
2.5.2, the function ®" . of Proposition 2.8.5 can be identified with (2.40) under (Ay )

and with (2.41) under (A% ) and (2.72) is satisfied in those two cases.

Proof. First, remind the expression of ®" ¢y Obtained in Lemma 2.8.9, that is

" () =E| D (h(t—T)+ K(t,T))|E.+(N<o)

TeN-

— Under (A} ). On the one hand, for every ¢t > 0,

EUO h(t—x)N_(dx)] — E[h(t—Ty)]

— 00

0 “+o00
- / Wt — to) folto)dto < |l foll / h(y)dy,

hence (y_ satisfies (2.72). On the other hand, since N_ is reduced to one point Ty,

1

ot o (ts) = mﬂf [(h(t —To) + K(t,Tp)) Le, .(noy)) -
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using the definition of the conditional expectation. To compute P(& s(N<o)|Tp), we use
the decomposition

Ers(Neo) = {Ty <t = s} NELNP)N [ [ Evis(NY)

Ven,o

and the fact that, conditionally on NITO, for all V € NIT 0. N1V has the same distribution
as IV, to deduce that

E []l&,s(Ngo)l TO} = Ly« —sB []lgt,s(NlTO)

nle| I ce-vn|.
VEN,oN[t—s,t)

because the event & ,(N/°) involves N/° N[t — s, t) whereas the product involves N/° N[t —

s,1)¢, both of those processes being two independent Poisson processes. Their respective

intensities are A(z) = h(x — To)Ljg—syvo) (x) and A(z) = h(x — To) 1o, t—s)v0) (), sO we end

up with

E|1

£1,5(N10) TO} = exp< S b = To) Lo o) (& )dw>

E [ Gt—W)|T| =exp (_ SO Gyt — )] b — To)d:c> .
VeN/on[t—s,t)e

The product of these two last quantities is exactly ¢(t, s, Tp) given by (2.35). Note that
q(t, s, Tp) is exactly the probability that Ty has no descendant in [t — s,t) given Ty. Hence,

P(&.5s(N<o)) = fOA(t ) q(t, s,t0) fo(to)dty and (2.40) clearly follows.

o0

— Under (.A?V_). On the one hand, for any ¢ > 0,

E U; h(t — x)N(dx)} —E U; h(t — x)&da:} <a /Om h(y)dy,

hence (y_ satisfies (2.72). On the other hand, since we are dealing with a Poisson pro-
cess, we can use the same argumentation of marked Poisson processes as in the proof of
Lemma 2.8.7. For every T' € N_, we say that 7" has mark 0 if 7" has no descendant or
himself in [t — s,¢) and mark 1 otherwise. Let us denote N° the set of points with mark 0
and N = N_\ N°. For any T' € N_, we have

P(T e NE‘N—) =q(t, s, T)Lp—s)e(T),

and all the marks are chosen independently given N_. Hence, N° and N! are independent
Poisson processes and the intensity of N° is given by

Az) = al<oq(t, s, 2)Lp—spe(2)
Moreover, & s(N<g) = {Ni = @}. Hence,

" () =B | Y (h(t—T)+ K,(t,T)|N' =0

TeNO

which gives (2.41) thanks to the independence of N° and N!.
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Proof of Propositions 2.5.4 and 2.5.9

Since we already proved Proposition 2.8.5 and Lemma 2.8.10, to obtain Proposition 2.5.4
it only remains to prove that (I)th, € LOO(Ri), to ensure uniqueness of the solution by

Remark 2.5.3. To do so, it is easy to see that the assumption h € L>°(R,) combined with
Lemma 2.5.2 giving that G, € [0,1] and L, € L'(R,) ensures that <I>’fr’h,q and K, are in
L*(Ry). In turn, this implies that ®" .~ in both (2.40) and (2.41) is in L>°(R.), which

concludes the proof of Proposition 2.5.4.

Proof of Proposition 2.5.9 The method of characteristics leads us to rewrite the
solution v of (2.36)-(2.37) by defining f™ = v™ on Ry, f™ =1 on R_ such that

in _ 7\[‘(;:75)\/() (I)(yzsft‘ky) dy >
(t,5) = {f (s =t , when s 2 ¥ (2.81)

fin(s _ t)e_ f(ssft)voq>(y+t_5’y) dy’ when ¢ > s.

Let (A" be the distribution of the past given by (A} ) and Ty ~ U([-M — 1,—M]).

By Proposition 2.5.4, let vy, be the solution of System (2.36)—(2.37) with & = @Zf} and

v = (i.e. the survival function of a uniform variable on [—-M — 1, —M]). Let also v$3

be the solution of System (2.36)—(2.37) with & = (IJQ‘;J} and v = 1, and v, the solution
N_

of (2.43)-(2.44). Then,

lvar — v Leo (0,1 x (0,8)) < N|var — vzl zoo (0,1 % (0,9)) + [1V37 — V™| Lo ((0,1)x (0,9)) -

By definition of v%}, it is clear that v%}(s) = 1 for s < M, so that Formula (2.81) implies
that vy (t, 5) = v37(t, 5) as soon as s —t < M and so [[var — V37| ((0,7)x(0,5)) = 0 as soon
as M > S.

To evaluate the distance ||v37 — v°°|| e ((0,7)x(0,5)), it Temains to prove that

t
eXp(—/@ cu (s t+y)dy)—>1
0

uniformly on (0,7") x (0,S5) for any 7" > 0, S > 0. For this, it suffices to prove that
<I>}j7<],y (t,s) — 0 uniformly on (0,7") x (0,S). Since ¢ given by (2.35) takes values in

[exp(;2||hHL1), 1], (2.40) implies

SO (Rt = to) + Ku(t,t0)) L-ar—1,-an (to)dto

o0

SO exp(=21[mll )L -ar1,-an(to)dtg

o0

(I)Ii’gjl\tjf (ta S) S

Since ||Gs||p~ < 1, Ls and h are non-negative, it is clear that

+o0
Kitt) < [ [t = 0) + Lt - 2)) ho — to)d,

/ ;le Ko(t,to)dty < /0 Wt — )+ Ly(t — @)] ( / ;JMl Wz — to)dt0> dz

and so

< /MOO /Ooo[h(t—x)JrLs(t—x)]dx
< /MOO o)y [l + | Laloi].
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Hence, for M large enough

S ny)dy [[1p|]x + 1| L] | 1]
exp(—2[[A]|1) ’

uniformly in (¢, s) since L, is uniformly bounded in L', which concludes the proof.

(I)E,CJI\V,I (ta S) S

2.8.d) Thinning

The demonstration of Ogata’s thinning algorithm uses a generalization of point processes,
namely the marked point processes. However, only the basic properties of simple and
marked point processes are needed (see [16] for a good overview of point processes theory).
Here (F;)~0 denotes a general filtration such that ]—"tN C JF; forallt > 0, and not necessarily
the natural one, i.e. (F});o.

Theorem 2.8.11. Let IT be a (F;)-Poisson process with intensity 1 on R3. Let (A)eo be
a non-negative (JF;)-predictable process which is L}, a.s. and define the point process N by

N(C) = /C T () T e x d2),
xR

for all C € B(Ry). Then N admits N\; as a (F;)-predictable intensity.
Moreover, if (A\)i>0 is in fact (}"tN) -predictable, then N admits \; as a (.EN) -predictable
mntensity.

Proof. The goal is to apply the martingale characterization of the intensity (Chapter II,
Theorem 9 in [16]). We cannot consider II as a point process on R, marked in R, (in
particular, the point With the smallest abscissa cannot be defined). However, for every
ke N, we can define II™®) | the restriction of II to the points with ordmate smaller than k,
by H(k = [, II(dt x dz for all C € B(R, x [0,k]). Then II® can be seen as a point
process on ]R+ marked in Ek := [0, k] with intensity kernel 1.dz With respect to (F;). In
the same way, we define N*) by

N® () = / Lo II® (dt x dz) forall C € B(R,).
CXR+

Let P(F;) be the predictable o-algebra (see [16, page 8|). Let us denote & = B ([0, k]) and
Pi (Fi) = P (F;) ® & the associated marked predictable o-algebra.

For any fixed z in E, {(t,w) € Ry x Q such that Ay (w) > 2z} belongs to the pre-
dictable o-algebra P (F;) since A is predictable. Let us denote

[ ={(t w,2) e Ry x Qx Ex, My (w) > 2}

and remark that for all £,

1
Fk: N U {(t/,W)€R+XQ, )\t/(w)zq}x<[0,q+ﬁ]ﬂEk)

neN* ¢geQ4

So, I'y, € 75k (F:) and 1.epo,n,)nE, 18 75k (F:)-measurable. Hence, one can apply the Integra-
tion Theorem (Chapter VIII, Corollary 4 in [16]). So

t
(Xt)i>0 := </ / Locion,] M® (dt’ x dz)> is a (F;)-local martingale
0 FEp t>0
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where M®) (dt' x dz) = I® (dt' x dz) — dzdt'. In fact,

¢
= Nt(k) —/ min (\y, k) dt’
0

Yet, Nt(k) (respectively fg min (A\y, k) dt') is non-decreasingly converging towards N;
(resp. fg Apdt’). Both of the limits are finite a.s. thanks to the local integrability of
the intensity (see page 27 of [16]). Thanks to monotone convergence we deduce that

Ny — f(f Apdt > is a (F;)-local martingale. Then, thanks to the martingale characteri-
>0

zation of the intensity, NV; admits )\, as an (JF;)-intensity. The last point of the Theorem
is a reduction of the filtration. Since (A\)i>o is (F})-predictable, it is a fortiori (F}Y)-
progressive and the desired result follows (see |16, page 27]). O

2.9 Unpublished material

This section has not been published in Mathematical Models and Methods in Applied Sci-
ences as the previous sections. Here is given some insights about: the link between strong

and weak formulations and the route from the equation satisfied by u to the equation
satisfied by v := [ u.

2.9.a) From the strong to the weak formulation

In this section, we give heuristics on the transition from System (2.12)-(2.14) to Equation
(2.15). Integrating Equation (2.12) with respect to a test function ¢ would give

At

/RMRJ'”“ 8><8at ai)U(dt ds) + /ﬂwﬂfﬁ) (/chH(dt,dx))U(t,ds):o,

yet (% + %)U does not make sense since U is not differentiable in general (U is a measure).
However, the heuristics given by the integration by parts formula yields

| e (G g)vanag == [ (S+ Detavianas)
+ /R [p(t, $)U (L, ds)],5 + /R [p(t, s)U(dt, s)]+%

yet, since ¢ is compactly supported,
[90(72 S)U<t ds)]t 0 — —QO(O,S)U(O,dS) and [QO( )U(dt S)]s 0 — _90(t70)U(dt70)

Using the boundary condition (2.13) and the initial condition (2.14) gives

/R (0, 5)U(0, ds) + /]R St 0VU(dL,0) = (0, —Ty)+

/RmR+ ¢(t,0) (/;; IT (dt, dx)) U (t,ds).

Hence (2.15) clearly follows.
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2.9.b) From Equation (2.21) to System (2.36)-(2.37)

In terms of strong sense formulation, Relation (2.42) together with System (2.18)-(2.20)
satisfied by u gives that v satisfies (2.36)-(2.37). Yet this is not so clear when the equations
are to be understood in the weak sense which is the case here since the solutions we are
looking at are possibly measures. However, the following trick connects the two systems
of equations in the weak sense.

First, remind that v(¢,s) = f:oo u(t,do) so that, by integration by parts, for any test
function ¢ in CJ5(R?),

/RXR o(t, s)u(dt,ds) = /RXR % (t,s)v(t,s)dtds—/ [o(t, s)v(t, s)]I25dt

teR,

- /R th (t, s)v(t, s)dtds + / ©(t,0)v(t,0)dt. (2.82)

teR4

Then, by integration by parts, Equation (2.42) gives

[ et tsutdngs) = [ (Spt) ok (tsjult.s)ds
Ry xR4 B Ry xRy as -
+/ p(t,0)PL" (t,0)u(t,0)dt, (2.83)
teR4 N

where we used that ¢ is compactly supported. Finally, integration by parts once again
gives, with v™ := v(0, -),
n 0 in n
p(0,5)u(ds) = [ (0, 5)u(5)ds + p(0,0)0"(0). (2.84)
R4

R4

Hence, starting from the weak formulation (2.21), using (2.83), (2.84) and (2.82) applied
to (2 + &) gives, with ¢ := 2o,

o 0 0
=+ = ~t,svt,sdzﬁds—l—/ ~zf,Ovt,Odt—l—/ —p(t,0)v(t, 0)dt
L G+ an)atomtaaass [ gwopwods [ e on.0

_ /R B (ts)ult ) + / (0, 5)0™ (5)ds + (0, 0)0™(0) = 0

Ry

which is exactly the weak formulation of System (2.36)-(2.37) since [ Z(¢,0)v(t,0)dt =
—(0)v™(0) by integration by parts.



CHAPTER

3 MEAN-FIELD LIMIT OF GENERAL-
IZED HAWKES PROCESSES

Abstract. We generalize multivariate Hawkes processes mainly by including a depen-
dence with respect to the age of the process, i.e. the delay since the last point.

Within this class, we investigate the limit behaviour, when n goes to infinity, of a
system of n mean-field interacting age-dependent Hawkes processes. We prove that such
a system can be approximated by independent and identically distributed age dependent
point processes interacting with their own mean intensity. This result generalizes the study
performed in [43].

In continuity with the previous one, the second of goal this chapter is to give a proper
link between these generalized Hawkes processes as microscopic models of individual neu-
rons and the age-structured system of partial differential equations introduced by Pak-
daman, Perthame and Salort in [114] as macroscopic model of neurons.

This chapter has been submitted and can be found on ArXiv [28§].
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3.1 Introduction

In the recent years, the self-exciting point process known as the Hawkes process [70] has
been used in very diverse areas. First introduced to model earthquake replicas [85] or
[111] (ETAS model), it has been used in criminology to model burglary [104], in genomic
data analysis to model occurrences of genes [67, 139], in social networks analysis to model
viewing or popularity [9, 35|, as well as in finance |7, 8]. We refer to [93] or [164] for more
extensive reviews on applications of Hawkes processes. A univariate (nonlinear) Hawkes
process is a point process N admitting a stochastic intensity of the form

JU— (/Ot Wt — z)N(dz)) , (3.1)

where @ : R — R, is called the intensity function, A : R, — R is called the self-interaction
function and N(dz) denotes the point measure associated with N.

Such a form of the intensity is motivated by practical cases where all the previous points
of the process may impact the rate of appearance of a new point. The influence of the past
points is formulated in terms of the delay between those past occurrences and the present
time, through the weight function h. In the natural framework where h is non-negative and
® increasing, this choice of interaction models an excitatory phenomenon: each time the
process has a jump, it excites itself in the sense that it increases its intensity and thus the
probability of finding a new point. A classical case is the linear Hawkes process for which
h is non-negative and ®(x) = p + x where p is a positive constant called the spontaneous
rate. Note however that Hawkes processes can also describe inhibitory phenomena. For
example, the function A may take negative values, ® being the positive part modulo the
spontaneous rate p, i.e. ®(z) = max(0, u + z).

Hawkes processes are also really suitable to model interacting particles such as bids and
asks orders in limit order books [109]. Multivariate Hawkes processes consist of multivariate
point processes (N1, ..., N") whose intensities are respectively given for i = 1,...,n by

N o= @, (i / it z)Nj(dz)) , (3.2)

where ®; : R — R is the intensity function associated with the particle ¢ and h;_,; is the
interaction function describing the influence of each point of N7 on the appearance of a
new point onto N?, via its intensity A

When the number of interacting particles is huge (as, for instance, financial or social
networks agents), one may be willing to let the number of particles goes to infinity. This
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is especially true for multivariate Hawkes processes subject to mean-field interactions.
In such a case, we may indeed expect propagation of chaos, namely the particles are
expected to become asymptotically independent, provided that they start from independent
and identically distributed (i.i.d.) initial conditions and submitted to i.i.d. sources of
noise. Mean-field type interactions involve some homogeneity and some symmetry through
coefficients that depend upon the empirical measure of the processes: In the limit regime,
the coefficients depend upon the common asymptotic distribution of the particles, which
satisfies nonlinear dynamics, sometimes called of McKean-Vlasov type.

The study of mean-field situations for Hawkes processes was initiated by Delattre et al.
[43] by considering the following form of intensity

=P (% Z/O : h(t — z)Nj(dz)> : (3.3)

where, in comparison with (3.2), all the ®;’s and the h;_,;’s are the same. In particular,

it is shown in [43| that mean-field interacting Hawkes processes are well approximated,

when the size of the network n goes to infinity, by i.i.d. Poisson processes of the McKean-

Vlasov type in the sense that their intensity is given by the following implicit formula
O( [ h(t — 2)A(2)dz).

In the present chapter, a generalized version of Hawkes processes with mean-field inter-
actions, namely Age Dependent Random Hawkes Processes (ADRHP for short), is studied.
For any point process N, we call predictable age process associated with N the predictable
process (S;_)t>0 given by

S =t—sup{T € N, T <t}, forallt>0,

and extended by continuity in ¢ = 0. In particular, its value in ¢ = 0 is entirely determined
by N NRR_ and is well-defined as soon as there is a point therein. In comparison with the
standard mean-field type Hawkes processes studied in [43] we assume here that the intensity
function @ in (3.3) (which is denoted by ¥ to avoid confusion) may also depend on the
predictable age process (S;_);>o associated with the point process N, like for instance

No=1U (S;’_, % En: /t_ h(t — z)Nj(dz)> : (3.4)

This more general choice for the intensity makes the main difference with [43], where the
intensity is assumed to be of the simpler form (3.3) only. We then show that, instead of
Poisson processes of the McKean-Vlasov type, the limit processes associated with mean-
field interacting age-dependent Hawkes processes are point processes of the McKean-Vlasov
type whose stochastic intensity not only depends on the time but also on the age. More
precisely, for the toy example (3.4), the intensity of the limit process N would be given
by the following implicit formula A\, = ¥(S,_, f(f h(t — 2)E [X.] dz) where (S;_);>o is the
predictable age process associated with N.

Part of our analysis finds its motivation in the use of Hawkes processes for the modelling
in neuroscience. First of all, at a microscopic scale, Hawkes processes are commonly used
in theoretical studies [31, 68, 123, 136] to describe the time occurrences of the action po-
tentials of different neurons. These action potentials are associated with brutal changes of
the membrane potential, called spikes in the rest of the chapter. The motivation for using
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Hawkes process is well-understood and linked with the synaptic integration phenomenon:
the interaction functions h;_,; describe the fact that, whenever a neuron spikes, the mem-
brane potential of the other neurons in the network (and thus their firing rate as well) may
change. In that sense, the L' norm of the interaction function h;_,;, for j # i, is the ana-
logue of the synaptic weight of neuron j over neuron ¢, that is the strength of the influence
of neuron j over neuron ¢ through their synaptic connection. For example, if one considers
h;—i = aj;h for a fixed function h then «;_,; represents the (relative) synaptic weight of
neuron j over neuron ¢. Notice that in the present work we allow the functions h;_,; to be
random and thus the synaptic weights to be random as well (as in [49] for instance).

To model a transition in the behaviour of the network at the shifting time ¢ = 0, the
distribution of N NR_ is considered as an initial condition of the dynamics of the point
process and may be different from the distribution of a Hawkes process. Therefore, to
specify the dependence of the dynamics (on Ry) upon the initial condition, the following
form of intensity can be considered:

t— t—
Jy— </ Wt — Z)N(dz)) — o (/ h(t — 2)N(d2) + F(t)> | (3.5)
—00 0
where F(t) := fi)oo h(t — z) N (dz) models, in a Hawkes manner, the influence of the initial
condition. This choice of F' is taken from Chapter 2. However, other choices are con-
ceivable. For example, more general functions F' may describe a stimulus at a given time
to < 0 which is more convenient for peristimulus analyses like [127].

However, standard Hawkes processes fail to model, in a convenient way, the neuro-
physiological constraint known as refractory period, that is the fact that a neuron cannot
spike twice in a too short delay. This is the main reason why we allow the intensity of the
Hawkes process to depend upon the age in the present study. In comparison with (3.1),
one may represent strict refractory period by considering, for instance, the following form
of intensity:

JU— < /0 T h— z)N(dz)) T, s, (3.6)

where (S;_)¢>0 is the predictable age process associated with N and J is a parameter cor-
responding to the time length of the strict refractory period of a neuron. This sounds
as an alternative to the strategy used in Chapter 5. Therein, refractory periods are de-
scribed by choosing, in the standard formulation of Hawkes processes, strongly negative
self-interaction functions at a very short range. The strategy used in the present chapter
is more flexible: synaptic integration and refractory period involve different aspects of the
physiology of a neuron and so we prefer to describe each of them by different elements in
the modelling.

Mean-field approaches have been already used to pass from a microscopic to a macro-
scopic description of neural networks. Taking for granted that the network is symmetric
enough, the mean-field modelling sounds quite fair. Indeed neural networks admit a large
number of vertices and are highly connected (see [49] for a review). One may distinguish
three types of models: intrinsically spike generating models (like the FitzHugh-Nagumo
model [96]), threshold spike generating models (like the integrate-and-fire model [22, 42,
41]) and point processes models (|52] or [55, 73|).

As usual with McKean-Vlasov dynamics, the asymptotic evolution (when n goes to
infinity) of the distribution of the population at hand can be described as the solution
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of a nonlinear partial differential equation (PDE). In the present chapter, the candidate
to describe the dynamics at a macroscopic level is the following age structured system of

nonlinear PDEs studied by Pakdaman, Perthame and Salort in a series of articles [114,
115, 116].

on (s,t) N on (t, s)
ot Os

+oo
m(t) :=n(t,0) = /o p(s, X (t)n(t,s)ds.

+p(s, X (t))n(t,s) =0,
(PPS)

Here, n(t,s) represents the probability density of the age s of a neuron at time ¢ where
the age of a neuron is the delay since its last spike. Of course, the definition of the age of
a neuron fits with the definition of the age associated with a point process as soon as the
spike train is modelled by a point process. The function p represents the firing rate which
may depend on the age s. As already explained, this dependence describes for instance
the phenomenon of refractory period (e.g. p(s,z) = 15 for some § > 0). The function
p may also depend on the global activity of the network which is denoted by X(t) :=
f(f d(z)n(t — z,0)dz where d is some delay function. This global (deterministic) variable
X(t) corresponds to the mean of the integral that appears in (3.1). This correspondence
forms the basis of Chapter 2 where a bridge is made between a modified version of (PPS)
and the distribution of the age of a single neuron (modelled by a point process). From a
neural network point of view, this distribution can of course be recovered as the limit of
the empirical distribution associated with a network of i.i.d. neurons.

The study of the link between the (PPS) system and a mean-field interacting neural
network (modelled by point processes) was left as an open question in the previous chap-
ter. The heuristic of this mean-field interpretation comes from the specific structure of
the variable X (¢) which brings out a non-linearity of the McKean-Vlasov type. One of the
main purpose of the present chapter is to answer that left open question. To be precise,
this kind of study is performed in a preliminary work [130] for a firing rate p that is contin-
uous and non-decreasing in both variables and under Markovian assumptions. Transposed
to the Hawkes framework, this last point corresponds to interaction functions of the form
hioi(t) = e P o) (t) where 8 is a constant and the 7;’s are ii.d. random vari-
ables describing the propagation time of the signal from the neuron to the network. The
convergence of the empirical measure is discussed in [130] when p is continuous only but
without any rate of convergence. In the present study, rates of convergence are given for
non Markovian Hawkes processes (that is non necessary exponential interaction functions)
as well as for firing rates that are discontinuous with respect to the age, like (3.6) for
instance. However, we make the crucial assumption that the firing rate p is Lipschitz con-
tinuous with respect to the second variable.

To sum up, we call Age Dependent Random Hawkes Process (ADRHP) a multivariate
age dependent Hawkes process (like (3.6) for instance) with some general dependence with
respect to the initial condition (3.5) and with some randomness regarding the interaction
functions h;_,;. This chapter has two main purposes: extend the mean-field approximation
obtained in [43] to this generalization of Hawkes processes and establish a proper link
between the microscopic modelling of individual neurons given by a n-particle system of
mean-field interacting age-dependent Hawkes processes (like (3.4) for instance) and the
macroscopic modelling given by the (PPS) system.

The chapter is organized as follows. In section 3.2, we introduce ADRHPs and we show
how to represent them as solutions of an SDE driven by a Poisson noise. As a by-product
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of this representation, we get, on the one hand, the existence of such processes, and on the
other hand, an efficient way to get a coupling between our n-particle system and n i.i.d.
limit processes. As a first step towards the mean-field approximation, the limit dynamics
is studied in Section 3.3. Existence and uniqueness of a solution of the (PPS) system,
which is our candidate to drive the limit dynamics, are proved in Theorem 3.3.5. As a
consequence, we get the existence of point processes of the McKean-Vlasov type whose
intensity depends on both the time and the age. In Section 3.4, these processes are proved
to be the mean-field approximation of age dependent random Hawkes processes (Theorem
3.4.1 and Corollary 3.4.5) using coupling arguments under either of the two following main
assumptions: the intensity is bounded or the intensity does not depend on the age. Notice
that even when the intensity does not depend on the age, the results presented here extend
the ones given in [43] since random interaction functions h;_,; as well as dependences with
respect to the dynamics before time 0 cannot be taken into account in [43]. Finally, the
link between age dependent random Hawkes processes and the (PPS) system is given by
Corollary 3.4.5. For sake of readability, most of the computations and technical lemmas
are given in two appendices.

General notations
e The space of continuous function from E to R is denoted by C(E).

e The space of Radon (resp. probability) measures on E is denoted by M(E) (resp.

e For v in P(E), X ~ v means that X is a random variable distributed according to
v.

e For f: R =R, ||f|l1, |fll2 and || f||c respectively denote the L', L? and L> norms
of f.

3.2 Age dependent random Hawkes processes

In all the sequel, we focus on locally finite point processes, N, on (R,B(R)) that are
random countable sets of points of R such that for any bounded measurable set A C R,
the number of points in N N A is finite almost surely (a.s.). The associated points define
an ordered sequence of points (7},),ecz. For a measurable set A, N(A) denotes the number
of points of N in A. We are interested in the behaviour of N on (0,+0c0) and we denote
t € Ry — N; := N((0,1]) the associated counting process. Furthermore, the point measure
associated with NV is denoted by N(dt). In particular, for any non-negative measurable
function f, [, f()N(dt) = > ,c, f(T;). For any point process N, we call age process
associated with IV the process (S;):>0 given by

Sy=t—sup{T € N, T <t}, forallt>0. (3.7)

In comparison with the age process, we call predictable age process associated with N the
predictable process (S;—):>o given by

Si_=t—sup{T' € N, T <t}, forallt>D0, (3.8)

and extended by continuity in ¢ = 0.
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We work on a filtered probability space (€2, F, (F;)i>0, P) and suppose that the canonical
filtration associated with N, namely (F});>o defined by F := o(N N (—oo0,t]), is such
that for all ¢t > 0, FN C F;. Let us denote F := (F;);>0. We call F-(predictable) intensity
of N any non-negative F-predictable process (A);>¢ such that (N; — f(f Asd$)>0 is an F-
local martingale. Informally, \;dt represents the probability that the process N has a
new point in [¢,t + dt| given F;_. Under some assumptions that are supposed here, this
intensity process exists, is essentially unique and characterizes the point process (see [16]
for more insights). In particular, since N admits an intensity, for any ¢ > 0, the probability
that ¢ belongs to N is null. Moreover, notice the following properties satisfied by the age
processes:

e the two age processes are equal for all ¢ > 0 except the positive times T in N (almost
surely a set of null measure in R, ),

e for any ¢t > 0, S;_ = S; almost surely (since N admits an intensity),

e and the value Sy_ = 5y is entirely determined by N NR_ and is well-defined as soon
as there is a point therein.

In analogy with the study of the dynamics of a variable over time, we use a dichotomy
between the behaviour of the point process before time 0 (which is treated as an initial
condition) and its behaviour after time 0 (which is supposed to admit a “Hawkes type”
intensity). For every point process N, we denote N_ = NNR_ and N, = N N (0, 4+00).
In the rest of the chapter, a point process on R is characterized by:

1. the distribution of N_, namely (n_, which gives the dynamics of N on R_;
2. the F-predictable intensity A;, which gives the dynamics of N on (0, 00).

In particular, (iy_ characterizes the distribution of Tj that is the last point (spike) before
time 0. Notice that the o-algebra F is such that N_ is Fy-measurable.

3.2.a) Parameters of the model

The definition of an age dependent random Hawkes process (ADRHP) is given bellow, but
let us first introduce the parameters of the model:

e a positive integer n which is the number of particles (e.g. neurons) in the network
(for i = 1,...,n, N’ represents the occurrences of the events (e.g. spikes) associated
with the particle );

e a distribution (_ determining the initial conditions (N* );—; _, which are i.i.d. point
processes on R_ distributed according to (y_;

e a distribution py determining the matrix of interaction functions H = (H;j)1<i j<n
where H;; : Ry — R are Fj-measurable random functions distributed according to
g such that

for any fixed i = 1,...,n, the variables H;, ..., H;, are independent,
the vectors (H;y, ..., Hy,) are exchangeable (with respect to i), (3.9)

the matrix H is independent from the initial conditions (N%);—; _,;
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e a distribution vp determining the matrix of functions F = (F};)1<; <, where F}; :
R, — R are Fy-measurable random functions distributed according to vp such that

{for any fixed i = 1,...,n, the variables Fj, ..., F;, are independent, (3.10)

the vectors (Fjy, ..., Fj,) are exchangeable (with respect to 7);

e an intensity function ¥ : R, xR — R,.

Note that the functions H;;’s can in particular be equal to a given deterministic function
h which corresponds to more standard Hawkes processes.

3.2.b) Definition via the intensity

The definition of an age dependent random Hawkes process is given by providing the form
of its intensity.

Definition 3.2.1. An age dependent random Hawkes process (ADRHP) with parameters
(n, oz, ve, W, () is a family (N*);—1_n of point processes on R such that (N');—1__, is
a family of i.i.d. point processes on R_ distributed according to (n_ and (Ni)izl,,m 18 a
family of point processes on Ry with F-intensity given for all i =1,...,n by

N o= (s;‘, % i (/Ot His(t — 2)N? (d2) + Ej(t)>> , (3.11)

where (Si_)i>o is the predictable age process associated with N* defined in (3.8) and
(Hij)1<ij<n (respectively (Fij)i<ij<n) is a random matriz with entries distributed according
to py (resp. vr) and satisfying (3.9) (resp. (3.10)).

Remark that the intensities depend on the predictable age processes and not the stan-
dard ones since an intensity process must be predictable. An age dependent random Hawkes
process admits two different behaviours:

1. before time 0, the processes (Ni)izlmn are independent and identically distributed;

2. after time 0, the processes (N.);—;, _, are dependent (in general) and driven by their
respective intensities which can be different from one process to another.

Remark 3.2.2. 1. The dichotomy of behaviours can model a change of regime at time
t = 0. It should be interesting to see whether the results could be extended to initial
conditions given by a mean-field dynamics and not necessarily i.1.d. ones. However,
it 1s not in the scope of this chapter.

2. Assumptions (3.9) and (3.10) mean that a single particle receives i.i.d. interactions
from its neighbours and that the particles are exchangeable: one can permute the
particles without modifying their joint distribution.

3. Given Fy, the randomness of A in Equation (3.11) only lies in the point measures
Ni(dz) and the predictable age process (Si_)i>o0. These intensities, and so the point
processes, are not exchangeable given Fy. However, they are exchangeable when they

are considered with respect to all the randomness (including the N'’s, H;;'’s and
F’ij 78).
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4. The link between synaptic weights (that is the strength with which one given neuron
influences an other one) and interaction functions can be well emphasized by the
following choice of interaction functions. Consider a fized function h : Ry — R and,
independently of everything else, a sequence (a;)j=1,. n of i.i.d. random variables
with values in [0,1]. Then, (H;j)1<ij<n defined by H;; = a;h satisfies (3.9). The a;’s
represent the (relative) synaptic weight of neuron j over all the other ones.

The interaction functions, even if they are random, are fixed at time 0. The dynamics
of synaptic weights is not taken into account here.

5. As presented in the introduction (see Equation (3.6)), a particular case we have in
mind in this study is when there exists a function ® : R — R, and a non-negative
real number § such that

U(s,x) = O(x)Lsss. (3.12)

This particular choice of ¥ provides an interesting modelling of the strict refractory
period of a neuron. Furthermore, when 6 = 0, there is no refractory period and one
recovers more standard Hawkes processes. In particular, if py is the Dirac mass lo-
cated at some fizved function h and vp is the Dirac mass located at the null function,
then one recovers the Hawkes processes studied in [43]. Remark that the exchange-
ability of the Hawkes processes studied in [43] is obvious since they have the same
intensity at each time t.

6. Since the auto-interaction given by Hy; is scaled by 1/n, it vanishes when n goes
to infinity and so the asymptotic behaviour proved in this chapter (Corollary 3.4.5)
remains the same if one assumes that Hy; = 0.

7. Unlike the matrix H, the matriz F can depend on the initial conditions as it can be
seen in the following particular case which is derived from (3.5) for instance. For the
same matric H = (H;j)1<ij<n as in (3.9), we may choose for all 1 <i,j < n, the
function Fj; : Ry — R defined for allt > 0 by

Fy(t) = / i Hj(t — 2)N’ (dz). (3.13)

These random functions are Fo-measurable and they satisfy the first two lines of
(3.10) thanks to the independence of the H;;’s and the N’ ’s. Hence, one can consider
the intensity given by (3.11) with such a choice of F' to represent the contribution of
the processes (Ni)zzln to the dynamics after time 0. In this example, the F;;’s are

obviously dependent from the N7 ’s.

8. In the case of neurons modelling, one can model external inputs via the functions
F;;. For example, one could take Fi; = H;;(t — 7) where T is some non-positive real
number that may be random (independent of anything else) modelling that all the
neurons have spiked at the same time 7 < 0 thanks to a common stimulus.

3.2.c) List of assumptions

In the present chapter, several assumptions on the parameters of the model are used de-
pending on the context. For sake of simplicity, all these assumptions are gathered here.
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Main assumptions

.ACN’ | It N_ is distributed according to (n_ (N_ ~ (n_) and Ty denotes the closest
< uin ) point of N_ to 0, then —7j admits a density with respect to the Lebesgue

measure denoted by u™ (“in” stands for “initial”). Furthermore, u™ is uni-
formly bounded.

(A If H ~ pp, then there exists a deterministic function G : R, — R such
- that a.s., for all ¢ > 0, |H(t)| < G(t). The smallest possible deterministic
function G, denoted by M,,,,, is moreover supposed to be locally integrable.

In particular, E[H (t)] is well-defined and we let m,,, (t) :== E [H(?)].

(A If '~ vp, thent € R, — E[|F(¢)|] is locally bounded. In particular, for
' all t >0, E[F(t)] is well-defined and we let m,, (t) := E [F(t)].

( Aipip)3 The function ¥ : R, x R — R, is uniformly Lipschitz continuous with

respect to the second coordinate: there exists a constant C' > 0 such that,
for all s > 0, the function z — U(s, ) is Lipschitz with constant C. The
smallest constant C' is denoted by Lip(¥). Furthermore, s € R} — ¥(s,0)
is uniformly bounded.

(AZ): The function ¥ is uniformly bounded, that is ||¥||s < +o00.

. ere exists a function ¥y : R — such that, for all s > 0, W(s, ) = Wq(-).
(Av—w,) Th 1 f ion Uy : R — R, such that, for all 0, U N\
=0,):

In this case, if (Af;,) is satisfied then Lip(¥) is rather denoted by Lip(¥,).

Additional assumptions

AQ\L | It N_ ~ (y_ and Tj denotes the closest point of N_ to 0, then —Tj is upper
< e ) bounded a.s. that is there exists a constant C' > 0 such that -7 < C a.s.
The smallest possible constant C'is denoted by My, .

(A"): (AL is satisfied and M, is furthermore locally square integrable.

(A5 (A7) is satisfied and if F' ~ vp, then for all ¢ > 0, F'(¢) admits a variance
denoted by V,,.(t) satisfying that for all ¢ > 0, [V, (t)V2dt' < +oc.
Furthermore, m,,. is a continuous function.

Remark that:

e Assumptions (A%7), (A7") and (A}, are used to prove the existence of the n-particle
system.
HH

00,2

tion under the addition of either (AY) and (ACN_) or (Ag—y,).

uin

e Assumptions (AL,), (A5") and (Af;,) are used to prove the mean-field approxima-

3.2.d) Representation via a stochastic differential equation

Definition 3.2.1 describes ADRHPs as weak solutions. It characterizes their distribution but
not their path-wise dynamics. As it is well emphasized in [98], point processes can be either
represented as weak solutions thanks to their stochastic intensity or represented as strong
solutions of a stochastic differential equation (SDE) driven by Poisson noise. The idea to
represent point processes as strong solutions of SDEs driven by Poisson measures was first
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introduced by Lewis and Shedler [92], for inhomogeneous Poisson process, and extended by
Ogata [110| (thinning procedure) under some weak assumptions on the intensity. It says
that, if N admits (\;);>0 as a F-predictable intensity, then the point measure associated
with N can be represented by N(dt) = II(dt x [0, A;]) where II is a Poisson measure with
intensity 1 on R%. This has been used to show existence or stability results for some
classes of point processes by Brémaud and Massoulié¢ in [17] or [98] and more recently to
exhibit some suitable coupling between interacting Hawkes processes and their mean field
approximation in [43]. We introduce here the representation of ADRHPs based on such a
thinning procedure.

Representation 3.2.3. Let (N');>1 be some i.i.d. point processes on R_ distributed
according to (n . Let (Hij)i<ij<n (respectively (Fij)i<ij<n) be a random matriz with
entries distributed according to py (resp. vp) and satisfying (3.9) (resp. (3.10)). Let
(IT'(dt, dx))i>1 be some i.i.d. F-Poisson measures with intensity 1 on R%.

Let (Nf)g(l)" be a family of counting processes such that, fori =1,..,n and allt > 0,

N} = [ "t
I {xqu(if%;(/o H¢j<t'—z>Ni<dz>+Fw'<t’>>>}
(3.14)

where (S;_)i>o is the predictable age process associated with N* = N* U N' and N is
the point process associated with the counting process (N})i>o. Then, (N)i=1. . is an age
dependent random Hawkes process with parameters (n, pg,ve, ¥V, (n_).

I (dt', dx),

This representation is mainly used in this chapter in order to provide a suitable coupling
between ADRHPs and i.i.d. point processes describing the mean-field dynamics.

Going back and forth between the weak solution of Definition 3.2.1 and the strong
solution of Representation 3.2.3 is classic: the thinning Theorem (see [17, Lemma 2| or
Theorem 2.8.11 for a complete proof) states that a strong solution is also a weak solution;
and the Poisson inversion [17, Lemma 4] states that, from a weak solution (N);=1 .,
one can construct Poisson measures on an enlarged probability space such that (3.14) is
satisfied.

At this stage, one has two equivalent concepts of ADRHPs but no result on the existence
of such processes. Indeed, if there is too much self-excitation, then there may be an infinite
number of points in finite time. In the present chapter, point processes that do not explode
in finite time are considered and, thanks to Representation 3.2.3, one can prove existence
of these non-explosive processes.

Proposition 3.2.4. Under (A7), (A]") and (AY,,). there exists an ADRHP (N*)i—,
with parameters (n, pg, ve, ¥,(n_) such that t — E[N}] is locally bounded.

This result can be challenging in an infinite dimensional framework like in [43|. However,
in our finite dimensional framework, it is quite clear since the ADRHP can be stochastically
dominated by some multivariate linear Hawkes process (thanks to the Lipschitz assump-
tion (.A}f’ip)). Yet the well-posedness of linear Hawkes processes is standard thanks to their
branching structure [71]. Nevertheless, a proof of Proposition 3.2.4 is given in Appendix

3.6.a).
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3.3 Study of the limit dynamics

The interactions between the point processes involved in the definition of an ADRHP are
of mean-field type. Therefore, the limit version of Equation (3.14) is proposed below in
Equation (3.15) (informally, the empirical means involved in (3.14) are replaced by their
expected values). The limit equation with parameters (h, fo, ¥, (y_) is given by

t 0
\V/t > O, Nt - / / 1
0o Jo {
(3.15)

where h and fy are some functions from R, to R, II(dt’, dz) is an F-Poisson measure on R?
with intensity 1 and (S;_);>o is the predictable age process associated with N = N_ U N |
where N_ is a point process distributed according to (y_ and N is the point process
associated with the counting process (N);so.

o [(dt', dx),
< (? [ e - 9B W) + fo(t’)) )

Looking simultaneously at Equations (3.14) and (3.15) shows that the empirical mean
of the random interaction functions H;; (respectively the random functions F;;) are replaced
by h (resp. fo) which should be the mean interaction function m,,,, (resp. m,,.). Moreover,
the empirical mean of the point measures N7 (dz) in (3.14) is replaced by the expectation
of the point measure N, (dz).

