
Università degli studi di Firenze

Dottorato in dinamica non lineare e sistemi

complessi XXI ciclo

Reconstruction of the free energy

landscape of proteins via mechanical

manipulation

Stefano Luccioli

Tutore

dott. Alessandro Torcini

Coordinatore

prof. Roberto Genesio

Settore disciplinare FIS/03



2



Contents

1 Proteins and their manipulation 9

1.1 Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Fundamental interactions within proteins . . . . . . . . . . . . . . . . 10

1.3 Primary, secondary and tertiary structure . . . . . . . . . . . . . . . 12

1.4 The folding problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 All-atom models and minimalistic models . . . . . . . . . . . . . . . . 13

1.6 Manipulation and mechanical unfolding of proteins . . . . . . . . . . 14

2 Models and simulation methods 19

2.1 Simulation methods for the minimalistic model . . . . . . . . . . . . . 19

2.1.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.2 Simulation protocol: equilibrium Langevin dynamics . . . . . 23

2.1.3 Simulation protocol: out-of-equilibrium mechanical unfolding . 24

2.2 Simulation methods for the all-atom model . . . . . . . . . . . . . . . 24

2.2.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.2 Pulling protocols . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.3 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Free energy reconstruction techniques 29

3.1 Umbrella sampling and weighted histogram analysis method . . . . . 29

3.2 Jarzynski equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Extended Jarzynski equality . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Inherent structures formalism . . . . . . . . . . . . . . . . . . . . . . 37

4 Free energy landscape of mechanically unfolded model proteins 41

4.1 Thermodynamical properties . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Extended Jarzynski equality reconstruction . . . . . . . . . . . . . . . 44

4.2.1 Good folder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.2 Bad folder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Inherent structures landscape . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Tail-pulling versus head-pulling . . . . . . . . . . . . . . . . . . . . . 55

4.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3



5 Mechanical unfolding of FNIII10 59

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Analysis of pathways and intermediates . . . . . . . . . . . . . . . . . 61
5.3 Description of the calculated unfolding traces . . . . . . . . . . . . . 62
5.4 Identifying pathways and intermediates . . . . . . . . . . . . . . . . . 65
5.5 Worm-like chain model analysis . . . . . . . . . . . . . . . . . . . . . 67
5.6 EJE reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.7 Role of pulling strenght in mechanical unfolding . . . . . . . . . . . . 73
5.8 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Conclusions and perspectives 81

4



Introduction

Proteins are involved in every function that characterizes a living organism: from
the control of the gene expression to the transmission of information between cells
and organs (hormones); from the defense against intruders in the immune system
(antibodies) to simple structural functions [1]. Moreover many diseases are due to
mutations in proteins or to structural modifications causing the loss of their func-
tionality.
Proteins are heteropolymers composed by an ordered sequence of amino acids that
forms the so called primary structure. The peculiar feature of proteins is that under
physiological conditions they fold in a unique compact three dimensional structure,
called native configuration. A complete understanding of the mechanisms involved
in the folding process, still lacking, is crucial because it’s due to the three dimen-
sional structure that proteins are able to perform their biological functions. Indeed
the main aim in protein science is the prediction of the folded configuration starting
from primary structure.

In the last fifteen years modern experimental techniques, as atomic force mi-
croscopy (AFM) or optical tweezers, have been developed and have allowed the mi-
croscopic manipulation of single biomolecules. With these techniques it’s possible to
induce transitions, as unfolding or dissociation, by exerting mechanical forces and to
measure binding forces responsible for the stability of biomolecules with a resolution
up to the order of piconewtons. Such a kind of experiments represent therefore a
powerful tool to extract information on the internal structure of biomolecules, as
well as on unfolding and refolding pathways followed by proteins.
The mechanical manipulation of biomolecules (proteins and nucleic acids RNA and
DNA) became important also in conjunction with fluctuation relations (sometimes
called non-equilibrium work relations [2]), recently developed, that describe the be-
havior of systems driven out-of-equilibrium. In fact, most of the manipulation’s
experiments are actually performed switching the system faster than its slowest
relaxation rate and therefore in non equilibrium conditions; hysteresis effects are
typical markers of irreversible mechanical stretching. Working in out-of-equilibrium
regime precluded usually to obtain equilibrium information from experimental data.
The novelty introduced by relations as Crooks equality [3] and Jarzynski equal-
ity [4, 5], is represented by the amazing feature that it’s possible to extract equilib-
rium properties of the system, as thermodynamic free energy differences, from non



equilibrium experiments based on the measure of the work done on the system. The
first application of Jarzynski equality to stretching of a single RNA molecule pro-
vided for example an estimate of the free energy variation associated to an unfolding
reaction [6].

The main aim of this thesis is the numerical study of the mechanical unfolding of
two different protein models. The first one is a simplified (minimalistic) off-lattice
model originally introduced by Honeycutt-Thirumalai [7] and successively modified
by Berry et al. [8]; it consists of point-like monomers, mimicking the amino acids
of a polypeptide chain, where for the sake of simplicity, only three types of amino
acids are considered (hydrophobic, polar and neutral ones). We used this model
with two different monomers sequences: one previously identified as good folder and
a sequence randomly chosen (bad folder). The aim was to find specific features of
protein-like behavior from comparison of the properties of the two sequences.
The second one is an all-atom model, developed by Irbäck and coworkers [9, 10]
and it has been used in this thesis to investigate the mechanical unfolding in differ-
ent pulling conditions (at constant force and at constant pulling velocity) of a real
protein, the tenth type III domain from fibronectin, FnIII10. The relevance of this
study relies on the fact that it was possible to compare the results of the simulations
with findings coming from AFM experiments performed by Li et al. [11] on FnIII10.
From constant velocity pulling simulations and applying the Jarzynski equality in
an extended version [12, 13, 14, 15] (EJE) we reconstructed the free energy landscape
(FEL) for both the models as a function of an internal collective coordinate, namely
the polypeptide chain extension, which is the natural coordinate reaction in the me-
chanical unfolding process. The reconstructed FEL, although only one-dimensional,
was able nevertheless to explain many of the properties of the proteins studied. The
EJE reconstruction on the all-atom model extends previous work done on simplified
protein models [16, 17, 18, 19]. In particular, pulling simulations on all-atom models
may be needed to facilitate comparisons with EJE reconstructions based on experi-
mental data. Indeed quite recently this approach has been successfully applied for
the first time to data obtained from manipulation of a real protein, titin I27 domain,
with atomic force microscopy [20, 21].
The relevance of this new method, that is able to recontruct the FEL from simple
pulling experiments, is crucial because proteins, as well as several states of matter as
supercooled liquids, glasses, atomic clusters are typical examples of systems whose
thermodynamic behavior can be traced back to the topological properties of the
underlying free energy landscape [22].

Proteins are dynamical systems: they vibrate within a given conformation and
also jump from a conformation to the other, each corresponding to minima, or in-
herent structures (ISs), in the complex and rough potential energy landscape. The
fluctuations that drive protein dynamics depend on external parameters such as the
solvent properties, among which the major role is played by the temperature: at
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low temperature protein remain trapped in particular conformations while at room
temperature they are able to visit all accessible structures.
The importance of investigating the stationary points of the potential energy land-
scape goes back to the pioneering work by Stillinger and Weber on inherent struc-
tures of liquids [23]. Similar approaches have been proposed and successfully applied,
in glasses [24] and supercooled liquids [25]. More recently, this kind of analysis has
been applied to the study of protein models [22, 26, 27, 28, 29, 30, 31, 32], which
share with the previous systems a rough and intricate energy landscape with a large
number of local minima. Moreover, detailed analysis of the thermodynamic and
dynamical features, characteristics of proteins, have been quite recently carried out
in terms of ISs [30, 31, 32, 33]. These analysis suggest that the folding process of
a protein towards its native configuration depends crucially on the structure and
topological properties of its (free) energy landscape. Confirming somehow the con-
jecture that the FEL of a protein has a funnel–like shape: the native configuration
being located inside the so–called native valley at the bottom of the funnel itself [34].

Within this framework, in this thesis we use the minimalistic model to compare
the free energy landscape reconstruction obtained in terms of two independent meth-
ods: the extended Jarzynski equality and an approach based on thermodynamics
of inherent structures. Both methods are then compared with the reconstruction
performed using a standard equilibrium technique (i.e. the umbrella sampling used
in conjunction with the weighted histogram analysis method). Although the model
used is relatively simple it shows the main thermodynamic features of a protein-like
beahavior and a not trivial FEL with barriers and local minima.

Proteins are not isolated systems but embedded in cells and membranes. Cell-
generated forces can extend to several times proteins unstretched lenght. The
strenght and the conditions of mechanical pulling can in principle affect the so
called unfolding pathway, meaning the order of rupture of the sub-structures (β
sheets and α helices) inside proteins. So the process of mechanical unfolding can
occur through intermediates states, partially unfolded, between the native and com-
pletely stretched configuration. The mechanical unfolding can also expose critical
binding sites, otherwise ”hidden” in the folded state, for activating interaction in-
side the cell. It is in this context that becomes relevant to study the mechanical
unfolding of real protein as FnIII10, that is a modul of fibronectin, a giant multido-
main protein existing in both soluble (dimeric) and fibrillar forms. In its fibrillar
form, fibronectin plays a central role in cell adhesion to the extracellular matrix. In-
creasing evidence indicates that mechanical forces exerted by cells are a key player
in initiation of fibronectin fibrillogenesis as well as in modulation of cell-fibronectin
adhesion, and thus may regulate the form and function of fibronectin [35, 36].