Finally, let us note that the dependence with respect to the predictable age process is
still present in the limit equation. This matches with experimental data in neuroscience
where refractory periods are highlighted. By comparison, there is no such dependence in
the limit process given in [43] which is an inhomogeneous Poisson process.

This limit equation is used in the next section to provide suitable couplings to prove
the mean-field approximation. Hence, the main point of this section is to prove the well-
posedness of the limit equation (3.15). However, to study the probabilistic formulation
of the mean-field dynamics described in Equation (3.15), one first needs to find a repre-
sentation of the distribution of a possible solution of (3.15). As a first step, we prove
existence/uniqueness results for a linearisation of the (PPS) system (Proposition 3.3.1)
as well as we give a representation of the solution given by the method of characteris-
tics (Proposition 3.3.2). The second step is to deduce existence/uniqueness results for
the (PPS) system (Theorem 3.3.5) from the linearised system via a fixed point argument.
Then, the well-posedness of the limit equation (3.15) is proved thanks to the results ob-
tained for the (PPS) system. Finally, the link between the (PPS) system and the processes
defined by the limit equation is fully investigated.

Note that the analytical study of the fixed point equation satisfied by the expectation of
the solution of (3.15) (as it is done in [43]) can be extended to the case when the intensity
does depend on the age. However, the results for the (PPS) system are valid in a more
general framework so they are favoured here.

3.3.a) Study of the linear system

In comparison with the (PPS) system, the linear system studied below corresponds to the
case where the firing rate p in (PPS) is a function of the time ¢ and the age s only. More
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precisely, we consider the system

0 0
ugt’ °) + uéi’ s) + f(t, s)u(t,s) =0,

u(t,0) = /ER f(t,s)u(t,s)ds,

(3.16)

where f is a bounded function.

We state uniqueness of the solution of this system in a measure space as a consequence
of the uniqueness result stated in [26]. More precisely, the result is stated in BC(R;, M(R))
that is the space of bounded continuous curves on M(R) (the space of Radon measures on
R) endowed with the bounded Lipschitz norm as considered in [26]. As we are interested
in probability measures, let us remark that the bounded Lipschitz norm on P(R,) is
equivalent, thanks to the duality of Kantorovich-Rubinstein, to the modified 1-Wasserstein
distance defined by

Wi(p,v) == inf E [min(|X — Y|, 1)], (3.17)

where the infimum is taken over all joint distributions of the random variables X and Y
with marginals ¢ and v respectively.

Since measure solutions are considered, a weak form of the system is given. The fol-
lowing set of test functions is used!:

The function ¢ belongs to C2%(R?%) if
e ( is continuous, uniformly bounded,
e ¢ has uniformly bounded derivatives of every order,
e there exists 7' > 0 such that ¢(¢,s) =0 for all ¢ > T and s > 0.

b (R3)

The result stated below is a consequence of |26, Theorem 2.4.| in the same essence than
the one presented in |26, Section 3.3.]. Its proof is given in Appendix 3.6.b).

Proposition 3.3.1. Assume that f: Ry x Ry — R is bounded and continuous (uniformly
in the second variable) with respect to the first variable. Assume that u™ belongs to M(R,).

Then, there exists a unique solution in the weak sense u such that t — u(t,-) belongs to
BC(R,, M(R,)) of the system (3.16) with initial condition u(0,-) = u™. The weak sense
means here that for every ¢ in CZ3(R%),

/RQ+ (% + %) o (t,s)u(t,ds)dt + /R+ ©(0, s)u™(ds)

+ /R [o(t,0) — @(t,s)]f(t, s)u(t,ds)dt = 0. (3.18)

2
+

Remark that the system is mass-conservative (e.g. take a sequence of functions con-
verging to t — 1y 7)(t) as test functions in the weak equation (3.18)). As we are interested
in probability measures as solutions, let us remark that the mass-conservation alone can-
not ensure that the solution is a probability even if the initial condition is a probability.
However, when the initial condition is a probability which admits a density, the method
of characteristics shows that the solution of (3.16) is a probability density function for all
time ¢t > 0.

Tt is the same as in Chapter 2
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Proposition 3.3.2. Under the assumptions of Proposition 3.3.1, assume that u™ is a
probability which admits a density (denoted by u™ as well) with respect to the Lebesque
measure. Then, there exists a unique locally bounded function ug : Ry — R (which is
furthermore non-negative) such that u defined by

u(t,s) = u™(s —t) exp (— /t f(t',s—t+ t')dt’) , fors>t (3.19)
0

u(t, s) = ug(t — s) exp (— /S flt—s+5, s’)ds’) ., fort>s (3.20)
0

is the unique solution of (3.16). In particular,
e u satisfies the second equation of (3.16) in a strong sense,

e since ug is non-negative and the system is mass-conservative, the function u(t,-) is
a density for all time t > 0.

A detailed proof of this result is given in Appendix 3.6.c). Here are listed some prop-
erties of the solution u of the linear system.

Proposition 3.3.3. Under the assumptions of Proposition 3.3.2, assume furthermore that
there exists M > 0 such that for all s >0, 0 < u'(s) < M.

Then, the solution w of (3.16) is such that the function t — wu(t,-) belongs to
C(R,y, L*(Ry)), the function t — u(t,0) is continuous and

0 <u(t,s) <max(M,||f|lw), forallt,s>0. (3.21)

Proof. The first continuity property is rather classic thanks to a fixed point argument in
the space C([0,T], L*(R,)) for a good choice of T' > 0 (see [121, Section 3.3.] for instance).
The second one is given by the second equation of (3.16) (which is satisfied in a strong
sense by the solution given by the characteristics). Indeed,

+00
‘U(t+tl,0) —’U/(t,O)‘ < f(t+t/78)|u<t+t/78) —U<t, 8)‘d8
0

+o0
" / e+t 8) — £t )lult, 5)ds
0
< 1 fllellu(e+ 2. = M+ sup £+ .5) = £0.5)]

Yet, the continuity properties of both functions f and ¢ — wu(¢,-) and give that |u(t+t',0) —
u(t,0)| goes to 0 as t' goes to 0, hence the continuity of ¢ — u(t,0).

Finally, one can prove that u satisfies (3.21) thanks to the representation given by the
characteristics. On the one hand, the function ug given in Proposition 3.3.2 is non-negative
and so is u. On the other hand, it follows from (3.19) that for s > ¢, u(t,s) < M and it
follows from the second equation of (3.16) that for all t > 0, u(¢,0) < || f||e and so (3.20)
implies that for t > s, u(t,s) < ||f]|oo- O

3.3.b) Study of the (PPS) system

Here, a global existence result for the nonlinear system (PPS) is stated under suitable
assumptions. Since this result is one of the cornerstone of this work, its proof is given even
if its sketch is pretty similar to the proof of [114, Theorem 5.1].
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In comparison with the uniqueness for the linear system which takes place in
BC(R;, M(R,)), the uniqueness result stated in this section takes place in BC(R,, P(R,)).
However, this last result is sufficient for our purpose since it is applied to measures that
are probabilities a priori.

First of all, a technical lemma is needed to fully understand the non linearity involved
in the system (PPS).

Lemma 3.3.4. Under (Af;,) and (AY,), assume that h: Ry — R is locally integrable and
that fo : Ry — R is continuous. Then, for all w in BC(R,,P(R,)) there exists a unique
function X, : Ry — R such that

/ 0/ h(t = 2)¥ (s, Xu(z) + fo(2)) u (2, ds) dz. (3.22)

Furthermore, the function X, is continuous.

Proof. The proof is divided in three steps:

-1. Establish a priori estimates on X, to show that it is locally bounded. Indeed, using
the boundedness of ¥ and the fact that u belongs to BC(R,,P(R,)), one deduces that

t
) < H\IIHOO/ 0/ h(t — 2)|u(z,ds)dz < H\If||oo/_0|h(t—z)]dz.

Hence, the local integrability of h implies the local boundedness of X,,.

-2. Show that X, exists and is unique as a fixed point. For any T" > 0, consider the
following application

Gr: L=(0,T]) — °°<[0 )
X — (tH/Z o/s h(t — 2)W X(z)—i—fo(z))u(dz,ds)>.

The Lipschitz continuity of ¥ leads, for any X;, X5 in L!([0,T]) and ¢ in [0, 7], to

Gr(X)(1) — Gr(X2)()] < Lip(w / h(t = 2)] 1X1(2) — Xa(2)] / "z, ds)d
< Lip(¥) / Ih(t — 2)] 1X0(2) — Xa(2)| dz
< Lip@IXs - Xalli=qomy [ (2)]dz

Fix T" > 0 such that Lip(¥ fo z)dz < 1/2 so that Gr is a contraction and admits a
unique fixed point. Iterating this ﬁxed point gives the existence and uniqueness of X, in
the space of locally bounded functions.

For instance, we give the idea for the first iteration. Denoting W the fixed point of G,
one can consider the following application

G . Lo(T,2T]) — L°°([T 277)
X — (tr—>/z o/s h(t —2)¥ (s X(Z)+fo(z)>u(z,ds)dz>,



96 3. MEAN-FIELD LIMIT OF GENERALIZED HAWKES PROCESSES

where X(t) = W(t)if 0 <t < T, X(t) = X(t) if T <t < 2T, and X (t) = 0 otherwise.
Applying the same argument as for the fixed point of G leads to existence and uniqueness
of the trace of X, on [0, 27.

-3. Finally, let us show that X, is continuous thanks to a generalized Gronwall lemma.
Using the Lipschitz continuity and the boundedness of ¥, one deduces from (3.22) that

[ Xu(t+1) — X,(t)] < Lip(¥) /Ot [RWI(Xu + fo)(t —y) = (Xu + fo) (t + 1" = y)ldy

t4t’
] / Ih(y)|dy
t

and so
Xu(t+#) = Xu(8)] < Lip(¥) { / Bt — 2| Xu(z + ) — Xu(2)]dz

¢ t+t!
+/ h(t = 2)Ifolz + 1) = f0(2)|d2} + ||‘If||oo/ |h(y)ldy.
0 t
This means that the function Y,\") = | X0 (- + 1) — X, ()| satisfies
t
Y < g() + Lip(‘lf)/ [t — 2)| Y, (2)dz
0

where ¢)(t) = Lip(¥) [y [A(t — 2)[|fo(z + ') = fo(2)ldz + [[¥]| [ [A(y)ldy. Apply-
ing Lemma 3.7.4-(i) gives, for any T' > 0, supyc(ory Yu(t/)(t) < Crsupyepo 1 g®)(t). Yet
the continuity (hence uniform continuity on compact time intervals) of f, and the local
integrability of h gives that supc(o 7 g (t) = 0ast — 0. O

Now, we have all the ingredients to state the existence/uniqueness result for the (PPS)
system in a measure space of possible solutions. Notice that the existence/uniqueness
result used for the linear system would not directly apply to the non-linear system. In that

sense, we extend the result stated in [26].
Theorem 3.3.5. Under (Af,,) and (AY,), assume that h : Ry — R is locally integrable
and that fy: R, — R is continuous. Assume that u™ is a non-negative function such that

both f0+oo u(s)ds =1 and there exists M > 0 such that for all s >0, 0 < u™(s) < M.

Then, there exists a unique solution in the weak sense u such that t — u(t,-) belongs

to BC(Ry,P(R)) of the following (PPS) system

ou (t,s)  Oul(t,s) B
o " b + W (s, X(t) + fo(t)) u(t,s) =0,

w(t,0) = /ERW (5, X (1) + folt)) u (t, s) ds,

(3.23)

with initial condition that u(0,-) = u™, where for all t > 0, X(t) = fot h(t — z)u(z,0)dz.
The weak sense means here that for every ¢ in C%(Ri),

/Ri (% + %) @ (t,s)u(t,ds)dt + /R+ (0, 5)u™ (s)ds

+/R [o(t,0) — p(t, s)|W (s, X(t) + fo(t)) u(t,ds)dt =0 (3.24)

2
+
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where X is the continuous function given by Lemma 3.3.4 and satisfying

X(t) = /0 /:O h(t — 2)¥ (s, X (z) + fo(z)) u(z,ds) dz. (3.25)

Moreover, the solution u is such that, for all t > 0, the measure u(t,-) is a probability
and admits a density which is identified to the solution itself. Furthermore, the function
t — u(t,-) belongs to C(R,, L*(Ry)), the function t — u(t,0) is continuous and

0 <u(t,s) <max(M,||¥||w), forallt,s>0. (3.26)

As for the linear case, the system is mass-conservative (e.g. take a sequence of functions
converging to ¢ — Lo 7)(t) as test functions in the weak equation (3.24)).

Proof. The proof is divided in two steps. First, we apply the results of Section 3.3.a) to a
linearised version of the non-linear system (3.23) and then we find the auxiliary function
X corresponding to the solution u as a fixed point in a space of continuous functions in
order to deal with the non linearity of the system (3.23).

-1. The linearised version of the system takes the form

ou (t,s) Oul(t,s) B
o T s + W (s, Y(t) + fo(t)) u(t,s) =0,

u(t,0) = /ER W (s,Y(t) + fo(t) u(t, s)ds,

(3.27)

for a fixed continuous function Y. Note that the funciton f : (¢,s) — W (s, Y () + fo(t))
is bounded and continuous (uniformly in s) with respect to t. So the assumptions of
Propositions 3.3.1, 3.3.2 and 3.3.3 are satisfied. In particular, for any continuous function
Y, there exists a unique solution wy (with initial condition u™) in BC(R,,P(R,)) C
BC(R;,P(My)) of the system (3.27) which furthermore satisfies the properties listed in
Proposition 3.3.3.

-2. Let us notice that for all " > 0, if Y belongs to the Banach space C([0,T]) equipped
with the sup norm then ¢ — f(f h(t — z)uy (z,0)dz belongs to C(]0,7]) too. Indeed, remind
that ¢ — wuy (¢, 0) is continuous thanks to Proposition 3.3.3 and that fot h(t—2)uy(z,0)dz =
f; h(z)uy (t — z,0)dz. Hence one can consider the application

Fr: C([0,T) —» C([0,77)

t
Y —> (t — / h(t — z)uY(z,O)dz> : (3:28)
0
and show that it admits a fixed point for a good choice of 7. Computations given in
Appendix 3.6.d) provide the following statement

1
3T > 0,¥Y1,% € L¥(0,T)), |Fr() = Fr()llo=qom < 511% = Valluwqory, (3:29)

where 7' depends neither on the initial condition nor on fj.

Until the end of the proof, let fix such a 7". Then, there exists a unique W in C([0,77)
such that Fp(W) = W. In particular, uy is a solution of (3.23) on [0,7] so we have
existence on [0, T7.

For the uniqueness, let us consider the trace of a solution u € BC(R, P(R)) to (3.23)
on [0,7]. Then, the auxiliary function X, associated with u defined in Lemma 3.3.4 is
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continuous. Since u is a solution of (3.23), the trace of X, on [0,7] is a fixed point of Frp
and so X, = W and u = uy . This gives the uniqueness of the solution of (3.23) on [0, 7]
in BC(R4, P(Ry)).

Taking uy (T, -) instead of u™ as initial condition, the function t — fo(t+T)+ fOT h(t—
2)uw (z,0)dz instead of fy and applying the same find of fixed point argument gives the
trace of the solution on [T, 27']. Iterating this fixed point argument, one deduces that there
exists a unique solution u of (3.23) on R, (remind that 7" depends neither on the initial
condition nor on fy). In particular, the iteration is possible since the boundedness of the
initial condition is carried on by the equation (see Equation (3.21)).

The regularity and boundedness of the solution u, i.e. the continuity properties and
Equation (3.26) listed at the end of the statement, come from the regularity and bound-
edness of the solutions uy since w is one of the uy’s.

]

3.3.c) Limit process

Let us remind the limit equation (3.15), that is
. t o0
0o Jo {

This limit equation describes an age dependent point process interacting with its
own mean intensity in an Hawkes manner. More precisely, a solution (N,); of (3.15),
if it exists, admits an intensity ); which depends on the time ¢ and the age S,_ in
a McKean-Vlasov manner in the sense that it satisfies the following implicit equation
A =9(S;_, fglf h(t' — 2)E [X.] dz + fo(t')). Equation (3.15) is in particular a non trivial
fixed point problem of the McKean-Vlasov type. Notice that the dependence of N with
respect to the past N_ is reduced to the age at time 0, i.e. So_ = —Tj. Throughout this
chapter, a solution of the limit equation is called a point process of the McKean-Viasov
type whose intensity depends on time and on the age.

The fixed point problem of the limit equation (3.15) is proved to be well-posed in two
cases as given in the next two statements. In either case, the idea of the proof is first
to compute the mean intensity (denoted by A(t)) of a possible solution of (3.15). The
next two propositions state the same result under different sets of assumptions and can be
summarized as follows:

I(dt', dx).

r< v <§ / T B [N (d2)] + fo<t'>) !

e in the first case, the intensity is bounded, i.e. ¥ satisfies (AY), and the mean intensity

is given by the system (3.23). More precisely, A(t) = u(¢,0) with u given by Theorem
3.3.9.

e in the second case, the intensity does not depend on the predictable age process,
i.e. W satisfies (Agy—_y,), and the mean intensity is given by a generalization of 43,
Lemma 24|.

Proposition 3.3.6. Under (ASX( ), (Alyp) and (AY,), assume that h : Ry — R is locally
integrable and that fo : Ry — R is continuous. Denote by u the unique solution of (3.23)
with initial condition u™ as given by Theorem 3.3.5 and let, for all t > 0, \(t) := u(t,0).
Then, the following statements hold
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(i) if (N¢)iso0 is a solution of (3.15) then E [N (dt)] = A(t)dt,

(ii) there exists a unique (once Il and N_ are fized) solution (Ny);>o of the following

system
N, = / / M(dt’, da).
x<‘1/ S R —2)X( z)dz+f0(t/)>}

E [V, = /0 )t

where (gt—)tZO is the predictable age process associated with N = N _ UN+ where N _
1s a point process distributed according to (n_ and N is the point process associated
with the counting process (N¢)i>o

(3.30)

In particular, X is a continuous function satisfying

2t =E {qf (E_, /0 TRt — N (2)de + fo(t))}

and the solution of (3.30) is the unique (once Il and N_ are fized) solution of (3.15).

Proof. -(i) Suppose that (N,);>o is a solution of (3.15). The thinning procedure implies
that (N;);>o admits an intensity which only depends on the time ¢ and the age S; . This
allows us to denote by f the bivariate function such that the intensity of N at time t is
given by A, = f(t,S,_). It satisfies for all t,s > 0,

f(t,s) =W (s, /Ot h(t — 2)E [f(z,5.-)] dz + fo(t)) : (3.31)

In particular, the intensity is bounded since W is bounded. So, if we denote w; = w(t,-)
the distribution of the age S;—, Lemma 3.7.2 gives that w belongs to BC(R,,P(R,)) and
Section 2.5.a) implies that w satisfies the system

ow (t, s) n ow (t, s)

Gt gy 9w =0

w (t,0) = / f(t, s)w(t,s)ds.

0

Yet, by definition of w, E [f(z,5.-)] = f;%o f(z,s)w(z,ds), so (3.31) rewrites as

f(t,s) =W (s, X(E) + fo(t)) , (3-32)

where X satisfies
X(t) = /0 h(t — z)/o C>O\I/(S,X(z) + fo(2))w(z,ds)dz.

Hence, w is a solution in BC(R, P(R;)) of the system (3.23). Yet, the solution of (3.23) is
unique (Theorem 3.3.5) so we have w = u (defined in Proposition 3.3.6) and in particular
E[Ni(dt)] = E [f(t,S;—)] dt = u(t,0)dt = X(t)dt.

-(i1) The first equation of (3.30) is a standard thinning equation with X given by the
first step so its solution (N ¢)t>0 is a measurable function of II and N_ hence it is unique
(once IT and N _ are fixed).
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To conclude this step, it suffices to check that (Nt)tzo satisfies the second equation of
(3.30). Identifying A(¢) with E [f(¢,S,—)] in (3.31), the intensity of N is given by

F(S) =T (Et_, /0 TRt — X (2)de 1+ fo(t)) (3.33)

which is bounded. Hence, Section 2.5.a) implies that the distribution of the age S,_ denoted
by wv(t,-) is the unique solution of

a“gt’ ) gi )y (s, /0 Bt — M)+ fo(t)) v (t,s) =0,
v (t,0) = /Ooo v (s, /Ot h(t — 2)A\(2)dz + fo(t)) v (t,s)ds.

Since A(t) = u(t,0) and u is a solution of (3.23), it is clear that u satisfies this system, so
u(t,-) is the density of S;_. Finally, using Fubini’s Theorem we have

E [V, = /0 tE[f(t’,Ez_)}dt’ _ /0 tE[\IJ(E,_, /0 t/_h(t’—z)X(z)derfo(t’))}dt’

= /0 /OOO \If(s, /Ot/ h(t' — 2)M\(2)dz + fo(t/))u(t',s)dsdt’
A

-

since u satisfies the second equation of (3.34).

(3.34)

t
"

)dt',

Finally, the three remaining points are rather simple. Firstly, the continuity of A comes
from Theorem 3.3.5. Secondly, using (3.33) and (i) one has

t—
At)=E[f(t,S;-)] =E {\1/ (?t_,/ h(t — 2)X\(2)dz + fo(t))} :
0
Lastly, the solution of (3.30) is clearly a solution of (3.15) and (i) tells that a solution of
(3.15) is necessarily a solution of (3.30) which gives uniqueness. O

Proposition 3.3.7. Under (A},,) and (Ay—y,) assume that h : Ry — R is locally inte-
grable and that fo: Ry — R is continuous.

Then, there exists a unique function A (which is furthermore continuous on R, ) de-
pending only on Wy, h and fy such that the following statements hold

(i) if (N¢)iso0 is a solution of (3.15) then E [N (dt)] = A(t)dt,

(ii) there exists a unique (once Il is fized) solution (N;)o to the following system

t [e%}
Nt:// 1 , - (dt', dx),
o Jo {ﬂfé‘lfo(fg h(t’—z)A(Z)dZ+fo(t’))}
t

E[V,] = /0 )t

(3.35)

In particular, \(t) = W, (fot_ h(t — 2)A\(2)dz + fo(t)> and the solution of (3.35) is the
unique (once Il is fized) solution of (3.15).

The proof follows [43, Theorem 8-(7)] and is given in Appendix 3.6.e) for sake of ex-
haustiveness.
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3.3.d) Link via the age process

The link between the limit equation (3.15) and system (3.23) is even deeper than what
is stated in Proposition 3.3.6. Indeed, the distribution of the age process (either the
predictable or the standard one) associated with a solution of the limit equation is a
solution of (3.23) as described in the next statement.

Proposition 3.3.8. Under the assumptions of Proposition 3.3.6, the unique solution u to
the system (3.23) with initial condition that u(0,-) = u™ is such that u(t,-) is the density
of the age S,_ (or S, since they are equal a.s.) associated with the solution of the limit
equation (3.15) given in Proposition 3.3.6.

This result is in fact given in the proof of Proposition 3.3.6 below Equation (3.34).

3.4 Mean-field dynamics

The convergence to the limit dynamics is proved by using a path-wise coupling (like in
[43, 101]) between the processes given by Representation 3.2.3 on the one hand and by the
limit equation on the other hand. Then, this coupling is studied in two different cases:
when the intensity is bounded, i.e. ¥ satisfies (AY), or when the intensity does not depend
on the predictable age process, i.e. ¥ satisfies (Ay_y, ).

The precise statement regarding the convergence of the n-particle system towards point
processes of the McKean-Vlasov type whose intensity depends on time and on the age is
given in Corollary 3.4.5.

3.4.a) Coupling

Once the limit equation is well-posed, following the ideas of Sznitman in [156], it is easy to
construct a suitable coupling between ADRHPs and i.i.d. solutions of the limit equation
(3.15). More precisely, consider

e a sequence (N%);>; of i.i.d. point processes distributed according to (y_;

e an infinite matrix (H;;); ;>1 (independent of (N );>1) with entries distributed accord-
ing to py such that

for any fixed ¢ > 1, the variables H;1,..., H;,,... are independent,
the sequences Hji, ..., Hy,, ... are exchangeable (with respect to i), (3.36)

the matrix (H;;);;>1 is independent from the initial conditions (N”);=1, n;

e an infinite matrix (F};); j>1 with entries distributed according to vp such that

{for any fixed ¢ > 1, the variables Fji,..., Fj,,... are independent, (3.37)

the sequences Fj, ..., Fy,,... are exchangeable (with respect to ),

e a sequence (IT'(dt',dx));>1 of i.i.d. F-Poisson measures with intensity 1 on R?.

Notice that (3.36) (resp. (3.37)) is the equivalent of (3.9) (resp. (3.10)) for infinite matri-
ces. Under (ALY,), (A7) and (Af;,), the assumptions of Proposition 3.2.4 are satisfied.
Furthermore, if we assume either:
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o Hy: “(AY) and (Aisz) are satisfied",
o Hy: “(Ay_y,) is satisfied",

then m,,,, and m,, (defined in (A%7) and (A7")) satisfy the assumptions of either Propo-
sition 3.3.6 (under H;) or 3.3.7 (under Hs) so one can build simultaneously:

- a sequence ((N™"),—1 n)n>1 such that for all n, (N™"),—;
eters (n, pg,vr, ¥, (n_) according to Representation 3.2.3 that is

t 00
NZLZ—// 1 1 n H— .
- {x§@<$3—2:Unf%W—dNTMd+ENU
n < 0
7j=1

> }Hi(dt/, dl‘)

(3.38)

- and a sequence (WZ)S% of iindependent and identically distributed solutions of the limit
equation with parameters (m,,,,m,,, ¥, (y_) that is

i

N, = /t /OO 1 o T (dt’, dz),  (3.39)
070 {m <V (gi,_,/o My, (' — 2)A\(2)dz +m,, (t')) }

—i

where ) is defined either in Proposition 3.3.6 (under H,) or 3.3.7 (under H,) and (S, )0

is the predictable age process associated with N' = Nt U Nl

Notice that this coupling is based on the sharing of a common past (N’);>; and a
common underlying randomness, that are the F-Poisson measures (IT'(dt’, dz));>1. Note
that the sequence of ADRHPsS is indexed by the size of the network n whereas the solutions
of the limit equation that represent the behaviour under the mean field approximation are
not.

The following result states the control of the mean-field approximation.

Theorem 3.4.1. Under (ALY,), (AS") and (AY,,), assume either Hy or Hy. Then, the se-
quence of ADRHP (N””')izlwn' (with F-intensities on Ry denoted by (\");=1... ) defined by
(3.38) and the i.i.d. copies (Ni)g(l) of the solution of the limit equation (with F-intensities
on R, denoted by (X' )i1...,) defined by (3.39) are such that for alli=1,...,n and > 0,

E

. 0 L
amWW—Mqs/@ﬂﬂt»ﬂﬁsaauwwmww, (3.40)
0

te[0,0]
where the constant C(0,V, uy,vr) does not depend on n.

Proof. First, let us note that in each cases, the coupling is well-defined thanks to either
Proposition 3.3.6 or 3.3.7. Let us fix some n > 1. Let us denote A (t) = fg | N (dt') —

N, (dt')] and &7 (t) = E[A%(t)] its expectation. Denoting AAB the symmetric difference of
the sets A and B and Card (A) the cardinal of the set A we have

Al (t) = /O t INT(dt') — N (dt')| = Card ((N"m NN [O,t]) : (3.41)
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that is the number of points that are not common to N™* and W between 0 and ¢. Then,
it is clear that, for all i = 1,...,n and 6 > 0, sup,co 4 |V} — N,| < A% (#) and so

sup [N — N,
te(0,6]

E <E [A;(e)] = 5 (0). (3.42)

On the one hand, the N'’s are i.i.d. hence exchangeable. On the other hand, thanks to the
form of the intensity and the assumptions on the matrices (H;;);;>1 and (F;); >1 - (3.36)
and (3.37) - the family (N™"),—; , is exchangeable too. Hence 4" does not depend on 4
and is simply denoted by 9,, in the sequel. Let us focus on the case ¢ = 1. First, let us

remind that th is the intensity of Nl, SO

/ / {acap _1{1§A;})Hl(dt,dzp),

Taking expectation we find

5u(0) = E_/g U ‘1{ et L Mt}‘n (dt, dz)
_ E // Lf ) —]1{369;})(19364
- E_/ Pl Mdt] :/OQE[

where the last equality comes from Fubini’s Theorem. It remains to show that the rate of
convergence is n~ /2.

Computations given in Section 3.6.f) show that in each cases there exists some locally
bounded function g depending on V¥, ugy and vg such that 6, satisfies,

"]

P ] dt, (3.43)

o
6n(0) < n~%g(0) + / [|[¥]|oo + Lip(¥)M,,,, (0 — 2)] 0,(2)dz (under Hy),
% (3.44)
6n(0) < n7Y2g(0) + /o Lip(¥)M,,,, (0 — 2)0,,(2)dz (under Hs).

Remark that the only dependence with respect to n lies in 6,,. Since ¢ is locally bounded
and M, is locally integrable, using Lemma 3.7.4-(3), we end up with

6.(0) < C(0,%, puy, vp) Y2
where C' does not depend on n. O

There are mainly two reasons for the dichotomy of the assumptions H; and H,. Firstly,
up to our knowledge, existence/uniqueness results on the macroscopic system (3.23) are
only valid if the function ¥ is bounded. Secondly, as it appears in (3.44), when the intensity
of the n-particle system depends on the age, the control of §,(#) involves the L* norm
of the function W. This boundedness condition is used in order to control the coupling
as soon as the ages of the n-particle system on the one hand and the i.i.d. copies of the
solution of the limit equation on the other hand are different. Notice that even under Hs,
this coupling result extends [43, Theorem 8-(ii)] since there are two novelties in the present
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article: random interaction functions H;; as well as dependences with respect to the past
F.

Under more restrictive assumptions (corresponding informally to uniform controls in-
stead of local ones), the rate (with respect to 6) of C(0,V, uy,vr) given in Theorem 3.4.1
is linear in comparison with a rate which is at least exponential in general. The main
assumption corresponds to the stability criterion of Hawkes processes [17].

Proposition 3.4.2. Under (ALY,), (A57) and (AY,,), assume either Hy or H,. Further-
more, assume that both:

e the functions M,, and U are such that o := Lip(W)||M,,, |1 <1 and ||M,, |2 < co;

o the functions m,, and V,,. are uniformly bounded.

Then, the constant C(0,V, puy,vr) given in Theorem 3.4.1 can be bounded by
B(Y, g, vr) 0 where the constant B(V, uy,vr) depends neither on 6 nor on n. This bound
holds for all @ > 0 under Hy whereas it holds for 0 < (1 — «)/||¥V||s under Hy.

A proof is given in Appendix 3.6.g) where an explicit expression of 5 can be found in
Equation (3.82) or (3.84) depending on the context.

As said in the introduction, Hawkes processes seem to be the microscopic point processes
underpinning the (PPS) system introduced in [114]|. There is a striking similarity, modulo
a change of time, between :

e on the one hand, the mean intensity, denoted by m(¢), of a Hawkes process which is
a function of fot h(t — z)m(z)dz,

e and on the other hand, the firing rate p in (PPS) which is a function of fot d(z)n(t —
z,0)dz.

A first step in this direction has been made in the previous chapter in the framework
of a network of i.i.d. Hawkes processes. In that case, there is no direct bridge between
Hawkes processes and the (PPS) system as it is shown in the previous chapter. Indeed,
when the size of the network goes to infinity, one recovers conditional expectation of the
intensity with respect to the age (instead of the mean intensity). By comparison, the limit
system of the mean-field interacting age-dependent Hawkes processes system considered
in the present article involves the mean intensity as it can be seen in Equation (3.15).
Furthermore, this mean intensity is, in some cases, given by the macroscopic system.
System (3.38)-(3.39) provides an efficient coupling between the spikes attached with the
n-particle system and the spikes associated with the limiting process. In order to go one
step further, a natural question is to wonder about a possible coupling between the ages
associated with the two dynamics. This question is not addressed in [43] in which the prop-
agation of chaos is discussed at the level of the counting processes only. In comparison, we
are here willing to investigate this question carefully. The underlying motivation is not of a
mathematical essence only: exhibiting a suitable coupling between the ages of the ADRHP
and the ages of the point processes of the McKean-Vlasov type whose intensity depends
on time and on the age is the right and proper way to make the connection between the
microscopic description of the neural dynamics and the macroscopic equation (PPS).

In the sequel, Assumption (Afo,—) is used. It appears that the dependence of the age at
time 0 with respect to the initial condition generates additional difficulties for investigating
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the mean-field approximation. To limit the complexity of the analysis, it is quite convenient

to assume that the age at time 0 is bounded, which is precisely what Assumption (Aiif*)
says.

Corollary 3.4.3. With the notations and assumptions of Theorem 3.4.1, assume that
CN_ . .

(A~ ) is satisfied. N
Then, the predictable age processes (Sf_z)g(l)” associated with the sequence of ADRHP

(N™");_1..n and the predictable age processes (gi_)gé associated with the i.i.d. solutions

(N:)gé of the limit equation satisfy for alli=1,...,n and 6 > 0,

E

sup |S{" — §E_|] < (Mg, +6)C0, 9, g, vp)n V2, (3.45)
te(0,0]

where C(0,V, ug,vp) is given in Theorem 3.4.1 and Mry, is defined in (Aﬁﬁ“).

Remark 3.4.4. Reminding the strong connection between the predictable age process and
the standard one, stated below Equation (3.8), it is clear that the bound (3.45) is also valid
when replacing the predictable age processes by their standard counterparts.

Proof. Let us note that, for alln > 1andi=1,...,n, N i and N' coincide on the non-
positive part, i.e. N™* = N' . Therefore, Sj"* = S, and SUD;0,0) |S{"" —'S,_| is a.s. upper

bounded by Mg, + 6 when the trajectories (Sf_’i)te[oﬂ] and (gi_)te[o,e} are different and is
equal to 0 otherwise. Therefore, we have the following bound

E

sup |S{" — §z|] < (Mg, +0)P <(S?,i>t€[0,9] a (gi)te[o,e]) ‘

te[0,6]

Yet if the trajectories are different, there is at least one point between 0 and 6 which is not
common to both N7 and N, , that is SUPefo,0 |V — N,| # 0, hence

P ((S?f)te[o,e] # (?‘;—)tem) = ( sup [N — NV,| # 0) - (3.46)

te(0,6]

Moreover, since counting processes are piecewise constant with jumps of height 1 a.s., it is
clear that

sup [N — |

Y

P(sup N =N ¢0> =P<sup NP =T > 1) <E

t€[0,0] t€[0,0] t€[0,0]
(3.47)
where we used Markov’s inequality. Finally, inequality (3.45) clearly follows from Theo-
rem 3.4.1. O

3.4.b) Mean-field approximations

Inspired by the seminal work of Sznitman [156]|, we now obtain, from the results of the
previous section, the convergence of the n-particle system towards the limit equation:

e the empirical distribution of the point processes associated with the n-particle system
converges to the distribution of the point process solution of the limit equation,
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e the empirical distribution of the age processes associated with the n-particle system
converges to the distribution of the age process associated with the solution of the
limit equation,

This result, together with the ones from the previous paragraphs, are typical of what is
known as the propagation of chaos theory of interacting particle system. In particular, it
says that £ fixed neurons behave independently and identically when the size of the network
goes to infinity. Their spiking dynamics being described by the limit equation (3.15).

Corollary 3.4.5. Let £L(X) denote the distribution of some random variable X and D(R,.)
denote the space of cadlag functions from Ry to R endowed with the Skorokhod topology.

With notations and assumptions of Theorem 3.4.1, we have the following mean-field
approximations:

e the weak convergence in P(D(Ry)) of the empirical measure of counting processes,

1< .
E Z 5(Ntn’i)t20 ﬁ((Ntl)tEO)a (348)
=1

n—o0

e if furthermore (Aﬁf*) holds, the weak convergence in P(D(R.)) of the empirical
measure of the standard age processes,

1 < 1

E Z 5(Sf’i)t20 m ﬁ((st)tzo). (349)
i=1

Both convergences also hold in probability since the limits are constant in P(D(Ry)).

Finally, under the assumptions of Corollary 3.4.3, if furthermore (AY) and (Afﬁf}
hold, then the unique solution u of the system (3.23) with initial condition that u(0,-) = u™

is such that u; := u(t,-) is the density of the age EL and for all § > 0,

sup E
te€[0,0]

1 n
W (ﬁ ;55?’“%)] < D(0,%, g, v, My,) n~ /2, (3.50)

where the constant D(0,V, ug, ve, Mr,) does not depend onn and Wy denotes the standard
1-Wasserstein distance.

Remark 3.4.6. Of course, the convergence (3.49) is also valid when replacing the standard
age processes by their predictable counterparts. However, let us mention that the predictable
age processes belong to G(R.), the space of caglad functions (continuous to the left with right
limits). Hence the convergence of the empirical measure of the predictable age processes
holds in P(G(R,)), where we endow G(R) with an analoguous of the Skorokhod topology

Proof. The space of cadlag functions D(R, ) endowed with the Skorokhod topology is a
Polish space. So, according to [156, Proposition 2.2| or [101, Proposition 4.2], to show the
first limit (3.48), it suffices to check that ((N;"")e=o, (N;"*)»0) converges in distribution,

as n — 400, to two independent copies of (N 2 )i>0. Since the convergence with respect
to Lipschitz continuous test functions is sufficient in order to prove the convergence in
distribution (Portemanteau Theorem [87]), the first limit clearly follows from both (3.40)
and the fact that the uniform convergence topology on compact time intervals is finer than
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the Skorokhod topology. The proof of the second limit is similar with the difference that
it follows from (3.45) (remind Remark 3.4.4) instead of (3.40).

The link between the solution of (3.23) and the age processes associated with the
solution of the limit equation (3.15) is given by Proposition 3.3.8.

The rate of convergence for the 1-Wasserstein distance stated in (3.50) is a consequence
of the rate of convergence for i.i.d. real valued random variables. Fix # > 0 and let ¢ be in
[0,0]. First, using the exchangeability of the particles, it follows from Corollary 3.4.3 that
there exists a constant C'(0, ¥, pug, vr, Mr,) such that

] — 1 — 1 —
W (gZ%yth%z_)] < D E
=1 =1 =1

E

sup |97 — §Ll]
te(0,6]
S C(ea \IIJ HH,VF, MTO) n71/2'

Then, applying [51, Theorem 1] to the i.i.d. random variables ?i_, that are bounded by
My, + 0, we deduce that there exists a constant C(#, My,) such that

1o -
E[W:(~ Y b5 sur)] < C(Mgy, 0)n V2.
i=1

Finally, the triangular inequality for the 1-Wasserstein distance gives (3.50). O

The first mean-field approximation (3.48) is a generalization of the one given in [43,
Theorem 8-(iii)] where mean-field interacting Hawkes processes are approximated by Pois-
son processes of the McKean-Vlasov type. Here, the limit processes are point processes of
the McKean-Vlasov type whose intensity depends on time (like Poisson processes) and on
the age.

Moreover, Equation (3.50) extends the result on the rate of convergence for the age
processes given in [130, Section 5.

3.5 Conclusion

We present a generalization of mean-field interacting Hawkes processes, namely age de-
pendent random Hawkes processes (ADRHPs), which are well-adapted to neuroscience
modelling. From a biological point of view, they encompass some interesting features such
as refractory period, synaptic integration or random synaptic weights. These processes are
studied in a mean-field situation and we show in Theorem 3.4.1 and Corollary 3.4.5 that,
as the number of particles goes to infinity, they can be well approximated by point pro-
cesses of the McKean-Vlasov type whose intensity depends on time and on the age. These
limit point processes are closely related to the age structured PDE system introduced by
Pakdaman, Perthame and Salort, namely (PPS), as shown in Proposition 3.3.8.

Hence, using the theory of mean-field approximations, the present article makes a bridge
between the microscopic modelling given by Hawkes processes, or more generally age de-
pendent random Hawkes processes, and the macroscopic modelling given by the (PPS)
system. This bridge is presented under the main assumption that the intensity of the
microscopic point processes is bounded. In this sense, the present article offers an answer
to the question left open in the previous chapter. This legitimises the convolution term
X(t) in the (PPS) system as well as opens the way to the study of new assumptions on the
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spiking rate p appearing in the (PPS) system from a more analytical point of view. Up to
our knowledge, this has not been done yet.