The plan of this thesis is the following. The first Chapter is devoted to a brief
introduction about the structure of proteins and the relevance of mechanical ma-
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nipulation techniques in this context. In the second Chapter we describe the two
employed protein’s models, as well as the simulation protocols and methods. The
third Chapter is devoted to the techniques used for reconstructing the free energy
profile of a protein as a function of an internal coordinate, namely the chain ex-
tension. The original results about the simplified and all-atom model are reported
respectively in Chapters four and five.
In the forth Chapter, after a description of the main thermodynamic properties of
the two studied sequences (with bad and good folding properties), we compare the
free energy landscape reconstruction obtained in terms of the extended Jarzynski
equality, weighted histogram analysis method and inherent structures approach.
In Chapter five we report the analysis of mechanical unfolding of FnIII10, both at
constant force and at constant pulling velocity, and the comparison with the experi-
mental data. Finally in the Conclusions the main results obtained in this thesis and
future perspectives are discussed and summarized.

The present work of thesis, supported by the European Community via the
STREP project EMBIO NEST (contract n.12835), led to the publication of the
following three papers:

• A. Imparato, S. Luccioli, and A. Torcini, ”Reconstructing the free energy
landscape of a mechanically unfolded model protein”, Phys. Rev. Lett. 99,
168101 (2007) and addendum in Phys. Rev. Lett. 100, 159903(E) (2008);

• S. Luccioli, A. Imparato, and A. Torcini, ”Free energy landscape of mechan-
ically unfolded model proteins: extended Jarzynski versus inherent structure
reconstruction”, Phys. Rev. E 78, 031907 (2008);

• S. Mitternacht, S. Luccioli, A. Torcini, A. Imparato and A. Irbäck, ”Changing
the mechanical unfolding pathway of FnIII10 by tuning the pulling strength”,
to appear in 2009 in Biophysical Journal.
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Chapter 1

Proteins and their manipulation

In this Chapter we briefly introduce the structure of proteins and their main dynam-
ical features: under physiological conditions proteins fold in a unique compact three
dimensional structure thermodynamically stable. Then we describe the relevance
of mechanical manipulation techniques in this context. From one side such kind of
techniques represent a powerful tool to extract information on the internal structure
as well as on the unfolding and refolding pathways of proteins. On the other side, the
mechanical manipulation of proteins, and more generally of biomolecules, became
important in conjunction with non equilibrium fluctuation relations, recently theo-
retically developed. In fact using this type of relations, involving the distribution
of work done on a system driven out-of-equilibrium (as the process of mechanical
unfolding actually is) it is possible to extract equilibrium properties from non equi-
librium experiments. In particular, we apply in this thesis an extended form of
Jarzynski equality that, from pulling experiments, allows to recover the equilibrium
free energy profile of the unconstrained protein.

1.1 Proteins

A protein consists of a chain of amino acids; only 20 kinds of amino acids are present
in proteins 1. All the amino acids (except proline 2) share the common structure
NH2-CαRH-COOH where NH2 is the amino group, COOH the carboxyl group and
the group R, called side chain, is what makes each amino acid different from each
other 3.

Usually amino acids are classified into three main groups according to the na-

1In proteins are usually involved only the 20 amino acids of the L-α series (for a complete list
see for example Table 1.1 in [37]); nevertheless they may be covalently modified after biosynthesis
of the polypeptide chain.

2In proline the side chain is also connected covalently to the N atom.
3Cα indicates the central carbon atom of the amino acid and C the carbon atom belonging to

the carboxyl group. The other carbon atoms eventually belonging to the side chain are indicated
with the symbols Cβ , Cγ , Cδ and so on.



ture of the side chain: polar, hydrophobic (or non-polar) and charged. The amino
acid glycine, whose side chain consists of one hydrogen atom only, forms a group by
itself. The polar amino acids have an own electric dipole moment that makes them
participate in the hydrogen bond network of water. The charged amino acids have
a net electric charge and are subject to Coulomb interactions.
In proteins amino acids are connected by the the so called peptide bond. When the
carboxyl group of the amino acid i reacts with the amino-group of the amino acid
i+1, the peptide bond between (C)i and (N)i+1 is formed and a water molecule (from
one H of the amino group and OH of the carboxyl group) is released. Sometimes
the amino acids belonging to protein chain (and so missing H and OH) are called
residues. Therefore a protein consists of a backbone formed from the repetition of
the elementary unit NH-CαH-CO and of the side chains attached to it (see Fig. 1.1).
The structure of the backbone is identified 4 if for every Cα of the chain the Ra-
machandran angles, ψ and φ, are given; ψ and φ are respectively the torsion angles
between the axes Cα-R and C=O, and Cα-R and N-H (see Fig. 1.2).

Figure 1.1: Portion of protein chain. The letters Ri stand for the side chain i and
the peptide bond is indicated with an arrow.

The main feature of proteins is that under physiological conditions (aqueous sol-
vent, temperature 37◦C, pH 7, atmospheric pressure) they fold in a unique compact
three dimensional structure thermodynamically stable, called native state. Such a
three dimensional structure it’s what makes proteins able to accomplish their bio-
logical function.

1.2 Fundamental interactions within proteins

To take in account the interactions relevant for stabilizing the protein structure
it’s necessary, in principle, to include all the non covalent interactions between the

4Due to the specific structure of the peptide bond the atoms on its two ends cannot rotate
around the bond. Hence the atoms of the group O=C-N-H are fixed on the same plane (called
the peptide plane); the whole plane may rotate around the N-Cα bond (φ angle) or C-Cα bond (ψ
angle).
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Figure 1.2: Illustration of Ramachandran angles, φ and ψ.

atoms and the interactions between the atoms and the molecules of the solvent. In
fact, the forces involved in the (covalent) peptide bond are actually three order of
magnitude higher than the non covalent forces; nevertheless such energy contribution
(of about 2.5 eV) can be neglected because it is essentially constant for every protein
conformation and it is not thermally excited at room temperature.
The fundamental non covalent interactions, thermally excited at room temperature,
are the hydrogen bonds, the electrostatic forces and the van der Waals forces.
The hydrogen bond, which is a dipole-dipole interaction, has a bond energy of about
0.1-0.3 eV and a bond lenght of around 3 Å. The electrostatic forces, involving groups
of atoms with a partial charge, have bond energy and lenght of the same order. The
van der Waals forces are an order of magnitude weaker than the previous ones and
are long range interactions 5. One of the most important effect due to the presence of
the solvent (typically an aqueous solution) is to influence the spatial distribution of
the hydrophobic amino acids, which are not provided of a permanent electric dipole
moment and can’t participate in the hydrogen bond network of water. In fact they
are packaged inside the protein (hydrophobic core) while the polar amino acids are
in the external part exposed to the water molecules. This process can be looked
at as an effective attraction between the hydrophobic residues, called hydrophobic
interaction (with an energy scale of the order of 0.08 eV), and it is considered one
of the key interactions ruling the folding process [38, 39].

5The total effective interaction coming from the van der Waals attractive forces is usually

represented by a Lennard-Jones potential 6-12, V (r) = 4ǫ
[

(

σ
r

)12
−

(

σ
r

)6
]

, where r is the distance

between the two molecules, σ ≃ 7-9 Å and the repulsion term ∝ 1/r12 is meant to avoid overlapping
of pairs of atoms.
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1.3 Primary, secondary and tertiary structure

The primary structure of a protein is simply the ordered sequence of the amino
acids along the polypeptide chain. The residues are numerated starting from the
extremum belonging to the amino group not involved in the peptide bond (N-
terminus), and then going on until the opposite extremum (C-terminus).
Within the typical three dimensional shape of the protein (called tertiary structure)
it’s possible to identify regions of the sequence that form local regular substructures,
called secondary structures. The pieces of backbone connecting different secondary
structures are called loops. The most common secondary structures are α helices
and β sheets (see Fig. 1.3). The former are formed when the principal chain atoms
belonging to consecutive residues are arranged according to an helix shape. The α
helices are stabilized by hydrogen bonds between the group CO of the residue i and
the group NH of the residue i+ 4. The side chains are outside the α helix and don’t
interact with the structure.
The β sheet is formed by an assembly of aligned strands (called β strands) composed
by typically 5-10 amino acids with an almost fully extended conformation 6. The β
strands are linked by hydrogen bonds between the group CO of one strand and the
group NH of the close strand. Moreover, there are proteins where polypeptide chains
with an own tertiary structure are assembled in a larger structure called quaternary
structure.

Figure 1.3: Illustration of the native structure of ubiquitin (Protein Data Bank
1UBQ). It’s possible to recognize in such a protein the most common secondary
structures: α helix and β strands (arrow shaped).

6The β sheet is said parallel if all the strands are aligned in the same biochemical direction, i.e.
from the amino to the carboxyl group (N→C). The β sheet is said antiparallel if amino acids in
close strands have opposite direction (N→C and C→N).
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1.4 The folding problem

A complete understanding of the mechanisms involved in the folding process is still
lacking. The Levinthal’s ”paradox” [40] rules out that folding process occurs by
a random sampling of the huge number of all possible conformations, because it
would be necessary a time greater of the age of the universe. Therefore it seems
that to reach the native state (that according to Anfinsen’s [41] thermodynamic
hypothesis is the global minimum of the free energy) in the observed time scales
proteins follow well defined pathways. This means that the native state has to be
kinetically accessible starting from a generic initial condition: the pathway in the
free energy surface from the unfolded to the native state has to be ”smooth”, pro-
ceeding through ”small” successive conformational rearrangements. In [42, 43, 44]
it was conjectured that the potential energy landscape of protein, though it is very
rough 7 with a large number of local minima, shows a global slope towards the
native configuration with a funnel-like shape. Usually in thermal folding/unfolding
dynamics three transition temperatures are identified: glassy, folding and hydropho-
bic collapse temperature (see also Section 4.1). The glassy temperature represents
the critical value above which the protein can still reach the native state jumping
from a minimum to the other; otherwise, if the temperature is below such a value
an arrest of the jumping dynamics occurs, and the protein can remain trapped in
a local minimum without reaching the native state in a finite time. At the folding
temperature by definition the configurations visited by the protein in its dynamics
belong predominantly to the native basin. The collapse temperature discriminates
between phases dominated by open (random-coil) and compact configurations.
A common and schematic representation of folding-unfolding dynamics is shown in
Fig. 1.4: the native state (N) and the unfolded state (U) correspond to free energy
minima with respect to some reaction coordinate and are separated from a transition
state (T).

1.5 All-atom models and minimalistic models

The ab initio approach to the folding problem relies on the fact that it’s possible,
at least in principle, to get the three dimensional structure from the sequence of
the amino acids using a molecular dynamics code that integrates numerically the
motion’s laws of all atoms of the protein using a model as realistic as possible, includ-
ing all the intermolecular interactions and the interaction solvent-protein (all-atom
models). The smallest time scale in proteins corresponds to vibrational motions of
atoms, which are of the order of 1013-1014 Hz; therefore for the numerical integration
it’s necessary a time step of at least 10−15 s. But considering the large number of

7During the folding process different parts of protein come close and there are parts of the energy
potential that compete. So proteins are systems characterized by the presence of frustration and
the configurations corresponding to local energy minima are connected each other in a complex
way.
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Figure 1.4: Sketch of folding-unfolding dynamics.

atoms belonging to protein with the latest computers it’s possible to simulate dy-
namics of proteins only up to a time of order of microseconds which is much lesser
of the experimentally observed folding times (of order 10−3-10 s).
To overcome the computational impracticability of an ab initio approach, a first
approximation is to replace the effect of the interaction between the protein and the
solvent by an effective potential (implicit solvent). On the other side, skipping more
and more details of the intermolecular interactions, it’s possible with minimalistic
models to follow the evolution of the system until the folding times. On the other
hand all-atom models can be appropriate for studying the process of mechanical
unfolding (see Section 1.6) also for large proteins, and actually we did for FnIII10,
tenth type III domain from fibronectin (see Chapter 5). In fact, in order to study
mechanical unfolding, it is sufficient to verify that the native state is a long-lived
state corresponding to a local free energy minimum.

1.6 Manipulation and mechanical unfolding of pro-

teins

In the last fifteen years modern experimental techniques, as atomic force microscopy
(AFM) or optical tweezers, have been developed and have allowed the microscopic
manipulation of single biomolecules (proteins and nucleic acids RNA and DNA).
With these techniques it’s possible to induce transitions, as unfolding or dissocia-
tion, by exerting mechanical forces and to measure binding forces responsible for
the stability of biomolecules. Therefore, mechanical unfolding of single biomolecules
represents a powerful technique to extract information on the internal structure
of these microsystems as well as on the unfolding and refolding pathways of pro-
teins [53, 57, 60, 58, 61].
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With atomic force microscopy it’s possible to measure forces in the pN-nN range

Figure 1.5: (a) Sketch of a constant velocity pulling experiment with AFM of an
engineered protein composed of eight domains of titin I27. The cantilever acts as a
spring obeying Hooke’s law. (b) and (c) Typical sawtooth pattern in the force-time
and force-extension curve (the figure is taken from [20] and the data refers to a
pulling velocity of 1.00 µm/s).

with high resolution in a realistic solvent [45]. The main component is a micro-
fabricated cantilever (with a lenght in between 20 and 300µm) at the end of which
a sharpened tip (with a radius of about 10nm) is sited. The interaction between the
tip and the sample gives rise to a force (obeying Hooke’s law) that can be measured
from the cantilever detection. When the AFM is used for mechanical unfolding one
end of the protein is immobilized on the gold substrate of a stage and the other end
is attached to the tip cantilever. By moving vertically or the cantilever or the stage
(depending on the type of AFM) at a constant velocity (constant velocity protocol)
an increasing force is applied to the protein until it unfolds and the force abruptly
drops down. Generally this is done with an engineered protein composed of several
domains; in such a case the outcome of the experiment results in a typical sawtooth
pattern in the force-extension curve (see Fig. 1.5). Another technique for manipu-
lation of biomolecules is the optical tweezers, which is a special kind of optical trap.
It relies on the fact that a strongly focused laser beam can be used to catch and
hold particles of dielectric material in a size range from nanometers to micrometers.
The biomolecules are attached to these dielectric beads; one of these is held in the
trap and the other one is moved. Also in this case the interaction between the bead
and the trap follows Hooke’s law.
The atomic force microscope and the optical tweezers can be used also with a dif-
ferent pulling protocol, called constant force protocol. In this kind of experiments a
force-clamp technique, based on a feedback system, is used to control the magnitude
of the force acting on the protein. Also in this experimental setup a polyprotein
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made of several modules is generally used; in this case the unfolding trajectories
result in a typical stepwise pattern in the lenght-time curve (see Fig. 1.6).

Figure 1.6: AFM constant force pulling experiments on a polyprotein composed of
several modules of ubiquitin. Figures (a) and (b) refer to a chain of six modules and
figure (c) refers to ubiquitin chains with a varying number of modules, from N=2 to
N=12 (the figure is taken from [46] and data refers to a constant force of 110 pN).

The mechanical manipulation of biomolecules became important also in con-
junction with fluctuation relations (sometimes referred to as non-equilibrium work
relations [2]), recently developed, that describe the behavior of systems driven out-of-
equilibrium. In fact, most of the manipulation’s experiments are actually performed
switching the system faster than its slowest relaxation rate and therefore in out of
equilibrium conditions. Working in out-of-equilibrium regime precluded usually to
obtain equilibrium information from experimental data. The novelty introduced by
relations as Crooks equality [3] and Jarzynski equality [4, 5] (see Chapter 3) is repre-
sented by the amazing feature that it’s possible to extract equilibrium properties of
the system, as thermodynamic free energy differences, from non equilibrium experi-
ments based on the measure of the work done on the system. In particular, in this
thesis we extensively used Jarzynski equality in an extended form [12, 13, 14, 15] that
we will introduce in Chapter 3. The Jarzynski equality was applied for the first time
by Liphardt et al. [6] in a famous experiment regarding the stretching with optical
tweezers of a single RNA molecule derived from the P5abc domain of the Tetrahy-
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Figure 1.7: Force-extension curves during mechanical unfolding (U) - refolding (R)
cycles of single RNA molecule at different switching rates (in pN/s). In A) two
examples of trajectories are presented in reversible (blue, 2 to 5 pN/s) and irre-
versible (red, 52 pN/s) switching conditions (please note the hysteresis effect). In
B) a superposition of about 40 curves per experiment are presented (figure taken
from [6]).

mena thermophyla group 1 intron; the experiment provided an estimate of the free
energy variation associated to the unfolding reaction. Liphardt et al. showed that
with this molecule both the equilibrium and out-of-equilibrium regime were experi-
mentally accessible: the molecule unfolds reversibly when stretched slowly compared
to its typical relaxation time and irreversibly when stretched more rapidly. Typical
marker of irreversible mechanical stretching was hysteresis effect recorded in the
force-extension curves during a cycle of unfolding-refolding (see Fig. 1.7).
Due to effect of the collisions between the system and the molecules of the solvent,
the dynamics of systems of size of proteins (from a few to some hundreds nanome-
ters) in a thermal bath is essentially stochastic. So the trajectory followed by the
system is different for every repetitions of the same out-of-equilibrium experiment.
Let x be the variable that identifies the system microscopic state, e.g. the collection
of the positions and momenta of all the particles in the system x = {ri,pi}. Let
λ(x) be a macroscopic observable of the system whose value is varied during the pro-
cess according to a well defined non-equilibrium protocol. For example in a pulling
experiment on a protein with an AFM (see Fig 1.5) the variable λ is the distance
between the cantilever and the surface where the protein is blocked. Due to the ma-
nipulation process the variation of inner energy of the system will be ∆U = Q+W ,
where Q is the exchanged heat and W is the total work done on the system when
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Figure 1.8: Distributions of work for stretching and unfolding one titin I27 domain
in the same experimental setup as in Fig. 1.5 for three different pulling velocity 0.05,
0.10 and 1.00 µm/s (figure taken from [20]).

the variable λ is changed from the initial value λi to the final value λf :

W =

∫ λf

λi

Fdλ (1.1)

being F the force applied to the system. The only deterministic quantity in such
experiments is the observable λ (control parameter); while the force F , the work W
and the heat Q are random. In Fig. 1.8, for example, one can see the distributions
of works obtained during many repetitions of the same constant velocity pulling
experiment with AFM [20]; it is worth noting that decreasing the pulling velocity,
and so approaching the reversible limit, the distributions become narrower. In such
a framework the work and heat distributions are very important for characterizing
the behavior of the system.
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Chapter 2

Models and simulation methods

This Chapter is devoted to the introduction of the studied protein’s models, as
well as of the simulation protocols and methods. Two kind of models have been
employed. The first one is a modified version of a minimalistic model, previously
introduced by Thirumalai and coworkers [7], simulated via a Langevin dynamics
and with a constant pulling velocity protocol. The minimalistic model has been
used to study the mechanical unfolding both of a sequence known in literature as
a good folder and of a random sequence, bad folder. The second one is an all-atom
model, developed by Irbäck and coworkers, simulated via Monte Carlo dynamics
both at constant force and at constant pulling velocity; with this model it has been
investigated the mechanical unfolding of a real protein, the tenth type III domain
from fibronectin (FnIII10).