The present article gives somehow the law of large numbers for a generalization of
Hawkes processes. It could be interesting to investigate how these processes fluctuates
around their mean limit or in other words find some kind of functional central limit theorem
for Hawkes processes in a mean-field framework.

As noted, random synaptic weights can be considered in this study. However, they
are supposed to be, in some sense, independent and identically distributed which can be
considered as an unrealistic assumption. Inspired by [48], it could be interesting to see how
correlated synaptic weights could be handled in the Hawkes processes framework.

On a different path, it could be interesting to see how locally stationary Hawkes pro-
cesses, as introduced in [143], behave in a mean-field situation. Indeed, these processes may
take into account the dynamics of the synaptic weights occurring in the neural network.
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3.6 Proofs

3.6.a) Proof of Proposition 3.2.4

Let us denote Gy : t = supsq ¥(s,0) 4+ Lip(W)n~" ", [Fi;(t)]. Thanks to (A}") and

Fubini’s Theorem we have, for all 7' > 0, E[fOT |F11(t)|dt] = fo [|[F11(t)]]dt < 400. In
particular, for all 1 <i,j <n, t — |F};;(t)| is locally integrable almost surely Hence, there
exists a subset (2 of probability 1 such that, on €2, G; is locally integrable for all 7. Fixing
the G;’s, one can apply Lemma 3.7.1 (Wlth a; = Llp(\If) and ¢g; = G;) to deduce that the
processes (N Z)t>(1] “" are dominated by the processes (N/ )i>(1) " (defined by (3.86)) and so
are well-defined.

It remains to show that the function ¢ — E[N}] is locally bounded. First, let us study
the dominating processes. We have

! Z NZ] < E| Z / t Gi(t’)dt’]
+Lip(¥ Z/ / %iﬁ”(dz)] dt’
< —Z/ )] dt’ + Lip(W / %i]\?ﬁ,] dt’

where we used Lemma 3.7.3. Next, t — E[G;(t)] = sup,s¥(s,0) + Lip(¥)E [[F11(1)]]
is locally bounded and M, is locally integrable so Lemma 3.7.4-(i) gives that ¢

E [n‘l > N;} =E [Ntl} is locally bounded. Finally, the stochastic domination (in
particular, E[N}] < E[N}]) gives the result.

3.6.b) Proof of Proposition 3.3.1

First, in order to be consistent with the formalism used in [26] we must rewrite the system
(3.16) in a single equation in the following way
Ju (t,s) N ou (t,s)
ot Os

= Nl(t,SﬂL) +5S:0n2(t,u), (351)

with initial condition u™ where

Ni(t,s,u) := —f(t, s)u(t, s)
no(t,u) == 0+°° f(t, s u(t, s")ds'.

The use of the Dirac mass localized in age equal to 0 represents the boundary condition
that is the second equation of (3.16).

Note that the general result |26, Theorem 2.4.| gives existence and uniqueness of
solution in BC(Ry, M(R)) and not BC(R;, M(R,)) even if the initial condition has
support contained in R,. However, as explained in |26, Section 3.3.|, it suffices to extend
the equation for s in R, to apply [26, Theorem 2.4.] and then to check that the support
of the solution is conserved in the sense that: if '™ has support on R, then the unique
solution given by the Theorem has also support contained in R for all time ¢ > 0.
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Hence, consider Equation (3.51) but with s being in R by mirror symmetry for defi-
niteness (that is Ny(¢,s,u) = Ny(t, —s,u) and so f(t,s) = f(¢,—s)). Let us check that the
assumptions of |26, Theorem 2.4.] are satisfied.

-(H1) and (H2) are clearly satisfied.

-(H3). We need to verify that N; and ny are continuous in ¢ with respect to the usual
topology and in u with respect to the topology induced by the bounded Lipschitz norm
(denoted by ||.||gr). On the one hand, using the boundedness of f, we have, with wu;
denoting the measure u(t, -),

[|Ny(t+ ¢, s,u+a) — Ni(t,s,u)||pr <sup|f(t+t,s)— f(t,s)|||ul|BL
seR

[ Moollte| B+ [ flloo [ = wil[Br-

As t' and @ converge to 0, the first term converges to 0 since f is (uniformly in s) continuous

with respect to t, the second one clearly converges to 0 and the third one converges to 0
since u belongs to BC(Ry, P(R.)).
On the other hand, using once again the boundedness of f, we have,

Ina(t + ¢/, u+ @) —no(t,u)| <sup |f(t+1,s) — (¢ s)luellpL + || fllool[tere — wel|BL,
seR

which converges to 0 as ¢’ tends to 0 thanks to the continuity property of f.
-(H4). It suffices to show that N; and nsy are Lipschitz continuous with respect to the
variable u. On the one hand, we have

[[N1(t, 5,u) — Ni(t, 5,0)|[L < || flloo]lte — v¢||BL-

On the other hand, we have

[na(t, ) = na(t, )| < [ flloollue — villBeL-

-(H5). Here, it suffices to check that N (t, s, u) + ds—ona(t,u) carries bounded sets in
total variation norm to bounded sets in total variation norm. Denoting ||.||7yv the total
variation norm, we have ||N1(t, s, u) 4+ ds—on2(t, w)||7v < 2||f||oo||w||7v -

Finally, the argument to prove conservation of the support for solutions being the same
as the one elaborated in [26, Section 3.3.], it is not reproduced here.

3.6.c) Proof of Proposition 3.3.2

The method of characteristics applied to the first equation of (3.16) suggests to consider:
e forall z>0, u®:t— u(t,t+ z) satisfying

d z o z
s (t) = —f(t, z + t)u*(t)

hence for all ¢ > 0,

u?(t) = u*(0) exp (— /Ot ft', z+ t’)dt’)

and so, using that u*(0) = u™(z) and letting s = z + ¢, one has (3.19).
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e forall z> 0, u®: s+ u(s+ z,s) satisfying

d ., | z
T (8) = —f(s + 2, 8)u(s)

hence for all s > 0,
u?(s) = u*(0) exp (—/ (s +z, s’)ds')
0
and so, using that u*(0) = u(z,0) and letting ¢t = z + s, one has

u(t,s) = u(t — s,0) exp (—/ ft—s+ 3’,5’)d$’) , fort>s,
0

which is not exactly (3.20). Here, u(t — s,0) is just a parameter which is not con-
strained by the first equation of (3.16). However, it is characterized by the second
equation of (3.16) as explained below.

For any T" > 0, consider the application

Gr: L=(0,T)) —  L=(0,T))
o — (t= Gluo)(1))

where

Glu)®) = [ 1t 5yt = s)exp (= [ ra=s+ s ) as

t
+ f(t,s)u™(s —t)exp (—/ f(t',s—t+ t’)dt’) ds.
t 0
Note that the characteristics and the second equation of (3.16) suggest that, denoting u
the solution of (3.16), u(-,0) is bounded and that its trace on [0,7] is a fixed point of
Gr. Using the boundedness of f and the fact that the argument in the exponential is
non-positive, we have for any wuo, vy in L>°([0,77),

|Gr(uo)(t) — Gr(vo)(t)| < ||f||oo/0 [uo(t — 5) —vo(t — s)|ds < T|[ f]|ool |10 — vol| Lo (j0,17)-

Now, fix 7" > 0 such that T'||f||c < 1/2 so that G is a contraction and admits a unique
fixed point. Note that Gr maps non-negative functions to non-negative functions, so
that the fixed point of G is a non-negative function. Iterating this fixed point gives the
existence and uniqueness of a locally bounded function ug (which is non-negative) such
that for all t > 0, ug(t) = G(up)(t) (see the end of the proof of Lemma 3.3.4 for the same
kind of argument in a more detailed form). Until the end of the proof, uy will denote this
fixed point.

It only remains to check that w is a solution of (3.16) in the weak sense. Let ¢ be in
C,‘;‘;,(Ri), let us compute fRi (% + %) @ (t,s)u(t,s)dtds. Sticking with the decomposition
of the representation given by (3.19)-(3.20) and using integration by parts to go backward
in the heuristic given by the method of characteristics, one has

/S . (% + %) o (t,8)u(t, s) dtds = / ol (b, sJult,s)drds — / : (0, $)u(5)ds,
_ ) (3.52)
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and
8 a +o0
/t>s (a + &) o (t,s)u(t,s)dtds = /t>s o(t, s)f(t, s)u(t, s)dtds — /t:O o(t, 0)uo(t)dt.

(3.53)
Remarking that the definition of ug as the fixed point of G gives that u defined by (3.19)-
(3.20) satisfies the second equation of (3.16) in a strong sense, one deduces that (3.18) is
satisfied by gathering (3.52) and (3.53).

3.6.d) Proof of (3.29)

Let Y7 and Y5 be two fixed locally bounded functions and denote u; := uy, and us := uy,
the two solutions associated with ¥; and Y (with same initial condition u™) and a(t) :=
uy(t,0) —usg(t,0) for all ¢ > 0. Using the characteristics, i.e. (3.19) and (3.20), one deduces

from the second equation in (3.27) that for i = 1 or 2, u;(t,0) = v>" + v"™ where
t s
vt = / (s, Yi(t) + fo(t))u;(t — s,0) exp <—/ V(s Yi(t—s+8)+ folt —s+ s’))ds’) ds
0 0

+00 ) 3
v = /t (s, Yi(t) + fo(t))u™(s — t)exp (—/0 U(s—t+¢,Yi(t') + fo(t’))dt’> ds.

and so u(t) = A(t) + B(t) where A(t) := v} — 09" and B(t) := vi"™ — v5™. Before
studying the functions A and B, let us remark that in order to prove (3.29), it suffices to
prove that there exists a non-decreasing function C' (which depends neither on the initial
condition nor on fy) such that for all 7" > 0,

][0,y < C(T)IY1 = Yal| oo (po,7))- (3.54)
Indeed, using the definition of Fr given by (3.28), one then deduces that for all 7' > 0,

T
Hﬂﬁﬁfﬂ%mmmméﬂﬂmTﬁﬂmmm/IMMM
0

and since h is locally integrable and C' is non-decreasing, there exists 7" > 0 small enough
such that C(T) fOT |h(z)|dz < 1/2 which ends the proof. To prove (3.54), let ¢ be a positive
real number.

Study of A. We have A = A; + Ay + A3 with

(

Ag(t) = /0 t[‘P(s, Yi(t) + folt)) — U(s, Ya(t) + fo(t)]us(t — 5,0)e Jo V" Xatfold g

Ay(t) == /0 t (s, Ya(t) + fo))[ur(t — s,0) — ug(t — s,0)]e Jo Y& Yitfo)ds' g

\

t
As(t) = / W (s, Ya(t) + folt))ug(t — s,0)[e Jo YY1+ _ o= Jg s/ Yot fo)ds' g
0

where the arguments “t — s + s’ in the exponentials are not written for simplicity.
- Study of A;. Using the Lipschitz continuity of W, the fact that the argument in the
exponential is non-positive and the a priori bound on u;, we have

A0 < Lip(¥) [ (e = 5, 0)¥i(8) = Ya(o)ds < Lip(®)] sl sz H(0) = Va(0)

< Lip(¥) max(M, [[¥||o) t |[Y1 — Yallzoo (o). (3-55)



3.6. PROOFS 113

- Study of As. Using the boundedness of ¥ and the fact that the argument in the
exponential is non-positive, we have

|[A2(2)] < ||‘1’||<>o/0 |ur(2,0) = ua(2,0)|dz = ||‘If||oo/0 |a(z,0)]dz. (3.56)

- Study of As. The arguments of the exponentials are non-positive and the exponential
function is Lipschitz with constant 1 on R_ so, using the a priori bound on us, we have

t s s
A < N lelluallieey [ | [0k fas = [0Vt s ds
0 0 0
t s
< H\IJHOOmaX(M,H\IJHOO)Lip(\IJ)// Vi(t—s+8) — Yt — s+ )| ds'ds
0 JO
<10 o (M, ]| D) £ 5 = ol o, (357

where the arguments “t — s + s”” are not written in the first equation for simplicity.
Study of B. We have B = B; + By with
B0 = [ W0 + fole) ~ W6 Y300 + (o)

u'"(s — t) exp (— /Ot U(s—t+t",Y1(t') + fo(t’))dt’> ds

Bo(t) := /:oo (s, Ya(t) + fo(t))u™(s —t)

e~ Jo @ (s—t+t" Y1 (t')+fo(t'))dt _ o I ‘Il(sft+t’,Y2(t’)+f0(t’))dt’]d8.

- Study of B;. Using the Lipschitz continuity of ¥ and the fact that the argument in
the exponential is non-positive, we have

+o00
|[Bi(t)] = Lip(‘If)/ Y1(t) = Ya(t)[u™ (s — t)ds < Lip(V)[[Y1 = Y[y, (3.58)
t

where we used that [ u"(s)ds = 1.
- Study of B,. As for Az, we have

+o0o
By(t)] < ||\1f||oo/t W (s — 1)

/t U(s—t+t"Yi(t") + fot)) — V(s —t+ 1, Ya(t') + fo(t'))dt'| ds
0

—+o0 t
< ||| Lip(®) / W (s — t) / Vi(t) - Ya(t')| dt'ds
t 0
< V]| Lip(W) ¢ [[Y1 = Yal|oo(po,0), (3.59)

where we used once again that ["™ u™(s)ds = 1.

Gathering (3.55), (3.56), (3.57), (3.58) and (3.59), we get that there exists a non-
decreasing function ¢ such that for all ¢ > 0,

t
()] < 9(0)][Y: — Yalloeqou + 1191 / ()| d.
0
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Then, Lemma 3.7.4- (i) gives that for all T > 0,

i) | oo o.17) < Cr S {gOIY1 = Yol | (o } »

with C7 being a non-decreasing function of 7. Then, (3.54) follows since g is non-
decreasing.

3.6.e) Proof of Proposition 3.3.7

(@) Suppose that (Ny)i>0 is a solution of (3.15). Then, the mean cumulative intensity
A(t) = E[V,] is a non-decreasing locally bounded function satisfying

A(t) = /0 "w, ( /O "It — 2)dE. + fo(t’)> dt' for every > 0. (3.60)

By Lemma 3.7.5, we know that (3.60) admits a unique solution which is furthermore of
class C' and we denote X its derivative. Thus, we have E [N (dt)] = N (t)dt = X(t)dt.

-(#1) The first equation of (3.35) is a classical thinning equation so its solution (N;)¢o
is a measurable function of II hence it is unique (once II is fixed).

To conclude this step, it suffices to check that (Nt)tzo satisfies the second equation of
(3.35) where we remind that A is the derivative of A which is the unique solution of (3.60).

But E[N,] = fo o fo h(t' — 2)X\(z)dz + fo(t'))dt’, which is equal to A fo A(t')dt' since
A is a solution of (3.60).

Finally, the two remaining points are rather simple. First, taking the derivative of
(3.60) gives that A(t) = ¥, (fo_ h(t — 2)A\(z)dz + fo(t)>. Secondly, the solution of (3.35)

is clearly a solution of (3.15) and () tells that a solution of (3.15) is necessarily a solution
of (3.35) which gives uniqueness.

3.6.f) Proof of (3.44)

For simplicity of notations in (3.38) and (3.39), let us denote for all t > 0,

——Z(/ NI + ).

F(t) == /0 My, (t— 2)A(2)dz +my,. (1),

(3.61)

where X is defined either in Proposition 3.3.6 (under H,) or 3.3.7 (under Hy). We have

AP =W (S A and X, = U(S, ,7( )). Notice that 7 is a deterministic function (which
does not depend on 1) Whereas ~™* is random.

First point of (3.44). Assume that H; is satisfied. Then one can use the decomposition,

L= ]l{st"_’l:ﬁ_} T ﬂ{sf_vlﬁi_} (3.62)
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and the fact that |)\?’1 —

Let us denote

Study of A™(0).

if S"l

where

(4
Me)g/ E[Aﬁvl—xi
0

0 —1
A™(6) ::/ ]E[A,?’l—)\t

0
o —1
D" (0) = / P(spl #75,

0

33 , then [\ —

1

n —1
{s{'=5,_}

) at

Using the Lipschitz continuity of W, it is clear that for all ¢ in [0, 6],
—1 . n
A | < Lip(¥)[7!

| < [|¥]|e to deduce from (3.43) that

6
n, —1
]1{s:11:§;_}} dt + HfoHoo/O P (St_l + St_) dt.

] dt,

—J(t)|. So, one deduces that

(3.63)

A™(0) < Lip(W) (B (0) + B3 (0) + By () + C™(0)), (3.64)
( n 0 [ ! 1 - n,j 7
Bi60) = | B| —ZHlj(t—z)[N+’ (dz)—N+(dz)]’]dt,
. A
BIO) :/ E / ZHM t— )N (dz) — Xidz]udt,
o L
\ o - (3.65)
BI(9) :/0 E_/ Z Hyj(t — 2)X —my, (t — 2)A(= )) dsz
-
C"(0) :/ E _ZFU — My, ( )Hdt.
o L
- Study of BY}. Firstly, using (A7) and then Lemma 3.7.3, we have
BI(O) < / / Z‘HM (t— 2) HN”J (dz) (dz)Hdt
- n,J __j
< /E[/ nZM z)’N+ (d2) N+(dz)Hdt
— / / (t— 2)dAI (2 dt / 5,(2)dz, (3.66)
where the A7’s are given in (3.41).
- Study of Bj. Secondly, using Cauchy-Schwartz inequality, we have
i 1/2
BI(O) < / ‘Z/ Hy(t — 2)[N.(dz) — Azdz]‘ ] dt
1 i o 112
_ E/0 E[Z/ Hy(t — 2) Azdz} dt
1/2
< / / H\Iflloodz) dt
1/2 1
— \1/1/2/ (/MHt 2dz) dt == —=DBy(0), 3.67
\/—H I M ( NG 2(0) (3.67)
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by computing the bracket of a sum over a compensated point process (see [60, Proposition

I1.4.1.]), using (A%7) and the fact that ¥ is bounded by ||| co-
- Study of BY. Let us fix some ¢ in [0,6] and z in [0,¢] and denote Y; := Hy;(t — 2)X..

Since Xi is the intensity of a solution of the limit equation, it is independent of H;.

Moreover the Hy,’s are independent (see (3.9)) and the X'’s are independent so the Y;’s
are independent. Hence,

E[Y;] = E [Hy(t - 2)]E [X]] = myu, (t - 2)X(2),
and
Var (Y;) = Var (Hy(t — 2)) Var ()\ ) + Var (Hy(t — 2)) M2)?
+ i, (t — 2)*Var (Xﬁ) . (3.68)

On the one hand, it clearly follows from (A47) that Var(H;(s))

On the other hand, it clearly follows from (AY) that Var(X j)
Finally (3.68) leads to

M, (s)* for all s > 0.

<
< ||P||2, for all z > 0.

Var (Y;) < My, (t=2)* |05+ M, (8= 2)* 9] 5 +my, (8= 2)* 0[5, < BM,,, (E—2)°[| ][5

since m,,,, is dominated by M,, and X is bounded by ||¥||. Using the fact that the Y;’s
are independent, one has

1 n
w(13r) -2

So, thanks to Cauchy-Schwartz inequality,

//( L(t—2)? |\\If\y2)1/2dzdt

1
< \r”‘I’HW// )dadt = —= By (0) (3.69)

- Study of C™. Since for all t > 0, Fi1(¢),..., Fi,(t) are i.i.d. random variables (see
(3.10)) with expectation m,,,(t) and variance V,,.(t), one deduces from Cauchy-Schwartz
inequality that

2

3

ZHU —my (t = 2)A(2)| | < =My, (t = 2)%| ]2

3

B3(6)

IN

n R 2y 1A
C(0) < —= /0 Vi (021 = —=C0). (3.70)

Finally, one deduces from (3.64), (3.66), (3.67), (3.69) and (3.70) that

A™(9) <

Lip(¥) / - - - . ’
v (Bo(6) + By(6) + C(0)) + Lip(¥) /0 My, (6 — 2)5,(z)dz. (3.71)
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Study of D"(f). Since the initial conditions of N™! and N are the same (equal to
N1), it holds that S”l = gl a.s. If, at a fixed time t > 0, S[' # g: , then there is
at least one point between 0 and ¢ which 1s not common to both Nﬁl and V. 4, that is
SUDy (o 4 |N* — Nt,| # 0, hence P(S]"' # S _) < P(supyepy IN;* — N,.| # 0). Moreover,
since counting processes are piecewise constant with jumps of height 1 a.s., it is clear that

sup |Nj! —NH] ,
t'€(0,t]

P(sup N —N:/\ #0) :P<sup |N:,L’1—N:,| > 1) <E

t'€(0,t] t'€[0,t]

where we used Markov’s inequality. Using (3.42), one has P (Stn,’l # g:,) < 0,(t) and so

Do) < / 0 5, (t)dt. (3.72)

Rewriting (3.63) under the form 6,(0) < A™(0) + ||¥||D"(0), one deduces from (3.71)
and (3.72) that

. 0
00(6) < U (Bul6) + Ba(6) 4 C10)) + [ 1911+ Lip(0), (6~ 2)] 0, (2}

\/ﬁ
(3.73)

where By, Bs, C are respectively defined in (3.67), (3.69) and (3.70). Since M,,,, is locally
square integrable, 6 — BQ(Q) is locally bounded; since M,,,, is locally integrable, 6 — 33(0)
is locally bounded; since V,,,. is locally square root integrable, 6 — C (0) is locally bounded.
Hence we proved the first point of (3.44).

Second point of (3.44). Assume that [, is satisfied. Then the decomposition (3.62) is
not helpful anymore. Whatever the predictable age processes are, one always has A" =

o) and X, = Uo(5(t)) for all i = 1,...,n and t > 0. Remark that in this case, the
intensities X of the limit processes defined by (3.39) are deterministic and equal to \ defined

in Proposition 3.3.7. Instead of (3.63) one should start from d,( fo (A Xi\]dt.
One can prove in the same way as above that
0n(0) < Lip(Wo)(By' () + B3 (0) + B3 (0) + C"(0)), (3.74)

where B}, By, B} and C" are defined by (3.65). Since the uniform boundedness of ¥ was
not used in the study of B} and C" then (3.66) and (3.70) still hold. It remains to control
BY and Bj under lssumption (Ag—y,).

- Study of Bf. Firstly, remind that for all j, )\ = A(t) so, using Cauchy-Schwartz
inequality, we have

Bi(6) < % /0 (Z / Hy(t — 2)[N, (dz) — X(z)dz]mmdt
_ %/ /Hlj (t — 2)? )dzr/th
< NG /D ( /0 MHH(t—z)2X(z)dz>l/2dt = %Eg(e), (3.75)
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by computing the bracket of a sum over a compensated point process (see [60, Proposition
I1.4.1.]) and then using (AXH).

- Study of BY. Secondly, since Xz = \(t) for all j, then BY rewrites as

- /OGEH /Ot%i(Hlj(t_Z) —mMH(t—z))X(z)dszt

/ / ‘_ Hlﬂ (t = 2) = myuy (t = 2)) HX(z)dzdt.

Using Cauchy-Schwartz inequality, the fact that the Hy;’s are i.i.d. with mean function
and that for all s > 0, Var(Hy;(s)) < M, (s)* (which follows from (A%)), we have

Mypy

0) < /0 9 /0 t %Var (Fus(t — )2 N(2)d=dt

/ / M z2)dzdt == TE 3(0). (3.76)
Finally, one deduces from (3.74), (3.66), (3.75), (3.76) and (3.70) that
5 (0) < %\/go) (Ez(ﬁ) + B3(0) + 6(9)) + ’ Lip(Wo)M,, (0 — 2)0,(2)dz,  (3.77)

where By, Bs, C are respectively defined in (3.75), (3.76) and (3.70).

Since M, is locally square integrable and A is continuous, 0 +— By(f) is locally
bounded; since M,,,, is locally integrable and  is continuous, 6 + Bs(#) is locally bounded;
since V,,. is locally square root integrable, 6 C(0) is locally bounded. Hence we proved
the second point of (3.44).

3.6.g) Proof of Proposition 3.4.2

-1. Assume that H, is satisfied. The mean intensity A defined in Proposition 3.3.6 is
clearly uniformly bounded by ||¥||.

Looking at (3.73), one wants to find some uniform bounds on Bs, B, C respectively de-
fined in (3.67), (3.69) and (3.70). Firstly, since M,,,, is square integrable and X is uniformly
bounded, it is clear from (3.67) that

By(0) < [| My 12119113270 (3.78)

Secondly, using the integrability of M,,,, and the boundedness of A, one deduces from (3.69)
that

Bs(6) < V3| My 1119110 (3.79)
Finally, since V,,, is uniformly bounded, one deduces from (3.70) that
C(0) < |IVaellaL?. (3.80)

Moreover, using the fact that J, is a non-decreasing function, we find, with the notation
a = Lip(V)[| My |1,

{ JELip(W)M,,,, (6 — 2)8,(2)dz < a6, (6) (3.81)

SO |awbn(2)dz < ||W]] 000, (6).
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Gathering (3.78), (3.79), (3.80) and (3.81) one deduces from (3.73) that

Lip(¥)
NG

which leads to d,(0) < B(V, p, vp)0n~'/? with

9n(0) <

(110l 21122 V31 M 19+ 1V [122) 0+ (41191080 (6),

Lip(¥)
1= (o + ||¥]|0)

BIY, u, vr) 1= (110 2 112 + V3l M |11 + 1V 12)

(3.82)
as soon as a + [|V]|f < 1, 1e. 0 < (1 —a)/||¥|]wo-

-2. Assume H, is satisfied. Under the assumptions of Proposition 3.4.2, the mean
intensity A defined in Proposition 3.3.7 is uniformly bounded thanks to Lemma 3.7.6.

Looking at (3.77), one wants to find some uniform bounds on Bs, Bs, C respectively
defined in (3.75), (3.76) and (3.70). In the same way as above, one can deduce from (3.75),
(3.76) and (3.70) that

By(0) < || My ||2| 71570

Ba(6) < || My |11|[X] ] (3.83)
A 1/2

C(0) < |[Viel15°6.

Using (3.83) and the first equation of (3.81) which is still valid is this case, one deduces
from (3.77) that

Lip(¥)

on(0) < (1M M2l A+ 1M X oo + 11Vare [137) 0 + 06 (6),

Q'

which leads to d,(0) < B(¥, pg, vr)dn~/? with

Lip(¥)

l—«

BV, pu, vr) = (1M 2 AR+ 1M 1M oo + (Ve 1222) (3.84)

for every > 0. Notice that an explicit expression of ||||s With respect to M

s> My and
U can be obtained thanks to Lemma 3.7.6.

3.7 Lemmas

3.7.a) Point processes

Here we collect some technical lemmas about point processes.
The following lemma is used to show the well-posedness of the studied point processes.

Lemma 3.7.1. Let n > 1 be an integer, let (g;)i=1,..n be a family of locally integrable
functions, (a;)i=1,..n be a family of non-negative real numbers and h : Ry — R be a locally
integrable function. Let (IT'(dt, dx));>1 be some i.i.d. F-Poisson measures with intensity 1
on R%.

Let (NZ);;IJ’" be a family of counting processes such that fori=1,..,n and allt > 0,

t )
N = 1 i It d), 3.85
; // (o < 2y 1T, ) (3.85)



120 3. MEAN-FIELD LIMIT OF GENERALIZED HAWKES PROCESSES

where the \'’s are F-predictable processes such that A < g;(t)+aiy >0, fOF |h(t—u)|N?(du).
Then, the linear multivariate Hawkes process (Nf)g(l)" defined by

IT(dt', dx), (3.86)

Nz:/o/o x<gz ) + a;— Z/ |Nf(dz)}

is such that for alli=1,...,n, N stochastically dominates N* in the sense that N* C N'
where N (resp. N') denotes the point process associated with the counting process (N})i>o

(resp. (Ni)iso). In particular, the processes (N’)i>(1]’ " are well-defined.

Proof. First, let us note that the processes (Nt’)t>0""" are well-defined by the Galton-
Watson representation of the linear Hawkes process introduced in [71] when the g;’s are
constant in time (see Proposition 2.8.3 when the g¢;’s are more generally locally integrable
functions).

We are going to show by induction that

V>0, A< N = gi(t) + ai— Z/ h(t — w)| N7 (du).

Indeed, for all time ¢ less than the first point of either N := U? N% or N := U™ N’
the respective intensities are such that \! < g;(t) = 5@ Hence, the first point of N U N
(denoted by T}) is a point of N (and possibly a point of N). Let us denote (T;)z>1 the
ordered sequence of the points of N U N.

Let us fix some ky > 1. Suppose that for every i = 1,...,n, Al < 5\2, for all ¢t < Ty,.
Then, it is clear that for every k = 1,...,ky, Ty € N, hence for every i = 1,...,n,
N stochastically dominates N up to time Tiy+1—- Moreover, it implies that for every
i=1,...,nand for all t in (T, Tky+1],

A< gi(t) + ai— Z/ \h(t — 2)| N7 (dz)
< ) +at Z/ Bt — 2)|V7(dz) = X,

since |h| is a non negative function. Therefore, by induction on k, the desired stochastic

domination holds true for all time. In particular, the dominated processes are well-defined.
O

Lemma 3.7.2. If N admits the bounded F-intensity Ay and (S;-)i>0 denote its associated
predictable age process, then the distribution of S;— denoted by w; is such that t — wy
belongs to BC(R., P(R,)).

Proof. This continuity result comes from the fact that the probability that N has a point
in an interval goes to 0 as the size of the interval goes to 0. Indeed, let ¢, ¢ be positive real
numbers, P (N([t,t+1')) #0) <E[N([t,t+1'))] = E[/, LD\ .dz] goes to 0 as t' goes to 0.
Moreover, S(44)— = S;— + 1t as soon as there is no pomt of N in the interval [t, ¢ +t') and
so one has

Wl (wt+t/, U}t> S E [mln (‘S(t—i—t’)—

L) SEH+P(N([tt+1)) #0) — 0,

t'—0

reminding that T, denotes the modified Wasserstein distance defined in (3.17). The same
argument for ¢ < 0 gives continuity. ]
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3.7.b) Analytic lemmas

Here, we collect some analytic lemmas regarding the convolution equations used throughout
the present chapter. First, here are two lemmas introduced in [43].
The first one is an easy application of Fubini’s Theorem [43, Lemma 22].

Lemma 3.7.3. Let ® : Ry — R be locally integrable and let o : R, — R have bounded
variations on compact intervals, satisfying o (0) = 0. Then, for all t > 0,

/Ot/os@(s—u)da(u)ds:/Ot(b(t—s)a(s)ds,

where the integral has to be understood in the Stieltjes’ sense.
The second one is a rather classical generalization of Gronwall Lemma [43, Lemma 23].
Lemma 3.7.4. Let ® : Ry — R, be locally integrable and g : Ry — Ry be locally bounded.

(1) Consider a locally bounded non-negative function u such that for all t > 0, u; <
gt + fot P (t — s)usds. Then, supyerjur < CrSubsepo ) gi, for some constant Cr
depending only on T > 0 and ®. Moreover, Cr can be taken as a non-decreasing
function of T.

(i) Consider a sequence of locally bounded non-negative functions u™ such that for all
t>0, alln >0, upt' < [T®(t —s)ulds. Then, SUDsc(0,7] 2omso U < Cr, for some
constant Cp depending only on T > 0, u° and ®.

(i1i) Consider a sequence of locally bounded non-negative functions u" such that for all
t>0,aln>0,ult™ < g + f(f(ID (t — s)ugds. Then, sup,ejo 1) SUP,so Uy < Cr, for
some constant Cp depending only on T > 0, u°, g and ®.

Note that we added to the first statement that C'r can be taken as a non-decreasing
function of T'. Tt is not given in [43, Lemma 23| but it is a direct consequence of the proof.
Then, here is a well-posedness result which is a generalization of [43, Lemma 24].

Lemma 3.7.5. Let & : R — R be Lipschitz-continuous, h : R, — R be locally integrable
and fo: Ry — R be continuous. The equation

my = / 5 ( / " h— 2ydm, + fo(t’)> ' (3.87)

has a unique locally bounded solution. Furthermore, m is of class C' on R,

Proof. The proof is similar to [43, Lemma 24|. We refrain from reproducing it here; instead,
we only indicate the minor changes that are required to make it fit the current framework,
i.e. the addition of the function f;. The "uniqueness" part is exactly the same. The
"existence" part requires fy to be locally integrable in order to have locally boundedness
in the Picard iteration. Finally, we need f; to be continuous to show by induction that at
each step of the Picard iteration the function is C! on R, and so it is for the limit, that is
the solution of (3.87). O

Here is given an analytic result which is used to give a uniform bound on the mean
intensity of a Hawkes process under stationary conditions.
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Lemma 3.7.6. Let ® : R — R, be Lipschitz-continuous and h : Ry — R be integrable
such that Lip(®)||h||1 < 1. Moreover, let fy: Ry — R be uniformly bounded.
If g : Ry — Ry is a continuous function satisfying

<o [ At — w)g(u)du + o)) (3.89)

for every t > 0, then g is uniformly upper bounded by

0(0) + Lip(®)]| ol e

M = -
1 — Lip(®)||Al[x

Proof. For any t > 0,

g(t) < B(0) + Lip(®) ( [ e = wlgtwran+ ||fo||oo)

hence, thanks to the continuity of g, for every T > 0,

sup g(t) < ®(0) 4 Lip(®) (H’llll sup g(t) + Hfo!loo)
te[0,T] t€[0,T]

and

tg[%’r;]g(t) <7T Tip(@) [Tl [©(0) + Lip(®)|| fol[oo] = M.



CHAPTER

4 FLUCTUATIONS FOR GENERALIZED
HAWKES PROCESSES

Abstract. A particular case of the mean field interacting age-dependent Hawkes pro-
cesses is studied in the present chapter. The propagation of chaos and associated law of
large numbers (when the number of processes n goes to +00) being granted by the study
performed in the previous chapter (Corollary 3.4.5 and Equation (3.50) in particular), the
aim of the present chapter is to prove the resulting functional central limit theorem. It
involves the study of a measure-valued process describing the fluctuations (at scale n=1/2)
of the empirical measure of the ages around its limit value. This fluctuation process is
proved to converge towards a limit process characterized by a limit system of stochastic
differential equations driven by a Gaussian noise instead of Poisson.
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4.1 Introduction

We refer to Section 3.1 for an introduction to the notations, some application fields of
Hawkes processes in general and the suitability of age-dependent random Hawkes processes
(ADRHP) for modelling in neuroscience.

In Chapter 3, age-dependent Hawkes processes are introduced and the asymptotic
behaviour of n mean-field interacting age-dependent Hawkes processes (N™*),_; _, whenn

123
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goes to infinity is investigated. Furthermore, the associated age processes ((S;" 7i)t20>i:17m’n
are also studied within this mean-field framework: law of large numbers (3.49) is proved,
the rate of convergence (for fixed time ¢) being at most n~*/2 (3.50). Below we denote by
" the empirical measure of the ages and by P its limit. In light of the bound obtained
on the rate of convergence, the fluctuation process defined by n"* = /n(i" — P) is ex-
pected to describe, on the right scale, the second order term appearing in the expansion of
the mean-field approximation, the first order term being given by the law of large numbers.

Following the approach developed in [50], we prove in the present chapter that the
fluctuations satisfy a functional central limit theorem (CLT) in a suitable distributional
space: the limit of the normalized fluctuations is described by means of a stochastic dif-
ferential equation in infinite dimension driven by a Gaussian noise in comparison with the
Poisson noise appearing in Chapter 3. To do so, we regard the fluctuation process " as
taking values in a Hilbert space, namely the dual of some Sobolev space of test functions!.
The index of regularity of the dual space, in one-to-one correspondence with the regularity
of the test functions in the Sobolev space, is prescribed by the tightness property we are
able to provide to the sequence (7"),>1 and by the form of the generator of the limit-
ing McKean-Vlasov dynamics identified in Chapter 3. Let us precise that this generator
is the one associated with the renewal dynamics of the (PPS) system as highlighted by
Proposition 3.3.8.

Although the choice of this index of regularity is rather constrained, the choice of the
domain supporting the Sobolev space is somewhat larger. Indeed, two options are available,
depending on the way we consider the process 1™, either over a finite time horizon, namely
(N7 )o<t<p for some 6 > 0, or in infinite horizon, namely (1});>o.

In the first case, we may use the fact that there exists a compact Ky (which is growing
with ) such that n} is supported in Ky for all ¢ in [0,6]. Hence, one could regard, for all
6 > 0, the fluctuation process (1}")o<t<¢ as a process with values in the dual of a standard
Sobolev space of functions with support in Ky. The main drawback of such an approach
is that the space of trajectories within which the CLT takes place depends on the time
horizon 6. To bypass this issue, one may be willing to work directly on the entire positive
time line R, but then, it is not possible anymore to find a compact subset K supporting
the measures 7;', for all £ > 0, since Up>oKy = Ry. A convenient strategy to sidestep this
fact is to use a Sobolev space supported by the entire R,. Yet, standard Sobolev spaces
supported by R, fail to accommodate with our purpose, since, as made clear by the proof
below, constant functions are required to belong to the space of test functions. Therefore,
instead of a standard Sobolev space, we may use a weighted Sobolev space, provided that
the weight satisfies suitable integrability properties.

In order to state our CLT on the whole time interval, the second approach is preferred.
Furthermore, we also feel convenient to choose Sobolev spaces with polynomial weights,
the definition of which is recalled in Section 4.4.a) below. This choice is quite comfortable
because Sobolev spaces with polynomial weights are well-documented in the literature. In
particular, results on the connection between spaces weighted by different powers, Sobolev
embedding theorems and Maurin’s theorem, are well-known. It is worth noting that, pro-
vided that constant functions can be chosen as test functions, the precise value of the power
in the polynomial weight of the Sobolev space do not really matter in our analysis: more
generally, a different choice of family of weights would have been possible and, somehow,

1One could regard n™ as taking values in the Sobolev space directly thanks to Riesz representation
theorem. However, a major issue comes from this representation. This issue is tackled in Appendix A.3
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it would have led to a result equivalent to ours. In this regard, we stress, at the end of the
chapter, the fact that our result in infinite horizon is in fact equivalent to what we would
have obtained by implementing the first of the two approaches mentioned above instead of
the second one: roughly speaking, one can recover our result by sticking together the CLTs
obtained on each finite interval of the form [0, 6], for # > 0; conversely, one can prove, from
our statement, that, on any finite interval [0, 0], the CLT holds true in the dual space of a
standard Sobolev space supported by Kj.

The Hilbertian approach used in this chapter has been already implemented in the
diffusion processes framework [50, 82, 97, 101]. Let us mention here what are the main
differences between these earlier results and ours:

e Under general non-degeneracy conditions, the marginal laws of a diffusion process
are not compactly supported. The unboundedness of the support imposes the choice
of weighted Sobolev spaces even in finite time horizon. In this framework, Sobolev
spaces with polynomial weights are especially adapted to carry solutions with mo-
ments that are finite up to some order only. In that case, the choice of the power
in the weight is explicitly prescribed by the maximal order up to which the solution
has a finite moment. As already mentioned, this differs from our case: in the present
chapter, particles (namely, the ages of the neurons) are compactly supported over
any finite time interval and thus, have finite moments of any order. Once again, this
is the reason why the choice of the power, and more generally of the weight, in the
Sobolev space is much larger.

e Unlike point processes, diffusion processes are time continuous. Also, their generator
is both local and of second order, whereas the generator for the point process identified
in the mean-field limit in Chapter 3 is both of the first order and nonlocal. As
a first consequence, the indices of regularity of the various Sobolev spaces used in
this chapter differ from those used in the diffusive framework. Also, the space of
trajectories cannot be the same: although the limit process in our CLT has continuous
trajectories, we must work with a space of cadlag functions in order to accommodate
with the jumps of the fluctuation process. Surprisingly, jumps do not just affect the
choice of the functional space used to state the CLT (namely space of cadlag versus
space of continuous functions) but it also dictates the metric used to estimate the error
in the Sznitman coupling between the age-dependent Hawkes process investigated in
Chapter 3 and its mean-field limit. Indeed, counting processes take integer values
so the standard trick used for diffusion processes that consists in getting stronger
estimates for the Sznitman coupling by considering LP-norms, for p > 2, is completely
useless here. Therefore, we develop a specific approach by providing higher order
estimates of the error in the Sznitman coupling in the total variation sense. Up to
our knowledge, this argument is completely new.