2.1 Simulation methods for the minimalistic model

The model we used is a modified version of the 3d off-lattice model introduced by
Honeycutt-Thirumalai [7] and successively generalized by Berry et al. to include a
harmonic interaction between next-neighbouring beads instead of rigid bonds [8].
This model has been widely studied in the context of thermally driven folding and
unfolding [7, 64, 65, 8, 69, 29, 70, 32] and only more recently for what concerns
mechanical folding and refolding [72, 71].

2.1.1 The model

The model consists of a chain of L point-like monomers mimicking the residues of
a polypeptide chain. For the sake of simplicity, only three types of residues are
considered: hydrophobic (B), polar (P) and neutral (N) ones.

The intramolecular potential is composed of four terms: a stiff nearest-neighbour
harmonic potential, V1, intended to maintain the bond distance almost constant, a
three-body interaction V2, which accounts for the energy associated to bond angles,



a four-body interaction V3 corresponding to the dihedral angle potential, and a long–
range Lennard-Jones (LJ) interaction, V4, acting on all pairs i, j such that |i−j| > 2,
namely

V1(ri,i+1) = α(ri,i+1 − r0)2, (2.1)

V2(θi) = A cos(θi) +B cos(2θi) − V0, (2.2)

V3(ϕi, θi, θi+1) = Ci[1 − S(θi)S(θi+1) cos(ϕi)] +Di[1 − S(θi)S(θi+1) cos(3ϕi))],(2.3)

V4(ri,j) = εi,j

(

1

r12
i,j

−
ci,j
r6
i,j

)

(2.4)

Here, ri,j is the distance between the i-th and the j-th monomer, θi and ϕi are the
bond and dihedral angles at the i-th monomer, respectively. The parameters α = 50
and r0 = 1 (both expressed in adimensional units) fix the strength of the harmonic
force and the equilibrium distance between subsequent monomers (which, in real
proteins, is of the order of a few Å). The value of α is chosen to ensure a value for V1

much larger than the other terms of potential in order to reproduce the stiffness of
the protein backbone. The expression for the bond-angle potential term V2(θi) (2.2)
corresponds, up to the second order, to a harmonic interaction term ∼ (θi − θ0)2/2,
where

A = −kθ
cos(θ0)

sin2(θ0)
, B =

kθ

4 sin2(θ0)
, V0 = A cos(θ0) +B cos(2θ0) , (2.5)

with kθ = 20ǫh, θ0 = 5π/12 rad or 75o and where ǫh sets the energy scale. This
formulation in terms of cosines allows to speed up the simulation, since it is sufficient
to evaluate cos(θi) and the value of bond-angle is not needed, and at the same time
to avoid spurious divergences in the force expression due to the vanishing of sin(θi)
when three consecutive atoms become aligned [73].

The dihedral angle potential is characterized by three minima for ϕ = 0 (associ-
ated to a so-called trans state) and ϕ = ±2π/3 (corresponding to gauche states), this
potential is mainly responsible for the formation of secondary structures. In par-
ticular large values of the parameters Ci, Di favor the formation of trans state and
therefore of β-sheets, while when gauche states prevail α-helices are formed. The
parameters (Ci, Di) have been chosen as in [69], i.e. if two or more beads among
the four defining ϕ are neutral (N) then Ci = 0 and Di = 0.2εh, in all the other
cases Ci = Di = 1.2εh (see Fig. 2.1.1). The tapering function S(θi) = 1 − cos32(θi)
has been introduced in the expression of V3 in order to cure a well known problem
in the dihedral potentials [73]. This problem is encountered whenever θi = 0 or
π, i.e. when three consecutive beads are in the same line, in these situations the
associated dihedral angle is no more defined and a discontinuity in V3 arises. In
contrast to what reported in [73] this situation is not improbable for the present
model. The quantity S(θi)S(θi+1) entering in the definition of V3 has a limited in-
fluence on the dynamics apart in proximity of the above mentioned extreme cases.
Moreover, S(θi)S(θi+1) is C∞, its value is essentially one almost for any θi, it does
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Figure 2.1: Dihedral angle potential, V3, when two or more beads among the four
defining ϕ are neutral (red dashed curve), and in all the other cases (blue solid
curve). We fixed εh = 1 and S(θi) = S(θi+1) ≡ 0.

not introduce any extra minima in the potential and it vanishes smoothly for θi → 0
or θi → π [74].

The last term V4 has been introduced to mimic effectively the interactions with
the solvent, it is a Lennard-Jones potential and it depends on the type of interacting
residues as follows:

• if any of the two monomers is neutral the potential is repulsive cN,X = 0 and
its scale of energy is fixed by εN,X = 4εh;

• for interactions between hydrophobic residues cB,B = 1 and εB,B = 4εh;

• for any polar-polar or polar-hydrophobic interaction cP,P ≡ cP,B = −1 and
εP,P ≡ εP,B = (8/3)εh.

Accordingly, the Hamiltonian of the system reads

H = K + V =

L
∑

i=1

p2
x,i + p2

y,i + p2
z,i

2
+

L−1
∑

i=1

V1(ri,i+1) +

+
L−1
∑

i=2

V2(θi) +
L−2
∑

i=2

V3(ϕi, θi, θi+1) +
L−3
∑

i=1

L
∑

j=i+3

V4(rij) (2.6)

where, for the sake of simplicity, all monomers are assumed to have the same unitary
mass, the momenta are defined as (px,i, py,i, pz,i) ≡ (ẋi, ẏi, żi) and we fix εh = 1.

In this thesis we consider the two following sequences of 46 monomers,

• [GF]=B9N3(PB)4N3B9N3(PB)5P a sequence that has been widely analyzed
in the past for spontaneous folding [7, 64, 65, 69, 8, 29, 70, 32] as well as for
mechanical unfolding and refolding [72, 71];
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• [BF]=BNBPB3NPB4NBPB2NP2B5N2BPBNPB2NBP2BNB2PB2 a ran-
domly generated sequence, but with the same number of B, P and N monomers
as the GF .

These two sequences have been chosen because GF has been previously identified
as a reasonably fast folder [64] (see also [8] for a detailed and critical analysis of the
basin-bottom structures observed for this model), while we expect that the sequence
BF , being randomly chosen, cannot have the characteristic of a good folder. From
now on we refer to the sequence GF (resp. BF ) as the good (resp. bad) folder.

The 46-mer sequence GF exhibits a four stranded β-barrel Native Configuration
(NC) (see Fig. 2.2a) with an associated potential energy ENC = −49.878. Please
note that the model is here analyzed by employing the same potential and param-
eter set reported in Ref. [69], but neglecting any diversity among the hydrophobic
residues. The NC is stabilized by the attractive hydrophobic interactions among the
B residues, in particular the first and third B9 strands, forming the core of the NC,
are parallel to each other and anti-parallel to the second and fourth strand, namely,
(PB)4 and (PB)5P . The latter strands are exposed towards the exterior due to the
presence of polar residues.

Figure 2.2: Native structure of the good (a) and bad (b) folder.

The native structure of the BF is quite different, it has a core constituted by
the first three β-strands and a very long ”tail” (made of 18 residues) wrapped
around the core (see Fig. 2.2b). In particular, the first and second β-strand (namely,
BNBPB3NP and B4NBPB2) are formed by 9 residues, and antiparallel to each
other. For more clarity, we will term π1 the plane containing the first 2 strands.
The third strand (namely, P2B5) is made of 7 residues and it is located in a plane
lying in-between the first and second strand, which is almost perpendicular to π1.
The chain rotates of almost 90 degrees in correspondence of the two consecutive
neutral beads and then exhibits a short strand of 3 beads PBP before turning back
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GF BF
VNC -49.878 -23.956
V1 0.787 0.777
V2 1.767 5.744
V3 2.602 23.105
V4 -55.035 -53.582

Table 2.1: Potential energy values associated to the NC of the GF and BF, the
different contributions to the total potential energy VNC are also reported.

with a parallel strand of 7 beads (PB2NBP2) that passes below π1. Finally the
chain turns once more back by passing this time above the plane π1. In the final
part of the tail of the chain a short strand of 5 residues, parallel to the 4-th and
5-th strands, can be identified as B2PB2. The potential energy of the NC of the
BF is quite high with respect to the GF , namely VNC = −23.956. Moreover, this
difference, as reported in Table 2.1, is essentially due to the difference in the dihedral
contributions, that is much higher in the NC of the BF with respect to the GF ,
while all the other contributions, in particular the LJ ones, have nearby values. The
dihedral contribution that arises in the BF is essentially due to the configuration of
the first 3 strands, since these are arranged over two almost orthogonal planes.

2.1.2 Simulation protocol: equilibrium Langevin dynamics

Molecular dynamics (MD) canonical simulations at equilibrium temperature T have
been performed by integrating the corresponding Langevin equation for each monomer
of unitary mass (characterized by the position vector ri):

r̈i = F(ri) − γṙi + η(t) i = 1, L (2.7)

where η(t) is a zero average Gaussian noise term (mimicking the collisions of the
molecules of the solvent and the monomers) with correlations given by 〈ηα(t)ηβ(t′)〉 =
2Tγδ(t − t′)δα,β; F = −∇V , being V the intramolecular potential introduced in
2.1.1, γ the friction coefficient associated to the solvent and by assuming an unitary
Boltzmann constant kB.

Numerical integrations have been implemented via a standard Euler scheme with
a time-step ∆t = 0.005 and with a low friction coefficient γ = 0.05 [69]. Two different
kinds of MD have been performed, namely unfolding simulations (US) and folding
simulations (FS). In the first case the initial state of the system is taken equal
to the native configuration (NC), that we assume to coincide with the minimal
energy configuration. In the latter one the initial state is a completely unfolded
configuration.
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2.1.3 Simulation protocol: out-of-equilibrium mechanical un-

folding

In order to mimic the mechanical pulling of the protein attached to a AFM cantilever,
or analogously when trapped in an optical tweezer, one extremum of the chain was
kept fixed and the last bead is attached to a pulling apparatus with a spring of elastic
constant k. The external force is applied by moving the ”cantilever” along a fixed
direction with a certain protocol z(t). Before pulling the protein, the coordinate
system is always rigidly rotated, in order to have the z-axis aligned along the end-
to-end direction connecting the first and last bead. Therefore by denoting with ζ the
end-to-end distance the component of the external force along this direction reads
as

Fext = k(z − ζ) (2.8)

where k = 10 in order to suppress fast oscillations. As recently pointed out [16] it
is extremely important to use a sample of thermally equilibrated initial configura-
tions to correctly reproduce the equilibrium free energy landscape via the Jarzynski
equality (see Chapter 3). Therefore, before pulling the protein, we have performed
a thermalization procedure in two steps. At a fixed temperature T , initially the
protein evolves freely starting from the NC for a time t = 1, 000, then it is at-
tached to the external apparatus, with the first bead blocked, and it equilibrates
for a further time period t = 500. The system (at sufficiently low temperatures)
quickly settles down to a ”native-like” configuration. This configuration is then
employed as the starting state for the forced folding. The protocol that we have
used is a linear pulling protocol with a constant speed vp, i.e. z(t) = z(0) + vp × t,
by assuming that the pulling starts at t = 0. Usually we have employed velocities
vP ∈ [5×10−5 : 5×10−2] and set z(0) = ζ0, i.e. to the end-to-end distance associated
to the native configuration.

2.2 Simulation methods for the all-atom model

This section is devoted to describe the simulation methods used for studying the
mechanical unfolding of the tenth type III domain from fibronectin, FnIII10 (see
Chapter 5 where in Fig. 5.1 it is also reported the structure of FnIII10).

2.2.1 The model

The model was developed by Irbäck et al [9, 10]. It is an all-atom model with implicit
water where the only degrees of freedom are torsional (Ramachandran angles and
side chain torsion angles). Bond lenghts, bond angles and peptide bond torsion
angles are held constant. The interaction potential E is composed of four terms:

E = Eloc + Eev + Ehb + Ehp (2.9)
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The term Eloc is local in sequence and represents an electrostatic interaction be-
tween adjacent peptide units along the chain. The other three terms are non-local
in sequence. The excluded volume term Eev represents a repulsion between pairs of
atoms. The term Ehb represents two kinds of hydrogen bonds: backbone-backbone
bonds and bonds between charged side chains and the backbone. The term Ehp

represents an effective hydrophobic attraction between nonpolar side chains; it is
a simple pairwise additive potential based on the degree of contact between two
nonpolar side chains.
It has beeen shown [9] that this model provides a good description of the structure
and folding thermodynamics of several peptides with about 20 residues. For larger
proteins as FnIII10 it is computationally infeasible to verify that the native structure
is the global free-energy minimum. Howewer, in order to study unfolding, it is suf-
ficient that the native state is a long-lived state corresponding to a local free energy
minimum. Without any tuning of the parameters used in previous studies [9, 10],
we found that the native state of FnIII10, indeed, is a long-lived state corresponding
to a free-energy minimum, as will be seen in Chapter 5.

Below, the most important features of the model are summarized, while the
numerical values of all geometry parameters can be found in [9, 10]. The term Eloc

is given by:

Eloc = kloc

∑

I

(

∑

i=N,H
j=C,O

qiqj
rij

)

(2.10)

where each term of the inner sum represents the interaction of the partial charges
qi of the backbone NH and CO groups for each amino acid I.

The term Eev has the form:

Eev = kev

∑

i<j

[

λij(σi + σj)

rij

]12

(2.11)

where the sum is over pairs of atom. The σi are the atomic radii. The parameters λij

compensate the fact that the bond lenghts and angles are held constant in the model:
the decreased flexibility of a chain with only torsional degrees of freedom could in
fact lead to artificial traps; to avoid that, for all atom pairs that are separated by
more than three covalent bonds λij < 1, otherwise λij = 1.

The hydrogen bonds energy is given by:

Ehb = ǫ
(1)
hb

∑

bb−bb

u(rij)v(αij, βij) + ǫ
(2)
hb

∑

bb−sc

u(rij)v(αij, βij) (2.12)

where the first term of the sum represents the backbone-backbone interaction and
the second one the interaction between the charged side chains and the backbone;
the functions u(r), v(α, β) are defined as:

u(r) = 5(
σhb

r
)12 − 6(

σhb

r
)10 (2.13)
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v(α, β) =

{

(cos(α) cos(β))1/2 if α, β > 90◦

0 otherwise
(2.14)

In the model only hydrogen bonds between NH and CO are considered, therefore
rij is the HO distance, αij is the NHO angle and βij the HOC angle.

The hydrophobicity term Ehp is expressed as a pairwise additive form over non-
polar (or hydrophobic) side chains:

Ehp = −
∑

I<J

MIJCIJ (2.15)

where CIJ is defined as:

CIJ =
1

NI +NJ

[

∑

i∈AI

f(min
j∈AJ

r2
ij) +

∑

j∈AJ

f(min
i∈AI

r2
ij)

]

(2.16)

and the function f(x) is (A and B are parameters):

f(x) =







1 if x < A
B−x
B−A

if A < x < B

0 if x > B
(2.17)

The term CIJ is a geometry factor that represents a measure of the degree of contact
between side chains I and J , and it was calculated using a predetermined sets of NI

atoms, AI , for each side chain I. The matrix MIJ sets the energy that a pair in full
contact gets 1.

2.2.2 Pulling protocols

The energy function E of Eq. 2.9 describes an unstretched protein. In our simulation
we have used two kinds of pulling protocol: at constant force and at constant velocity.
In the first case, constant forces −~F and ~F act on the N and C termini, respectively.
The full energy function is then given by:

Etot = E − ~F · ~ζ (2.18)

where ~ζ is the vector from the N to the C terminus.
For the constant-velocity simulations, the pulling of the protein is modeled using
a harmonic potential in the chain extension (end-to-end distance) ζ = |~ζ| whose
minimum z(t) varies linearly with Monte Carlo (MC) time t. With this external
potential, the full, time-dependent energy function becomes

Etot(t) = E +
k

2
[z(t) − ζ ]2 = E +

k

2
[z(0) + vpt− ζ ]2 (2.19)

1In the model the hydrophobic amino acids are divided into three categories [10]. The matrix
MIJ represents the size of hydrophobicity ineraction when an amino acid of type I is in contact
with an amino acid of type J.
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where k is a spring constant, vp is the pulling velocity, and z(0) is the initial equi-
librium position of the spring. The spring constant, corresponding to the cantilever
stiffness in AFM experiments, is set to k = 37 pN/nm (of the same order of mag-
nitude of the typical spring constant of k ∼ 50 pN/nm used in an experimental
study [59] with AFM about FnIII10).
We have considered six constant force magnitude F (50 pN, 80 pN, 100 pN, 120 pN,
150 pN and 192 pN) and four constant pulling velocities vp (0.03 fm/MC step, 0.05 fm/
MC step, 0.10 fm/MC step and 1.0 fm/MC step).

As a starting point for simulations, we use a model approximation of the exper-
imental FnIII10 structure with backbone root-mean-square deviation2, δ, ≈ 0.2 nm,
obtained by simulated annealing3. All simulations are started from this initial struc-
ture, with different random number seeds. However, in the constant-velocity runs,
the system is first thermalized in the potential E + k(z(0)− ζ)2/2 for 107 MC steps
(z(0) = 3.8 nm), before the actual simulation is started at t = 0. The thermalization
of the initial structure is a prerequisite to apply the Jarzynski reconstruction.

The constant-force simulations are run for a fixed time, which depends on the
force magnitude. There are runs in which the protein remains folded over the whole
time interval studied. The constant-velocity simulations are run until the spring
has been pulled a distance of vp × t = 35 nm. At this point, the protein is always
unfolded.

2.2.3 Dynamics

The simulations were performed using Monte Carlo dynamics at a temperature
T of 288 K. Moreover, in the constant-velocity simulations, the time-dependent
parameter z(t) is changed after every attempted MC step.
Three different types of MC updates have been used: (i) single-variable Metropolis
4 updates of side-chain angles; (ii) Biased Gaussian Steps [54], BGS, which are semi-
local updates of backbone angles; and (iii) small rigid-body rotations of the whole

2The root-mean-square deviation (RMSD), δ, is a common way to measure the similarity of a
configuration to the native state and more generally to compare the structures of two biomolecules.
It is defined as δ2x,y = min 1

N

∑N
k=1 |~rk,x −~rk,y|

2, where the sum is over N pairs of equivalent atoms
of the conformations x and y with cartesian coordinate ~rk,x, ~rk,y and the minimum is taken with
respect to all rigid body rotations and translations of the structures compared.