Let us mention that the fluctuations of jumps processes have been the object of previous
publications [140, 161]. However, the CLTs are established in the fluid limit, namely small
jumps at high frequency so that the jumps vanish at the limit. The techniques developed
in those articles are useless here since the framework of the present chapter does not fall
into the fluid limit framework: in our case, the limit processes are also jump processes.

The present chapter is organized as follows. The model is given in Section 4.2: it is a
particular case of the model introduced in Chapter 3. Then, the main estimates required
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in this work are given in Section 4.3. These can be seen as the extension, to higher orders,
of the estimates used in Chapter 3 to get the bound n~'/? on the rate of convergence.
These key estimates are used to prove tightness for the distribution n™ in a Hilbert space
that is the dual of some weighted Sobolev space. Under regularity assumptions on the
intensity function ¥ and the interaction function h, we finally prove in Section 4.5.b) the
convergence of the fluctuation process. Furthermore, its limit is characterized by a system
of stochastic differential equations, driven by a Gaussian process with explicit covariance,
and involving an auxiliary process with values in R (Theorem 4.5.12).

General notations

e Statistical distributions are referred to as laws of random variables to avoid confusion
with distributions in the analytical sense that are linear forms acting on some test
function space.

e The space of bounded functions of class C*, with bounded derivatives of each order
less than k is denoted by CF.

e The space of cadlag (right continuous with left limits) functions is denoted by D.

e For ;1 a measure on E and ¢ a function on E, we denote (1, ) := [ ¢(x)pu(dx) when
it makes sense.

e If a quantity () depends on the time variable ¢, then we most often use the notation
(Q); when it is a random process in comparison with Q(¢) when it is a deterministic
function.

e We say that the quantity @, (o), which depends on an integer n and a parameter
o € RY, is bounded up to a locally bounded function (which does not depend on
n) by f(n), denoted by Q,(c) <, f(n), if there exists a locally bounded function
C :R?Y — R, such that, for all n, |Q,(0)| < C(a)f(n).

e Throughout this chapter, C' denotes a constant that may change from line to line.

4.2 Definitions and propagation of chaos

The mathematical framework used in this chapter being the same as the one used in
Chapter 3, we refer to Section 3.2 for the main notations and definitions. The model
considered here is a particular case of the age dependent random Hawkes process (ADRHP)
introduced in Chapter 3. The main differences are:

e the interaction functions H;; are now supposed to be equal to a deterministic function
h:R, — R,
e the functions F;; are now supposed to be equal to the null function.

Hence, the parameters of the model are: the number of particles n, the interaction function
h, the intensity function ¥ and the law of the initial conditions? (y_.

?In fact, since the functions Fj; (which may depend on the initial conditions of an ADRHP) are null,
the model used in the present chapter depends on the weaker information given by the law of the age at
time 0, i.e. Sy = Sp—, instead of depending on the law of the whole past (5_. Nevertheless, we keep (n_
to preserve coherence among the chapters.
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For sake of simplicity, all the assumptions made on the parameters are gathered here:

CN _ If N_ is distributed according to (n_ and Ty denotes the closest point of
< ) N_ to 0, then —Tj admits a density with respect to the Lebesgue measure,
denoted by u'™™, which is uniformly bounded with compact support so that
there exists a constant C' > 0 such that —7; < C almost surely (a.s.). The
smallest possible constant C'is denoted by Mr,.

( Ah ): The interaction function h is locally bounded. Denote by, for all ¢ > 0,
> hoo(t) := max,cpq h(s) < +o0.

(Aly): There exist two positive constants denoted by H6l(h) and S(h) such that
MU N for all ¢,5 > 0, |h(t) — h(s)| < Hl(R)[t — 7™

v For all s > 0, the function ¥, : y — (s, y) is of class C?. Further-
(A > more, ||3‘I’||OQ 1= sup,, a‘I’(s y)| < +oo and ||ZF ||OO < 400. The constant
Ha‘; || is denoted by Llp(\If) (this in order to be coherent with the notation
in Chapter 3).

(AZ): The function ¥ is uniformly bounded, that is ||V||s < +00.

(A‘I' ) For all y in R, the functions s — ¥(s,y) and s — %‘5(8 y) respectively
C;)" | belong to C? and C}. Furthermore, the functions y ~ |[¥(-, Y)llcz and

Y Hg_\;('v Y)llez are locally bounded?.

( v > For all y in R, the function s — W(s,y) belongs to Cjf and y — ||¥(-, Yllea
5.C, )" | is locally bounded.

Remark 4.2.1. Note that:
o Assumption (Al ) implies Assumption (A ),

e the assumptions regarding the intensity function WV are rather technical, nevertheless
Assumptions (A} ), (AY) and (A‘I’CQ) are satisfied as soon as W belongs to C}.

Furthermore, Assumption (ASC4) 15 satzsﬁed if U is in Cp.
54

Let (ApLy) be satisfied if (Aum o)r (AL), (AJ2) and (AY) are satisfied. These four
assumptions also appear in Chapter 3, where they7 are used to prove propagation of chaos.
Furthermore, let (Arqy) be satisfied if (Ax) and (A‘I’Cg) are satisfied. It is used in the
present chapter to prove tightness of the fluctuations. Finally, let (Aqr) be satisfied
if (Arax), (Afis) and (AY,) are satisfied. It is used in the present chapter to prove
convergence of the ﬂuctuaticfns.

Notice that Assumption (Aiﬁ‘oo) implies that if N_ is distributed according to (n_,
then the age processes associated with N are such that, almost surely,

forallt > 0,5 < Mg +tand S, < Mg +t. (4.1)

As a particular case of the ADRHP defined in Chapter 3, we consider in this chapter
age dependent Hawkes processes as described below. We drop the adjective “random” since
the interaction function h is deterministic. In comparison with Representation 3.2.3, the
latter are described by the following representation induced by the thinning procedure.

3The definitions of the norms || - |l for all k& > 0, can be found in Section 4.4.a)
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Representation 4.2.2. Let (II'(dt,dx));>1 be some i.i.d. F-Poisson measures with inten-
sity 1 on R%. Let (N');>1 be some i.i.d. point processes on R_ distributed according to

N

Let (Nt’)gé" be a family of counting processes such that, fori=1,...,n, and allt > 0,

S A '
Nt_/o/o ]l{$<\p< Zm%i(/Ot_h(t,—Z)Ni(dZD)}

J=1

' (at', d), (4.2)

where (S;_)i>o is the predictable age process associated with N* = N* U N' and N is
the point process associated with the counting process (N})iso. Then, (N*)i=1.. ., is an age
dependent Hawkes process (ADHP) with parameters (n, h, ¥, (y_).

Remark 4.2.3. Note that an ADHP is in fact a (deterministic) measurable function of
the Poisson measures (II'(dt, dz));>1. More classically, as in Definition 3.2.1, an ADHP
can be characterized by its stochastic intensity as follows. If (N*);—1. , is an ADHP with
parameters (n,h,V,(y_), then, for all i = 1,...,n, the point process N* admits an TF-
intensity X! defined, for all t >0, by

No= (s;‘_, % En: /t_ h(t — z)Ni(dz)> : (4.3)

Going back and forth between the definition via the intensities (4.3) and Representation
4.2.2 is standard (see Section 3.2.d) for more insights). Furthermore, Proposition 3.2.}
gives that, under Assumption (A,.y), there exists an ADHP (Ni)z»zlwn with parameters
(n,h,U,(n_) such that t — E[N}] is locally bounded.

Notice that, since the initial conditions (Ni)izlwn are i.i.d. and the Poisson measures
(IT°(dt, dx))s>1 are i.i.d., the processes N’ i = 1,...,n, defined by (4.2) are exchangeable.
Being interested in the mean-field limit of ADHPs, let us note that, according to the anal-
ysis performed in Chapter 3, the limit equation (in comparison with (4.2)) with parameters
(h,U,(N_) is given by

— ke
Vit >0, Nt:/o /0 ]l{xg \Ij(gt,_7/0t,_ h(t’—z)E[NJr(dz)})}

where II(dt', dx) is an F-Poisson measure on R? with intensity 1 and (S, )0 is the pre-
dictable age process associated with N = N_UN where N_ is a point process distributed
according to (x_ and N is the point process associated with the counting process (N;);>o.

Under Assumption (A..y), Proposition 3.3.6 states existence and uniqueness of the
limit process N. In particular, there exists a continuous function A : R, — R (which
depends on the parameters h, ¥ and (y_) such that if (N;);>0 is a solution of (4.4) then
E[N ,(dt)] = A(t)dt. Let us define the deterministic function 7 by, for all ¢ > 0,

(1) = /O h(t — 2)N(2)dz. (4.5)

(dt',dx),  (4.4)

Notice that ¥(¢') is the integral term fOtL h(t' — 2)E [N+(dz)} appearing in (4.4).
Once the limit equation is well-posed, following the ideas of Sznitman in [156], it is easy

to construct a suitable coupling between ADHPs and i.i.d. solutions of the limit equation
(4.4). More precisely, consider
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e a sequence (N');>; of i.i.d. point processes distributed according to (y_;
e a sequence (IT'(dt',dx));> of i.i.d. F-Poisson measures with intensity 1 on R?.

Under Assumption (Ay.x), we have existence of both ADHPs and the limit process N.
Hence, one can build simultaneously:

- a sequence (indexed by n > 1) (N™");_;__, of ADHPs with parameters (n,h,¥,(y )
according to Representation 4.2.2 namely

t “+o00
N™ = 1 ni (', d 4.6
P ez w ) (46)

and past given by N*, where 7j; :=n~' 37" | fot/_ h(t' — 2) N (dz),

- and a sequence (Wﬁ)gé of i.i.d. solutions of the limit equation namely

N, :/0 /0 ]1{:6 . (gi/ﬁ(t/>>}l'[i(dt’,da:), (4.7)

and past given by N, where 7 is defined by (4.5). Moreover, denote by AP := (S, v)
and )\, := W(S, ,7(t)) the respective intensities of N™ and N'.

Notice that the coupling above is based on the sharing of a common past (N*);>; and a
common underlying randomness, that are the F-Poisson measures (II*(dt’, dz));>1, thanks
to the thinning procedure. Note that the sequence of ADHPs is indexed by the size of the
network n whereas the solutions of the limit equation which represent the behaviour under
the mean field approximation are not.

The proof of the convergence (as n — +00) of the empirical measure fzg, ==+ "' | § s

towards the law of ?:, for all £ > 0, given in Chapter 3 relies on the following estimates
(Corollaries 3.4.3 and 3.4.5): for alli=1,...,n and 0 > 0,

E
t€[0,0]

As a straight follow-up to the convergence of the empirical measure g, we are inter-
ested in the dynamics of the fluctuations of this empirical measure around its limit. For
any t > 0, let P, denote the law of both §t1 and §t1_ (they have the same law since they are
equal almost surely). Notice that P, admits the density u(t, -) with respect to the Lebesgue
measure, where u is the unique solution of (3.23) according to Proposition 3.3.8, thus

oo
(P, p) = /0 o(s)u(t, s)ds.

The analysis of the coupling (Equation (4.8)) gives a rate of convergence in, at least, n~'/2

so we want to find the limit law of the fluctuation process defined, for all ¢ > 0, by

= /n (M5, — P) . (4.9)

Notice that 7} is a distribution in the functional analysis sense on the state space of the
ages, i.e. R, and is devoted to be considered as a linear form acting on test functions ¢
by means of (1}, ).
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4.3 Estimates in total variation norm

The bound (n~'/?) on the rate of convergence, given by (4.8), is not sufficient in order to
prove convergence or even tightness of the fluctuation process n". Some refined estimates
are necessary. For instance, when dealing with diffusions, one looks for higher order moment
estimates on the difference between the particles driven by the real dynamics and the limit
particles (see [50, 82, 97, 101] for instance). Here, we deal with pure jump processes and,
up to our knowledge, there is no reason why one could obtain better rates for higher order
moments. A simple way to catch this fact is by looking at the coupling between the counting
processes. Indeed, the difference between two counting processes, say J; = | N, * Nﬂ,
takes value in N so that for all p > 1, (6;"")? > §,”*, and the moment of order p is greater
than the moment of order one.

In order to accommodate this fact, the key idea is to estimate the coupling (4.6)-(4.7)
in the total variation distance. Hence, the estimates needed in the next section (and proved
in the present section) are the analogous of higher order moments but with respect to the
total variation norm, i.e. the probabilities

n,k’ —k’
Xng)(H) = P ((St_’k Jecio.0 7 (Si_)icp,0 for every k' =1, .., k‘)

n,k’ =’ /
= P ((St * )te[o,@] # (S, )te[o,a} Jor every k" =1, 7k> ) (4.10)

for all positive integer k£ and real number 6 > 0.
The heuristics underlying the result stated below, in Proposition 4.3.1, relies on the
asymptotic independence between the k age processes (S} k )icpa, K =1, ..., k. Indeed, if

)

they were independent then we would have (remind (4.8)),

!

XH(0) = H P((S?ik/)te[o,e} # (S;_ )iciog) = (G O)F <o,

which is exactly the rate of convergence we find below.

Proposition 4.3.1. Under Assumption (Appy),

~Y

A0) Sowy n™and D) =B [137 =701 S,

Remark 4.3.2. In addition to the explanation given in the beginning of this section, let
us mention that the analogous to the higher moment estimates obtained for diffusions is
obtained here for the difference between vf* and ¥(t). Indeed, as k grows, the convergence of

57(3@) (t) quickens. However, this gain in the rate of convergence does not apply when looking
at the difference between the ages Sf’l and g; or the difference between the intensities )\f’l

and X: (except if U does not depend on s).

Proof. Denote by AAB the symmetric difference of the sets A and B. Then, for any ¢ < n,
let us define A™ := N niAN' that is the set of points that are not common to N™ and
N'. From (4.6)-(4.7), one has

t +oo
AP = / / 1 i ~i o (dt, da),
0 0 {I 6 [[At/’ ,)\t/]]}
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where [\, Xi,]] is the non empty interval which is either [)\Z’i,xl] or [Xi,, A7), Then, the

intensity of the point process A™ is given by A&™ := [AM = Al
Note that, for all n > 1 and i = 1,...,n, N™ and N' coincide on the non-positive
part, i.e. N™ = N'. Therefore, Syt = gg_ so that the equality between the processes

(SN ieqoo and (?2_)%[0,9] is equivalent to Aj”" = 0. In particular, one has

k

[

=1

X)) <E , (4.11)

since counting processes take value in N. For any positive integers k£ and p, let us denote,
for all n > k,

I a5

5;’“?)(9) =E

i=1
Let us show, by induction on k, that
eFP(0) Sigppy n 2 (4.12)

which will end the proof thanks to (4.11). First, note that the case k = 1 and p = 1 is
already treated in Chapter 3. Indeed, Theorem 3.4.1 gives

0
000 = [E [t =R gyt (413
0

Then, note that for any two positive integers p and g,
ek (9) < %9 () as soon as p < q. (4.14)

This is due to the fact that counting processes take value in N. The rest of the proof is
divided in two steps: initialization and inductive step.

Step one. For £ =1 and p a positive integer, it holds that

Ay = pz_l @) /0 07<A?;1)P’N71(dt). (4.15)

p'=0

Indeed, each time the process (A]"');>¢ jumps (from AP' to A" + 1) then (A}')? jumps
from (A}"')? to (A} + 1)? so the infinitesimal variation is

(A + 1) = (AR = pi (5,) (AR

p'=0

The right-hand side of (4.15) involves integrals of predictable processes, that are the
(A?Ll)p/, with respect to a point measure under which it is convenient to take expectation.
More precisely, since (A7) < (A7) as soon as 0 < p’ < p — 1, it holds that

C4P(0) =E [(AM)Y] < E [ /0 9 A"’l(dt)} + R [ /0 G(Af‘f)pA"’l(dt)] |

0
< o)+ B[] i (4.16)
0
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Yet the intensity A>™! is bounded by ||¥||s and 5" (6) <o n=1/2, see (4.13), so

)
521”’)(0) S0.0) n~? —|—/ 57(11’p)(t)dt,
0

and Lemma 4.7.1 gives £\,”)(0) <(gp) 1

~(9,

-1/2.

Step two. For all integers £ > 2 and p > 1, one can generalize the argument given to
prove (4.15). Indeed, for any j in {1,...,k}, each time the process (A}”)i>o jumps (from
A7 to A7 4+ 1) then Hle(A?f)p jumps, almost surely, from (A}7)? Hf¢j7i:1(Aff)p to
(AP + D)PTTE iz (AP since there are almost surely no common jumps between any
two of the point processes A™. So the infinitesimal variation of ([T, (A})?);s0 is a.s.
p—1 D k . .

> () T ey

p'=0 i#j,i=1

as soon as t is a jumping time of (A}7),¢. It then follows that

ﬁA’” i%( >/9 H (AT (AW A (dp),  almost surely.

i=1 j=1 p’=0 i#7,0=1

Hence, thanks to the exchangeability of the processes (A™),_; ., and the predictability

of the integrated processes, we have

2 ()

.....

(0) =

Mw

/ H (APHyP A”JpAnﬂ(dt)]

Jj=1p 0 i#j4i=1
P= 0 k
_ kz >/ AnlpHAnzp)\Anl dt
p'=0 =2
0 k
< / (APYPAR™H + 27E (AR [ [Ar) p)\A“] dt, (4.17)
1=2

where we used that (A7) < (At’l) as soon as 0 < p' <p—1.
On the one hand, using that A>"™! < ||¥]|.., the second expectation in (4.17) is bounded

by ||\IJ||005(k p)( t). On the other hand, we use (A;I’cg) which gives the following bound on
the intensity,

A < Lip(0) 17 = ()] 4+ 11]|ocLgragr < Lip(¥)]7 = 7(0)] + [[9]Joc (A7)
Hence the first expectation in (4.17) is bounded by
Lip(0)D(t) + [[¥|lscer (t), (4.18)

with D(t) := ]E[HfZQ(A?f)pW —7%(t)|]]. The second term of (4.18) is convenient to use a
Gronwall-type lemma. To deal with the first term, we use a trick involving the exchange-
ability of the particles. Indeed, using the exchangeability we can replace each of the k& — 1
terms (A"")P in the expression of D(t) by the following sum

ilz) '
Y @y
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without modifying the value of the expectation since the sums are taken on disjoined
indices. Hence, using for the second line a generalization of Holder’s inequality with &
exponents equal to 1/k, we have

k il %]

b < B[] (= X @y —a0)

= \ L&) == 2]+
i 1/k

\ 3

k ]
[1E %Z Ay W () < By (1) T €D (DY, (4.19)
i=2 E

k
j=1

IN

with E,,(t) = E[((1/[%]) Z}E(A?_j)p)k] Yet, computations given in Sections 4.6.a)
and 4.6.b) give the two following statements: there exists a constant C'(k) which does not
depend on n or p such that

Epjp(t) (Z nF' =k WPk) (1) 4 c(kp) (t)> , (4.20)

k'=1

and &(Lk) (t) satisfy the following bound,

EW () Spmy n” /2+Z W=kg(RR) (1) g (B (4. (4.21)
k=1

Then, using the induction hypothesis, that is for all 1 < k' < k — 1 and for all positive

(k' —K'/2

integer p, e P (t) Stekp) 1 , one has,

1 RN k, _ k,
{Enkp<t) ~(t,k,p) Zk’ 1 nk kn K2 + 57(1 p)(t) §(t7k7p) n (k+1)/2 + 6( p)( ) (4 22)

607 (t) Stenay 072 4 Tplynt 2 4 a0 (1) Sengy 07+ 850 (0).

Gathering (4.17), (4.18), (4.19) and (4.22) gives (remind that " (t) < eF¥) (1))

0
85?’1))(9) S,(@,km) n_k/Q —|—/ 67(1k’p) (t)dt,
0

and so the Grénwall-type Lemma 4.7.1 gives {7 )(0) <(0kp) n /% which ends the proof

thanks to (4.11).
[l

4.4 Tightness

The aim of this section is to prove tightness of the sequence of the laws of (1"),>1 regarded
as stochastic processes (in time) with values in a suitable space of distributions. Thus, we
consider (n;')¢>0 as a random process with values in the dual space of some well-chosen
space of test functions. In Section 4.4.a), we give the definition of these spaces of test
functions. Following the Hilbertian approach developed in [50], we work with weighted
Sobolev Hilbert spaces. Finally, the tightness result is stated in Theorem 4.4.14.
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The following study takes benefit of the Hilbert structure of the Sobolev spaces consid-
ered. This prompts us to recall the following Aldous tightness criterion for Hilbert space
valued stochastic processes (cf. [81, p. 34-35]). Let H be a separable Hilbert space. A
sequence of processes’ (X™),>; in D(R, H) defined on the respective filtered® probability
spaces (Q", F™, (F}")i>0, P") is tight if both conditions below hold true:

(A)): for every t > 0 and ¢ > 0, there exists a compact set K C H such that
supP" (X}' ¢ K) <,
n>1

(A): for every 1,69 > 0 and 6 > 0, there exists dp > 0 and an integer ny such

that for all (F}"):>o-stopping time 7,, < 6,

sup sup P" (|| X7 s — X2 ||u > 1) < e
n>ng §<dg

Note that (A1) is implied by the condition (A1) stated below which is much easier to
ensue.
(A): There exists a Hilbert space Hy such that Hy <, H and, for all ¢ > 0,

sup (]| X7'|[7,] < +-oo,

where the notation < means that the embedding is compact and E"
denotes the expectation associated with the probability P".

The fact that (A;/) implies (A;) is easily checked: by compactness of the embedding,
closed balls in Hy are compact in H so, Markov’s inequality gives (A;).

4.4.a) Preliminaries on weighted Sobolev spaces

Here are listed some definitions and technical results about the weighted Sobolev spaces
used in the present chapter. To avoid confusion, let us stress the fact that the test functions
we use are supported in the state space of the ages, namely R,. For any integer £ and
any real a in Ry, we denote by W5 := WF(R,) the completion of the set of compactly
supported (in R ) functions of class C* for the following norm

1/2
[f¥) ()[?
e (£ )

where fU) denotes the j* derivative of f. Then, W§® equipped with the norm || - || is
a separable Hilbert space and we denote (W, e, || - ||-£.a) its dual space. Notice that

< [ lwo and [[-|] g0 < || -k.as

if £/
: / k,a ko' —k,o' —k,a (423)
it o > o, then Wy™ — Wy™ and W, =Wy,

where the notation < means that the embedding is continuous.

4Complements about Hilbert space valued stochastic processes can be found in Appendix A.4.
®We assume here that (F}');>0 is such that X™ is (F}*);>o-adapted.
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Let C* be the space of functions f on R, with continuous derivatives up to order k
such that, for all &' < k, sup,cg, |FE) ()| /(1 + |2|*) < +oo. We equip this space with the
norm

k (k")
1l = > sup L]

k/:0w€R+ 1 _I_ |$‘a

Recall that C is the space of bounded functions of class C* with bounded derivatives of
every order less than k. Notice that Cff = C* as normed spaces. Denote by C,° * its dual
space. For any o > 1/2 and any integer k (so that [; 1/(1+[z[**)dz < +00), Ck— whe,
i.e. there exists a constant C' such that

- [k < Cl - g (4.24)

We recall the following Sobolev embeddings (see [50, Section 2.1.]):

(i) Sobolev embedding theorem: W6n+k’a — Ch form > 1, k > 0 and a in R, ie.
there exists a constant C' such that

[ fllera < Cllfllmtk.a- (4.25)

(i) Maurin’s theorem: Wi <o WP for m > 1, k > 0, a in R, and 8 > 1/2,
where H.S. means that the embedding is of Hilbert-Schmidt type®. In particular, the
embedding is compact and there exists a constant C' such that

1 Fllk.0ts < Cllfllk4m.a- (4.26)

Hence, the following dual embeddings hold true:

{Wo—k,a — Cy %, for k>0 and a > 1/2, (dual embedding of (4.24)) (4.27)

Wo_k,a+ﬂ N Wo—(m—&—k’),oz’ form>1,k>0,ain R, and 8 > 1/2.

In some of the proofs given in the next section, we consider an orthonormal basis (¢;);>1
of W(]f ** composed of C* functions with compact support. The existence of such a basis
follows from the fact that the functions of class C* with compact support are dense in
Wg®. Furthermore, if (¢;);>1 is an orthonormal basis of WE* and w belongs to W, ™,
then |Jwl|?, , = > (w, ¢;)” thanks to Parseval’s identity. Let us precise that we stick

with the notation (p;),>1 even if the space Wg * (in particular the regularity k) may differ
from page to page.
The two lemmas below are useful throughout the analysis.

Lemma 4.4.1. For every test function ¢ in Wi®, ||¢'|l1a < ||¢lloa- If f belongs to CF
for some k > 1 then, for any fived o in R, , there exists a constant C' such that for every
test function @ in WY, || follka < ClI fllesllel |-

Proof. The first assertion follows from the definition of || - ||2., and the second one follows
from Leibniz’s rule and the definition of || - || a- O

Here, it means that 3., |l¢j][7 o1 < +00 if (¢;);>1 is an orthonormal basis of WyrHhe
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Lemma 4.4.2. For any fivzed o in Ry and z,y in R, the mappings 6, and D, ,, W&’a — R,
defined by 6,(p) := w(x) and D, ,(¢) == ¢(z) — ©(y) are linear continuous. In particular,
for all o in Ry, there exist some positive constants Cy and Cs such that, if x and y are
bounded by some constant M, i.e. || < M and |y| < M, then

(4.28)

||51'H—2,a < ||51||—1,o¢ < Cl(l + Ma),
||D$,y||—2,a < ||D$,y||—1,o¢ < CQ(]_ + Moz)‘

Proof. Remark that |D,,(¢)| < |o(z)| + |¢(y)| = [0.(¢)| + [0,(¢)|. Hence, it suffices to
show that there exists some positive constant C' such that ||0,]|-1.. < C(1 + |z]|*). Yet,
102(0)] = l(2)] < [ @lleos (X + []*) < Cllfl1all + [2[*) by (4.25). m

Remark 4.4.3. At this point, let us mention two reasons why weighted Sobolev spaces are
more appropriate than standard (non-weighted) Sobolev spaces of functions on R :

e we want to be able to consider functions of Cf as test functions: indeed, ¥ must be
considered as a test function in Equation (4.55) below, yet we do not want U to be
compactly supported with respect to the age s or even to rapidly decrease when s goes
to infinity. The natural space to which ¥ belongs is some C¥ space,

e in order to ensue criterion (4y), a compact embedding is required but Maurin’s theo-
rem does not apply for standard Sobolev spaces on R (see [2, Theorem 6.37]).

To satisfy the first point in the remark above, the weight « is assumed to be (strictly)
greater than 1/2 in all the next sections so that (4.24) holds true.

4.4.b) Decomposition of the fluctuations

Here, we give a semi-martingale representation of " used to simplify the study of tightness.
Let us denote R (for reset) the linear mapping defined by Ry := ¢(0)—p(-) where ¢ is some
test function. This mapping naturally appears in our problem since the age process jumps
to the value 0 at each point of the underlying point process. The announced decomposition
of the dynamics of (7}');>o is described in the Proposition below.

Proposition 4.4.4. Under Assumption (A,.y), for every test function ¢ in C} and t > 0,

o) — () = / (00, Lag) + A™(@))dz + M (p), (4.29)

with L,p(s) = ¢'(s) + ¥(s,7(z))Re(s) for all z > 0 and s in R, where 7 is defined by
(4.5), and

M) = S [ Rp(SE) (N2 - ),
i=1 0 | | (4.30)
AZ(@) ==Y " Ro(S7) (A — W(S2,4(2))) -

i=1
Furthermore, for any ¢ in Cy, (M"(p))i>o is a real valued F-martingale with angle bracket
given by

n t
< M"(p) >= %Z/ Ry (Sj;“j)2 Nz, (4.31)
i=1 70
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Remark 4.4.5. To avoid confusion, let us mention that (4.30) defines M]* and A} as
distributions acting on test functions. More precisely, we show below that they can be seen
as distributions in WO_Z’O‘ (Propositions 4.4.7 and 4.4.10). However, we do not use the
notation for the dual action (-,-) to avoid tricky notation involving several angle brackets
in (4.31) for instance.

Proof. By definition of n™ (Equation (4.9)),
(s 0) = (5, ) = Vi [% > ((sper0) = (3sp0) ) = (P = (Pove))

Since, for all i = 1,...,n, the age process (5;"");>0 is piece-wise continuous, increasing with
rate 1 and jumps from S;"* to 0 when N;"* — N,"" = 1, we have

<5Stn,i,go> _ <5Sg,i, ¢> _ /0 t o (SM) dz + /0 t Ry (S™) N™(dz)

and so

(#o0) ~ (i) = [ (ot T Z [ ro(sy N

Now, we have in the same way

(50) = (o) = [ & (51) o+ [ Ro(51) W@

and, by definition of (P,)¢>o,

(Prg) — (Py o) = E Uot ¢ () dz] +E [/Ot Ry (3;) Nl(dz)] | (4.33)

Yet, since ¢’ is bounded, Fubini’s theorem gives that | f(f o' ( fo ., ') dz. More-
over, remind that the intensity of N is /\ = \I/(S’t (1)). Yet, since ¢ and ¥ are bounded,

|/

and so E[f(f R@(gi_)wl(dz = fo Ro(S )/\ dz] since (gtl_)tzo is a predictable process
(see [16, II. T8]). Using once again Fubml s theorem, we end up with

B| [ Re(5L)Nan)| = [ (rovc AR

and so (4.33) becomes

(5t )‘)\ dz} < o0,

(P = (Prgh = | P et / P T(2) Ry d. (431)

Gathering (4.32) and (4.34) gives
<nf,so>—<n37so>=/0t<n?,<ﬂ’>dz
+f( S [ o () o) = [ 4wt ))R¢>d)
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and so
t
() — () = / O Lg) d=
0

+\/—< 2/ ) N™i(dz) — /<—" (z))Rgo>dz>, (4.35)

where we used that, almost surely, u§ = p%, for almost every z in R,. Then, the second

term in the right-hand side of (4.35) rewrites as M}*(¢) + fo A% (p)dz.
It remains to show that (M (¢)):>0 is an F—martmgale Yet, for alli=1,...,n,

t t
B | [ |Re (s ids| < 2ol | [ 3240z = 2Alpllak [57] < +oc.
0 0

and the F-predictability of the age processes (S;"")i=o gives the result (see [16, IL. T8§]).
Finally, the expression of the angle bracket (4.31) follows from standard computations for
point processes (see [60, Proposition 11.4.1.]). O

4.4.c) Estimates in dual spaces

Below are stated estimates of the terms 1", A™ and M™ appearing in (4.29) and regarded
as distributions. More precisely, the estimates given in this section are stated in terms of
the norm on either Wy * or Wy > for any a > 1/2 (in comparison with Wy >* and W, ™!
in [82] for instance). Usually, like in [50, 82, 97, 101], the weight is linked to the maximal
order of the moment estimates obtained on the positions of the particles. However, the age
processes are bounded in finite time (remind (4.1)) so the weight « of the Sobolev space
can be taken as large as wanted. The weighted Sobolev spaces are nevertheless interesting
here since, in particular, the distribution n;' belongs to W, L forall t > 0 (see Proposition
4.4.6 below). We refer to the introductory discussion in Section 4.1 for complements on
the usefulness of the weights.

We first estimate " in the smaller space W, L This is later used in order to satisfy
condition (A1) of the Aldous type criterion stated on page 134.

Proposition 4.4.6. Under Assumption (A..y), for any o > 1/2 and 6 > 0,

sup sup E [[|nf|[?1.] < 4oo. (4.36)
n>1te[0,0]

Proof. Let (@)1 be an orthonormal basis of Wy so that, in particular ||n}||>

> e (0 ©r)’. Using the coupling (4.6)-(4.7), we have for every k and ¢ < 6,

(1 k) = < Zwk (57) ~E [ <si>]>=sr<sok>+1;"<¢k>,

where

{Sf(%) nT2 Y on(Si) — ei(S)
T} (or) = n—1/? Z =1 ‘Pk:(gjf) [SDk(S )]-
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Step one. Using the independence of the age processes <§i>t20, we have

E ZTt"(gpk)Q] = Y E %(im@)—lﬁ?[w(gbm
- YE|(aE0-E[aEh)) ] < TE|(a))]
< E|Y0g0)? | =E[lIbg1210] -

k>1

Then, using Lemma 4.4.2 and the fact that the age ?2 is upper bounded by My, +t < My, +0
(thanks to (ACN’OO), remind (4.1)), it follows that

ZTtn(%)Q

k>1

E < (C)*(1+ (Mg, +0)*)?

and so sup,,>; SUP(o,g) E[Zk21 T/ (pr)?] < +o0.

3

Step two. Expanding the square and using exchangeability of the age processes (S;"");>0,
one has

E ZSf(QDkV] = n'E Z(Z@k(sf’i)—sf?k(?i))

k>1 E>1 \i=1

2

= (n—DE | Y (0e(S1) — ox(S))(0r(5?) — ¢i(S)))
+E [ (oS5 — sok<?i>>2] . (4.37)

Since the ages S, §t17 S7"* and g? are upper bounded by Mr, + 6 and (¢g(z1) —
or(22)) (kY1) — pr(y2)) = 0 as soon as 1 = 2 or Y1 = Y2, we have

E | (0e(SPh) — n(5,)) (r(S72) — ¢k<§?>>] <X20) swp > Jeilz) — o),

k>1 eySMry+0 1
(4.38)
where ng)(e) is defined by (4.10). Yet, since (¢g)r>1 is an orthonormal basis of Wy'®, we
have

n,1 ol 2
S (u(81) = ) = Tt (Dsgusioon) =0gpagilPia 450,

Supx,yﬁMTOJrO Zk21 |90k (l‘) — Pk (y)|2 - Sup:{:,ySMTOJrH ||Dw,y| |2—1,a'

Hence, using Lemma 4.4.2 and once again the fact that the ages S}’ 1 and gi are upper
bounded by My, + 6, we have, by gathering (4.37)-(4.39),

> St er)?

k>1

E < (n = D)X (0)(C2)* (1 + (Mg, +0)*)* + (Co)* (1 + (Mg, +60)%)?,
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and it follows from Proposition 4.3.1 that sup,,»; sup,cjo g E[Zk>1 " (pr)?] < +o00.
Finally, by convexity of the square function, [[n/|[*,, < 2 Zk>1 " (or)? + T (pr)? so
that (4.36) follows from the two steps above. [

Proposition 4.4.7. Under Assumption (A,.y), for any integer n and any real o > 1/2,
the process (M);so, defined by (4.30), is an F-martingale which belongs to DR, Wy "%)
almost surely. Furthermore, for any 6 > 0,

sup ||M7|]%, .,
t€(0,6]

sup E

n>1

< +o0. (4.40)

Remark 4.4.8. In comparison with Proposition 4.4.7, we do not prove thatt — n;' belongs
to D(R+,W()_1’a) almost surely in Proposition 4.4.6. For our purpose, it is sufficient to
prove that t — n™ belongs to the bigger space D(R,, W(;Q’“). The corresponding tightness
property is proved below in Proposition 4.4.135.

Proof. We first show (4.40) and then use it in order to prove that (M]");>o is cadlag. Let
(¢r)k>1 be an orthonormal basis of W,® composed of C* functions with compact support.
For all £ > 1, the test function ¢, belongs to C} so that (M"(¢x))i>0 is an F-martingale
(Proposition 4.4.4). Using Doob’s inequality for real-valued martingales |77, Theorem
1.43.] and Equation (4.31), one has

<> E

k>1

E sup ||Mn’|21a

t€(0,6]

sup M;" (k) ]
t€[0,6]

<CY E[Mj(n)?] < C|V||<E

k>1

/ZR% S) ]

k>1

where the last inequality comes from exchangeability and boundedness of the intensity.
Noticing that Ry (S = Dy gn1(pr) and then using Lemma 4.4.2 as we have done in the

proof of Proposition 4.4.6, it follows that

0
E /ZR@k(Sg;l)de

U

< (Gy)° /06(1 + (Mn, +6)%)*dz,

which does not depend on n and gives (4.40). Moreover, gathering the integrability property
given by (4.40) and the fact that, for all £ > 1, the process (M]*(¢x))i>0 is an F-martingale,
we have that M" is a W, b valued F-martingale (see Appendix A.4 for more insights on
Hilbert space valued martingales).

It remains to show that (M]");>¢ is cadlag. First remark that for any &, the F-martingale
(M (pr))i>0 is cadlag. Let € > 0 and ¢y > 0. For any n > 1,

E sup Mf(gpk)Q

E>1 te [0,t0+1]

< 400,

so there exists a set Q" such that P(Q2") = 1 and for all w in Q",

sup  (MM(w), i)’ < +00.
k>1 te€[0,t0+1]
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Once w is fixed in Q", there exists an integer ko (which depends on w) such that
Y ksko SUPLE(0,10-+1] (M™(w), ¢r)” < €. Let t be such that t, < t < to 4 1, using the right
continuity of ¢ — (M (w), pr), we have, dropping w for simplicity of notations,

1M = MR, = > (M7 (pk) — M (1))
E>1
ko
< Z(Mtn(@k) — M (pr)? + 2 Z [M[ (1) + M; (08)°]
k=1 k>ko
ko
< Z€+45 = (ko + 4)¢,

k=1

as soon as |t — to| is small enough. Hence, ¢t — M;*(w) is right continuous with values in
Wo_l’a. In the same way, let (¢,,)m>1 be a sequence such that t,, < ¢y and t,, — to. For
any integers m and ¢, we have, dropping w for simplicity of notations,

M7 = M7 10 = Y (ME (o) = M (on))?
k>1
ko
< Z(Mtnm(@k) — M] (pr))? + 4e.

k=1
Yet, forall k = 1,. .., ko, the sequence (M (¢r))m>1 is convergent hence Cauchy. It follows
that (M;' (w))m>1 is a Cauchy sequence and so converges in Wy . Hence, t — M"(w)
admits left limits in W, "®. Finally, t — M belongs to D(Ry, W, "*) almost surely. [

A bound for the linear operator L, appearing in Equation (4.29) is given in the following
proposition by means of Lemma 4.4.1. Hence, let us note here that, under Assumption
(AY,.), the functions

L

v
t= [ U, 7)) |ez and ¢ — H({;—(,i(t)) are locally bounded, (4.41)
)

G
since t — 7J(t) is locally bounded. In the same way, under Assumption (AY,,), the function
Lp
t = [[U(,7(t))[lea is locally bounded. (4.42)

Proposition 4.4.9. Under (Azc§)7 for any z in Ry, the application L, defined in Propo-

sition 4.4.4 1s a linear continuous mapping from W§’“ to WS’O‘ for any o > 1/2. Moreover,
for all ¢ in Wo® and 6 > 0,
|IL20l13 o
sup —————— < +00. (4.43)
seol |#l3a

Proof. By definition of L, and the triangular inequality,

1201110 < 20110 + 1T F(2) Rl 0)-

Firstly, ||¢'[|7 . < I|¢l[3,- Secondly, by Lemma 4.4.1, for all z <6,

12(, 7 () Rellf o < C sup [[(,7()G 1 Rell o

z€[0,0]
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Using the convexity of the square function, it appears that

1
1Rl <2 | o prmdeleO)F + 2l
+

Yet, by (4.25), [¢(0)] < [|¢llcoa < Cll¢l[1,a so that, for any fixed o > 1/2, |[|Ryl[}, <
Cll¢l|3., and so, by using (4.23), we have ||Ryp|[], < CHSDHza Finally, (4.41) gives (4.43).

(R

Before giving estimates for A", let us precise the expansion we use in the proof. Namely,
using that A" = W(S;™', 7;") and (A} ), it follows from Taylor’s inequality that for ¢ in
Wi,

Z R Sm (St 3(1) (Va(y =3(t) + V™) (4.44)

with the rests satisfying |r"’| < sup, v (s y)||7# —7(¢)|?/2. This upper-bound does not
depend on ¢. Let us denote I'} := \/_(% —7(t)) and

RO (e) = o> (Re(SE) G (SE 70 Vi),

=1

so that (4.44) rewrites as

Ar(p) = <ﬁ T8 W))R@> o4 RO (). (1.45)

Proposition 4.4.10. Under Assumption (A,.y), for any integer n and any real numbers
t in Ry and a > 1/2, the application A}, defined by (4.30), is a linear continuous mapping
from Wg’a to R which satisfies, for any 6 > 0,

sup sup E [||A?[2,,] < +oc. (4.46)
n>1 te(0,0]

Proof. Starting from (4.45), we have, by convexity of the square function,

Al < 2( <ns Z—fw(t))&oy () + RV (e)?)