3Simulated annealing [55] is a general global minimization method. It incorporates the Metropo-
lis algorithm (see Sec. 2.2.3) for updates and lowers temperature gradually. Trapping in local min-
ima can be avoided by allowing increases in energy every now and then. Lowering the temperature
makes increases in energy less and less probable, allowing the system to stabilize at some point.
In our case a model approximation of the experimenatl FnIII10 structure was found by simulated
annealing-based optimization of the auxiliary function E′ = E + aδ2, where E is the energy func-
tion 2.9, a is a parameter and δ the RMSD calculated over the atoms of the backbone Cα, C, O,
N.

4Let us suppose to have a system in a state X and that a move towards a state X ′ is suggested.
Then, if p(X) and p(X ′) are the probabilities to be in the respective states, the Metropolis [56]
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chain. The BGS move simultaneously updates up to eight consecutive backbone
angles, in a manner that keeps the chain ends approximately fixed 5.

accept/reject rule sets the probability for accepting the change to:

P (X → X ′) = min(1, p(X ′)/p(X)) (2.20)

where it is assumed that the probabilities for suggesting the changes X → X ′ and X ′ → X are
equal. In thermodynamics the canonical probability to be in the state X is ∝ e−βE(X) (where
E(X) is the energy of the state, β = (kBT )−1 and kB is Boltzmann’s constant), so the acceptance
criterion of the move reads as:

P (X → X ′) = min(1, e−β(E(X′)−E(X))) (2.21)

therefore, if the energy decreases, the movement towards X ′ is always accepted and performed;
otherwise the movement is accepted only with a probability < 1.

5This kind of move is less drastic than the single backbone angle update (pivot move) and it
is intended to avoid highly nonlocal, and therefore unphysical, deformation of the chain, which is
likely to be rejected if the chain is compact.
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Chapter 3

Free energy reconstruction

techniques

In this Chapter we describe the techniques used for reconstructing the free energy
profile of a protein model as a function of an internal coordinate, namely the end-
to-end distance.
First we introduce the umbrella sampling and the weighted histogram analysis
method that are equilibrium techniques; from this last technique it’s possible to
get the equilibrium free energy profile using a series of biased molecular dynamics
simulations of the protein constrained by an external potential.
Then we illustrate Jarzynski equality, both in the original and in the extended form
we use, that we apply in the context of mechanical unfolding process; the amazing
feature of this relation relies on the fact that it states a link between the work done
on the protein in an out-of-equilibrium process with the equilibrium free energy.
Finally we describe how it is possible to use the inherent structures formalism; in
order to apply this method two data banks of inherent structures (namely local
minima of the potential energy) are built up: a thermal data bank obtained by per-
forming equilibrium canonical simulations and a pulling data bank by mechanically
unfolding the protein. We compare all these three techniques for reconstucting the
free energy landscape of the minimalistic model, while we use only the extended
Jarzynski reconstruction for the protein FnIII10 simulated with the all-atom model.

3.1 Umbrella sampling and weighted histogram

analysis method

A combination of the umbrella sampling technique [49] with the weighted histogram
analysis method (WHAM) [50, 51, 52] allow to obtain the equilibrium free energy
profile as a function of the end-to-end distance.

The umbrella sampling technique [49] amounts to perform of a series of biased
molecular dynamics simulations of the system constrained by an external potential,



namely

wi(ζ) =
1

2
kW (ζ − ζ̄i)

2 . (3.1)

The potential wi forces the heteropolymer to stay in configurations characterized by
a certain average end-to-end distance ζ̄i, even if at the considered temperature such
ζ-value is highly unfavored. These simulations allow to obtain a series of M biased
end-to-end probability density distributions ρB

i (ζ){i = 1, . . . ,M} and M unbiasing
relations of the form:

ρ(ζ) = fi(ζ)ρB
i (ζ) (3.2)

where ρ(ζ) is the unbiased distribution to be find and fi(ζ) is the unbiasing factor
for the ith distribution. The WHAM strategy looks for a linear combination of
M independent estimates of ρ(ζ) obtained from the measured biased distributions
ρB

i (ζ), such that the variance σ2[ρ(ζ)] is miminized. In particular, in the case of
identical statistics for each biased run, the WHAM formalism prescribes that the
optimal estimator for the distribution of interest is the following combination [50, 51]:

ρ(ζ) =

∑M
i=1 ρ

B
i (ζ)

∑M
i=1 f

−1
i

=

∑M
i=1 ρ

B
i (ζ)

∑M
i=1 e−β[wi(ζ)−Fi]

= e−βfW (ζ,T ) (3.3)

where β−1 = kBT and the free energy constants {Fi} can be obtained by the nor-
malization condition

e−βFi =

∫

dζ e−βwi(ζ)ρ(ζ) . (3.4)

Eqs. 3.3 and 3.4 should be solved self-consistently via an iterative procedure, finally
this allows to obtain an estimate of the equilibrium free energy fW (ζ, T ), apart from
an additive constant.

We have considered equally spaced {ζ̄i}-values, with a separation ∆ζ̄i = 0.2
among them, ranging from the native configuration ζ0 to the all trans-configuration
ζtrans

1 . For each of the M runs, after a quite long equilibration time t ∼ 120, 000−
200, 000, we have estimated ρB

i (ζ) over 100,000 configurations taken at regular time
intervals ∆t = 0.2. The biased simulations have been performed with a hard and
weak spring, corresponding to kW = 10 and 0.5 in (3.1), respectively. The results
obtained essentially agree for the two kW -values, apart when the free energy land-
scape exhibits steep increases as a function of ζ . In these cases the hard spring is
more appropriate, since the weak one allows the protein to refold, thus rendering
the ζ-intervals, where fW (ζ) is steeper, not accessible to the WHAM reconstruction.

1This is an elongated (planar) equilibrium conformation of the protein with all the dihedral
angles at their trans values, corresponding to ζtrans = 35.70.
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Figure 3.1: Sketch showing the umbrella sampling technique: a series of biased
molecular dynamics simulations of the system are performed changing the minimum
of the constraint potential.

3.2 Jarzynski equality

Jarzynski equality [4, 5] (JE) relates the difference of the free energy (∆F ) between
two equilibrium configurations of a system to an ensemble of finite-time measure-
ments of the work performed on the system during an out-of-equilibrium process.
Therefore the amazing feature of JE relies on the fact that it’s possible to get infor-
mation about an equilibrium quantity from non-equilibrium measurements.
Given a system in a heat reservoir at temperature T ; if the system is carried out
(see Fig. 3.2a) from the initial equilibrium state i at time t = 0 to a final state f
at time t, with a process during which a control parameter λ is switched with an
arbitrary rate from λi to λf , then JE states that:

〈e−βW 〉t = e−β∆F , ∆F = Fλ(t) − Fλ(0) (3.5)

where:

• the function of the time λ = λ(t′) with t′ ∈ [0, t] defines the so called manip-
ulation protocol, lasting for a finite time t;

• W is the work done on the system during the process;

• the symbol 〈...〉t represents an average on repetitions of the same experiment
(manipulation protocol).

It’s necessary to highlight that the control parameter (that can be for example the
strenght of an external field, the volume of space where the system is confined, etc.)
is a deterministic quantity, externally controlled during the process (see Fig. 3.3 for
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Figure 3.2: (a) Sketch of an out-of-equilibrium process during which a control pa-
rameter is switched in a finite time from λi to λf . (b) Distribution of the work ρ(W )
for an out-of-equilibrium process (solid line) and limit (δ(W −∆F ) dashed line) for
a quasi-static transformation.

a sketch of a pulling experiment with a polypeptide chain). On the other hand the
work done on the system at finite rate is fluctuating for every different realization,
as it depends on the microscopic initial conditions of system and reservoir; starting
from different initial conditions (prepared allowing the system to equilibrate with
the reservoir) we get a distribution of values for the work, ρ(W ).

JE can be seen as a generalization 2 to exponential average of the inequality [62]:

〈W 〉 =

∫

dWρ(W )W ≥ ∆F (3.7)

where the difference Wdiss = 〈W 〉 − ∆F is the dissipated work associated with the
increase of entropy during the irreversible process. The equal sign in 3.7 holds only
in the limit of infinitely slow switching (or quasi-static transformation):

W∞ = ∆F (3.8)

where the symbol ∞ in the work means a process lasting a time t→ ∞; in this case
the distribution of work ρ→ δ(W − ∆F ) (see Fig. 3.2b).

It is worth, finally, to notice that Jarzynski equality is independent of the ma-
nipulation protocol used and of the rate of switching of the control parameter but

2The inequality 3.7 follows immediately from JE and Jensen’s inequality:

e−β∆F = 〈e−βW 〉 ≥ e−β〈W 〉 → ∆F ≤ 〈W 〉 (3.6)
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only in the limit of infinitely many realizations of the process. In fact, from non-
equilibrium experiments or numerical simulations, if we repeat the process a finite
number of times, N , then:

∆F ≃ −
1

β
ln

[

1

N

N
∑

n=1

e−βWn

]

(3.9)

where W1,W2, ...,WN represent the work values and the approximation becomes an
equality in the limit of N → ∞.

3.3 Extended Jarzynski equality

In Fig. 3.3 it is shown a sketch of a constant velocity pulling experiment with a
polypeptide chain; the first bead of the chain is kept fixed and the last bead is
attached to a cantilever moving with a constant velocity protocol. In this case the
end-to-end distance ζ is an internal coordinate (which fluctuates during the pulling
experiment); while the distance z between the first bead and the pulling apparatus
is the externally controlled parameter (it corresponds to λ parameter of the previ-
ous Section 3.2). The spring between the last bead of the chain and the cantilever
mimicks the coupling between the system and the device. Using an extended ver-
sion of the Jarzynski equality (EJE) [12, 13, 14, 15] it’s possible to obtain the free
energy profile of the system (in this case the polypeptide chain) as a function of an
internal collective coordinate. To understand the main differences between the usual
JE and the extended version it is worth to highlight that the difference of the free
energy ∆F in the JE refers to the whole system (in this case the polypeptide chain
and the spring) and the control parameter λ is not internal but externally controlled.

In this Section we will describe how the extended Jarzynski equality can be ob-
tained in a general way for an arbitrary out-of-equilibrium process; it is straightfor-
ward the application to the special case of the pulling experiment showed in Fig. 3.3.
Let x be the variable that identifies the system microscopic state, e.g. the collection
of the positions and momenta of all the particles in the system x = {ri,pi}. The
system Hamiltonian is a function of x, and will be indicated as H0(x) in the follow-
ing. Let X(x) be a macroscopic observable of the system whose value can be varied
by applying an external force. In the following we will consider only conservative
forces, and thus in order to manipulate the system, we can couple it to an external
potential Uλ(X). This is an explicit function of the observable X and it also de-
pends on a parameter λ, whose value will be modified accordingly to a given time
protocol λ(t). Thus the system can be characterized by the time-dependent Hamil-
tonian H(x, t) = H0(x)+Uλ(t)(X(x)). The work done on the system by the external
potential (external force) up to time t depends on the trajectory x(t) followed by
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the system in the phase space:

Wt =

∫ t

0

dt′ λ̇(t′) ∂λUλ(M(x(t′))|λ=λ(t′) . (3.10)

Due to thermal fluctuations, Wt varies between a realization and another one of the
manipulation process.

z

ζ

stretching of a polypeptide chain

pulling device

Figure 3.3: Sketch of an out-of-equilibrium process consisting in a constant velocity
pulling experiment (for example with AFM) with a polypeptide chain. In this case
ζ , the end-to-end distance, is the internal coordinate and z, the distance between the
first bead of the chain and the position of the cantilever, is the externally controlled
parameter (referred as λ in Section 3.2).

In the following we assume that the time evolution of the system is described by
the following Liouville-like equation

∂p(x, t)

∂t
= Lλ(t)(x)p(x, t), (3.11)

where Lλ(x) represents the evolution operator ruling the dynamics. The only re-
quirement on Lλ is its compatibility with the canonical distribution associated to
the Hamiltonian Hλ(x) = H0(x) + Uλ(M(x)):

Lλ
e−βHλ(x)

Zλ
= 0, (3.12)

where Zλ =
∫

dx e−βHλ(x). Let us introduce the joint probability distribution
φ(x,W, t) that the system is found in state x, having subjected to a work W , at
time t. The time evolution of this function is governed by the partial differential
equation [12, 13, 14, 15]

∂φ

∂t
= Lλ(t)φ− λ̇(t)

[

∂λUλ(t)(M(x))
] ∂φ

∂W
. (3.13)
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Assuming that the system is initially at equilibrium for vanishing external force,
the initial condition of Eq. 3.13 reads φ(x,W, t = 0) = p0(x), where p0(x) is the
canonical ensemble probability distribution of the unperturbed system

p0(x) =
e−βH0(x)

Z0
, (3.14)

and

Z0 =

∫

dx e−βH0(x) (3.15)

is the corresponding partition function.
We now introduce the generating function ψ(x, λ, t) of the distribution of φ(x,W, t)

defined as

ψ(x, λ, t) =

∫

dW eλW φ(x,W, t). (3.16)

The function ψ(x, λ, t) satisfies the differential equation

∂ψ

∂t
= Lλ(t)ψ + λ̇(t)

[

∂λUλ(t)(M(x))
]

ψ. (3.17)

By taking λ = −β, and exploiting Eq. 3.12, it is easy to show that Eq. 3.17, with
the initial condition ψ(x, λ, t=0) = p0(x), is identically satisfied by

ψ(x,−β, t) =
e−βH(x,t)

Z0
. (3.18)

Integrating this relation over x one obtains the usual form of the JE:

〈

e−βW
〉

t
=

∫

dx

∫

dW e−βW φ(x,W, t)

=
Zλ(t)

Z0
= exp

[

−β
(

Fλ(t) − F0

)]

. (3.19)

Here βFλ = − lnZλ is the free energy associated to the Hamiltonian Hλ. A more
general relation is obtained by multiplying both sides of Eq. 3.18 by δ(X − X(x))
before integrating over x:

〈

δ(X −X(x))e−βW
〉

t
=

∫

dx δ(X −X(x))
e−βH(x,t)

Z0

= e−β(f(X,T )+Uλ(t)(X)−F0). (3.20)

Where f(X, T ) is the free energy of a constrained ensemble, in which the value X(x)
is fixed at X:

βf(X, T ) = − ln

∫

dx δ(X −X(x)) e−βH0(x) . (3.21)
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By multiplying both sides of Eq. 3.20 by eβUλ(t)(X), we obtain the extended Jarzynski
equality:

eβUλ(t)(X)
〈

δ(X −X(x))e−βW
〉

t
= e−β(f(X,T )−F0). (3.22)

Equation 3.22 provides thus a method to evaluate the unperturbed free energy
f(X, T ) as long as one has a reliable estimate of the lhs of this equation. The opti-
mal estimate of f(X, T ) can be obtained by combining Eq. 3.22 with the method of
weighted histograms [12, 78, 77] (that we have introduced in Section 3.1) as we are
going to show below.

For a constant velocity pulling experiment with AFM showed in Fig. 3.3 the
variable X corresponds to the end-to-end distance ζ and the externally controlled
parameter λ corresponds to z, the distance between the first bead of the chain and
the position of the cantilever. In this case the external coupling potential between
the protein and the tip of the cantilever (with a spring constant k) is of the form:

Ut(ζ) =
1

2
k(ζ − z(t))2 =

1

2
k(ζ − vt)2 . (3.23)

In this framework we can rewrite JE using the parameters of AFM geometry as:

e−βF (z(t)) = 〈e−βWt〉 (3.24)

where F (z(t)) is the free energy difference between the initial state at t = 0 and the
final state at time t. Please note that F (z(t)) is the free energy obtained in presence
of the constraint potential Ut(ζ), and so it is a biased free energy. In this geometry
the extended Jarzynski equality reads as:

e−βf(ζ) = 〈δ(ζ − ζt)e
−βWt〉eβUt(ζ) (3.25)

where f(ζ) is (except for an additive constant) the unperturbed (or unbiased) free
energy. The relation 3.25 is of the same form of Eq. 3.2 (ρ(ζ) = fi(ζ)ρB

i (ζ)) seen in
Section 3.1.

Given the positions of the cantilever z(t) obtained from repeated pulling experi-
ments we can reconstruct f(ζ) using Eq. 3.25. In fact, at each time slice one can in
principle get an estimation of the whole (meaning for all the values of the coordinate
ζ) free energy. But in practise, as Hummer and Szabo note in [12], at any given
time (or equivalently at any given z(t)), only a small window around the equilibrium
position z = v × t will be adequately sampled. Therefore an average over several
time slices and repeated trajectories is required to obtain an optimal estimate of the
whole free energy.

From 3.24 and integrating over ζ the equation 3.25 we can derive the following
relation:

e−βF (z(t)) = 〈e−βWt〉 = 〈e−βUt(ζ)〉 (3.26)
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where the first average is over all the possible realizations of the process and the
second average is defined as

〈e−βUt(ζ)〉 ≡

∫

dζe−βf(ζ)e−βUt(ζ) (3.27)

Therefore using the relation 3.26 the Equation 3.25 can be rewritten as:

e−βf(ζ) =
〈δ(ζ − ζt)e

−βWt〉

〈e−βWt〉
eβUt(ζ)〈e−βUt(ζ)〉 = ρB

t (ζ)ft (3.28)

where the second equality in 3.28 is written using the WHAM formalism with the
unbiasing factor ft given by:

ft = eβUt(ζ)〈e−βUt(ζ)〉 (3.29)

Applying the WHAM procedure (see Section 3.1) we finally get [12]:

fJ(ζ, T ) = −
1

β
ln





∑

t
〈δ(ζ−ζt) exp(−βWt)〉t

〈exp(−βWt)〉t
∑

t
exp(−βU(ζ,t))
〈exp(−βWt)〉t



 . (3.30)

where the letter J in fJ(ζ, T ) is meant to distinguish Jarzynski reconstruction from
reconstruction of the free energy with different methods.

3.4 Inherent structures formalism

Inherent structures (IS) correspond to local minima of the potential energy, in par-
ticular the phase space visited by the protein during its dynamical evolution can be
decomposed into a set of disjoint attraction basins, each corresponding to a specific
IS. Therefore, the canonical partition function can be expressed within the IS for-
malism as a sum over the non overlapping basins of attraction, each corresponding
to a specific minimum (IS) a [22, 31]:

ZIS(T ) =
1

λ3N ′

∑

a

e−βVa

∫

Γa

e−β∆Va(Γ)dΓ =
∑

a

e−β[Va+Ra(T )] (3.31)

where N ′ is the number of degrees of freedom of the system, λ is the thermal
wavelength and Γ represents one of the possible conformations of the protein within
the basin of attraction of a, Va is the potential energy associated to the minimum a,
∆Va(Γ) = V (Γ) − Va and Ra(T ) the vibrational free energy due to the fluctuations
around the minimum.