Let (¢r)r>1 be an orthonormal basis of Wi® so that AP 0.0 = 2 kst A (0r)?. Noticing
that Rpy(S]"") = D, ng(SOk;) and then using Lemma 4.4.2 as we have done in the proof of
Proposition 4.4.6, it follows that

Z<nzt,§—‘;’<ﬂ<t>>mk> < Lip(v Z(ZR% (5p )

k>1 i=1 \k>1

< Lip(¥)*(Ca)*(1+ (Mg, +0)%)?,

and in the same way,

>R (@)? < Lip(0)2(Co)?(1 + (Mg, + 6)7)* = Z(\/_r H2,

k>1 z:l
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Hence,

S A7 (o) < 2Lip(W)(C2)* (1 + (Mr, +0)°)° ((F?_)2 e Z(ﬁrfi>2> .

k>1 i=1

Yet, as a consequence of Proposition 4.3.1, &2 () = E[T? |*]/n <S¢ n~! and D) =
E[|T7]*]/n* <¢ n~2. In particular, uniformly in ¢ < 0, the L' norm of (I} )? is of order 1
while the L' norm of the rest term satisfies

2y

LS < n(supl 2 2 s,)) e - (014
[t t B sy Oy '

and so vanishes to 0 as n goes to infinity. Hence,

sup sup E [||A}][%,,] = sup sup E{ZA" k) } < +00.

n>1t€(0,6] n>1¢€[0,0] k>1

]

To prove tightness of (™),>1 in D(R,, W, >*), we use (as a consequence of (4.29)) the
following decomposition in W, >,

t t
ny —ny = / nidz +/ Aldz + M, (4.47)
0

where L is the adjoint operator of L.,.

Remark 4.4.11. As a corollary of Proposition 4.4.9, one has, for all o > 1/2, all w in
Wy and all 6 > 0,
|ILiw[|250
sup ————%—— < +00. (4.48)
z€[0,0) HwH—l,a

Indeed, both || Liwl|[?,,, < supjg,.—1 ||L:¢l[1 4 Lo and Equation (4.43) give the result.

Furthermore, the Doob-Meyer process’ (<< M™>>;);>¢ associated with the square inte-
grable F-martingale (M}");>o satisfies the following: for any ¢ > 0, << M™ >>; is the linear
. . YA 92, —2a . : 2«
continuous mapping from Wy to W, = given, for all ¢, ¢o in Wi, by

(K M™>>(¢1), @ Z / Ry (ST Ry (ST A 2.

This last equation can be retrieved thanks to the polarization identity from (4.31). More-
over, to give sense to Equation (4.47), we need the lemma stated below.

Lemma 4.4.12. Under (A;qy), the integmls fg Lin?dz and f[f Aldz are almost surely

well deﬁned as Bochner mtegmls mn Wo * for any a > 1/2. In particular, the functions
t— fo Linldz and t — fo A%dz are almost surely strongly continuous in Wo

Tt is the generalization of the angle bracket for real valued martingales to Hilbert space valued mar-
tingales (see Appendix A.4).

81t is the generalization of Lebesgue integral to functions that take values in a Banach space, as the
limit of integrals of simple functions. In particular, as for the Lebesgue integral, one has || [ f]| < [||f]|-
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Proof. Since Wy >® is separable, it suffices to verify that (see Yosida [162, p. 133]):

(i) for every ¢ in W2®, the functions z — (L*n" ) = (", L.p) and z — A™(p) are
measurable,

(ii) the integrals f[f [|LEn2||—2,odz and f[f ||AZ||-2.0dz are finite almost surely.

z

The first condition is immediate. The second one follows from the controls we have
shown.
Indeed, on the one hand, it follows from Equation (4.48) that fg Lin2 | —2.adz <t

z

fJHW?HfLadZ and Proposition 4.4.6 implies ]E[fotHn?Hfl,a+1dz] < 400 so that
fot ||Lin?||—2,adz is finite a.s.

z

On the other hand, Proposition 4.4.10 gives that ]E[fot |AZ||—2,ndz] is finite and so
fg [|AZ||-2.0dz is finite a.s. O

Now, using the decomposition (4.47) we are able to somehow exchange the expectation
with the supremum in the control of 7, i.e. Equation (4.36). Indeed, in comparison with
Proposition 4.4.6, we are able to prove the following statement.

Proposition 4.4.13. Under (A;qn), for every o> 1/2 and 6 > 0,

sup [[17'][% 2,0 | < +o0, (4.49)

t€[0,0]

sup E

n>1

and t — 0P belongs to D(Ry, Wy >%) almost surely.

Proof. Starting from (4.47), we have by convexity of the square function
0
sup |[n}|2o.0 < 4[5 20 + 9/ (L0212 + | AZ| 2o 0)dz + sup ||M][2,,].
[0, 0 t€[0,0]

We deduce from Equation (4.43) that fOHE[|]L§n?||327a]dz So sup,cio BlI7211% 14)-
Hence, taking the expectation in both sides of the inequality above and applying Proposi-
tions 4.4.6, 4.4.10 and 4.4.7 (remind (4.27)), we get (4.49). Starting from (4.47) and using
that the integrals are continuous from Lemma 4.4.12 and M™ is cadlag from Proposition
4.4.7, it follows that n™ is cadlag.

]

4.4.d) Tightness result

Using the estimates proved in Section 4.4.c), the tightness criterion stated on page 134 can
be checked.

Theorem 4.4.14. Under (A;qy), for any a > 1/2, the sequences of the laws of (M"™),>1
and of (N™)n>1 are tight in the space D(R, WO_Q’Q),

Proof. Condition (Ay) with Hy = W, "™ and H = W, *“ is satisfied for both processes as
a consequence of embedding (4.27) (remind that Hilbert-Schmidt operators are compact)
and Propositions 4.4.6 and 4.4.7.

On the one hand, condition (Ag) holds for (M™),>1 as soon as it holds for the trace
of the processes (<< M">>),>1 given below (4.47) [81, Rebolledo’s theorem, p. 40]|. Let
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(¢k)k>1 be an orthonormal basis of Wg’a. Let 6 > 0, dg > 0 and 6 < §y. Furthermore, let
T, be an F-stopping time smaller than 6.

Tr<M">, s —Tr<<M">>_ |

Z (<M > s(on), or) — (KM >>_ (o1), Pr)

k>1
]_ n Tn+5 Tn+5
<> [ R (s < 0] 2/ S R (52)°
k>1 i=1 Y Tn E>1

Noticing that Ry (S™") = Dy gni(ipr) and then using Lemma 4.4.2 as we have done in the
proof of Proposition 4.4.6, it follows that

E[|Tr < M">>, 45— Tr<< M">>, |] < 60]|¥]|oo(C2)* (1 + (Mg, + 0 + 50)*)? .

This last bound is arbitrarily small for d, small enough which gives condition (A;) thanks
to Markov’s inequality.

On the other hand, using decomposition (4.47) and the fact that (M"),>; is tight, it
suffices to show the tightness of the remaining terms (R} = nf + fot Lin™dz + fot A%dz)p>1
in order to show tightness of (n™),>1. Yet, using Equation (4.48), we have

Tn+0
/ Lon? + AZdz

Tn+6 0+60
<2 / UL 2 g0+ AP 5 0)d= < 260 / (CII2 e + AN 5.0)d
Tn 0

where C' depends on 6 and ¢g. Then, Propositions 4.4.6 and 4.4.10 imply that
sup, s E[||R? 5 — R} |[?5,] < Cd for dy small enough. Finally, Markov’s inequality
gives condition (A2) for (R™),>1 and so the tightness of (7"),>1.

2

1R 5 — B2 220 =

-2,

]

Remark 4.4.15. For any o > 1/2, every limit (with respect to the convergence in law) M
(respectively ) in D(Ry, Wy ) of the sequence (M™),>y (resp. (1")n>1) satisfies

E sup [[m][% 2.0

te[0,0]

sup [|[My|[?5,| < +o0 (resp. E < —|—oo). (4.50)

te[0,0]

Moreover, the limit laws are supported in C(R, WO_Q’O‘).

Proof. Let us first show that the limit points are continuous. According to [12, Theorem
13.4.], it suffices to prove that for all # > 0, the maximal jump size of M™ and " on [0, 0]
converge to 0 almost surely in order to prove the last point. Yet, for all ¢ in W§ “

AM () = [M["(0) = M[" (¢ \/—ZDos’“ ©)Lienni,

where we use the definition of M}*(¢) given by (4.30) for ¢ in C} and a density argument
to extend it to ¢ in Wi*, and

(An o) =1 (0, ¢ <77t ,90>| \/_ZD(]S"" ©)Lyenni



146 4. FLUCTUATIONS FOR GENERALIZED HAWKES PROCESSES

where we used the fact that (P,);>¢ is continuous in W, >* (see Lemma 4.7.2). Since almost
surely there is no common point to any two of the point processes (N™);_; _,, there is,
almost surely, for all ¢ > 0, at most one of the 1;cyn»: which is non null. Then, Lemma
4.4.2 implies

suPejo g ||AM]'||-2.0 < 7= Ca(1 + (Mg, + 0)%),
s AT 20 < =Ca(1+ (Mr, +6)°),
which gives the desired convergence to 0.

Finally, (4.50) are consequences of Propositions 4.4.7 and 4.4.13 (remind (4.27)) where
we use the previous step and the fact that the mapping g — sup,cg [lg:l/>5, from

D(R,, W, >) to R is continuous at every point ¢° in C(R_, Wy >%). O

4.5 Characterization of the limit

The aim of this section is to prove convergence of the sequence (n"),>; by identifying the
limit fluctuation process 1 as the unique solution of a (SDE) in infinite dimension. We
first prove, in Section 4.5.a), that every limit n satisfies a certain SDE (Theorem 4.5.6).
Then, we show, in Section 4.5.b), that this SDE uniquely characterizes the limit law. This
completes the proof of the convergence in law of (9™),>1 to 7.

4.5.a) Candidate for the limit equation

In this section, the limit version of Equation (4.47) is stated. Apart from 7", there are
two random processes in (4.47) that are A" and M". The following notation encompasses
the source of the stochasticity of both A™ and M"™ and is mainly used in order to track
the correlations between those two quantities. For all n > 1, let W™ be the W, Lo valued
martingale defined, for all ¢ > 0 and ¢ in W,*, by

1 - ! n,i n,1 ) — n,t -
o) =%Z/ (S (N (dz) — AMdz).

Notice that M (¢) = W (Ry). Furthermore, as for M", the Doob-Meyer process
(<< W™ >>,);>0 associated with (W]");>( satisfies the following: for any ¢ > 0, << W">>,
is the linear continuous mapping from WS “to W, 2% given, for all p1 and @y in W§ “ by

(<< W">>(p1), Z/ ©1(S7") o (ST A d 2 (4.51)

All the results given for M™ in the previous section can be extended to W™. In particular,
the sequence (W™),>1 is tight in D(R,, W, >®). Next, we prove that it converges towards
the Gaussian process W defined below.

Definition 4.5.1. For any o > 1/2, let W be a continuous centred Gaussian process with
values in WO_Q’Q with covariance given, for all o1 and py in WS’O‘, for allt and t' >0, by

E [Wi(o)Welp2)] = / (P pripa (- 7(2)) dz

/ | e O U T sz, (152)

where u is the unique solution of (3.23).
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Remark 4.5.2. We refer to Appendiz A.j for the existence and uniqueness in law of such
a process W. Furthermore, the process W defined above does not depend on the weight
a in the sense that the definition is consistent with respect to the weights. Indeed, say
We and W# are two processes is the sense of Definition 4.5.1 with values in WO_Q’O‘ and
W, 28 respectively. Assume for instance that B > o. Then, W? can be seen as a process
with values in Wy >* via the canonical embedding Wy > — Wy >“. Yet, the covariance
structure (4.52) does not depend on the weights o and 3 so W” is also a Gaussian process
with values in W, 2% with the prescribed covariance and the uniqueness in law guaranties
the equality of the laws of W< and W? as C(R.., W()_27a)-valued random variables.

Proposition 4.5.3. Under (Arcy), for any a > 1/2, the sequence (W™),>1 of processes
in DR, W, > converges in law to W.

Proof. As already stated, the sequence (WW"),>; is tight. Then, let us consider the following
decomposition, for any ¢; and ¢y in Wi,

t
(KW >>(1), p2) — / (P, o102V (-, 7(2)) dz = B} + CY,
0

with
1 . ! mn,l n,i n,i n,t —
BF = EZ/ @1(SZL)<)02(SZL) <)‘z7 - \II(SZL/V(Z))) dZ7
=1 /0
¢
Cr = [ (s, = Pt 7)) d,
0
where we used the fact that, almost surely, 7§ = %, for almost every z in R. The first

term B" converges in L' to 0 by using the Lipschitz continuity of ¥ and the convergence
of ¥ to 7 given by Proposition 4.3.1. From the convergence

1 & <!
n 2_1: st 9n o £((Se)iz0),

which is a consequence of the propagation of chaos (Corollary 3.4.5), one can deduce
that for almost every z, % o Ogni — P, (see for instance |77, Proposition VI.3.14
and Lemma VI.3.12]). Then, dominated convergence implies that the second term C™
converges in expectation to 0. Hence, the bracket of W™ (4.51) converges to the covariance
(4.52) for ' =t.

Furthermore, as for M™ (see the proof of Remark 4.4.15), the maximum jump size of W™
converges to 0. Hence, Rebolledo’s central limit theorem for local martingales [132| gives,
for every ¢y, ..., in Wo® and ty, ..., t, > 0, the convergence of Wi(e1), - Wi(er))
to a Gaussian vector with the prescribed covariance (4.52). The limit law of (W"),>; is
then characterized as the law of a continuous Gaussian process with covariance (4.52). [

Denote by 1 : R, — R the constant function equal to 1 (which belongs to Wg’a since
we assume « > 1/2) and note that /" (1) is the rescaled canonical martingale associated
with the system of age-dependent Hawkes processes, namely

] — , Lo
W) =vn (5 ZNZ” — / AZ”dz) .

i=1 0
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Now, let us expand the decomposition (4.47) in order to get a closed equation. Let us
recall the expansion of A" given by (4.45), that is

ov n
Ar(p) = <ns 8—y(-77(t))390> o4 RO (),

with T = \/n(y* —7(t)) and the rest term:

RIO(p) = L3 (Rp(s) 22 (57 (1)),

n < dy
Below, we use the fact that this rest term converges to 0 in L' norm: indeed, recall that
S e =A@ (4.53)
and, thanks to Proposition 4.3.1,

E [ =@ Sen™

Since I'}" (as part of A}(¢)) only appears in (4.47) as an integrand and is only discontinuous
on a set of Lebesgue measure equal to zero, we can replace it by its cadlag version denoted
by I'?. Let us consider the decomposition I'? = T} + T? + T3, with

T} = \/ﬁ/t h(t — z) (% Zn: N™(dz) — Agﬂdz) = /t h(t — 2)dW! (1),
2= yn / (t = =) SO = WS (),

/

T = \/ﬁ/0 h(t—Z)%Z(‘I’(Sﬁfﬁ(Z))—X(Z))dz /Oh(t—z) (nZ, ¥(-,7(2)) dz,

\

where we used, in the last line, the fact that g = mg for almost every z in R,, and

Az) = (P, U(-,75(2))).
Based on Assumption (A;Ifcz), as for Equation (4.44), one can give the Taylor expansion

of the term .

Y= Vi [ B ) SRS ) — WS ()

i=1

On the one hand, gathering the decomposition (4.29) with (4.45) and on the other hand

gathering T = T} + T? + T3 with the Taylor expansion of Y2 give that (5™, ') satisfies
the following closed system for all ¢ in W§ )

t t a\:[]
e = oo - [ Ly dz— [ <ﬁ§z,a—y('77(2))Rso>FZdz
0 0

t
- / RO (p)dz = W (Rp), (4.54)
0

t a\p t
= [t (. e ) s - [ ae - R
0 0y 0

- [ = v = [he-anr), @)
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where the rest term RQ’(Q) is defined by

n 1 a\I] nz — n,t
RM? = \/_Z (t))r "

Note that, once again, I'”_, which naturally appears in the first integral term of (4.55), is
replaced by its cadlag version I'? since they are equal except on a null measure set.

The next step is to prove the tightness of (I'),,>1. First note that, as a consequence of
Proposition 4.3.1, for all £ > 0 and 6 > 0,

sup E [|T7]*] < +oo0, (4.56)
te(0,0]

since supye(o g E [ITp(F] = SUDse(0,0) E [IT7_|*] because the underlying point processes admit
intensities so that there is almost surely no jump at time 6.

Proposition 4.5.4. Under (Aray) and (Al ), the sequence of the laws of (T™),>1 is tight
in D(R,,R).

Proof. The idea is to use (4.55). The first step is to simplify (4.55) by using the following
convergences
] — 0,

! _ oV, _
E || sup / h(t — 2) (g, — Poy —(-,7(2)) ) [Tdz
1Jo dy

t€[0,0

t
E || sup / h(t — z)RMPdz
]

t€0,0

(4.57)
] — 0.

These two convergences follow from the two following claims: by (4.56),

sup E HRZ’(Q)H < Lip(¥)Cn~ Y% sup E (T2 1] =0,
2€[0,6] z€[0,6]

and, by Cauchy-Schwarz inequality,

sup B ||(ms - 2 G ] (4.59)
2€[0,0] dy
Indeed,
. ov " 1 , OV 2]"? n1971/2
E H<u - P A )T } <E \ﬁ <nz,a—y(',7(2))> B[P
< B (IR 5 ) IO

for any o > 1/2. Then, (4.58) follows from Proposition 4.4.6 and Equations (4.24), (4.41)
and (4.56).

Return to (4.55). The right-hand side is tight since it is convergent (Corollary 4.5.5)
and the last term in the left hand side is tight since (n™),>1 is tight (with continuous limit
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points) and 7 — f(f h(t—2z) (1., U(-,7(2)) dz is continuous at every point 7 in C(R,, W, >%)
thanks to Lemma 4.7.3 (remind (4.24) and (4.41)). Moreover, the term in the middle may
be simplified by means of (4.57). Hence it remains to prove the tightness of the sequence
of continuous processes (I"),>1 defined, for all ¢ > 0, by

= [ -2 (P St ) s

We use Aldous criterion [12, Theorem 16.10.], that is the simplified version of the one
stated on page 134 but for real valued processes. First, for all 6 > 0,

E

sup Ift"|] < hoo(9)Lip(‘If)/0 E[T7]] dz

t€[0,0]

is bounded uniformly with respect to n thanks to Equation (4.56). And Markov’s inequality
implies that, for every # > 0 and € > 0, there exists a > 0 such that

sup P (sup || > a) <e,

n>1 t€(0,6]

which is the standard compactness condition.

Then, for the Aldous criterion, let us consider §o > 0, § < &y and for all n > 1, an
F-stopping time smaller than 6 denoted by 7,,. Assume for a while that h(0) = 0 and
extend the function h to the whole real line by setting 0 on the negative real numbers. As
for Equation (4.59), we have

9+50
20— T3] < B Lip(w) [ |2l
0

Hence, as before, (4.56) implies that sup,~, E[|I" s — I || < C(0 + 50)5§(h) which is ar-
bitrary small for dy small enough and Markov’s mequahty gives that, for any 1,69 > 0,

there exists dp such that sup,,~; sups<s, (| rs— 1| > 81) < &9, that is Aldous criterion.
Hence, (I"),>1 is tight in C(R,,R).

Now, if ~A(0) # 0, one can use the following decomposition,

- [ (h(t — =) — h(0)) (P Gt ) i+ 100y [ t (P G ) T

The first term is tight thanks to what we have done in the case h(0) = 0 whereas the
tightness of the second one is simpler and left to the reader (use Equation (4.56)). O

Let us denote V;" := [; h(t — 2)dW?(1) and V; := [ h(t — z)dW,(1). The convergence
of the sources of stochasticity in the system (4.54)-(4.55) is stated in the following corollary
of Proposition 4.5.3.

Corollary 4.5.5. Under (Arcy) and (Alk.), the following convergence in law holds true
in D(Ry, W; > x R),

(rwpvye) = (Rwew)
t>0 t>0

where R* denotes the adjoint of R.
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Proof. First, the tightness (and convergence) of (R*WW"),>; comes from the continuity of
R* as a mapping from W, 2% to Wy 2% which comes from the continuity of R as a mapping
from W5® to Wo® (this last point is proved similarly to the continuity from W, to W,
proved at the end of the proof of Proposition 4.4.9). Then, let us show that (V"),>; is
tight in D(R,,R).

Assume that h(0) = 0 and extend the function & to the whole real line by the value 0
on the negative real numbers.

-(i) For alln > 1, Vi* = 0 a.s. so (V§")n>1 is clearly tight.

For any ¢ > r > 0, since h(r — z) = 0 as soon as z > r, one has

Vp v = / (Bt — =) — h(r — )] AW (1),

Let us denote, for all > 0, V2(x) = [ [h(t —2z) — h (r — z)]|dW(1). It is a martingale
with respect to x. Burkholder- Dav1S—Gundy inequality [148, p. 894| gives the existence of
a universal constant C), such that

E E;g !V?Ax)f”] <GE|[]r].

Yet, the quadratic variation of V;!, is given by

n

n n.j .. 1 i
v, Z/ (t —z) — h(r — 2))> N™(dz) < Hol(h)* |t — r[**™ - Z; N,
J:
(4.59)
So, using the exchangeability, we have for all p > 0,

E[|V;" = V1*] < GHSI(R)™ |t — r|"“PE [N ).

Yet, the intensity of N™! is bounded so that N™! is stochastically dominated by a Poisson
process with intensity ||¥||. Hence, E[|N/"'|?] < E[Poiss(t||¥||s)?] where Poiss(t||¥]|s)
is a Poisson variable with parameter t||¥||... This implies that E[|N/'|?] is bounded
uniformly in n by a locally bounded function of the time t, say C,(t) (which can be
assumed to be increasing continuous without any loss of generality). Then, taking p = 1,
t = ¢ and r = 0 and using Markov’s inequality gives

-(ii) for all € > 0, lims_,o lim sup,, P(|V* — V'] > €) = 0.
Finally, taking p = 1/5(h) and using Markov’s inequality gives

-(iii) for all v > 0, P(|V* — V?| > v) < v~ 2B F(t) — F(s)|?,

where F(t) := (Cﬁ éﬁ( YHO61(R)2/8())1/2 ¢ defines an increasing continuous function.

Hence, (7), (i7) and (i7i) allow to apply Billingsley’s criterion for tightness |77, Theorem
VI.4.1] to deduce that (V"),>; is tight.

Now, if A(0) # 0, one can use the following decomposition,
t
Ve = [ b= 2)— h a2 () + RO WP
0

The first term is tight thanks to what we have done in the case h(0) = 0 whereas the
second term is converging since (W™),, is converging, whence (V"),>; is tight.
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Now, since the limit trajectories of R*W™ are continuous, the couple (R*W™, V"), is
tight in D(R;, Wy >® % R). It now suffices to characterize the limiting finite dimensional
distributions. Recall that V, = fot h(t — z)dW,(1) and denote by (t1,...,t;) a k-tuple of
positive times.

First, suppose that h is piecewise constant. In that case, the convergence of
W™ towards W easily implies the convergence of ((R*W[,V7Z),... (R*W[, V")) to
(BWi, Viy)s oo, (W, Vi) (use the fact that h is a piecewise function to write V"
as a sum of increments of W™(1)).

Then, since h is continuous, one can find, for each € > 0, a piecewise constant func-
tion h® such that ||h — h®||s < e. Denote V" := fot he(t — z)dW!(1) and notice that
E[|[V;* — V2] < 2e2E[< W™(1) >4] < 28%||¥]|oot — 0 as € — 0. In the same way, denote
Vi == [ h°(t — 2)dW,(1) and remark that E[|V; — ViF|?] < 2%||P||t — 0 as € — 0. Yet,
the previous point gives the convergence, in terms of finite dimensional distributions, of
V™e to Ve for all € > 0 so the convergence, in terms of finite dimensional distributions, of
V™ to V follows which ends the proof. m

Both sequences (1"),>1 and (I'"),,>1 are tight with continuous limit trajectories. Tight-
ness of the couple (", I"),>; hence follows and we are now in position to give the system
satisfied by any limit (n,T").

Theorem 4.5.6. Under (Arqy) and (Al ), for all a > 1/2, any limit (n,T') of the se-
quence (0", I™)n>1 is a solution in C(R, WO_Q’O“ x R) of the following system (formulated
in Wy x R),

a ¢ ¢ ov
Y € Wy, (nt,90>—<770,<p>—/ <77Z,Lz90>dz—/ <Pz,a—y(-,v(2))3¢> I.dz
0 0

= Wi(Rp), (4.60)

ry, — th(t—z) N, V(-,7(2)) dz — th(t—z) Pz,a—qj(-,i(z)) I.dz
/0 /0 < Ay
= /Ot h(t — 2)dW,(1). (4.61)

Remark 4.5.7. The linear operator L, appearing in (4.54) and (4.60) reduces the regu-
larity of the test functions by 1. Hence, if we consider Equation (4.54) for test functions ¢
m Wg’a then we must consider n" as taking values in W, b when dealing with the integral
term fot (2, L.p)dz. Yet (n")n>1 is not tight in this space. Thus we consider (4.54) for
test functions in Wg”o‘ so that every term is tight. That is why the limit equation (4.60) is
formulated in Wo_g’a. Howewver, the limit process n takes values in the smaller space Wo_z’a.

In the proof below, we use the two following statements whose proofs are similar to those
of Proposition 4.4.9 and Remark 4.4.11: for any o > 1/2 and 6 > 0,

. 3,0 HLZSOH%,(X
for all ¢ in Wy°, 0 < +o0, (4.62)
zcl00) ||l ’3,04
. —2,x HszH%Ba
and, for all w in Wy =%, — = < 4o0. (4.63)

z€[0,6) [[w] |2—2,a
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Remark 4.5.8. The initial condition ny of the system (4.60)-(4.61) is determined by the
distribution Cn_ of the initial conditions for the underlying point processes. First, ng is well
defined as the limit in Wy > of qi. Indeed, the sequence (0 )n>1 is tight in Wy > (it is tight
mn WO_Q’O‘ and there is a continuous embedding of WO_Q"X into WO_?”O‘) and for any © in Wg”a,
we have the convergence of the real-valued random variables (nf, ) = \/n <ﬁ7§0 — P, g0> by
applying the standard central limit theorem since the initial conditions are i.i.d.

Proof. As a consequence of tightness and continuity of the limit trajectories, we have
tightness of the process (5, T, W" V"),>; in D(R, W™ x R x WO_Q’O‘ x R). Hence,
let us assume without loss of generality that the sequence converges to (n,I', W, V) in
DRy, W 2% x R x W, >* x R).

Then, let (¢ )r>1 be an orthonormal basis of WS’ ** and define the following applications:
for all k > 1, F : D(Ry, W2 x R x W, >*) — D(R,,R) satisfy for all ¢ > 0,

RSP0 = (o) = (o) = [ (L) s
- [(Pera G a6 ) 20 - (R0,
0 Y

and G : D(R,, W2 x R x R) — D(R,,R) satisfy for all t > 0,

t
Glg' g%, 9)0) = g2 = [ Bt = 2) (g (. 7()) dz
0
! o, _
= [ he=2) (PGl ) g2 - gt
0 dy
Notice that the system (4.60)-(4.61) is equivalent to

G(n,I,V)=0. (4.64)

{Vk >1, F(nT,W)=0
Step one. Let us show that the first line of (4.64) is satisfied. First, we prove that for
all k > 1, F}, is continuous at every point (f, f2, f3) in C(Ry, W22 x R x W, >%). To
state continuity of F} at a continuous trajectory, it suffices to show continuity with respect
to each coordinate f!, 2 and f3.
- Equation (4.62) implies that z — || L.pk||2,o is locally bounded and Lemma 4.7.3 gives
the following:

fl'—><15'—><f1 , O) — ), k) /<f L.ox) )

is a mapping from D(R,, W, >®) into D(R,,R) which is continuous at every point f! in
C(R-H WO_ZQ)'
- Then, notice that [(P., Ry 68—‘5(-,7(2))>| < Lip(\If)EHDOE(gpk)H and Lemma 4.4.2

gives that

v
<PZ, Ry, a@y (-, 7(2))> is locally bounded,

so that applying Lemma 4.7.4 gives the continuity of F}, with respect to f2.
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- Finally, F}, is clearly continuous with respect to f3.

Notice that (4.54) gives for any k > 1,

t t a\ll
w20, B W - [ R 00ds - [ (- Sl Ra ) T =0
0

0
(4.65)
Yet, we have, on the one hand, for all § > 0,

sup B[|R2O(p)]] < VALip(¥) sup B —Z|Do,sg,i<sok>||r;|]
2€[0,6] 2€[0,0] n i=1

< nPCLip(W)(1 + (Mg, + 60)*)|loxll2a sup E[|T7_[*] — 0,
z€[0,0]

where we used Lemma 4.4.2, Equations (4.53) and (4.56), and on the other hand,

» ov, .
sup E [| </~Lsz - P, a—(-,v(Z))ka> Fz\} — 0,
2€[0,6] Y

which follows from Cauchy-Schwarz inequality as we have done for (4.58).
These two convergences above imply

t
E sup/R:’(l)(gok)dz — 0,

t€[0,6] JO

' —n ov - _ n
E sup / Hs, — P, 8_(’ ’7(2))R(t0k deZ
0 Yy

te[0,6]

(4.66)
] — 0.

On the one hand, gathering (4.65) and (4.66) gives the convergence of Fy(n™, '™, W™)
to 0 in probability and, on the other hand, applying the continuous mapping theorem
gives the convergence in law of Fi(n™, I, W™) to Fy(n,T', W). Identifying the limits gives
Fy.(n,I'; W) = 0 which ends this step.

Step two. Let us show that the second line of (4.64) is satisfied. First, we prove that G
is continuous at every point (', g% ¢°) in C(R, W2 x R x R). To state continuity of G
at a continuous trajectory, it suffices to show continuity with respect to each coordinate
gt, g% and g3

- Equations (4.24), (4.41) and Lemma 4.7.3 give the following:

gt — (t > /Ot h(t — z) (gL, ¥ (-,5(2)) dz)

is a mapping from D(R, W;>*) into C(R,,R) which is continuous at every point §' in
C(R, Wy ™).

- Then, notice that [{ P, %—3(-,7(2))>| < Lip(¥) so that

v
Z <PZ, g—(ﬁ(z))> is locally bounded,
Y

so that applying Lemma 4.7.4 gives the continuity of G' with respect to g.
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- Finally, G is clearly continuous with respect to g°.

Notice that (4.55) gives, for all t > 0,

t t
Gl Vo) - [ e rePas = e 2) (s - PG A) YT o
0 0 Yy

Finally, the argument used to end the previous step also applies here.

To conclude, the two steps above give (4.64) which gives that the process (n,T") is a
solution of (4.60)-(4.61). Finally, its trajectories are supported in C(R,, W, >® x R) since
1 is supported in C(Rp, W;>*) and T is supported in C(R,,R) as a solution of (4.61)
(remind that h is Holder continuous). O

4.5.b) Uniqueness of the limit law

The next step in order to prove convergence of the sequence (1", I'),>1 is to prove unique-
ness of the solutions of the limit system (4.60)-(4.61). Since the system is linear, the
standard argument is to consider the system satisfied by the difference between two solu-
tions and show that its unique solution is trivial. Let (n,T) and (4,T') be two solutions
associated with the same “noise” W and the same initial condition 7y. Denote by 1 :=n—n
and T := I' — T the differences. Then, (7, T) is a solution of the following system

N ~ t ~ t 8\11 B N
Yo e Wi, (i, @) — / (M, L) dz — / <Pz, 8—y(-,7(z))Rgp> I.dz2=0, (4.67)
0 0

foe [ b= 2) G veaE)ds - [ a=2) (P56 ) Pz =0, (409

The standard follow-up is to use Gronwall’s lemma. Let us show here why it does not work
in our case. For instance, assume we want to prove that ||7j||_3,, = 0: heuristically, when
applied to (4.68), Gronwall’s argument gives that \f‘t| is bounded by some locally bounded
function of ¢ times the integral fg |71.||_3.odz. However, even if we use this bound for T

in (4.67), Gronwall’s argument cannot be applied since the term f(f (M., L) dz involves
||72]| 2, Which is greater than the desired norm ||7,||-3,. This problem cannot be bypassed
by upgrading the regularity as we have done before to deal with the fact that the operator
L, reduces the regularity of the test functions.

Since the main limitation comes from the differential part of the operator L., let us
consider L, as the sum of the first order differential operator plus a perturbation. More
precisely, let L : ¢ — ¢" and Gy : ¢ — VU (-,7(t)) Ry so that L, = L+G,. Let us present here
the heuristics behind the argument we use to bypass the issue induced by the differential
operator £: instead of studying the time derivative £ (7, ) in (4.67), the idea is to find
some family of test functions (¢¢)¢>o such that <77t, %QDO = — (7, Ly ); thus the differential
operator £ vanishes in % (M, p¢) and Gronwall’s argument can be applied.

More precisely, let us introduce the shift operators 7, : ¢ — (- +t) for all t > 0.
Notice that these shift operators are linked with the method of characteristics applied to a
transport equation with constant speed equal to 1 which is exactly the dynamics described
by the differential operator £. Below are given some bounds for the operators £, G; and
7 when acting on the space Cj.
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Lemma 4.5.9. Let ¢ be in Cjf. Assume that t [N 7(E)|es is locally bounded. Then,
1Lellep < llelley, for allt >0, [|mplles = [lelles and

Gro||e
m 15 locally bounded.
[leplles
Proof. The first two assertions follow from the definition of the norms [[ - [|cx. The third
and last one follows from Leibniz rule. O

Remark 4.5.10. From now on, the test functions are considered in Cj. Thus, we prove
that n is characterized by the limit equation as a process with values in the dual space Cb_4.
Nevertheless, since Cp is dense in Wg’a, it 18 also characterized by the limit equation as a
process with values in W, 3 for instance.

Let t >t/ and s in R. Then,

L il (s)dz = / Qs+t —2)dz = (s + 1 — 1) — p(s) = T_vpls) — ().

Moreover, since 7; and £ commute, one has
t
new(s) = ol9) = [ Llnsp)(s)d
t/

Yet, Lemma 4.5.9 gives that |[L(ri—.¢)[lez < [[o]lcs thus ftf L7, ,pdz makes sense as a
Bochner integral in C§ as soon as ¢ is in Cjf. Hence, in the proof below we use the following
statement: for all ¢ in C},

t
Ti—pp — (p = / L(7i_.p)dz, as points in C;. (4.69)
t/
Proposition 4.5.11. Under (Ac.r), the system (4.60)-(4.61) has no more than one solu-
tion in C(Ry, W[;Q’a X R) once the initial condition ny and the “noise” W are fized.

Proof. Let (n,T) and (73, T') be two solutions of (4.60)-(4.61) in C(R,, W, >* xR) associated
with the the same “noise” W and the same initial condition 7. Denote by 7 :=n — 7 and
[ := I — T the differences. Since o > 1/2, we have W, >* C C;* (remind (4.27)) so 7
belongs to C, * and we will prove that Hﬁch_4 = 0.

Starting from (4.68), one has

t t
T < oo (N 7)) et / [l 12 + haolt)Lip(W) / T.dz,

and Lemma 4.7.1 gives |Iy| <, f(f ||77z||c;4d2- Now, let ¢ be in C; and use (4.69) and the
fact that 7 is in W, >* C ;2 to get (7, ¢) = Dy — Dy where

4 t t ov
Dy = / (7, (L + Gu)(Tivep)) dt' + / <Pt/, Rri_pp )
0 . 0 y

Dy = /0 t <ﬁt/, (L + G /t E(Tt_zw)dz)> it

+ /Ot <Pt/, R/t,t L(Ti—»p)dz 2—3(-,7(t’))> T,dt'.
(4.70)

(7)) Eut
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The linearity of the operators allows to write Dy = Dy 4 + Do p with

Dy _// s (L + Gy ) L7y o0))) it

Dyg _/ / <Pt/ RLCT,_ Zgog (.7t ))>Ft/dzdt

Then, the idea is to use Fubini’s theorem to exchange the two integrals fot and f;
On the one hand,

t t t t
| [ 1t e+ Gt st < [ [ el 22 + G Ll paade.
0 14 0 t
Notice that Suptle[()’t] ||T~)t,||C;2 S C(Supt/e[oﬂ ||nt’“—2,a -+ supt/e[(m ||7A]t’||—2,a) < 400 since

n and 7 takes values in C(Ry, W, >®) and that, thanks to Lemma 4.5.9, for all ¢’ < t,
(£ + G ) (L(Te—29))l|cz St lllles < +oo. Hence, Fubini’s theorem gives

t z
Doa= [ [ e, (L4 GoLrse)) dta (4.71)
0 0
On the other hand,

t ov ) _ ) . t pt ~ /
<Pt,,R,cTt_zgoa—y(.ﬁ(t))>’|rt,|dzdt <2Lip(¥) [ [ |1£rip)l | Foldzar.
0 Jt

Remark that ||£(7—.¢)||c0 < H(,0HC4 and supyep 4 ]f‘t] < Supyepo \Ft\%—supt,e[o’ﬂ ]f‘t| < 400

since I’ and T takes values in C(R;,R). Hence, Fubini’s theorem gives

Dy = / / <Pt/ RCr, Zgog—( ~(t ))>Ft/dt’dz (4.72)

Now, for any z in [0, ¢], Equation (4.67) with ¢ = L(71;_.¢) (it is a valid test function
since it belongs to C} € Wi®) gives

(s 1)) = [0, (4 G Elrg))
0
z ov N
+ / Pt’; RETt_ZQD —(', i(t/)) Ft/dt,.
0 Ay
Gathering the equation above with (4.71) and (4.72) gives

t
DQ:/ <ﬁz7£(7-t—z§0)>dz7
0

which is exactly the term driven by £ in the definition of D; (4.70) so that, coming back
to Dy — D5y, we have

~ ¢ ~ / ! 8\Ij — ! T /
Dy — Dy = (y, ) = / (M, G (Te—prip)) dt +/ <Pt/, Rty a—y(-,’y(t ))> Lydt.
0 0

Hence, using the bound we proved on I', we have for all ¢ in Cy,

| G ) / el 411G (re-v@)lesdt’ + 21 ol s Lin (¥ / / [l sz,
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and so ||77t||c;4 < fot ||ﬁt/||cg4dt/ and Lemma 4.7.1 gives that for all t > 0, ||ﬁt||cz?4 = 0 thus

IT;| = 0 thanks to the bound we proved on I. Finally, since C}' is dense in Wy®, we have
|17t|| ~2.0 = 0. Thus, we have (n,T') = (,T) in C(R,, W, >* x R). O

We are now in position to conclude with the convergence of (", I"),>1.

Theorem 4.5.12. Under (Ac.r), for any a > 1/2, the sequence (0", I"™),>1 converges in
law in D(Ry, W, >*xR) to the unique solution of the system (4.60)-(4.61) in C(Ry, Wy >*x
R).

Proof. Since (n",I"™),>1 is tight (Theorem 4.4.14 and Proposition 4.5.4), let (n,I') be a
limit point. According to Theorem 4.5.6, (1,T") is a solution of the limit system (4.60)-
(4.61) in C(Ry, W, >® x R). Finally, the law of (1, T) is uniquely characterized by the limit
system (Proposition 4.5.11 gives path-wise uniqueness and so Yamada-Watanabe theorem
gives weak uniqueness by the same argument as [135, Theorem IX.1.7(i)]) and uniqueness
of the limit law implies convergence of (7", I"),>;. O

Remark 4.5.13. As mentioned in the introduction of the present chapter, considering
processes over finite time horizons would have lead to equivalent results. This claim is
based on the fact that the limit equation (4.60) is independent of the values of the test
function ¢ outside the support K; of ni*. Indeed,

e on the one hand, @ appears in the drift term, which is fot <Pz, %—3(-,7(z))R<,0> I.dz,

evaluated against the measure P, which is supported in K,

e on the other hand, the covariance structure of the Gaussian process W implies this
independence property for Wi(Ryp).

In that sense, the convergence stated for the whole positive time line R, in Theorem 4.5.12
implies that the central limit theorem also holds true for the process (n;)o<i<o as taking
values in the dual of a standard Sobolev space of functions supported by Ky. Conversely,
the limit equation is consistent in time in the sense that one can recover our result by
sticking together the CLTs obtained for the finite time horizon processes (n)")o<t<o-
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4.6 Proofs

4.6.a) Proof of (4.20)

For simplicity, we show that, for every m < n, there exists a constant C' which is indepen-
dent of n, p and m such that

m k k—1
1 y ! /
E|ll= n.J\p k' —k (k' ,pk) (k.p) )
(m Z(At_) ) <C (Zm e (1) b (4 | (4.73)
j=1 k'=1
from which (4.20) follows by choosing m = |7].
Let us recall the multinomial formula using multi-indices q = (¢4, .- ., Gm),
1\ kY 11
— i
(EZ%’) - (o) 1T
=1 la|l=k =1

where |q| = Y, ¢;. Denote by k(q) the number of strictly positive indices in q. Since the
¢;’s are integers, |q| = k implies k(q) < k. First, let us remark that, for all &’ = 1,... k,
the number of multi-indices q such that k(q) = &’ and |q| = k is bounded by p(k’, k)m*
with p(k', k) := (]::11) being the number of partitions of k£ into exactly k' parts. Indeed,
the vector consisting in the &’ strictly positive indices forms a partition of k£ and there are
at most m* ways to complete it by m — &’ zeros to build a vector of length m.

Then, using the exchangeability of the processes A™7, we have

e if k(q) = k, then all the positive ¢’s are equal to one and E[[]I_,((Af)?)%] =
9 (),

e if k(q) < k, we can bound all the positive ¢;’s by k so that E[[],((A7)?)%] <
87(119((1)7?]?) (t).

Hence, using that (fl) < k!, (4.73) holds with C' = maxy—;__x p(K', k)k! for instance.

4.6.b) Proof of (4.21)

Let us first recall that &(Lk)(t) =E [|5;" — 7(t)|¥] where ;" and ¥(t) are respectively defined
below (4.6) and in (4.5). By convexity of the function z — |z|* (remind that k > 2), let
us consider the decomposition

EW () < 4¥1(A™Mt) + B () + C"(t) + D"(t)) (4.74)

where

(A”(t) =E _ fot h(t — z)% Z;;l(N”’j(dz) — A\%Idz) k} ,

B0) = B || (e - 203 Z w2202 - L ]|

Cr(t) = ||y hit = )3 T, (0L ) — WL A |

1

Dr(t) =B || [T h(t —2) 2 S (N = N(2))d=

J=1\""z




160 4. FLUCTUATIONS FOR GENERALIZED HAWKES PROCESSES

- Study of A"(¢). Fix t and con81der the martingale (M?'),>o defined, for all x > 0, by

T

Recall that A = U(S™ 1) and X = U(S°_,7(2)).

n

> (N™i(dz) — A dz).

j=1

Its quadratic variation is [M™'], = n=? [ h(t —2)* Y7 N™(dz). Yet, Assumption (A% )
implies that

v 1
MM = / h(t — z)—
0

n

[M™], < n2hoo (8> N[,
j=1
Using the convexity of the power function (since k/2 > 1) and exchangeability, one has

E [[Mn t]k/ :| 8) n- ZNnJ‘kﬂ] —k nk/ZE UNtn,l’k/Q} )

Yet, the intensity of N™! is bounded by ||¥||s so N™! is stochastically dominated by a
Poisson process with intensity ||¥||o. Hence, E[|N;'|*/?] < E[Poiss(t||¥||o)"/?] where
Poiss(t||V||«) is a Poisson variable with parameter ¢||V||.. This last expectation is
bounded uniformly in n by a locally bounded function of the time t. Then, Burkholder-
Davis-Gundy inequality [148, p. 894| gives

A () = B [|MF] < B [[M52] S n 2

- Study of B"(t). Here, we use the fact that S’ = ?i_ with high probability and more

precisely we recover the quantities ") that we want to control. Using the convexity of

the power function, Assumption (A" ) and denoting 27 = W(S™/, ") —W(S?_,4") we have

|k
x) ]dz.

< [|¥||A™ . Hence, using (4.73) with p = 1

1 n
2

J=1

B"(t) < hoo(t)kth1 /tE

Yet, |#7| is bounded by ||¥|]s1
and m = n,

{S™I£51_}

k
dz

1 i
‘gZAz—]

Jj=1

t k—1
< iknicr [ (an’-’“eé’f”k><z>+e£f»1><z>) -

< |||ty Ctt (Z K ke +s<’“><t>>, (4.75)

k'=1

t
B0 < Wt [ E
0

where the last line comes from the fact that the s are non-decreasing functions of ¢.

Hence, By S Z;ll nk/_kgﬁzk,7k) (t) + 5£Lk’1)(t)'
- Study of C™(t). Using the Lipschitz continuity of ¥, Assumption (A" ), one has

C(t) < Lip(W)f o [ B [2 =3I b Sew [ €00 @)
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- Study of D"(t). First remark that using Assumption (A" ), we have
1 — - k
|EZ)\Z —A(z)| ] dz
7j=1

Yet, the Xi’s are i.i.d. with mean A\(z) and they are bounded by ||¥||,. Hence, Rosenthal
inequality [102] gives the existence of a constant C'(k) which depends only on k and ||¥||

such that
1 — - k
7j=1

It then follows that D"(t) Sqp n "2
One deduces from the decomposition (4.74) and the four bounds on A", B", C™ and
D™ that

D™(t) < hoo(t)F 1 / t E

< C(k)n="%2.

k—1
&) e (n‘k/ P4 MR (E) 4 e ) / €095

k'=1

and so Lemma 4.7.1 below gives the desired bound.

4.7 Lemmas

The following lemma is a generalization of the standard Grénwall lemma.

Lemma 4.7.1. Let f,g: R, — R, be two locally bounded non-negative measurable func-

tions. Assume that for allt > 0,
t
+/ f(s)ds. (4.77)
0

Then, for any 6 > 0, sup,c(o g ft) <o SUDye(0,0] g(t).

Proof. For a fixed 6, Equation (4 7 implies that there exists a constant C' such that for
allt <@, f(t)<C (Supte 0,0 9(t + o f( . Hence, standard Gronwall’s inequality gives

supcpo.g f (t) < C'supyepo g 9(t)e€ Wthh ends the proof. O

The next lemma proves continuity in time for the law of the age process associated with
a point process. Its proof is similar to the proof of Lemma 3.7.2.

Lemma 4.7.2. Assume that N admits the bounded F-intensity \; and satisfy Assumption
¢N
A

uln

is such that t — w, belongs to C(Ry, Wy >®) for any a > 1/2.

). Denote by (St)e>o its associated age process. Then, the law of Sy denoted by wy

Proof. This continuity result comes from the fact that the probability that N has a point
in an interval goes to 0 as the size of the interval goes to 0. Fix a > 1/2 and let ¢, ' be
positive real numbers. First, remark that S;,» = S; + t' as soon as there is no point of N
in the interval [t,t + ] and so one has for all ¢ in Wi,

lo(Seqer) — 0(Sy)| < ||DSt+t',St||—2,a||<P||2oc (lo(See)| + |90(St)|)]lN ([t,t+t'])#0-
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The bound obtained in Lemma 4.4.2 for the operator D, , is too rough here. We need a
finer bound: it holds that there exists a constant C' such that ||D,,||-2.. < Clz —y|(1 +
max(|z|%, |y|*)). Indeed, by density, let us assume that ¢ is C> with compact support and
remark that

(@) =) <le—yl  sup  [@(2)] < |o—yl(1+max(z|* [y|*)ll¢llere

2, |z|<max(|z|,|y[)

< Clo —y[(1 + max(|z|® [y|*)[[#]]2.0;

where we used (4.25) in the last inequality. Since (.Aiﬁ’oo) is satisfied, S;,y and S; are
upper bounded by Mr, 4+t +t' so that

1Ds, v 5,20 < CV(1 + (M, + 14 )%)
(Io(Sea) + 1(S)l) < 2(1 + (M, + 1 +)%) ]|l |coe

Hence, (4.25) gives
p(Serr) — (S| < O + Lngaren0)l|#l|2.a-

Yet, P(N([t,t+1]) #0) <E[N([t,t +1t])] = E[fttﬂl A.dz] goes to 0 as t' goes to 0. The

same argument for ¢ < 0 gives continuity. [
The three lemmas below are used to get the limit equation satisfied by the fluctuations.

Lemma 4.7.3. Let h be a locally bounded function and (¢¢)i>o be a family of test functions
in Wy such that t — ||¢4||a.a is locally bounded. Then, F : g fot h(t — 2){g(2), ¢.) dz
is a mapping from D(R+,W()_2’a) to C(Ry,R) which is continuous at every point gy in
C(R, W, >%).

Proof. Let (gn)n>1 be any sequence such that g, — go for the Skorokhod topology. Since
go 1s continuous, the convergence also holds true for the local uniform topology |77, Propo-
sition VI.1.17.]. We have for all § > 0,

sup [F(gn)(t) — F(go)(t)| < sup h(z) sup [|gn(2) — g0(2)|[-2a sup |l¢:ll2a- (4.78)
t€[0,0] z€[0,0] z€[0,0] z€[0,0]

Yet, the right hand side of (4.78) goes to 0 as n goes to infinity, which ends the proof. [

Lemma 4.7.4. Assume that (g")n,>1 converges to g for the Skorokhod topology in D(R,R).
If h satisfies (Alky) and f is locally bounded, then

t

/0 Wt — 2)f(2)g"(2)dz —— | h(t - 2)f(2)g(=)dz.

n—-+o0o 0

as functions of t in C(Ry,R) for the local uniform topology. In particular, the application
F from D(Ry,R) to D(R,,R) defined by

18 continuous.
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Proof. Let ¢"(t) := fg h(t — 2)f(2)g"(2)dz and c(t) := fot h(t — 2)f(2)g(z)dz. Assume for
a while that h(0) = 0 and extend the function h to the whole real line by setting 0 on the
negative real numbers. Then, for all ¢,0 > 0,

"t +0) =" ()] < /Ot+ At +0 = 2) = h(t = 2)[[f(2)llg" (2)|d=

< (t+0)HBI(h) sup |f(z)] sup |g"(2)[8"".
z€[0,t+0] z€[0,t40]

Yet, since g" is convergent, we have sup,,~; Sup,¢( 44 |9"(2)| < +0o (see [77, Proposition
VI.2.4.] for instance) which implies that for all 6 > 0,

sup sup |c"(t+0) —c"(t)] >0 asd — 0.
n>1 tel0,0]

Hence, the sequence (¢"),>1 is uniformly continuous. Moreover, for all n > 1, ¢*(0) = 0
and the uniform continuity gives the uniform boundedness

sup sup |c"(t)| < +oc.
n>1t€[0,0]

Then, Ascoli-Arzela theorem implies that the sequence (¢™),,>1 is relatively compact. It only
remains to identify the limit for all £ > 0. Yet, as a consequence of the dominated conver-
gence and the fact that for almost every z, ¢"(z) — ¢(z), we have fg h(t—2)f(2)g"(2)dz —

fot h(t — 2) f(2)g(2)d=.

Now, if ~(0) # 0, one can use the following decomposition,

o (t) = / (h(t - =) — h(0))f(2)g"(2)d= + h(0) / F(2)g" ()d=.

The first term is convergent thanks to what we have done in the case h(0) = 0 whereas the
convergence of the second one is simpler and left to the reader. O]
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CHAPTER

5 DETECTION OF DEPENDENCE PAT-
TERNS WITH DELAY

Abstract. The Unitary Events (UE) method is a popular and efficient method used this
last decade to detect dependence patterns of joint spike activity among simultaneously
recorded neurons. The first introduced method is based on binned coincidence count
[62] and can be applied on two or more simultaneously recorded neurons. Among the
improvements of the methods, a transposition to the continuous framework has recently
been proposed in [108] and fully investigated in [158] for two neurons. The goal of the
present chapter is to extend this study to more than two neurons. The main result is
the determination of the limit distribution of the coincidence count. This leads to the
construction of an independence test between L > 2 neurons. Finally we propose a multiple
test procedure via a Benjamini and Hochberg approach [11]. All the theoretical results
are illustrated by a simulation study, and compared to the UE method proposed in [64].
Furthermore our method is applied on real data.

This chapter is the fruit of a collaboration with Thomas Laloé&!. It is based on the study
performed during the internship for the Master degree of the author of the manuscript
(started in April 2013). Note that this chapter is slightly different from its corresponding
article [30], published in Biometrical Journal. The main changes lie in Section 5.2 but the
main results remain unchanged.
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5.1 Introduction

The communication between neurons relies on their capacity to generate characteristic
electric pulses called action potentials. These action potentials are usually assumed to
be identical stereotyped events. Their time of occurrence (called spike) is considered as
the relevant information. That is why the study of spike frequencies (firing rates) of neu-
rons plays a key role in the comprehension of the information transmission in the brain
[1, 57, 147]. Such neuronal signals are recorded from awake behaving animals by insertion
of electrodes into the cortex to record the extracellular signals. Potential spike events are
extracted from these signals by threshold detection and, by spike sorting algorithms, sorted
into the spike signals of the individual single neurons. After this preprocessing, we dispose
of sequences of spikes (called spike trains).

The analysis of spike trains has been an area of very active research for many years
[20]. Although the rules underlying the information processing in the brain are still under
burning debate, the detection of correlated firing between neurons is the objective of many
studies in the recent years [46, 123, 144|. This synchronization phenomenon may take an
important role in the recognition of sensory stimulus. In this article, the issue of detecting
dependence patterns between simultaneously recorded spike trains is addressed. Despite
the fact that some studies used to consider neurons as independent entities [10], many
theoretical works consider the possibility that neurons can coordinate their activities [72,
117, 145, 160]. The understanding of this synchronization phenomenon [149| required the
development of specific descriptive analysis methods of spike-timing over the last decades:
cross-correlogram [118], gravitational clustering [56] or joint peristimulus time histogram
(JPSTH, [3]|). Following the idea that the influence of a neuron over others (whether
exciting or inhibiting) results in the presence (or absence) of coincidence patterns, Griin
and collaborators developed one of the most popular and efficient method used this last
decade: the Unitary Events (UE) analysis method [62]| and the corresponding independence
test, which detects where dependence lies by assessing p-values (A Unitary Event is a
spike synchrony that recurs more often than expected by chance). This method is based
on a binned coincidence count that is unfortunately known to suffer a loss in synchrony
detection, but this flaw has been corrected by the multiple shift coincidence count [66].

In order to deal with continuous time processes, a new method (Multiple Tests based
on a Gaussian Approximation of the Unitary Events method), based on a generalization
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of this count, the delayed coincidence count, has recently been proposed for two parallel
neurons (Section 3.1 of [158]). The results presented in this article are in the lineage of this
newest method and are applied on continuous point processes (random set of points which
are modelling spike trains). Testing independence between real valued random variables
is a well known problem, and various techniques have been developed, from the classical
chi-square test to re-sampling methods for example. The interested reader may look at [91].
Some of these methods and more general surrogate data methods have been applied on
binned coincidence count, since the binned process transforms the spike train in vectors of
finite dimension. However, the case of point processes that are not preprocessed needs other
tools and remains to study. Although the binned method can deal with several neurons (six
simultaneously recorded neurons are analysed in [64]), both of the improvements (Multiple
Shift and MTGAUE) can only consider pairs of neurons. Thus, our goal is to generalize
the method introduced in [158] for more than two neurons. Unlike MTGAUE, our test is
not designed to be performed on multiple time windows. However it can be multiple with
respect to the different possible patterns composed from n > 2 neurons (see Section 5.5.¢)).

In Section 5.2, we introduce the different notions of coincidence used through this article.
In Section 5.3, a test is established and the asymptotic control of its false positive rate is
proven. In Section 5.4 our test is confronted to the original UE method on simulated data
and the accuracy of the Gaussian approximation is verified. In Section 5.5 the relevance of
our method when our main theoretical assumptions are weakened is also empirically put
on test. Section 5.6 presents an illustration on real data. All the technical proofs are given
in the Appendix.

5.2 Notions of coincidence and original UE method

In order to detect synchronizations between the involved neurons, different notions of co-
incidence can be considered. Informally, there is a coincidence between neurons when they
each emit a spike more or less simultaneously. This notion has already been used in UE
methods [64] and is based on the following idea: a real dependency between n > 2 neurons
should be characterized by an unusually large (or low) number of coincidence [61, 62, 158|.

5.2.a) Original UE method

The UE method (see [62]) considers discretized spike trains at a resolution ¢ of typically
1 or 0.1 millisecond. Therefore, in the discrete-time framework, each trial consists of a
set of n spike trains (one for each recorded neuron), each spike train being represented
by a sequence of 0 and 1 of length S. Since it is quite unlikely that two spikes occur at
exactly the same time at this resolution ¢, spike trains are binned and clipped at a coarser
level. More precisely for a fixed bin size A = df (d being an integer), a new sequence of
length S/d of 0 and 1 is associated to each spike train (1 if at least one spike occurs in the
corresponding bin, 0 otherwise). For more precise informations on the binning procedure
and the link with point processes we refer the interested reader to [158].

A constellation or pattern, denoted by w, is a vector of size n of 0 and 1 (see Figure
5.1.A or |64]). Of course, there are 2" different constellations which are naturally in a
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one-to-one correspondence with the subsets® of {1,...,n}. Let us denote by .%,, the subset
corresponding to the constellation w (see Figure 5.1.A). The UE statistic associated to
some constellation w consists in counting the number of occurrences of such w in the set of
S/d vectors of size n. This number of occurrences being called binned coincidence count.

A : Simultaneously recorded neurons

Bin 1 2 3 . [(S/d)-1 S/d
Neuron1l | 1 1 0 0 1
Neuron2 | O 1 0 1 1
Neuron3| O 1 0 0 1
Neuron4 | O 0 1 ... 1 1
Ly {1} [ {123 {4+ ] ... | {24} {1234}
B : Discretization of spike trains
“““ - Continuous time
..... ... spike trains
1 o 1 o] o] 1 o] o] 1 o o 1 o] o] 1 o] 1 o o 1 o] o] o]
1lofl1])]212|0o|lof1]0o|1]0]0O Discretized 1lol1|12]|]0o0|]o|of1]|]1]|]0|0fO
1{of1f|of2]|ofof1]|1]o0]1 spike trains ofr1|21]|2|1|ofo|lz|1|o]|of1
of1flof1|of1fof1|o|1]0 o|lo|1|1|oflof1|of1|1|0]f0

Figure 5.1: In A, 4 parallel binary processes of length S are displayed. At each time step, the
constellation and its corresponding subset of {1,2,3,4} are given. For instance, the constellation
associated to the first bins is the vector (1,0,0,0) and the corresponding subset is {1}. In B,
illustration of the UE method with two different choices of bins of the same size (the results are
different, for example the constellation full of 1s is present in the second case and not in the first
one).

However, as shown in Figure 5.1.B, this method largely depends on the bin choice and
it has been proven in [66] that this can lead in the case n = 2 to up to 60% of loss in
detection when A is of the order of the range of interaction.

To detect dependency between neurons, two estimators of the expected coincidence
count are compared. The first one is the empirical mean m,, of the number of occurrences
of a given constellation w through M trials,

1 M
7 __E (k)
mw_Mk,lmW7

where m{¥ is the number of occurrences of w during the k' trial. This estimator is

consistent (that is, converges towards the expected value of the number of occurrences)
even with dependency between the spike trains. The second one is consistent only under
the independence hypothesis, and is given by

Mgw = % I 2 I (-0, (5.1)

€Ly kgL
where p; is the empirical probability of finding a spike in a bin of neuron 1.

2Here, the set {1,...,n} represents the recorded neurons numbered from 1 to n.
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This enables the construction of the test described in [64] and based on the comparison
between the statistic Mm,, and a quantile of the Poisson distribution P(Mm,,,) where M
is the number of trials. Most of the time only tests by upper values are computed [62, 64].
However, following the study of [158], we have decided to focus on symmetric tests. Hence,
the symmetric test based on the UE method rejects the independence hypothesis when m,,
is too different from m,,,,. However, such a test necessarily makes mistakes. For example,
a false positive corresponds to an incorrect rejection of the null hypothesis. Hence, an a
priori upper bound on the false positive rate, that is the significance level (or just level),
must be given in order to construct a decision rule. Griin [64] heuristically assumes that
under the independence hypothesis, the Poisson distribution P (M1 ,,) is a good estimate
of the coincidence count distribution. Therefore, the symmetric independence test with
level a based on the UE method is governed by the following rule: if

me > q1—aj2 OF me < Goy2s

where ¢, is the z-quantile of the Poisson distribution P(Mm,,,), then the independence
hypothesis is rejected.

Finally, let us mention that the theoretical framework of the UE method is the class of
Bernoulli processes. The equivalent in the "continuous" framework is the Poisson process
(as it can be seen in [158]). This leads to a different estimator of the expected coincidence
count and a different test which are defined properly in Section 5.3.

5.2.b) Delayed coincidence

In this section, we focus on another coincidence count which deals with continuous data. It
is based on the notion of delayed coincidence. In continuity with [158], we use a formalism
based on point processes. Nevertheless, notice that the notion of delayed coincidence is
pretty natural and was used in [108| or [13] with minor differences.

Considering Ny, ..., N,, some point processes on [a,b], and £ C {1,...,n} a set of
indices of cardinal L > 2, the delayed coincidence count X o (of delay § < (b — a)/2) over
the neurons of subset £ in the time window [a, b] is given by

Xy =Xy(0) = > 1 (5.2)

(xlv---me)eHlez N,

max x
ie{1,...,L} ie{l,...,L}

The delayed coincidence count can be explained in the following way :
e Fix some duration parameter o which is the equivalent of the bin size A,

e Count how many times each neuron in .Z spikes almost at the same time, modulo
the delay 0.

Figure 5.2 below gives a graphical representation of delayed coincidences.
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Neuron 1

Neuron 2

Neuron 3

Neuron 4

to to+ 9

subset | {1,2} | {1,3} | {1,4} | {2,3} | {2,4} | {3,4} | {1,2,3} | {1,2,4} | {1,3,4} | {2,3,4} | {1,..,4}
number 1 2 1 2 1 2 2 1 2 2 2

Figure 5.2: Four parallel spike trains are represented above. The table gives the number
of coincidences, if one considers only the spikes occuring in the interval [ty, ¢y + ], of delay
 over the neurons of each subset . of {1,...,4} with cardinal L greater than 2.

In practice, the algorithm used to count delayed coincidences uses a window of time
length ¢ sliding from a to b the two ends of the analysed time interval. More precisely,
assume that we fix a subset .2, at each step of the algorithm, the lower bound of the sliding
window is a spike of a neuron in the subset .Z and we count the number of coincidences
of delay 0 occuring in the sliding window over the neurons in the subset .. This last
counting is done exactly like in Figure 5.2. A visualisation of the algorithm is given below.

0

-~

DT ‘ ‘ ‘ 2)[T ‘ ‘ ‘ 3

Neuron 1

Neuron 2 ; — ; RV — . oy
curo \. - - - S - - - 1/

Neuron 3

4) 5) 6)
Neuron 1 +- . + + t t- . t + + t- - /\
Neuron 2 ———+ +— t +—t t +—t
Neuron 3

a b a b a b

Figure 5.3: The six first steps in the dynamical computation of the delayed coincidence
count. Here, there are 3 parallel time point processes. We consider the full pattern, i.e.
2 =1{1,2,3}. The grey rectangle represents the sliding time window of length §. The bold
lines denote the coincidence patterns counted at each step and the grey dashed ones denote
the coincidence pattern which have been counted in any one of the previous steps. At each
of steps 1,2 and 3, exactly one coincidence is counted. At steps 4 and 5, no coincidence is
detected. And, at step 6, two coincidences are counted.

5.3 Study of the delayed coincidence count

Once the notion of coincidence is defined with respect to continuous data (Equation (5.2)),
mathematical tools can be used to construct the desired independence test. The procedure
is to provide the expected value and variance of the variable X ¢ in function of the firing
rates. These computations classically imply a Gaussian approximation with respect to i.i.d
trials. Unfortunately the firing rates are usually unknown. Thus the final step is to replace
the firing rates by their estimator to compute the estimated expected value and variance.
This plug-in procedure is known to change the underlying distribution. As in [158], the
delta method provides the exact nature of this change.
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In the continuous framework, a sample is composed of M observations of Nq,---, N,
which are the point processes associated to the spike trains of n neurons on a window [a, b].
The goal is to answer the following question:

Given £ a subset of {1,...,n}, are the processes Ny, | € £ independent?

To do this, a statistical test comparing the two hypotheses

(Ho) The processes N, | € £ are independent;
(H1) The processes N;, | € Z are not independent;

is proposed.

In this section our test and its asymptotic relevance are introduced. First, let us present
and discuss our main assumptions which are the same as in [158].

Assumption Al. Ny, ..., N, are Poisson processes.

This assumption can be resumed to an assumption of independence of a point process
with respect to itself over the time, as Bernoulli processes in discrete settings.

Assumption A2. The Poisson processes Ny, ..., N, are homogeneous on |a,b].

Assumption A2 may also appear very restrictive. But once again Bernoulli processes
considered in [66, 64| have the same drawback. Moreover, if necessary, one can partition
[a, b] in smaller intervals on which A2 is satisfied. For more precise informations on Poisson
processes we refer the interested reader to [86].

These assumptions are necessary in this work in order to obtain an explicit form for the
expected number of coincidences (and its variance). Note that there exist some surrogate
methods in the literature for which there is no need of a model on the data (see [63, 94|
for a review). In particular two kind of methods are commonly used: dithering methods
(involving random shifts of individual spikes [154, 95|, or random shifts of patterns of spikes
[69]), and trial-shuffling methods [124, 125]. However, they are based on binned coinci-
dence count, and there is no equivalent, up to our knowledge, with a delayed coincidence
count, due to serious computational issues. Alternative works have also been done in the
Bayesian paradigm [6]. However, as announced in the introduction, we empirically show in
Section 5.5 that the assumptions can be weakened. In particular, point processes admitting
refractory periods can be taken into account. Thus, a nice perspective of this work could
be to derive theoretical results with these weakened assumptions.

5.3.a) Asymptotic properties

In order to build our independence test, one needs to understand the behaviour of the
number of coincidence X4 under the independence hypothesis Hy. In particular, the
expected value and the variance of X, are computed here. In a general point processes
framework, these computations are impossible. This is why some restrictive assumptions
are needed, such as Al, A2, or the independence of the processes, as done in the original
UE method where independent Bernoulli processes have been considered.



172 5. DETECTION OF DEPENDENCE PATTERNS WITH DELAY

Theorem 5.3.1. Let £ and X be defined as previously. Assume assumptions Al and
A2 and denote by \q, ..., \, the respective intensities of Ny, ..., N,. Under hypothesis Ho,
the expected value and the variance of the number of coincidences X o are given by:

mo.y =E[Xg] = (H Al) I(L,0)
les

and

L1

Var(Xg) =mozr+y | D [T A TI N | 1L k),
k=1 \ scZjes 1gg
#.7=k

where the I(L, k) are given by Proposition 5.3.2 below.

The proof relies on the calculus of the moments of a sum over a Poisson Process and is
given in Appendix 5.8. The integral I(L, k) can be seen as the contribution of a subset of
k neurons to the number of coincidences between the L neurons.

Proposition 5.3.2. Forb>a >0 and 0 < < b— a, define for every k in {0,..., L}

ww- [ [y

[a,b]-=F \a,b]*

2

dry...dxy | drgy...dzp,

where the convention [ f(x)dx = f(z) is set. Then, for L > 2, and k in {0,...,L — 1},
[a,b]°

o I(L,L)=1L*0b—0a)*6*2—2L(L—1)(b—a)d* ' + (L —1)*§*,

o I(L,k)= f(L,k)(b—a)d“ 1 —n(L,k)s+*,
k(k+1)+L(L+1)
L—-k+1 ’
K+ Q2+ L)+ k(5+2L - L*)+ L3 +2[* - L -2
(L—k+2)(L—-k+1) '

where f (L, k) =

and h (L, k) =

Once the behaviour of X ¢ under H, is known, the method to construct an independence
test is straight-forward. Suppose that M independent and identically distributed (i.i.d.)
trials are given. Denote Nl-(k) the spike train corresponding to the neuron i during the k"
trial. As for the UE method, the idea is to compare two estimates of the expectation of
X . The first one is the empirical mean of X ¢:

M
. 1 (k)
My = ; X9, (5.3)

where X,,(zﬁ) is the delayed coincidence count during the k** trial. This estimate converges
even if the processes are not independent. More precisely the following asymptotic result
is given by the Central Limit Theorem

VM (my —E[Xg]) 22 N (0, Var(Xg)),
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where — denotes the convergence of distribution and N (i, 0?) denotes the Gaussian

distribution with mean p and variance o2.

The second estimate is given by Theorem 5.3.1. Indeed, under Hq the following equality

holds
E[Xg] =moy = (H >\,> I(L,0

les
Replacing each spiking intensity A; by

M

. 1 5
A= mzw " ([a, b)),

k=1

where Nl(k) ([a, b]) denotes the number of spikes in [a, b] for neuron [ during the &' trial,
gives the following estimator,

o,y = (H xl) I(L,0). (5.4)

le”

Note that mg is always consistent (that is, converges towards the true parameter)
whereas Mg ¢ is consistent under H,. This leads to the following independence test: the
independence assumption is rejected when the difference between my and mg ¢ is too
large. More precisely, Theorem 5.3.3 gives the asymptotic behaviour of v/ M (Mg — Mo 2)
under Hy.

Theorem 5.3.3. Under the notations and assumptions of Theorem 5.3.1, and under H,,
the following affirmations are true

e The following convergence of distribution holds:
vM(mg —m07g) Mi> N(O,JQ) ,
—00

with

0 =Var(Xy) — (b—a) 'E[Xy] <Z)\ )

ley

2

e Moreover, 0° can be estimated by

5 =0(Xg) = (b—a) ' I(L,L) ] N (Z Xf) :

les leZ

where
L—1 . R
@(Xg)zmo,z‘i‘z Z HA?HAI
k=1 #{/cﬁjef g7

and the following convergence of distribution holds:

VAL 2 B 0,1,
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The proof of this theorem relies on a standard application of the delta method [27] and
is given in Appendix 5.8.b). The delta method is useful in order to deal with the plug-in
step, i.e. the substitution of the real parameters by the estimated ones.

Note that the results obtained in Theorems 5.3.1 and 5.3.3 are true for more general
delayed coincidence counts. A more general result and its proof are given in Appendix.
However when one considers more general ways to count coincidences the integrals I(L, k)
are harder to compute.

5.3.b) Independence test

The results obtained in Theorem 5.3.3 allow us to straightforwardly build a test for de-
tecting a dependency between neurons:

Definition 5.3.4 (The GAUE test). For « in |0, 1], denote z, the a-quantile of the stan-
dard Gaussian distribution N'(0,1). Then the symmetric test of level o rejects Ho when m
and Mg ¢ are too different, that is when

—(My — Mo.y)
MT > Zl1—a/2-

Note that once a subset is rejected by our test, one can determine if the dependency
is rather excitatory or inhibitory according to the sign of m¢ — Mg . If My — 1y >0
(respectively < 0) then the dependency is rather excitatory (respectively inhibitory).

The result of a test may be wrong in two distinct manners. On the one hand, a false
positive is an error in which the test is incorrectly rejecting the null hypothesis. On the
other hand, a false negative is an error in which the test is incorrectly accepting the null
hypothesis. The false positive (respectively negative) rate is the test’s probability that
a false positive (resp. negative) occurs. Usually, a theoretical control is given only for
the false positive rate which is considered as the worst error. The following corollary is
an immediate consequence of Theorem 5.3.3 and states the appropriateness of the GAUE
test.

Corollary 5.3.5. Under assumptions of Theorem 5.5.3, the test of level a presented in
Definition 5.3.4 is asymptotically of false positive rate a. That is, the false positive rate of
the test tends to o when the sample size M tends to infinity.
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5.4 Illustration Study: Poissonian Framework

In this section, an illustration of the previous theoretical results is given. To obtain a global
evaluation of the performance of the different methods, some parameters can randomly

fluctuate. More precisely, the following procedure is applied,
\

1. Generate a set of random parameters according to the appropriate Frame-
work;

2. Use this set to generate M trials; P
3. Compute the different statistics;

4. Repeat steps 1 to 3 a thousand times.

/
We begin by an illustration of the results of Theorem 5.3.3 and Corollary 5.3.5, and a
comparison with the original UE method.

5.4.a) Illustration of the asymptotic properties

The control on the false positive rate of our test being only asymptotic, it is evaluated on
simulations in this Section. Moreover, it is shown that our test is empirically conservative,
that is, when constructed for a prescribed level, say «, the empirical false positive rate is
less than a. We simulate independent Poisson processes under the following Framework

(F1) :

e the trial duration (b—a) is randomly selected (uniform distribution) between
0.2s and 0.4s;

\

e the n = 4 neurons are simulated with different intensities. Each one is p F;
randomly selected (uniform distribution) between 8 and 20Hz;

e the set of tested neurons is given by £ = {1,2,3,4}.

/
Moreover, we set once and for all 6 = 0.01s. Note that the dependence with respect to
the parameter ¢ has been fully discussed in [5].

Considering M independent trials of n point processes, the asymptotic (with respect to
M) of the delayed coincidence count is studied. To this aim, we use a Monte Carlo method
following the procedure P presented at the beginning of Section 5.4. On each simulation,
M independent trials are generated and the statistic S; = VM (g ; — ;) //07 (for i
from 1 to 1000) is computed. Theorem 5.3.3 tells us that the random variables \S; should be
asymptotically distributed as the standard Gaussian distribution. Thus, we plot (Figure
5.4.A) the Kolmogorov distance K.S(Far 1000, ') between the empirical distribution function
over the 1000 repetition Fi/ 1000 and the standard Gaussian distribution function F:

KS(FM,1000> F) = sup ‘FMJOOO(m) - F(l’)‘

Usually, a test of level « = 0 always accepts, whereas a test of level @« = 1 always
rejects. Hence, there is a critical value (depending on the observations, and called p-value)
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for which the test decision passes from acceptance to rejection. If the false positive rate of
a test of level « is exactly a for all a in [0, 1], which should asymptotically be the case ac-
cording to Corollary 5.3.5, then one can prove that the corresponding p-value is uniformly
distributed on [0, 1] under the null hypothesis. Thus, the evolution (with respect to M)
of the Kolmogorov distance between the empirical distribution function of the obtained
p-values (with our test and the one given by the UE method) and the uniform distribution
function is plotted for symmetric tests (See Figure 5.4.B). It appears that the rate of con-
vergence of the empirical distribution function of the p-values is faster for our test than
the one given by the UE method.

Fig. A Fig. B Fig. C
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Figure 5.4: Under Framework F; (Independence assumption). Figure A. Evolution of
the Kolmogorov distance (in function of the number of trials) averaged on 1000 simulations
between the empirical distribution function of the test statistics and the standard Gaussian
distribution function. Figure B. Evolution of the Kolmogorov distance averaged on 1000
simulations between the empirical distribution function of the p-values and the uniform
distribution function with respect to the number of trials. The plain line stands for our
test and the dashed line for the original UE one. Figure C. Graphs of the sorted 1000
p-values (for 50 trials) in function of their normalized rank under H,. The plain line stands
for our test, the dashed line for the original UE one and the dotted line for the uniform
distribution function.

From Figures 5.4.A and B, it seems reasonable to consider, for our test, sample sizes
M greater than 50. Indeed, one sees that the distribution of our statistic is then almost
Gaussian and the distribution of the p-values almost uniform (as expected under the null
hypothesis). Thus, in order to describe more precisely what happens, we plot in Figure
5.4.C the sorted p-values in function of their normalized rank for M = 50. Note that if
the curve of sorted p-values is below (respectively above) the diagonal, then the observed
p-values are globally smaller (respectively greater) than they should be under Hy. Our test
seems to be conservative except for big or very small p-values. The problem induced by
this non conservativeness for very small p-values is detailed at the end of Section 5.5. On
the other side, the false positive rate observed for the UE test is too high. For example,
we see in the figure that the UE test with a theoretical test level of 5% rejects almost 20%
of the cases.



5.4. ILLUSTRATION STUDY: POISSONIAN FRAMEWORK 177

5.4.b) Parameter Scan

Here is illustrated the influence of the parameters A (the firing rate) and b — a (the trial
duration). We plot in Figure 5.5 the evolution (with respect to M) of the Kolmogorov
distance between the empirical distribution function of the obtained p-values (with our
test and the one given by the UE method) and the uniform distribution function.
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Figure 5.5:  Under Framework F; (Independence assumption). Evolution of the Kol-
mogorov distance averaged on 1000 simulations between the empirical distribution function
of the p-values and the uniform distribution function with respect to the number of trials.
The plain line stands for our test and the dashed line for the original UE one. Each plot
stands for different values of A and b (we set a = 0 so that b gives the trial duration b — a).
From top to bottom A takes the values 8, 15 and 20Hz. From left to right, b takes the
values 0.2, 0.3 and 0.4s.

First of all, note that, if the Kolmogorov distance between the empirical distribution
function of the obtained p-values and the uniform distribution function tends to 0, then
it means that the false positive rate of the test of level a tends to a when the sample
size tends to infinity. As predicted by Corollary 5.3.5, the Kolmogorov distance between
the empirical distribution function of the obtained p-values with our test tends to 0 fast
enough if A is not too small (A > 15Hz). The test induced by the UE method seems to
share the same asymptotic behaviour, but with a slower rate of convergence. Finally, it
seems that our method performs better than the UE method in all the configurations of
parameters.

To describe more precisely what happens, we plot in Figure 5.6 the sorted p-values in
function of their normalized rank (for M = 50). As expected in regard of Figure 5.5, the
plain line sticks to the first diagonal when the parameters are large enough, since, in those
cases, the KS distance between the empirical distribution function of the p-values of our
test and the uniform distribution function was already small for M = 50. However, the test
induced by the UE method does not respect the prescribed level even when the parameters
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are large. Indeed, the dashed line remains under the diagonal in all cases. Thus, even if
the asymptotic level of the UE method is good, in the practical cases where the sample
size is small, the false positive rate is not guaranteed.
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Figure 5.6: Under Framework F; (Independence assumption). Graphs of the sorted 1000
p-values (for 50 trials) in function of their normalized rank under Hy. The plain line stands
for our test, the dashed line for the original UE one and the dotted line for the uniform
distribution function. FEach plot stands for different values of A and b (we set a = 0 so that
b gives the trial duration b — a). From top to bottom A takes the values 8, 15 and 20Hz.
From left to right, b takes the values 0.2, 0.3 and 0.4s.

5.4.c) Illustration of the true positive rate

First, let us note that the true positive rate of a test is the test’s probability of correctly
rejecting the null hypothesis. No theoretical result on this rate can be obtained from The-
orem 5.3.3 who deals only with the false positive rate. So, in order to evaluate the true
positive rate of the test, we simulate a sample which is dependent and check how many
times the test rejects H,.

To obtain dependent Poisson processes an injection model inspired by the one used in
64, 66] or [158] is used. Consider independent homogeneous Poisson processes Ny, . . ., Ny,
drawn according to Framework F;. Then, simulate an other Poisson process (according
to the same framework but independent from the previous ones) N, with an intensity of
0.3Hz, which is injected to every neuron. Thus our sequence of dependent Poisson processes
is given by

N; = N; UN.

This new framework (F; completed by the injection) is referred as Framework F, and
described below :
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e the trial duration (b—a) is randomly selected (uniform distribution) between
0.2s and 0.4s;

e the n = 4 neurons are simulated with different intensities. Each one is
randomly selected (uniform distribution) between 8 and 20Hz. The points p Fy
of the auxiliary Poisson process N (with intensity 0.3Hz) are injected to
every neurons;

e the set of tested neurons is given by £ = {1,2,3,4}.

Note that this injection model can only model excess of coincidences and not la)Ck of
coincidences. In the injection model used in [66], a small jitter is applied before injection
to mimic temporal imprecision of the synchronous event. In our Poissonian framework
this jitter cannot be performed in a similar way. Indeed, this jitter does not preserve the
stationariness of the Poisson process near the edges. Although some other more elaborate
injection models are available in the Poissonian framework, we do not use one of them here
because their translation in the discrete time framework is not clear.
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Figure 5.7:  Under Framework Fy (Dependence assumption). Figure A. Illustration of
the true positive rate of the test, for a theoretical test level of 5%. The curves represent
the evolution, with respect to the number of trials, of the true positive rate (averaged on
1000 simulations). The plain line stands for our test and the dashed line for the original
UE one. Figure B. Graphs of the sorted 1000 p-values for dependent Poisson processes
(50 trials). The plain line stands for our test, the dashed line for the original UE one and
the dotted line for the uniform distribution function.

For a fixed theoretical level of o = 5%, Figure 5.7.A illustrates the true positive rate
of the two tests in function of the number of trials M. Then Figure 5.7.B represents the
p-values as a function of their normalized rank, for M = 50. As in Figure 5.4.C, the lower
the curve is, the greater the observed frequency of rejection of the null hypothesis. The
true positive rate is higher for the UE method for small sample sizes, but this is at the
price of an undervalued theoretical level. Indeed, we saw previously (Section 5.4.a)) that
the UE test gives too much false positives (for M = 50, 20% of rejection under the null
hypothesis with a theoretical test level of 5%).

5.5 Illustration Study: Non-Poissonian framework

In this section, a more neurobiologically realistic framework than the Poisson one is consid-
ered. Indeed, it is interesting to see if our test is still reliable when the Poisson framework
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is not valid any-more. Our test is confronted to multivariate Hawkes processes, which can
be simulated thanks to Ogata’s thinning method [110] inspired by [92]. The use of Hawkes
processes in neurobiology was first introduced in [31]. With the development of simultane-
ous neuron recordings there is a recent trend in favour of Hawkes processes for modelling
spike trains (|88, 119, 120, 123, 158]). Furthermore, Hawkes processes have passed some
goodness-of-fit tests on real data [136]. In this model, interaction between two neurons
can be easily and in a more realistic way inserted. This is one of the reasons of this trend.
Note that the homogeneous Poisson process is a particular case of Hawkes processes, with
no interaction between neurons.

A counting process N is characterized by its conditional intensity )\; which is related
with the local probability of finding a new point given the past. (Informally, the quantity
Adt gives the probability that a new point on N appears in [¢,t + dt] given the past). The
process (N*),_, . is a multivariate Hawkes process if there exist some functions (h;;)
(called interaction functions) and some positive constants (p;)
ties) such that, for all j = 1,...,n, M given by

)\g = max <O, i+ Z/ h,;j (t — S) Nt (dS))
i=1 v s<t

is the intensity of the point process N7, where N*(ds) is the point measure associated to
N, that is N(ds) = > 1 i 0r(ds) where 07 is the Dirac measure at point 7.

i,j=1..n

i—1.n (spontaneous intensi-

The functions h;; represent the influence of neuron ¢ over neuron j in terms of spiking
intensity. This influence can be either exciting (h > 0) or inhibiting (h < 0). For example,
suppose that h;; = Bl 4. If B> 0 (respectively 5 < 0) then the apparition of a spike on
N increases (respectively decreases) the probability to have a spike on N7 during a short
period of time (namely x): neuron i excites (respectively inhibits) neuron j. The processes
Nt fori=1,...,n are independent if and only if h;; = 0 for all i # j.

Note also that the self-interaction functions h;; can model refractory periods, making
the Hawkes model more realistic than Poisson processes, even in the independence case.
In particular when hj; = —p;lj0, , all the other interaction functions being null, the
n-dimensional process is composed by n independent Poisson processes with dead time x,
modelling strict refractory periods of length x [133].

All the following tests are computed according to the Framework F3 below:
)

e the trial duration of b—a is randomly selected (uniform distribution) between

0.2 and 0.4s;
e the n = 4 neurons are simulated with spontaneous intensity pq, ..., p4 ran-
domly selected (uniform distribution) between 8 and 20Hz; ek
e the non-positive auto interaction functions are given by h;; = —p;10,0.0035);

e the set of tested neurons is given by & = {1,2,3,4}.

7
We also performed a parameter scan. However, since the results are equivalent to those
obtained in the Poissonian framework, they are not presented here.
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5.5.a) Illustration of the level

Before all, one wants to know if Theorem 5.3.3 and Corollary 5.3.5 are still reliable for
Hawkes processes. Thus as in section 5.4, Figure 5.8.A shows the evolution of the KS
distance between Fj 1000 and F. Then as in Section 5.4, we look at the KS distance
between the empirical distribution function of the p-values and the uniform distribution
function to see if one can trust the level of the different tests (Figure 5.8.B). These two
figures are pretty similar to Figures 5.4.A and B (Poissonian case), but with a slightly
slower convergence rate (with respect to M). Finally, Figure 5.8.C plays the same role
as Figure 5.4.C and presents the sorted p-values in function of their normalized rank (for
M = 50). Again, the results are comparable to those obtained in the Poissonian case: our
test is rather conservative whereas the UE test rejects too many cases.
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Figure 5.8: Under Framework F3 (Independence assumption). Figure A. Evolution of
the Kolmogorov distance (in function of the number of trials) averaged on 1000 simulations
between the empirical distribution function of the test statistics and the standard Gaussian
distribution function. Figure B. Evolution of the Kolmogorov distance averaged on 1000
simulations between the empirical distribution function of the p-values and the uniform
distribution function with respect to the number of trials. The plain line stands for our
test and the dashed line for the original UE one. Figure C. Graphs of the sorted 1000
p-values (for 50 trials) in function of their normalized rank under H,. The plain line stands
for our test, the dashed line for the original UE one and the dotted line for the uniform
distribution function.

5.5.b) Illustration of the true positive rate

As said previously, it is more realistic to introduce dependency between Hawkes pro-
cesses than Poisson processes. Still considering Framework F3, interaction functions h; ; =
BLio,0.005s), S being randomly selected between 20 and 30Hz, are added. More precisely,
we add five interaction functions: higs, hags, hi14, hos and hsy (summarized in Figure
5.9). Moreover, the auto interactions are updated to preserve strict refractory periods :
hi; = —(pi + mi.8)1,0.003s, Where m; is the number of neurons exciting neuron 7 (for
example, my = 3). This new framework (F3 completed by the five interaction function) is
referred as Framework F, and described below :
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e the trial duration of b—a is randomly selected (uniform distribution) between
0.2 and 0.4s;

e the n = 4 neurons are simulated with spontaneous intensity pq, ..., p4 ran-
domly selected (uniform distribution) between 8 and 20Hz;

e the non-positive auto interaction functions are given by h;; = —(u; +
m;.3)10,0.0035) (the m;’s are defined above);

e the strength of interaction § is uniformly selected between 20 and 30Hz.
There are five non-null interaction functions (hi3, hogs, hi4, hey and hs4)
which are all equal to x +— 81 ,¢p0,0.0055);

e the set of tested neurons is given by % = {1,2,3,4}.

-
(4)
N\

JON
RN
CORO»

Figure 5.9: Local independence graph. An arrow means a non null interaction function.
Blue arrow means inhibition and red arrow means excitation.

As previously, we first provide an illustration of the true positive rate of the two tests,
associated to a theoretical level of 5%, in function of M (Figure 5.10.A). Then Figure
5.10.B represents the p-values in function of their normalized rank, for M = 50. The
difference between the true positive rates is smaller than in the Poissonian Case.
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Figure 5.10: Under Framework F, (Dependence assumption, see Figure 5.9). Figure A.
Ilustration of the true positive rate of the test, for a theoretical test level of 5%. The
curves represent the evolution, with respect to the number of trials, of the true positive
rate (averaged on 1000 simulations). The plain line stands for our test and the dashed line
for the original UE one. Figure B. Graphs of the sorted 1000 p-values for 50 trials. The
plain line stands for our test, the dashed line for the original UE one and the dotted line
for the uniform distribution function.
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5.5.c) Multiple pattern test

In the original MTGAUE method, a multiple testing procedure is applied with respect
to 1900 sliding time windows. In our framework, we cannot guarantee the relevance of
the multiple test with this high order of multiplicity. This is due to the default of the
Gaussian approximation and, more precisely, to the excess of very small p-values as noted
in Section 5.4.a). But, we are able to propose a multiple testing procedure with respect to
the different possible patterns. For example, with four neurons there are eleven different
possible patterns, which gives a much lower order of multiplicity. So, the multiple test over
all the eleven sub-pattern of two, three or four neurons is presented here.

In multiple testing, the notion of false positive rate is not relevant. The closest notion
might be the Family-Wise Error Rate (FWER) which is the probability to wrongly reject
at least one of the tests. This error rate can be controlled using Bonferroni’s method but
it is too restrictive, in particular when the number K of tests involved is too large. One
popular way to deal with multiple testing is the Benjamini-Hochberg procedure [11] which
ensures a control of the False Discovery Rate (FDR). False discoveries cannot be avoided
but it is not a problem if the ratio of F, (the number of false positives detections) divided
by R (the total number of rejects) is controlled. Therefore, the FWER and the FDR are
mathematically defined by FWER = P (F}, > 0) and FDR = E [F,,/R 1g-¢].

Note that in the full independent case, the FWER and the FDR are equal. The following
procedure, due to Benjamini and Hochberg ensures a small FDR over K tests:

1. Fix a level ¢ (¢ = 5% for example);

2. Denote by (P, ..., Pk) the p-values obtained for all considered tests;

3. Order them in increasing order and denote the increasing vector (P, ..., Pk));
4. Note ko the largest k such that Py < kq/K;

5. Then, reject all the tests corresponding to p-values smaller than Py).

The theoretical result of [11] ensures that if the p-values are upper bounded by a uniform
distribution and independently distributed under the null hypothesis, then the procedure
guarantees a FDR less than ¢g. The main drawback of this procedure in our case is that one
needs to compute p-values that are very small when K is large. For example, if K > 50
and ¢ = 5%, the upper bound given by kq/K can be smaller than 0.001 and as noted in
Section 5.4.a) the empirical frequency of very small p-values is greater than expected and
therefore the uniform upper bound of the p-values is not guaranteed in our case. However,
only 11 tests are considered here and the procedure still returns reliable results.

We perform 1000 simulations and count how many times each test rejects the inde-
pendence. The results, obtained for M = 50, are presented in Figure 5.11. The results
show that our test detects all patterns except {1,2}. This is consistent with the considered
framework (F4) since we simulate connections between all pairs of neurons except {1,2}.
The U.E. test essentially detects the patterns {2,3,4}, {1,3,4}, {1,2,3,4} and to a lesser
extent {1,2,4} and {1,2,3}. Moreover, it misses all the pairs.
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Figure 5.11: Under Framework F; (Dependence assumption, see Figure 5.9). Frequency
of dependence detections (1000 simulations) for each pattern. Grey for our test, white for
the original UE method.

5.6 Illustration on real data

After validating our test on simulations, we apply our method on real data and show results
in agreement with classical knowledge on those data.

5.6.a) Description of the data

The data set considered here is the same as in [158| and previous experimental studies
[61, 141, 142]. The following description of the experiment is copied from Section 4.1 of
[158]. These data were collected on a 5-year-old male Rhesus monkey who was trained to
perform a delayed multi-directional pointing task. The animal sat in a primate chair in
front of a vertical panel on which seven touch-sensitive light-emitting diodes were mounted,
one in the center and six placed equidistantly (60 degrees apart) on a circle around it.
The monkey had to initiate a trial by touching and then holding with the left hand the
central target. After a fix delay of 500ms, the preparatory signal (PS) was presented by
illuminating one of the six peripheral targets in green. After a delay of either 600ms (with
probability 0.3) or 1200ms (with probability 0.7), it turned red, serving as the response
signal and pointing target. Signals recorded from up to seven micro-electrodes (quartz
insulated platinum-tungsten electrodes, impedance: 2-5M€2 at 1000Hz) were amplified and
band-pass filtered from 300Hz to 10kHz. Using a window discriminator, spikes from only
one single neuron per electrode were then isolated. Neuronal data along with behavioural
events (occurrences of signals and performance of the animal) were stored on a PC for
off-line analysis with a time resolution of 10kHz. The idea of the analysis is to detect some
conspicuous patterns of coincident spike activity appearing during the response signal in
the case of a long delay (1200ms). Therefore, we only consider trials where the response
signal is indeed occurring after a long delay.

5.6.b) The test

We have at hand the following data: spike trains associated to four neurons (35 trials by
neurons). We consider two sub windows: one between 300ms and 500ms (i.e. before the
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preparatory signal), the other between 1100ms and 1300ms (i.e. around the expected sig-
nal). Our idea is that more synchronisation should be detected during the second window.
Moreover, we do not only want to test if the four considered neurons are independent (that
is perform our test on the complete pattern {1,2,3,4}). Indeed one can be interested in
knowing if neurons in some sub-patterns (for example {1,2} or {1,3,4} are independent.
That is why we use the multiple pattern test procedure defined at the end of Section 5.5
to test all the eleven subsets (of at least two neurons) of the four considered neurons are
tested. Thus we use the Benjamini-Hochberg procedure (presented in the previous section)
for K = 22 tests. Moreover, we took several values for the delay é between 0.01s and 0.025s
and the results remained stable.

The results are presented in Figure 5.12. Note that we saw in sections 5.4 and 5.5 that
our test is too conservative even for small number of trials. This ensures that the theoretical
level of our test can be trusted. We see that synchronizations between the subsets {3,4}
and {1,3,4} appear in the second window. These results suggest that neurons 1, 3 and
4 belong to a neuronal assembly which is formed around the expected signal. This is in
agreement with more quantitative results on those data [61, 158].

o o
5 ® =10
© ©

300 - 500ms 1100 - 1300ms

Figure 5.12: Evolution of the synchronization between neurons. The lines indicate the

subset for which our test detects dependence. Here we detect an excess of coincidences
between neurons {1, 3,4} and {3,4}

5.7 Conclusion

This chapter generalizes the statistical study of the delayed coincidence count performed in
[158] to more than two neurons. This delayed coincidence count leads to an independence
test for point processes which are commonly used to model spike trains.

Under the hypothesis that the point processes are homogeneous Poisson processes, the
expectation and variance of the delayed coincidence count can be computed (Theorem
5.3.1), and then a test with prescribed asymptotic level is built (Theorem 5.3.3). A simu-
lation study allows us to confirm our theoretical results and to state the empirical validity
of our test with a relaxed Poisson assumption. Indeed, we considered Hawkes processes
which are a more realistic model of spike trains. The simulation study gives good results,
even for small sample size. This allows us to use our test on real data, in order to highlight
the emergence of a neuronal assembly involved at some particular time of the experiment.
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We achieved the full generalization of the single test procedure introduced in [158]. How-
ever, we could not achieve the multiple time windows testing procedure mainly because
of the default of Gaussian approximation concerning extreme values of the test statistics.
More precisely, very small p-values are not distributed as expected. In particular, as noted
at the end of Section 5.4.a), when the sample size M is moderate (M = 50), our test
returns too many very small p-values. In [158], the MTGAUE method is applied simulta-
neously on 1900 sliding windows. In the present work, in order to apply multiple testing
both with respect to the sliding time windows and the subsets, the total number of tests is
even larger. Indeed, for each sliding window, there are 2" —n — 1 tests to perform, where
n is the number of recorded neurons. As said at the end of Section 5.5 this would lead to
extremely small p-values, for which our test is less reliable.

Even if our test remains empirically reliable under a non Poissonian framework, it could
be therefore of interest to explore surrogate data method such as trial-shuffling [124]. A
very recent work based on permutation approach for delayed coincidence count with n = 2
neurons [5] is a first step in this direction but needs to be generalized to more than 2
neurons.
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5.8 Proofs

As said in Section 5.3.a), we prove more general results than Theorems 5.3.1 and 5.3.3.
Considering Ny, ..., N,, some point processes on [a,b] and £ C {1,...,n} a set of indices
with cardinal L > 2, we prove the same kind of results with any coincidence function
¢(zy,...,xr) with value either 0 or 1 satisfying Definition 5.8.1 below.

Definition 5.8.1.

1. A coincidence function is a function ¢ : [a,b]" — {0, 1} which is symmetric.

2. Let (w1,...,21) € [[,cy Ni be a L-tuple with a spiking time of every neuron of the
subset L. Say that (xy,...,x1) is a coincidence if and only if ¢ (xy,...,xL) = 1.

3. Given ¢ a coincidence function, we define X ¢ the number of coincidences on [a,b]

by:
Xy = Z c(zy,...,xp).
(z1,2L) €l [1cp Ni
4. Define
2
Vk e {0,...,L}, I(L,k) = /c(xl,...,x,;)dml...dxk ATy ... dxy

[a,b]L—k  \a,b]k

where the convention [ f(x)dx = f(x) is set.
[a,b]°

5.8.a) Proof of Theorem 5.3.1

Theorem 5.8.2. Under assumptions and notations of Definition 5.8.1, if Ni,..., N, are
some independent homogeneous Poisson processes on |a,b] with intensities Ay, ..., \,, the
expected value and the variance of the number of coincidences X o are given by:

mo.y =E[Xg] = (H >\l> I(L,0) (5.5)

le”?

and

-1

Var(Xy) = mo.o + IR I R RO} (5.6)
k=1 \ sczjes ¢y
#. 7=k
Proof. By definition,
E[X¢]=E Z c(zy,...,xp)

(1,005 xL)EHze:g N
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Using the fact that Ny, .-, N, are independent homogeneous Poisson processes with re-
spective intensities Aj,- -+, A, one can prove (see [37]) that
E[Xg] = (H )\l> / c(xy,...,xp) dry...dey = <H )\l> I(L,0).
lez [a,b] L les

For sake of simplicity, the variance is computed in the simpler case where ¥ = {1, ..., L},
the generalization being pretty clear. In order to simplify, we use the integral form of the
coincidence count, i.e.

Xy = / c(xq,...,xr) dNy(z1)...dNp(xp)

[a,b]"

where dNy,...,dNy are the point measures associated to Ni,..., Ny. Thanks to Fubini
Theorem we have

E[X2] =E / c(xy,...,xp)e(yr, -, yL) Hle(xl)le (w) | - (5.7)

[a,b]2L =1
Then, let us define
la, 8] = {(z,y) € [a,b]* | v = y} and [a,8]® = [a,0)*\ [a.8]". (5.8)

Now, let us see that [a,b]*" = ([a, 6]2)L = U.epi e (Hle[a,b](sl)> where g; denotes the
[-th coordinate of €. Using this decomposition and Equation (5.7), it is clear that

E[X3]= ) A, (5.9)

ec{1,2}L

where for all € in {1,2}%,

L
A=l [ clnmetn o) [[dN @) dNm)
=1

[a,b] (1)

=k

l

For every p = 1,...,L, let ¢€® = (1,...,1,2,...,2) where the number of 1’s in @ is
exactly p. Properties of the moment measure of Poisson processes (see [37] or [86] in a
more simplified framework) lead to

L
A =E / / c(zy,...,xn)e(yr, ..., yL) Hle (1) ANy (y1)
I=1

(@0 V)" ([an)®)"" -

p L
:H)\l H )\?/ / C(tl,...,tp,l’erl,...,ZCL)
=1

j=p+1 [a,b)”  \a,bp)2(L—P)

L
ety by Yptts - -, YL) H dxkdyk> dty ...dt,. (5.10)

k=p+1
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For fixed (ti,...,t,) one can apply Fubini Theorem to the inner integral which leads to:

2

P L
Aw = [N ]I /\§/ / c(tyy .oty tpsrs .ty dbpey .. dty | dty ... dt,.
=1

IZPEL fapp g p2e-»)

P L
=[x I] ¥ 1@.L-p).
=1 j=p+1

by definition of I(L, L — p).

For more general vectors ¢ in {1, 2}, let us note p the occurrence count of 1 in the vector
e and I, (respectively J.) the set of indices of the coordinates of € equal to 1 (respectively
2). Then, using the symmetry of the coincidence function ¢, one can easily deduce from
the computation of A ) that

A= X 1L L-p). (5.11)

i€l Jj€Je

From (5.9) and (5.11), one deduces

L
EXL=> [ Y [INI]A | 1L —p).
p=0 g;ijef 7

Note that I(L, L) = I(L,0)? by definition, so the case p = 0 in the sum corresponds to

[[X 1.L)=][N (L 0)°=E[Xg?*.
le” le¥

Moreover, the case p = L in the sum corresponds to [[ A; I (L,0) = E[X¢]. So, we have
e

L—-1

E[X%] =EXA+EXLA+D [ S TN | 1@ L-»p).

p=1 \ JCcZje s i¢7
#.7=p

and (5.6) clearly follows by defining the variable k = L — p.
[

Theorem 5.3.1 is a direct consequence of Theorem 5.8.2 since the function ¢; : [a, b]L —
{0,1} defined by

cs(xy, ..., x) =1 (5.12)

satisfies Definition 5.8.1.
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5.8.b) Proof of Theorem 5.3.3

Theorem 5.8.3. Under Notations and Assumptions of Theorem 5.8.2, the two following
affirmations are valid:

e The following convergence of distribution holds:
vM(mg —?7A”L07;g) i) N(O,OZ) ,
M—oo

where

0% =Var(Xy) — (b—a) 'E[X ] (Z)\ )

lez

2 can be estimated by

6*=0(Xg)—(b—a) ' I(L,L) [[ X (Z X,j) :

e Moreover, o

le? keZ
where
L—-1
(X g) = 1o + > NI A I k),
k=1 \ sczjeygs 1¢g
# 7=k
and

Proof. For sake of simplicity, the result is proven in the simpler case where ¥ = {1, ..., L},
the generalization being pretty clear. An application of the Central Limit Theorem leads

to:

. (g@ E[Xy]
- 5 | I B I S NNS
T\ VO (0,0 AL(b— )

where N1 (0,T) is the multivariate Gaussian distribution with L + 1-dimensional mean
vector 0 and covariance matrix [ defined by:

E[Xy] Mb—a) 0 0
I'= :
: 0 0
]E[Xg] 0 0 )\L(b—a)

The matrix is obtained using the fact that the processes IV}, | € .Z are independent and
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from the following computation for all jy in .Z,

E[X ¢Nj,([a,b])] = E / c(xy,...,rL) le(xl)...dNL(;UL)deO(y)]

[a,B]E 4t

= E[ / (/C(fEl;u-?l‘L) deo(ﬂfjo)deo(y)> 11 de(mj)]

[a’b]L_l [a,b](z) legvl#j()
—HE[ / ( / c(xq,...,xr) dNj,(z4,)dN;, (y)) H de(xj)}
[a,b}L*1 [a,b}(m le.,g,l;ﬁjo
= Aj@(H)\l) / c(xy,..., L) dx1~-'d$L)dy+<H>\lI(L,0)>
€2 7 0 bx[a b lez

(using the same arguments as for (5.10))

= Njy(b— a)(ll;[gAl> I(L,0) + (lgAl)I(L 0

= E[Njy([a, b)]E[X 2] + E[X #],
where [a,b]® and [a, b]") are defined by (5.8) in the previous proof. Define

L
g: (xvula"wuL) =T — (b_a)_LI(L70)Hula
=1

and remark that:

1 < 1 < 1 <
k k k _ .
g (MZX,(?)7MZN1( )([avb])77MZNI(,)<[avb])> =My —Myy,
k=1 k=1 k=1
g(E[Xg],\(b—a),...,A\p(b—a)) =0 (thanks to Theorem 5.8.2).
So we have
M
\/M(mg—m&g):vM[g(MZX(k’MZN(k ab ZN(’C )
k=1

—g(]E[X_g],Al(b—a),...,/\L(b—a))] .

And the delta method [27] gives the following convergence of distribution,
VM (g — 1h.z) —+ N (0,'DT'D)

where D is the gradient of the function g at the point (E[Xg|, A\ (b—a),...,A(b—a))
le.
1

b ~A\'E [X%] (b—a)™?

—-AL'E [X;] (b—a)!
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So,

Var(Xg) — (b—a) 'E[Xg]” (Cier i)
Drp — D ElXe] o .
E[Xg] - E[Xg]
= Var(Xg) — (b—a)'E[X] (ZA )
le¥

which proves the first part of the Theorem 5.8.3. )
To get the second part, it suffices to apply Slutsky lemma [27] since the \;’s are consis-

tent.

]

Once again, Theorem 5.3.3 is a direct consequence of Theorem 5.8.3 since the function
¢s < [a,b]" — {0,1} defined by (5.12) satisfies Definition 5.8.1.

5.8.c) Proof

Here we compute

[(L,k) =

[a)

where Az; = min{z;,i € {1,...,
Ay; and Vy;. Let us fix some (yq, . ..

of Proposition 5.3.2

2

/

b]Lfk

/ ]l\ max(Vz;,Vy; )—min(Az;,Ay; )| <6 dIl s dl’k dyl
a,blk

k}}, Vo, = max{z;,i € {1,...,
JyL—k> in [CL7 b]L_k

by (yh B 7yL—k> - / ]l|max(\/xi,Vyi)—min(/\a:i,/\yi)|§5 dml o dxk:

[a,b]*

Ay,

k}} and respectively for
and compute the inner integral

In order to do that let us decompose the integral with respect to the following conditions

on (x1,...,Tk):

1. if Ax; > AY;
2. if Ax; < AY;
3. if NT; > N\y;

4. if Az; < AY;

Since we have partitioned [a, b]"

and Vx; > Vy;, denote the integral A;
and Vz; < Vy;, denote the integral B;
and Vx; < Vy;, denote the integral C

and Vz; > Vy;, denote the integral D.

up to a null measure set, we have ¥ (yi,...

) yL—k) -

A+ B+ C+ D. Let us show the following equations for all k =2,..., L — 1,
A =1y, pytss | (min(d, b= Ag))* = (Ve = Agi)'] (5.13)
B =Ty <o | (min(6, Vs — a))* = (Vi = Agi)*] (5.14)
C =Ljvy—nyi<s (Vo = Ay)" (5.15)
D =Ny ngtss | (Vo = Ai)* = (min(6, Vs = a))* (5.16)
+k (min(Ay;, b — 0) — max (Viy; — 6,a)) 6" 1 + (max(8,b — Ay:))" — (b — Ay,
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and

S (Wi, Yr—k) = Lvgmngij<s [(k 4+ 1) 6 + k (min(Ay;, b — 6) — max (Vy;, a + 6)) 6°7'] .
(5.17)
Let us fix some k in {2,...,L —1}.

Proof of (5.13) To compute A, it is sufficient to consider the case when xz; = Va,
provided a multiplication by k, hence

b
A =k / / ]l‘m,/\y”gg d.TQ Ce dazk d,iEl
T1=VYi  \Ay,1]"

min(Ay;+4,b)

= kljvy,—ry<s / / 1dxy...dxy | doy

T1=Vyi Ayi,ar]F
min(Ay;+46,b)

= k]l\Vyi—/\yﬂgé / (l‘l — /\yi)k_l dCL’l
T1=VY;

= L nizs | (min(Ayi +6,8) = Ay)* = (Vo = Ag)'|

= TLjvy—nyil<s [(min(& b— Ay — (Vi — Ayi)k} :

Proof of (5.14) To calculate B, we use the same idea and consider the case when z; =
Azx;, leading to

NYi
B =k / (\/yz - l‘l)k_l dl’l

z1=max(Vy;—d,a)
= Dvyi—nuil<s [(V?Jz‘ —max (Vy; — 6,a))" — (Vy; — /\yi)k]

= ]1|Vyi*/\yi|§5 [(min(57 Vy; — a))k - (vyi - /\yi)k] .

Proof of (5.15) This case is pretty clear.

€= / Lvy,—nyij<s dvy - dwy = Tyvy,ny1<s (Vi — Ayi)*

Ay, Vi)
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Proof of (5.16) To calculate D, it is sufficient to consider the case when z; = Az; and
x9 = Vx;, provided a multiplication by k (k — 1), hence

€2

NY; b
D =k (k’ — ].) / / /]l|:z:2—x1|<§ d[L‘g .. dﬂ]k d[L‘le’l

r1=a r2=VY; X1

AYi min(z1+4,b)

=k (]{? — 1) ]1|Vyi*/\yi|§5 / / (.CEQ — ZBl)kiQ déEQdﬂfl

z1=max(Vy;—d,a) T2=VY;

NYi

= KLy, —nyil<s / (min(zq + 0,b) — xl)k—l — (Vy; — fUl)k_l dy

z1=max(Vy;—d,a)

= Lvyi—nul<s [(V?Jz‘ — Ayi)" = (Vy; — max (Vy; — 6,a))"

+k (min(Ay;, b — 9) — max (Vy; — 6, a)) o1 ¢ (b — min(Ay;, b — 5))k —(b— /\yl)k}

= Ljvyi—nyil<s [(\/yi — Ai)" = (min(6, vy — a))"

e (min(Ags, b — 6) — max (Vy; — 6,0)) 61 + (max(8,b — Agi))* = (b= Ai)*] .

Proof of (5.17) Remark that
(min(8,b — Ay,))* + (max(8,b — Ay;))" = 6 + (b — Ay,)* (5.18)

and
max (Vy; — d,a) = max (Vy;,a + 0) — 0. (5.19)
Gathering (5.13), (5.14), (5.15), (5.16), (5.18) and (5.19) gives (5.17). Hence, Equa-
tion (5.17) holds for every k in {2,..., L — 1}.
Moreover, if k& = 0, then X (y1,...,yr—x) = Ljvy,—ayl<s and, if & = 1, then
YWy y—k) = Lvy—ay<s (min(Ay; + 6,b) — max (Vy; — d,a)]. To summarize, Equa-
tion (5.17) holds for every k in {0,...,L — 1}.

It remains to compute
I(L, k’) = / Z(yla---anyk)2 dyln-dnyk-
[a,b]Lik

In order to do that, let us decompose the integral with respect to the following conditions
on (y17 s ayL—k):

1. if Vi < a+ 6, then ¥ = §* 1[0 + k (Ay; — a)] and the corresponding integral is
denoted by Y;

2. if Ay; > b — 4, then ¥ = §*1[6 +k(b— Vy;)] and the corresponding integral is
denoted by Z;

3. i Vy; > a+ 0 and Ay; < b—0, then & = Ljyy,_ny, <60 L [(k+1)6 — k (Vyi — Ay;)|
and the corresponding integral is denoted by W.
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These three cases are distinct because § < (b— a)/2, so we have partitioned [a, b]" ™ up to
a null measure set and I(L, k) =Y + Z + W. Let us show the following equations for all
k=0,...,L—2,

Y =7 =C(L, k)", (5.20)
W =f (L, k) (b—a) "™ 1 —[f(L,k) + g (L, k)] 6“"*, (5.21)
where T
C(L,k)=(L—k) % /k“ th=k= (1 — 1) at, (5.22)
0

L—k)(L—k—1)

2
T—kt1) "

f(L,k):(L—k)(k+1)2—2(L—k:—1)k(kr+1)+(
and Lok-Dk(E+1) (L-kL-k-1)
(L—-k+1) (L—k+1)(L—k+2)
Let us fix some k in {0,...,L —2}.

g(L,k):(k+1)2—2(

Proof of (5.20) To compute Y, it is sufficient to consider the case when y; = Ay;,
provided a multiplication by (L — k), hence

Y = / (T ayL—k)Q dyy ... dyr—
Vyi<a+d
a+d
= (L —k)§*2 / / 64k —a)* dya ... dyr—i | dis
y1=a y17a+6]L7k71
a+9d
= =0 [ (a5 - ) k- o) du
y1=a

Defining the variable u = a + 6 — y; leads to
5
Y = (L—k) 52k—2/ LTS 4 k(6 — w)]? du
0

é
= (L —Fk)o*2 / (k4 1) 6 — kul? du,
0

and by defining the variable ¢t = (ki—zi)é we have
K L—k—1
1 ((k+1)dt kE+1)6
Y = (L—k:)(s%—?/k+ (—( 1 ) (k:+1)2(52(1—t)2—( +1) dt
0 k k
ka1 L—k+2 -k
= (L—k) 5“’“% /Ok+1 tER=1 (1 — 1) dt.

The computation of Z can be done in the same way by inverting the roles of @ and b on
the one hand and the roles of Ay; and Vy; on the other hand. This leads to Z = Y and
Equation (5.20).
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Proof of (5.21) To compute W, it is sufficient to consider the case when y; = Ay; and
y2 = Vy;, provided a multiplication by (L — k) (L — k — 1), hence

W = (L—k)(L—k—1)5*"?
b—§ b

/ / (/ Lyoyui<s [(k+1)6 — k (y2 — 1)) dys .. .dyL_k) dysdi

y1=a yp=max(y1,a+9)
= (L—Fk)(L—k—1)6*?
b—4d y1+6

/ /ﬁ (@r—mf*”[@+1fﬁ—ak@+1m@m_m)

y1=a ya=max(y1,a+3)

+E (32 — y1)2]) dyady,

which leads to

W = /aH {(L — k) 6% (k+ 1) 67 [5“-1 — (max (y1,a +6) — yl)L*’H} }
. {2 (L—k—1)0% 2k (k+1)6 [5“ — (max (y1,a + &) — yl)Lﬂ }

n { (L —(f)_(l];:—/;— 1)521{72]{2 [5L7k+1 — (max (y1,a + 6) — yl)L—k—&—l} } dyy

= Wi+ Wy,

where W, (resp. W3) denotes the integral between a and a + ¢ (resp. between a + 0 and
b—9). Let us denote

B 2 (L—k)(L—-k-1),
f(Lk)y=(L—-Fk)(k+1)—=2(L—k—-1)k(k+1)+ -kt 1) k<. (5.23)
Then, on the one hand
W, = 52k—2 |:/tl+5f (L,]{?) 5L—k+1 dyl
‘ a+d
(LR (k1) / (a+6—y)=* dy,
‘ a+d
+2(L— k- 1)k;(k+1)5/ (a+ 06 —y)* ™ dy,
. L. a+d
LR [ e g,
= f <L> k) gk — g <L7 k) 5L+k’
with
g(L,k):(k+1)2—2(L_k_1>k(k+1) (L—k)(L—k-1) 12 (5.24)

(L—k+1) (L—k+1)(L—k+2)
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On the other hand,

b—6
#“{/ (L-K)(k+1)*=2(L—k—1)k(k+1)
a+d
(L—k)(L=k—=1) 5| cop
(L—k+1) 1o 1

Wy =

(b—a—26) f (L k)o"*"
f (L7 k) (b o CL) 5L+k71 - 2f (L7 k) 5L+k
where f (L, k) is defined by (5.23). Then, (5.21) clearly follows from W = W; 4+ Ws.
Moreover, if k = L — 1, then Equations (5.20) and (5.21) are still valid. To summarize,
Equations (5.20) and (5.21) hold true for every k in {0,..., L — 1}.
Gathering (5.20) and (5.21) yields
I(L,k) = f(L,k) (b—a) 6" — [f (L, k) + g (L, k) — 2C (L, k)] §"*F,

for every k in {0,...,L —1}.

To conclude, the integral involved in (5.22) can be computed with respect to k and L

in the following way,
2k

- ) i L—k 1
/ 1= dt = —— -
k+1 L—-k (k+1)(L—-Fk+1)
k2

+w+D%L—k+m'

Moreover, in the result stated in Proposition 5.3.2 we just used the software Mathematica
in order to simplify the expressions. These simplifications lead to

P = k(k+L1)_J;i(lL+1)

and
B4R+ L) +k(G+2L - L)+ LP 2L — L —2
B (L—k+2)(L—Fk+1) ‘
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CHAPITRE

6 CONCLUSION ET PERSPECTIVES

Ce travail se focalise sur I’étude théorique des processus ponctuels temporels. Les résultats
théoriques démontrés dans ce manuscrit trouvent également leur place dans le cadre de la
modélisation de neurones, et plus précisément des trains de spikes des neurones, par des pro-
cessus ponctuels. On retrouve ici trois grands domaines de recherche des Mathématiques :
équations aux dérivées partielles (EDP), probabilités et statistique. Nous proposons, pour
chacun des domaines cités précédemment, un résumé de cette thése adapté au point de vue
adopté.

EDP. Un systéeme d’équations aux dérivées partielles est particulierement étudié dans ce
manuscrit : ¢’est le systéme structuré en age, noté (PPS), introduit dans [114] pour décrire
la dynamique d’un groupe de neurones. D’une part, nous montrons dans le chapitre 2 qu’il
représente, a quelques modifications preés, la dynamique moyenne d’un neurone. D’autre
part, les résultats du chapitre 3 permettent de voir le systéme (PPS) comme décrivant la
dynamique d’un réseau de neurones en interaction dans la limite d’une grande population
en interaction de type champ-moyen. Les fluctuations autour de cette dynamique asympto-
tique sont étudiées dans le chapitre 4. Notons également qu’un résultat d’existence/unicité
des solutions de (PPS) est donné dans le chapitre 3 sous d’autres hypothéses que dans
article originel [114].

Probabilités. Dans la premiére partie de cette these, nous étudions le processus d’age as-
socié a un processus ponctuel temporel. Plus précisément, nous cherchons a mieux connaitre
sa dynamique et a caractériser sa distribution. Dans un cas particulier (processus de re-
nouvellement), ce processus d’age est markovien et la dynamique de sa distribution est
caractérisée par 1’équation de Fokker-Planck, écrite sous la forme d'un systéme d’EDP
dans ce manuscrit. En général, le processus d’age n’est pas markovien mais il est possible
d’écrire un systéme d’EDP vérifié par sa distribution bien que celui-ci soit plus complexe.
D’autre part, les chapitres 3 et 4 étudient respectivement le premier ordre (loi des grands
nombres) et le deuxiéme ordre (théoréme central limite) de I'approximation de processus
de Hawkes dépendants de 1’age en interaction de type champ-moyen dans la lignée de
[43]. D un point de vue probabiliste, le chapitre 5 donne I’approximation gaussienne d’une
certaine fonctionnelle de processus de Poisson indépendants.

Statistique. Le chapitre 5 se propose de répondre a la problématique statistique sui-
vante : comment tester I'indépendance entre deux, ou plus, processus de Poisson. Cette
question est intéressante dans le cadre de la détection de synchronisations entre neurones.
Nous répondons a cette problématique par la mise en ceuvre d’une procédure de test dont
le controle asymptotique (en la taille de I’échantillon) du niveau du test est assuré.

199
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Toutefois, de nombreuses questions restent ouvertes et relévent également de 'un des
trois domaines cités ci-dessus. Des perspectives sont listées ci-dessous en respectant ’ordre
des chapitres concernés.

Etude théorique et statistique d’EDP. Comme expliqué dans le chapitre 2, ’étude
théorique du systéme (PPS) introduit dans [114] est bien connue, mais ce n’est pas le cas
pour les systémes d’EDP introduits dans le chapitre 2 : la généralisation du systéme (PPS)
avec k ages, i.e. le systéme (2.27)-(2.29), et le systéme fermé obtenu dans le cas du processus
de Hawkes linéaire, i.e. (2.36)-(2.37). La mise en évidence d’une convergence exponentielle
vers un état d’équilibre ou de solutions périodiques sont des pistes de recherche intéressantes
du point de vue de la modélisation.

De plus, dans le cadre de la confrontation de ces modéles avec des données réelles, la
problématique de 'estimation des paramétres (taux de décharge) de ces EDP est centrale.
Citons par exemple l'estimation du taux de division dans les équations de croissance/-
fragmentation qui sont également des EDP de type équation de transport (voir la thése
d’Olivier [112]).

Etude couplée des modéles microscopiques et macroscopiques. Nous avons mon-
tré dans le chapitre 3 que le systéme (PPS) est la limite en champs moyen de processus
de Hawkes dépendants de ’age. La présence d’états d’équilibre et de solutions périodiques
a été relevée pour ce systéme (PPS) pour des choix spécifiques des coefficients [114, 115].
Malheureusement, ces choix des coefficients ne rentrent pas dans le cadre d’hypothéses du
chapitre 3. Il serait intéressant de mettre en évidence des conditions sur les paramétres des
modeles telles que la présence d’états d’équilibres ou de solutions périodiques soit avérée
et que le lien entre modeéles microscopique et macroscopique soit théoriquement justifié.
En effet, cela permettrait en particulier d’identifier les caractéristiques de la dynamique
microscopique qui générent de tels phénomeénes macroscopiques.
Deux angles d’attaque sont possibles :

e souligner d’autres choix de paramétres pour lesquels apparaissent des phénomeénes
macroscopiques intéressants,

e ou bien affaiblir les hypothéses du chapitre 3.

Casser ’indépendance asymptotique. Nous montrons une propagation du chaos dans
le chapitre 3. Cela implique une indépendance asymptotique entre les neurones modélisés.
D’un point de vue neurobiologique, cette indépendance semble irréaliste. Nous avons par
exemple relevé des synchronisations entre neurones dans le chapitre 5 & certains moments
précis au cours d’'une tache.

D’une part, cette indépendance peut étre brisée en considérant des poids synaptiques
corrélés [48]. D’autre part, la dépendance observée entre les neurones enregistrés par les
biologistes peut étre la conséquence d’un biais d’échantillonnage. Pour modéliser ce biais,
il faudrait étudier ce que devient la propriété de propagation du chaos si I'on regarde des
neurones en particulier (par exemple ceux qui ont les plus fortes interactions) plutot que
de regarder des neurones pris au hasard.

Processus de Hawkes localement stationnaires. Récemment, le modéle des proces-
sus de Hawkes (linéaires) localement stationnaires a été introduit dans [143|. C’est-a-dire
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que la fonction d’interaction h ainsi que le taux d’apparition spontanée p dépendent éga-
lement du temps. D’un point de vue neurobiologique, son utilisation permet de prendre en
compte "aspect non-stationnaire d’un réseau de neurones.

Dans la continuité du chapitre 3, il serait intéressant de voir si l'approximation de
champ-moyen tient toujours en faisant varier (sur une dynamique lente) la fonction d’in-
teraction.

Dans le cadre de la modélisation de 'apprentissage d'un réseau de neurones, il serait
aussi intéressant de pouvoir imprimer aux fonctions d’interaction une dynamique stochas-
tique qui dépende des spikes précédents et plus particuliéerement des synchronisations pré-
cédentes. Ici, les questions concernent la dynamique en temps long de ce réseau. Est-ce
qu’'un réseau d’interaction non trivial émerge de cette dynamique ?

Procédure statistique bi-échelle. Dans toute la premiére partie de cette thése, nous
étudions le lien entre deux échelles de la modélisation de I'activité électrique des neurones.
De nombreuses questions se posent sur I’adéquation de ces modéles aux données enregistrées
par les biologistes qui comportent au moins deux échelles : le potentiel de champ local et
les trains de spikes. La construction de procédures de test d’adéquation aux données pour
les deux échelles de modélisation prend donc tout son sens et le théoréme central limite
démontré dans le chapitre 4 pourrait en étre la pierre angulaire.

Détection non-paramétrique de synchronisations. La problématique de la détec-
tion de synchronisations dans l’activité neuronale est abordée dans le chapitre 5. Nous la
réduisons a la détection de dépendance entre processus de Poisson homogeénes. Or, cette hy-
pothése de stationnarité et d’indépendance temporelle est trop forte. Pour dépasser ce genre
d’hypothéses cotiteuses, une possibilité est de se tourner vers des tests non-paramétriques
tels que ceux abordés dans la thése d’Albert [4]. A I'heure actuelle, ces procédures ne
peuvent gérer que deux neurones en méme temps. La généralisation de ces méthodes a
plus de deux neurones offre des perspectives intéressantes a la fois théoriques et pratiques.
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APPENDIX

A SUPPLEMENTARY MATERIAL

A.1 Thinning procedure

A.l.a) Brief history

This section gives some history about the key representation of point processes used
throughout this manuscript that is the thinning procedure. The idea of this represen-
tation comes from an article written by Lewis and Shedler in 1979 [92]. In this article,
they first describe the procedures to simulate inhomogeneous Poisson processes that were
commonly used at that time: time-rescaling of an homogeneous Poisson process, genera-
tion of the inter-events intervals, simulation of a Poisson variable plus an order statistics.
All these procedures need either numerical integration or simulation of a Poisson variable
that were known to suffer from computational complexity. That is why they introduced
the thinning procedure which does not need any of those two features. Their result is the
following.

Say you want to simulate a Poisson process N with intensity A(¢) and that you are
given a simulation of a Poisson process N* with intensity A\*(¢) such that for all ¢ > 0,
A*(t) > A(t). Of course we assume that the simulation of N* is simpler than the simulation
of N, for instance think of it as an homogeneous Poisson process. If each point 7" of N*
is deleted (independently) with probability! 1 — A(T™*)/\*(T*), then the remaining points
form a realization of V.

A few years later, Ogata generalized this procedure to general multivariate point pro-
cesses and not only Poisson processes. In [110], he proves the following result.

Say you want to simulate a multivariate point process (N*);—;..,, with respective pre-
dictable intensities \! and that you are given a simulation of a multivariate point pro-
cess (N *’)Zzlm with respective predictable intensities A\;” such that for all ¢ > 0 and

i=1,...,m, A\ > X.. Of course, once again, we assume that the simulation of the N*?,
i =1,...,n, is simpler than the simulation of the N?, for instance take the N*! as point
processes with piecewise constant conditional intensity. Then, for any ¢ = 1,...,m, if

each point 7% of N*? is deleted (independently) with probability 1 — A ;/A%!,, then the
remaining points form a realization of N.

This thinning procedure can also be generalized to spatial point processes. Once again,
but in higher dimension, the simplest example is the case where you want to simulate an
inhomogeneous spatial Poisson process thanks to the (simpler) simulation of a dominating
homogeneous spatial Poisson process [107].

1Since T* is a point of N*, the probability that A*(T*) = 0 is null.
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A.1.b) On its applications

This simulation procedure still is computationally efficient and commonly used at the time
this manuscript is written. Moreover the seminal idea of Lewis and Shedler can also be
used for theoretical purposes by providing a representation of general one dimensional point
processes thanks to two-dimensional homogeneous Poisson processes as stated in [17] or
Theorem 2.8.11 (the heuristic behind this result is thoroughly explained in Section 2.3.c)
so it is not reproduced here). The advantage relies on the fact that homogeneous Poisson
processes are simpler and that their independence and stationarity assumptions are really
convenient for many purposes. As theoretical applications of the thinning procedure, let
us mention:

e a perfect simulation algorithm for linear Hawkes processes [105]| (refinement of the
standard simulation using the branching decomposition of linear Hawkes processes),

e the stability of non linear Hawkes processes [17],

e the coupling between mean-field interacting Hawkes processes and their limit coun-
terpart ([43] or Chapter 3).

More precisely, Theorem 2.8.11 means that for every predictable intensity, one can
construct a point process with this given intensity from a bivariate Poisson process. This
result admits a converse given below. Its statement is inspired by [17, Lemma 4]

Theorem A.1.1 (Inversion Theorem). Let N = {T,}, -, be a non explosive point process
on Ry with (F;)-predictable intensity N;. Let {U,}, <, be a sequence of independent iden-
tically distributed random variables with uniform distribution on [0,1]. Moreover, suppose
that they are independent of Foo. Denote Goo = 0 (Up,n > 1). Let N be an homogeneous
Poisson process with intensity 1 on Ri independent of 2 Fao V Goo. Define a point process
N on R? by

N(a b XA Z]lab] ]1,4 >\Tn /‘ab]/j;l\[o)\ thdZ)

n>1

for every 0 < a <b and A in B(R;).
Then, N is an homogeneous Poisson process on Ri with intensity 1 with respect to the

filtration H := (Hi)i>0 = (]:t \/.FtN> . Furthermore, the point process resulting from
= >0

Theorem 2.8.11 with I1 = N is exactly N.

Remark A.1.2. Theorem A.1.1 implies that for any point process N which admits an
intensity on Ry, one can construct (on a possibly enlarged probability space) a bivariate
Poisson process N such that N is the result of the thinning procedure of Theorem 2.8.11
with I1 = N. The heuristic lying behind Theorem A.1.1 is the following: on the one hand,
the Poisson process N with intensity 1 on R2 can be taken as any Poisson process outside
the strip where the thinning takes place, that is the random strip {(t,z),0 < z < A\, t > 0}.
On the other hand, inside this strip, N is obtained by lifting any point T,, of N uniformly
in the interval [0, Ar,] (by the means of the mark Z,, = A, Uy).

2For any two o-algebras F and G, F V G denotes the join a-algebra, that is the o-algebra generated by
FUG.
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Due to the lack, up to our knowledge, of a complete proof of Theorem A.1.1 in the
literature, we give a proof below.

Proof. Since F,, and FOJZ are independent, N admits )\; as a H-intensity. Similarly, since

FY and F,, are independent, N is an homogeneous Poisson process on R%r with intensity
1 with respect to the filtration H.
For every integer k, let us define N® by

:/AN(dtxdz),

for every A in B (R, x [0, k]) and let us show that for every k € N, N*) is a point process
on R, marked in [0, k] with intensity kernel 1.dz with respect to HL.

It suffices to show that for every Ay in B([0, k]), N (Ax) admits £, (Ak) as a H-
intensity where £, is the uni-dimensional Lebesgue measure. Fix k£ and let N (k) denote the
restriction of N to the points whose ordinate is smaller than k. We have N (Ak) P!+ P?

with .
Z Loy (T) La, (A1, U,) and P7 = / / N (du x dz).
0 JAR\[0, ]

- Study of Pl. Let C; be a non-negative H-predictable process. Using the independence
of G with respect to Ho, and the fact that for all w in [0, 1], 14, (\u) is H-predictable,

we have
= E ZOTn/ T4, (A, )

[ / ¢ / 4, Ot duN(dt)}
_ /0 E{ /0 N CtﬂAk(Atu)Atdt] du:E{ /0 e /O ) ]lAk(z)dzdt}

-~ E [ /O T L (AN [0, At])dt] .

E{ /0 OOCtPl(dt)} = E|> Crla,(OrU,)

Ln>1

E > Crla,(M,Un)

n>1

Hence, P! admits £1(A; N[0, \]) as a H-intensity.
- Study of P2. Since the intensity ); is predictable, for some fixed z in [0, k],
{(u,w) ERL x Qtqz <\, (w)} € P(H),

where P(H) denotes the predictable o-algebra associated with H (see [16, page 8]). Let us
denote
I'={(u,w,z) e Ry x QX Extq z € A \ [0, A, ()]} .

We have

'=n U {(u,w)€R+Xthq§/\u(w)}><(Aﬂ{q+%,k}> € Py (H),

neN* qgeQ4

where P, (H) = P (H) ® B([0, k]) is the associated marked predictable o-algebra. Hence,
applying the Integration Theorem for marked point processes [16, VIII C.4.], one can
deduce that P? admits £1(Ag \ [0, \]) as a H-intensity.
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Finally, summing the two previous steps, N (Ak) admits £; (Ax) as a H intensity.
By definition of the intensity kernel, N*) is a point process on R, marked in [0, k] with
intensity kernel 1.dz with respect to the filtration H, i.e. N is a H-Poisson process with
intensity 1 on Ry x [0, k].

It remains to show that N is a H)-Poisson process with intensity 1 on Ri. Yet a Poisson
process is characterized by its local behaviour since compact intervals generate the Borel
o-algebra. O]

A.2 Solution of a PDE in the weak sense

We give here some insights about the necessity of the notion of weak solution to partial
differential equation. This section is partially inspired by [121, Chapter 6]. Consider the
didactic example of the constant speed transport equation:

au(t, x)+ c%u(t, x) =0, (A1)
with ¢ € R, € R and the initial condition u(0,z) = u™(z). To mean something in a
standard (strong) way, we seek for solutions w that are continuously differentiable that
is u € C'(R?). In particular, one needs a differentiable initial condition v™ € C!(R). In
this case, the (strong) solution, which belongs to C*(R?), is explicit and given by u(t,z) =
u™(z — ct): that is the simplest application of the method of the characteristics. Here, the
characteristics are the affine lines {(¢,x) € R?, x —ct = z,} for all 25 in R and the solution
is indeed constant along the characteristics.

Can we weaken the assumption u™ € C'(R) ? Indeed, if the initial condition is not
differentiable then the strong formulation of (A.1) is compromised since %u and 5. U are, a
priori, not well defined as functions. We need another formulation in order to Weaken the
sense of being a solution of (A.1). Yet this weaker formulation must be compatible with
the stronger one when the required assumptions are fulfilled. This can be achieved using
the heuristics of the integration by parts formula.

Assume for now that u is a solution in C*(R). Let ¢ : R?* — R be a compactly supported
smooth function (test function), multiply (A.1) by ¢(¢,x) and integrate it for ¢t and x in

R. We have,

0

/ 9t )t 2)dtda + ¢ —u (t, 7)o (t, 2)dtdz — 0.
R2 875 R2

Since ¢ is compactly supported, the boundary terms are null and the integration by parts

formula yields

3} 0
— /R2 u(t, x)aap(t, x)dtdx — c/ u(t, x)%gp(t, x)dtdx = 0. (A.2)

RQ

Remark that the derivatives of u are not involved in this last equation. This justifies the
following definition.

Definition A.2.1. If (A.2) is satisfied for all test functions p, then u is said to be a
solution of (A.1l) in the weak sense.

Remark A.2.2. The definition above does not characterize the initial condition u™. To
do so, one can divide the set of times into the set of positive times and negative times and
write two weak equations like (A.2) as it is done in [121, Definition 6.1.]
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A standard (strong) solution of (A.1) is also a solution in the weak sense. Conversely, a
solution in the weak sense that is furthermore continuously differentiable is a strong solu-
tion. However, there exist some weak solutions that are not strong solutions. For instance,
u(t,z) = |r — ct| is a solution in the weak sense (associated with the initial condition
u'™ = | - |) but it is not everywhere differentiable.

Only functions are written above for simplicity but this theory applies to more general
objects such as distributions (continuous linear forms acting on the test function space, see
Schwartz reference book [146]). In particular, the measures studied in this thesis are often
considered, in a natural way, as living in dual functional spaces.

A.3 On Riesz representation theorem

In Chapter 4, the fluctuation process (n}'):>o is considered as a stochastic process taking
values in the dual space of some Hilbert space of test functions. One could use the Riesz
representation theorem to consider the fluctuation process as taking values in a functional
space, hence a simpler space than the natural distributional space in which it belongs.
However, this option comes with the major issue that it is not consistent with the natu-
ral embeddings existing between test function spaces as explained below, with a didactic
example.

Consider L? = L?(R) and W' = W!(R), the latter being the space of functions f that
belongs to L? as well as their first order derivative. Denote by Ry the Riesz-isomorphism
from L? to its dual (L?)* and by R; the Riesz-isomorphism from W' to its dual (W?')*.
Moreover, denote by ¢ and ¢* the following canonical continuous embeddings:

i: W' L* and i* : (L?)* — (WhH*.

Say you want to regard a distribution w in (L?)* either in its natural space (L?)* or in
(W1)* through the embedding i*. You may as well consider the representation of w via
the Riesz representation theorem. To keep some coherence through the representation, it
requires the following consistency property: (RgoioR;" 0i*)(w) = w. Equivalently, we
need the following diagram to commute.

Yet this diagram do not commute. Obviously, starting from f in L? \ W', we have
(Ry' 0d* 0o Ry)(f) € W and so

(io R 0 i 0 Ro)(f) # f.

The issue is even stronger. Let f be a compactly supported function of class C*°. Obviously,
f belongs to W' and L?. Hence, w := i* o Ry o i(f) is the following mapping:

w:p € W< o, f >p= /Rgo(x)f(x)dx



208 A. SUPPLEMENTARY MATERIAL

Consequently, g := Ry *(w) is the function in W' satisfying

Vo e W, Aw(x)f(x)dx —< g Swim /

R‘P($)9($)d$+/ﬂp’(x)g'(x)dx.

R

This condition does not imply f = g. Indeed, assume that f = g, then, for any compactly
supported test functions ¢ of class C*°, we have, thanks to the integration by parts formula,

[e@rs@as = [ o+ [ e @i

R

which is clearly false in general.

A.4 Hilbert space valued stochastic processes

Let us denote by H a Hilbert space, equipped with the inner scalar product <-,->, by H*
its dual space. To avoid confusion, let us mention that the notation (w, h) is used to denote
the dual action of any w in H* on any h in H. Let us denote by C(R,, H) (respectively
D(R,, H)) the space of continuous functions (resp. the space of cadlag functions) from R,
to H. This section gathers some results on H-valued stochastic processes that are, in our
case, random variables taking values in either C(R,, H) or D(R,, H).

We start with martingale properties for H-valued processes. We refer to [36] for the
definition of an H-valued martingale and we mention the following equivalent definition
[128, Remark 2.2.5]:

Let (M;)i>0 be such that E[||M,||g] < +oo for all t > 0. Then, (M,;);>o is an
F-martingale if and only if ({(wg, M;))¢>0 is an F-martingale for all & > 1, where
(wk)k>1 1s an arbitrary orthonormal basis of H*.

Definition A.4.1 ([103] or [36]). Let (M;)i>o be an H-valued square integrable F-martingale.
We denote by (<< M >>)>¢ its Doob-Meyer process, that is the unique (up to indistin-
guishability) F-predictable process with values in L(H*, H) such that: for all wy, wy in
H~,

( <w1a Mt) <w27 Mt> - <w17 << M>>t w2> )

t>0

15 a real valued F-martingale.

Remark A.4.2. Since the Doob-Meyer process takes values in a space of linear mappings,
it is still a quite complex object. It is often summarized by its trace in H, that is the real
valued process given by

Tr << M>>y= Y (wg, << M > wy)

k>1
where (W )g>1 s an arbitrary orthonormal basis of H*.

Then, we stress the fact that the finite dimensional distributions of a stochastic process
characterize its distribution. Even if this result is standard for processes with values in R
or R?, it is not so easy to find a clear statement for Hilbert space valued processes. Hence,
we give here an extension of [77, Lemma 3.19].
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Proposition A.4.3. Let us denote by L(X) the distribution of a random variable X.
Let D be a dense subset of Ry, and (X¢)i>0, (Yi)i>0 be two processes with trajectories in
D(R., H) satisfying

Vk € N* V(t1,...,tp) € D*,  L(Xy, ... X3,) = L(Ysy, ., Vi) (A.3)

Then, L((Xt)0) = L((Yi)i>0) as laws of random wvariables taking values in D(R,, H)
endowed with the Skorokhod topology.

Proof. The idea is to reduce the problem to the finite dimensional case of processes in
D(R,,RY) given by [77, Lemma 3.19] and then to use some approximation argument.

Let F' be a bounded continuous mapping from D(R,, H) to R. It suffices to prove that
E[F((X¢)t>0)] = E[F((Y2)1>0)]- Let (hg)r>1 be an orthonormal basis of H. For all p > 1, we
construct a canonical bounded continuous mapping from D(R,,R?) to R. Let us denote
by R, : RP — H the canonic realisation of a vector of R? as an element of H, that is

p
Rp<l'1, ce ,l'p) = Z(Ekh,k
k=1

This mapping is Lipschitz continuous with constant 1 from R? equipped with the Euclidean
norm to H. In particular, it is uniformly continuous, so the mapping

(@1(8); s 2p(8))iz0 € DRy, RP) = (Rp(1(2), - - 22(t)))iz0 € D(Ry, H)

is continuous with respect to the Skorokhod topology. Then, the mapping F),, defined
by F,((z1(t),...,zp(t))>0) = F((Ry(z1(t),...,22(t)))i>0) is continuous from D(R,,RP)
to R. Let us denote by 7, : H — RP the vector of coordinates smaller than p, that is
mp(h) == (< h,hy >,...,< h,h, >). Notice that 7, o R, is the identity mapping from R?
to R? and that for all h in H, R, o m,(h) converges to h as p tends to +oo. Then, (A.3)
implies that X, := (7m,(X}))>0 and YV, = (m,(Y:))i>0 are cadlag processes with values in
R? with the same finite dimensional distributions. Hence, |77, Lemma 3.19] implies that
(mp(X¢))i>0 and (m,(Y:))e>0 have the same distribution on D(R,,R?) and in particular,

E [Fp(Xp)] =K [Fp(yp)] : (A-4)

Now, notice that F,(X,) = F((R,om,(X}))i>0) and that (R,om,(X¢))0 — (Xt)i>o for the
local uniform topology and consequently for the Skorokhod topology. Finally, this implies
that E [F((Xt)i>0)] = limy,_,+ o E[F,(AX,)] by dominated convergence, so taking the limit
in (A.4) gives

E[F((X)z0)] = E[F((Y2)iz0)]

which ends the proof. [

Finally, we give some informations about Gaussian variables and Gaussian processes
with values in Hilbert spaces. Most of what follows is taken from [36]. A random variable X
with values in H is called Gaussian if for arbitrary h in H, the real valued random variable
< X, h > is Gaussian. A Gaussian random variable X admits a mean and a covariance in

the following sense: there exist m in H and a symmetric non-negative continuous mapping
(@ from H to H such that

Vhe H E[< X, h>]=<m,h>,
Vhl,hg € H, E[< X,hl >< X,hg >]— <m,h1 >< m,hg >=< th,hg > .
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Then, m and @) are respectively called the mean and covariance operator of X. Notice
that, by generalization, a random variable X with values in H* is called Gaussian if for
arbitrary hq,...,h; in H, the real valued random vector (< X, hy >,..., < X, hy >) is
Gaussian.

An H-valued stochastic process (X;);>o is called Gaussian if, for any & in N* and
arbitrary non-negative times ti,...,t;, the H*valued random variable (X,,...,X;,) is
Gaussian. Equivalently, a process is Gaussian if and only if, for any & in N* and arbitrary
hi,...,hi in H, the real-valued process (< X;, hy >,..., < Xy, hy >)i>0 is Gaussian.

Under regularity assumptions that are assumed here, a Gaussian process admits a
continuous version (Kolmogorov continuity theorem [36, Proposition 3.15]). Furthermore,
its distribution is characterized by its mean process and its covariance.

Proposition A.4.4. Let (X;);>0 be a Gaussian process with trajectories in C(Ry, H).
Then, its distribution is uniquely characterized by its mean process

Vhe H, (E[<X,h>])

>0
and its covariance

Vi, te >0, Vhy,he € H, E[< Xy, b >< Xy, ho >]. (A.5)

Proof. Obvisouly, the finite dimensional distributions of (X;);>o are characterized by its
mean process and its covariance. Furthermore, since we assume that (X;);>¢ is continuous,
Proposition A.4.3 gives the result. O

Remark A.4.5. Since H and its dual H* are isometrically isomorphic (Riesz representa-
tion theorem), the covariance of a Gaussian process is also characterized by

Vty,ta 2 0, Ywy,we € HY, ]E[<w17Xt1><w27Xt2>]7
in comparison with (A.5).

To conclude this section, let us state here the result which gives the existence of the
Gaussian process W introduced in Chapter 4.

Proposition A.4.6. Let H and H* be two Hilbert spaces such that H —gzs H' and
(Vi)iso be a familly of bilinear forms on H. Assume that there exists a locally bounded
function C' such that

Vhe H, V0 >0, sup Vi(h,h) < C(0)|h]|%:. (A.6)
te[0,0]

Then, for all® > 0, there exists a Gaussian process (Xy)ieo,g) with mean zero and covariance
given by

t1Ato
th,tg < 8, Vhl, hy € H, E [< th, hi >< Xt2, ho >] = / ‘/t(hla hg)dt (A7)
0

The existence of W then follows from the fact that the familly (V;);>¢ of bilinear forms
on WZ*, given by

+o0
Wt > 0,591, 00 € Wy, Vi1, p2) = / p1(8)pa(s) W (s, 7(1))ult, s)ds,
0

satisfies (A.6). Indeed, Proposition A.4.6 applied with H = W and H* = W™ gives
the existence of a Gaussian process (Xt)te[gﬁ]. Finally, the Gaussian process W with values
in Wy 2% i3 the image of X (with values in W§ ") by Riesz representation.
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Proof. The idea of the proof is similar to one of the different proofs of the existence of the
Brownian motion: construct a probability space such that the space of L? random variables
is isometrically isomorphic to the space of L? functions in time.

For any 6 > 0, let us denote Hy := W1([0,6], H), that is the space of functions with
values in H which belongs to L? as well as their first derivative, and Qg : (Hp)> — R
defined by, for all h', h? in Hy,

0
Qo(h', 1) := / ViR (1), B2(8))dt.

0

Let (h*)i>1 be an orthonormal basis of H and (p/);>; be an orthonormal basis of
W([0,0],R). In the following, we hence consider the orthonormal basis of Hy given by

(h* @ Pz
Let us show that @)y is trace class, that is Tr )y < 4+o00. For all k, j, we have

0
Qo @ 9 W @ p) = /v;w(t)h’“ P ()h*)dt = /pf Vi(hF, bt
0
< CO)H¥I 17| e

Hence, Tr Qg < C(0) 3"y [1W*[17+ + 2251 Hp]HLQ(Oe] which is finite since H <y ¢ HY
and W1 “—H.S L2

Since Qg is trace class, there exists a probabiliy space (2, F,P) and Hy-valued Gaussian
variable, denoted by Gy, with zero mean and covariance operator given by Q. Let us de-

note, for all > 0, @, : W([0,0],R) — L*(Q, F,P; H) defined by, for all p in W([0,6],R),

Oy(f) = < Go, f@h > hF

k>1

Let us verify that ®y(f) is a L? random variable. We have,

E[|®o(N)I7] =B |D | <Gof@h > =) Qufeh", foh")

k>1 E>1

where we used Tonelli’s theorem and the definition of Gy. Then, the same kind of compu-
tations as we have done above yields

D Qo(f@F, fohf) <) IIPFGIfII7: < 4o,

k>1 k>1

which gives that ®y(f) is a L? random variable. Furthermore, the inequality above implies
that @y is uniformly continuous and can be extended as a mapping from L?([0,6],R) to
L*(Q), F,P; H): approximate any f in L? by a sequence (f,,),>1 of functions in W' and use
the uniform continuity to prove that the sequence (®g( f,,))n>1 is Cauchy in L*(Q, F,P; H).

It only remains to check that the process (X;):cj0,9 defined by X; := ®g(Ljy) is indeed
a Gaussian process with zero mean and covariance given by (A.7). This is left to the
reader. O
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ANNEXE

B| DEVELOPPEMENT

Cette theése s’inscrit dans 1’étude théorique des processus ponctuels temporels (sous-
ensembles aléatoires discrets de R) tant d’un point de vue probabiliste que statistique et
puise sa motivation dans l'utilisation de ces processus pour modéliser 'activité électrique
des neurones. Nous cherchons en particulier & comprendre les liens qui peuvent exister entre
ces processus ponctuels, qui modélisent les neurones individuellement, et des équations aux
dérivées partielles (EDP), qui modélisent I’activité globale/moyennée sur un grand nombre
de neurones.

Contexte biologique. Les neurones, cellules de base du systéme nerveux, forment un
réseau qui permet de transporter de 'information, depuis des récepteurs jusqu’au systéme
cognitif par exemple, sous la forme d’un signal électro-chimique (influx nerveux). Le sub-
strat électrique de ce transport d’information est constitué par les potentiels d’action. Un
potentiel d’action correspond & une dépolarisation bréve et stéréotypée du potentiel de la
membrane plasmique d’'un neurone : on dit alors que le neurone décharge, et le nombre
moyen de décharge par unité de temps est appelé taux de décharge.

L’information nécessaire a la compréhension du réseau formé par les neurones peut
étre réduite a la séquence des temps d’occurrence de ces potentiels d’action également
appelée train de spikes (un spike correspond a un temps de décharge du neurone). Outre
les interactions qui existent au sein de ce réseau, il faut également noter la présence, a
I’échelle d'un neurone individuel, du phénoméne de période réfractaire : un neurone ne
peut pas décharger deux fois dans un trop court délai (de 'ordre de la milliseconde).

Plusieurs échelles de modélisation sont possibles. Il existe naturellement plusieurs
échelles d’étude du systéme nerveux, depuis le niveau moléculaire (canaux ioniques) jusqu’a
un niveau macroscopique (régions corticales). Dans ce manuscrit, les deux échelles suivantes
sont étudiées : 1’échelle (microscopique) des neurones décrits par des processus ponctuels
temporels (ces derniers modélisent les trains de spikes) et 1’échelle (macroscopique) du
réseau neuronal tout entier dont la dynamique est décrite par un systéme d’équations aux
dérivées partielles (EDP) structuré en age.

Processus ponctuels : notations. Rappelons ici quelques notations utilisées dans ce
manuscrit. Nous nous intéressons a des processus ponctuels, généralement notés N, sur R
muni de sa tribu borélienne B(R). Pour tout A dans B(R), nous notons N(A) le cardinal
de NN A. De plus, nous notons N (dt) la mesure ponctuelle associée & N, i.e. la mesure sur
(R, B(R)) telle que pour toute fonction mesurable positive f, [ f(t)N(dt) = >, f(T;).

Dans ce manuscrit, nous nous intéressons plus particuliérement au comportement de
N pour les temps strictement positifs : nous supposerons que la trace de N sur les temps
négatifs est caractérisée par sa loi notée (y_. Ainsi, nous nous intéressons de maniére
équivalente au processus ponctuel N ou au processus de comptage (N;)i>o associé, défini

213
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par N; := N(]0,¢]). Il est commun de simplifier 1’étude d’un processus de comptage a
celle de son intensité stochastique notée (\;):>o. De maniére informelle, \;dt représente la
probabilité que le processus N admette un nouveau point dans l'intervalle [t, t 4 dt| sachant
Fi_, et ce conditionnement permet en particulier de modéliser des interactions (attirance,
répulsion) entre les différents points du processus. Pour finir, mentionnons également les
processus d’age (standard et prévisible) associés & un processus ponctuel N, respectivement
notés (St)i>o et (Si—)i>o0. Ils décrivent le temps écoulé depuis le dernier point du processus :
voir (1.1) et (1.2) pour une définition formelle.

Processus ponctuels : état de Part. Compte tenu de notre motivation biologique,
nous nous intéressons plus particulierement a des processus ponctuels utilisés pour modé-
liser des trains de spikes. Ainsi, nous discutons des processus de Poisson [40, 66, 158|, de
renouvellement, de Wold [89, 127], et de Hawkes [31, 70]. Une attention toute particuliére
est portée sur les processus de Hawkes compte tenu de leur usage simple et efficace pour
modéliser des neurones en interaction. Rappelons ici qu’'un processus de Hawkes multiva-
rié est un processus ponctuel multivarié (N',..., N™) dont les intensités respectives pour
t=1,...,n sont données par

)\i =@, (i /t hj—ni(t - Z)Nj(dz)> )

ot les ®; et les h;_,; sont des fonctions réelles. Ici, I'intensité stochastique (taux de décharge
du neurone i) au temps t dépend de tous les spikes de tous les neurones avant le temps ¢. La
fonction h;_,; décrit I'influence d'une décharge du neurone j sur le potentiel de membrane,
et donc sur le taux de décharge, du neurone 1.

Les propriétés théoriques/pratiques des processus ponctuels en général, et des processus
de Hawkes en particulier, ont été largement étudiées dans la littérature : stationnarité
[17], stabilité, asymptotique sur la dimension n [43], asymptotique en temps long [163],
simulation [110], estimation [139], tests d’hypothéses [53]. Ce manuscrit propose d’étudier :

1. Tasymptotique sur la dimension n de processus de Hawkes multivariés,

2. un test d’indépendance entre plusieurs processus de Poisson.

EDP structurée en age : notations. A un niveau macroscopique, nous nous concen-
trons sur le point de vue proposé par Pakdaman, Perthame et Salort dans une série d’ar-
ticles [114, 115, 116]. Ils étudient le systéme d’EDP structuré en age suivant :

on (t,s) n on (t, s)
ot 0s

m (t) ::n(t,O):/O oO]U(S,X(iﬁ))n(t,s)ds.

+p(s, X (t))n(t,s) =0,
(PPS)

Ici, n(t, s) représente la densité de probabilité de trouver un neurone (typique du réseau)
d’age s au temps ¢, I’age d'un neurone étant le délai depuis sa derniére décharge. Bien
entendu, la définition de ’age d’un neurone correspond a la définition du processus d’age
associé a un processus ponctuel dés I'instant ot ce dernier modélise le train de spikes dudit
neurone. La fonction p représente le taux de décharge d’un neurone. Notons que dépendance
de p par rapport a I'age s permet de modéliser le phénoméne de période réfractaire (par
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exemple, p(s,x) = 1,s5). De plus, la fonction p dépend également de la variable X ()
représentant l'activité globale du réseau au temps t, sous la forme

X(t) = /O d(t — 2)n(z, 0)dz, (B.1)

pour d une certaine fonction de délai. Cette intégrale de convolution modélise le temps de
propagation de la décharge d’un neurone au reste du réseau.

EDP structurée en age : état de ’art. Un phénomeéne de relaxation a 1’équilibre
a ¢t¢ mis en évidence pour la solution de (PPS) dans [114]. Plus précisément, un critére
qualitatif sur la fonction de délai d peut étre donné : si ||d||r = 0 ou bien ||d||p1 ~ +o0,
alors la solution de I’équation converge vers un état stationnaire. Entre ces deux régimes,
des solutions numériques semblent présenter des oscillations. De maniére plus précise, des
solutions périodiques de (PPS) sont exhibées (de maniére explicite) dans [115] pour des
formes trés particuliéres du taux de décharge p.

Bien que le systéme (PPS) présente des caractéristiques qualitatives intéressantes du
point de vue de la modélisation de réseaux de neurones, seule une approche heuristique
est invoquée dans [114] pour justifier son introduction. Une partie de ce manuscrit se
propose donc de justifier, de maniére rigoureuse, la dérivation du systéme (PPS) a partir
de modéles microscopiques de neurones en interaction. Notons que cette problématique est
trés similaire a celle abordée dans [130].

Liens entre processus ponctuels et EDP : premiére approche. Cette premiére
approche consiste a voir la densité n(t,s) du systéme (PPS) comme 'espérance de son
pendant aléatoire. Nous supposerons que la dynamique stochastique sous-jacente est ca-
ractérisée par un processus ponctuel N, d’intensité (A\;):>0, qui modélise le train de spikes
d’un neurone typique du réseau.

Dans le chapitre 2 de ce manuscrit, nous étudions la loi de probabilité de I’age .S; associé
a un processus ponctuel N. Plus précisément, nous cherchons & caractériser sa dynamique,
en fonction du temps ¢, au moyen d’une EDP qui se rapproche de (PPS).

Nous construisons dans un premier temps, de maniére ad hoc, une mesure (aléatoire)
en temps t et en age s, notée U(dt,ds), qui se veut étre 'analogue aléatoire de n(t,s).
La procédure de thinning, présentée dans la section 1.1.d), permet d’écrire un systéme
d’équations aux dérivées partielles stochastiques vérifié par la mesure U (voir la proposition
2.4.1). De plus, sous certaines hypothéses d’intégrabilité sur I'intensité (\;);>o, 'espérance
de la mesure U est bien définie et nous la notons u : on s’attend a ce que la mesure u(dt, ds)
soit 'analogue de la densité n(t, s).

Le théoreme 2.4.4 montre que u satisfait le systéme d’équations aux dérivées partielles
(déterministe) suivant :

2u (dt,ds) + 2u (dt,ds) + prcy (t,s)u(dt,ds) =0,

ot 95 (B.2)
u (dt,0) :/ Pacn (ts)u(t, ds) dt,

0

ou pr¢y (t,s) == E[N|S;— = s|. En comparant les systémes (PPS) et (B.2), il apparait que

n(t,s) est remplacé par u(dt,ds) et que le terme p(s, X (t)) est remplacé par py ¢, (¢, 5).
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Notons que py¢, dépend de I'intensité du processus ponctuel sous-jacent (\;);>o ainsi

que de la condition initiale (y_ (& savoir, la loi de N NR_). A notre connaissance, le
coefficient py ¢, (¢, s) ne peut pas étre explicité dans le cas général, mais :

e si l'intensité ne dépend que du temps ¢ et du dernier point, i.e. A, = f(t,5.),
alors, quelque soit (n_, pacy (t,8) = f(t,s) et le systéme (B.2) est linéaire. Dans
ce cas particulier, le systéme (B.2) est en fait ’équation de Fokker-Planck associée
au processus markovien (S;_);>o. Ainsi, le théoréme 2.4.4 peut étre vu comme la
généralisation de I’équation de Fokker-Planck & des dynamiques sous-jacentes non
markoviennes, ce qui est le cas pour les processus de Hawkes.

e De plus, dans le cas particulier ou le processus ponctuel sous-jacent est un processus
de Hawkes linéaire, sa structure de branchement (voir la section 2.8.c)) permet de
mieux appréhender l'espérance conditionnelle E[\;|S;— = s]. La conséquence pour le
systéme (B.2) est la suivante (voir la proposition 2.5.4) :

La fonction (de survie) v définie par v(t,s) := f;oo u(t, do) vérifie un sys-
téme d’EDP fermé (ce qui n’est pas le cas pour le systéme (1.9)).

Liens entre processus ponctuels et EDP : seconde approche. Cette seconde ap-
proche est abordée dans les chapitres 3 et 4 de ce manuscrit. Elle consiste & étudier la limite
de champ-moyen d’un réseau de processus de Hawkes dépendants de 1’age. Un réseau de
processus de Hawkes dépendants de I’age (ADHP) de paramétres (n, h, V) est un processus
ponctuel multivarié (N ’”)Zzln dont les intensités sont respectivement

AP = ( e Z/ h(t — 2 Nw(dz)) , (B.3)

dépendance par rapport a I’age permet de contrecarrer I'une des principales carences du
processus de Hawkes dans son utilisation en neurosciences : I'absence d’une description
simple du phénoméne de période réfractaire.

Basé sur un argument de couplage, le théoréme 3.4.1 montre que des ADHP peuvent
étre approchés (dans la limite n — 4o00) par des processus ponctuels indépendants et

ou (S; ’i)tzo est le processus d’age prévisible associé a N™'. Notons que I'ajout de cette

identiquement distribués, notés N' pour i > 1.
En plus des processus ponctuels, 'approximation des processus d’age est également
possible. En particulier, nous montrons la “loi des grands nombres” suivante s la mesure

empirique des ages 11§, :=n DD Snz converge vers P, (la loi de I'age S associé 4 N ).
De plus, cette loi de probabilité P, permet de faire le lien avec 'EDP (PPS).

Si la condition initiale u(0,-) = u™™ est une densité, alors 'unique solution u du
systéme suivant,

du (t, S)+ (t’8)+\11(8 X(t)u(t,s)=0,

875 0s (B4)
/ U (s u(t,s)ds,

ou X(t) = fg h(t — 2)u(z,0)dz, est telle que u(t,-) est la densité de P.
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Notons que le systéme ci-dessus est identique au systéme (PPS) a condition de remplacer
u(t, s) par n(t,s), ¥ par p et h par d.

Ayant obtenu un résultat de type “loi des grands nombres” pour la mesure empirique
des ages, il est naturel de chercher le résultat de type “théoréme central limite” associé.
L’étude menée dans le chapitre 4 porte donc sur les “petites” fluctuations de 7, autour de
sa limite P,. Considérons le processus de fluctuation (1');>0 défini par 1y = /n(@s, — ).
En s’inspirant de travaux de Méléard et de ses co-auteurs [50, 82, 101], nous considérons
n; comme un élément du dual d'un espace de Sobolev a poids. En utilisant de la compacité
et 'unicité du point limite, nous montrons la convergence en loi de la suite de processus
(n")n>1 vers un processus gaussien (théoréme 4.5.12). Pour finir, notons que ce résultat,
bien que technique, peut permettre de dériver une version bruitée de (B.4) qui intégre le
terme de fluctuation gaussienne et se trouve donc étre plus fidéle a la dynamique de la
mesure empirique g, .

Détection de synchronisations : problématique. Les synchronisations d’activité
entre neurones permettent une optimisation de 1’énergie nécessaire a la propagation de
I'information dans le réseau neuronal et sont caractéristiques de certains moments précis
d’une tache sensorimotrice. L’utilisation de multi-électrodes permet ’enregistrement des
trains de spikes correspondant a plusieurs neurones en simultané. La recherche de procé-
dure statistiques permettant de traiter efficacement ce genre de données est florissante, et la
derniére partie de ce manuscrit en fait partie. Nous construisons une procédure statistique
qui puisse détecter des synchronisations d’activité entre plusieurs neurones.

Nous nous focalisons sur la méthode des Unitary Events (UE) introduite dans la thése
de Griin [62]. Cette méthode est basée sur I'idée qu’une dépendance excitatrice du neurone
A vers le neurone B doit étre caractérisée par une surabondance du motif suivant : spike
du neurone A suivi (dans un délai trés court de l'ordre de la milliseconde) d’un spike du
neurone B. Si un tel motif est sur-représenté, il est alors qualifié de Unitary Event. Nous
utilisons cette idée pour construire un test d’indépendance.

Détection de synchronisations : construction d’un test d’indépendance. Nous
généralisons (en partie) la méthode statistique introduite dans [158] au cas de n > 2
processus ponctuels représentant les trains de spikes de n neurones. Pour ce faire, nous
introduisons une notion de coincidence, indicateur statistique fortement inspiré de la notion
de Unitary Event mais adapté au cadre des processus ponctuels. Le schéma de construction
du test est par la suite relativement standard :

1. nous calculons 'espérance et la variance de notre indicateur statistique (le nombre de
coincidences) sous ’hypothése que les trains de spikes sont des processus de Poisson
homogeénes indépendants,

2. l'utilisation du théoréme central limite et une étape de plug-in permettent de déduire
le comportement asymptotiquement gaussien de notre indicateur.

Ces deux étapes permettent de construire un test statistique dont le niveau asymptotique
est controlé.

Pour finir, ces résultats théoriques sont illustrés via une étude par simulation, et les
résultats de I’application de notre procédure statistique a des données réelles sont présentés.
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False Discovery Rate, 183
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firing rate, 166
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propagation of chaos, 106
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renewal process, 40, 49
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synaptic integration, 35, 36, 84
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algorithm, 42
clear statement and proof, 78
heuristics, 44
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Unitary Events method
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