The vibrational term Ra(T ) can be estimated by assuming a harmonic basin of
attraction:

e−βRa(T ) =
1

λ3N−6

∫

Γa

e−β∆Va(Γ)dΓ =

3N−6
∏

j=1

T

ωj
a

(3.32)
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where ωj
a are the frequencies of the vibrational modes around the IS a and unitary

reduced Planck and Boltzmann constants have been considered.
Therefore the probability to be in the basin of attraction of the IS a is

pa(T ) =
1

ZIS(T )
e−β(Va+Ra(T )) . (3.33)
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Figure 3.4: (a)Inherent structures of the potential energy. (b)Harmonic approxima-
tion (dotted line) of an inherent structure.

The free energy of the whole system at equilibrium is simply given by fIS(T ) =
−T ln[ZIS(T )]. However if one is interested to construct a free energy landscape as a
function of a parameter characterizing the different IS, like e.g. a similarity measure
to the native state as the Kabsch distance δK

3 or the end-to-end distance ζ , this is
possible by defining a partition function restricted to IS with an end-to-end distance
within the narrow interval [ζ ; ζ + dζ ]

ZIS(ζ, T ) =
∑

a

′
e−β[Va+Ra(T )] (3.34)

where the
∑′ indicates that the sum is not over the whole ensemble of ISs {a} but

restricted. The free energy profile as a function of ζ can be simply obtained by the
relationship:

fIS(ζ, T ) = −T ln[ZIS(ζ, T )] ; (3.35)

while the average potential and free vibrational energy, corresponding to ISs char-
acterized by a certain ζ , can be estimated as follows:

VIS(ζ, T ) =

∑

a
′Va e−β[Va+Ra(T )]

ZIS(ζ, T )
; RIS(ζ, T ) =

∑

a
′Ra(T ) e−β[Va+Ra(T )]

ZIS(ζ, T )
.

(3.36)

3The Kabsch algorithm [75] allows to find analytically the optimal rotation matrix U to minimize

the distance 1
N

∑N
k=1 |U~rk,x − ~rk,y|

2 between two conformations of protein and more generally
between two point sets ~rk,x, ~rk,y .
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T goodfolder badfolder
0.1 2,843 456
0.2 5,875 1,763
0.3 12,359 6,477
0.4 35,409 21,060
0.5 52,546 45,950
0.6 51,971 —
0.7 54,736 —

Table 3.1: Number of distinct ISs contained in the PBD at different temperatures.
These have been obtained by sampling, during out-of-equilibrium mechanical unfold-
ings, several Langevin trajectories at constant elongation increments δζ = 0.1. The
total number of relaxations performed for each temperature amounts to ∼ 60, 000
corresponding to ∼ 200 repetitions of the same pulling experiment. For the bad
folder not all temperatures have been examined.

In order to find the different ISs one can perform Monte Carlo samplings or
molecular dynamics simulations. We have chosen to examine molecular dynamic
trajectories at constant temperature via a Langevin integration scheme. In particu-
lar, we have built up two data banks of ISs: the thermal data bank (TDB) obtained
by performing equilibrium canonical simulations and the pulling data bank (PDB)
by mechanically unfolding the protein. In order to find the different ISs the equi-
librium (resp. out-of-equilibrium) Langevin trajectory is sampled at constant time
intervals δt = 5 (resp. at constant elongation increments δζ = 0.1) to pinpoint
a series of configurations, which afterward are relaxed via a steepest descent dy-
namics 4 and finally refined by means of a standard Newton’s method. In the case
of the TDB, in order to speed up the search of ISs we have employed a so-called
”quasi-Newton” method [76] 5. For mechanical unfolding, the protein is unblocked
and the pulling apparatus removed before the relaxation stage. Two local minima
are identified as distinct whenever their energies differ more than 1 × 10−5. The
TDB for the good (resp. bad) folder contains 579, 749 (resp. 210, 782) distinct ISs
collected via equilibrium simulations at various temperatures in the range [0.3; 2.0].
The PDB contains 3, 000 − 50, 000 ISs depending on the examined temperature as
detailed in the Table 3.1.

4In the steepest descent dynamics the configuration of the protein ri, i = 1, L is evolved ac-
cording to the gradient dynamics: ṙi = − 1

γ
∇iV , where V is the intermolecular potential and γ the

friction coefficient.
5The comparison between the steepest descent and the quasi-Newton methods has revealed that

this second minimization scheme is somehow faster (1.8 times faster at T = 0.5 for the good folder),
but while the steepest descent algorithm is able to identify the metastable stationary states in the
99.8 % of examined cases the quasi-Newton scheme was successful in the 98.7 % of situations.
However the distributions of the identified minima (by considering the same trajectory) obtained
with the two schemes were essentially coincident.
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Chapter 4

Free energy landscape of

mechanically unfolded model

proteins

In this Chapter we firstly describe the main thermodynamical properties of the two
studied sequences of the minimalistic model. Then we compare and discuss the free
energy landscape reconstruction as a function of the end-to-end distance obtained
in terms of the extended Jarzynski equality, weighted histogram analysis method
and inherent structures approach. Futhermore we employ the free energy landscape
to characterize the unfolding stages.
From the investigation of the ISs it’s possible to get an estimate of the (free) energetic
and entropic barriers separating the native from the completely stretched configu-
ration. These barriers are associated to the structural transitions induced by the
protein manipulation and for the good folder they can be put in direct relationship
with the transition temperatures usually identified during thermal folding/unfolding
process (the glassy, the folding and the hydrophobic collapse temperature).

4.1 Thermodynamical properties

The main thermodynamical features of the examined model can be summarized by
reporting three different transition temperatures [22, 30, 79, 33, 32]: namely, the
hydrophobic collapse temperature Tθ, the folding temperature Tf , and the glassy
temperature Tg.
The collapse temperature discriminates between phases dominated by random-coil
configurations rather than collapsed ones [80], Tθ has been usually identified as
the temperature where the heat capacity C(T ) reaches its maximal value, namely
(within the canonical formalism):

C(Tθ) ≡ Cmax , where C(T ) =
〈E2〉 − 〈E〉2

T 2
, (4.1)
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Figure 4.1: Heat capacity C as a function of the temperature T for good (a) and
bad (b) folder; the vertical (red) dotted line indicates the hydrophobic collapse
temperature Tθ and the horizontal (black) dashed line the value Csol.

and < · > represents a time average performed over an interval t ≃ 105 by following
an US trajectory. From Fig. 4.1, it is evident that for both sequences C(T ) ∼ 138
up to temperatures T ∼ 0.25. This result can be understood by noticing that at low
temperatures the thermal features of heteropolymers resemble that of a disordered
3D solid, with an associated heat capacity Csol ≡ 3L. Moreover, the high tempera-
ture values are smaller than Csol, since in this limit we expect that a one dimensional
chain in a three dimensional space would have a specific heat C = 2L [79]. However,
as shown in Fig. 4.1, these extreme temperatures have not yet been reached. The
comparison of the heat capacity curves for the GF and BF reveals that C(T ) ob-
tained for the GF has a much broader peak with respect to the BF. This indicates
that the transition from the NC to the random coil state is definitely sharper for
the bad folder.

The folding temperature has been defined in many different ways [65, 69, 79],
however we have chosen to define the folding temperature by employing the IS
reconstruction of the phase space. In practice, quite long USs have been performed
at various temperatures , up to duration t = 5, 000, 000. During each of this US the
visited ISs have been identified at regular intervals δt = 5, and from these data we
have estimated the probability Pnc(T ) to visit the NC at such temperature. The
folding temperature Tf (see Fig. 4.2) is then defined as

Pnc(Tf ) ≡ 0.5 . (4.2)

Indeed, it should be noticed that for the GF Pnc is the probability to stay in the two
lowest lying energy minima (ISs) and not in the NC only. These two minima can be
associated to an unique attraction basin, since their energy separation is extremely
small with respect to |VNC | (namely, 0.04) and also the corresponding configurations
are almost identical, being separated by a Kabsch distance δK = 0.128. Moreover, at
any examined temperature we have always observed a rapid switching between the
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Figure 4.2: Probability Pnc as a function of the temperature T for good (a) and bad
(b) folder; the vertical (magenta) dashed line indicates the folding temperature Tf ,
while the horizontal (black) dotted line refers to the value 0.5.

two configurations, indicating that there is an extremely low energy barrier among
these two states.
The glassy temperature Tg indicates the temperature below which freezing of large

conformational rearrangements occurs: below such a temperature the system can
be trapped in local minima of the potential. By following [79], in order to locate Tg

we have made a comparison among results obtained from FS and US. In particular,
we have examined, at the same temperatures, the average total energy 〈E〉 of the
system evaluated over finite time intervals. As shown in Fig. 4.3, these quantities,
when obtained from USs and FSs, coincide at temperatures larger than Tg, below
which the structural arrest takes place. In particular, unfolding averages have been
performed over intervals of duration t = 105 by following a single trajectory. On the
other hand, folding simulations have been followed up to times t ≃ 1.1 · 107 and the
averages taken over 5-7 different initial conditions by considering for each trajectory
only the last time span of duration t ≃ 5 · 104. The error bars (standard deviation)
shown in Fig. 4.3 should be interpreted, at sufficiently low temperatures, as a sign
of the dependence of the results on the initial conditions.
The three transition temperatures estimated for the good and bad folder are reported
in table 4.1 1. One can notice that Tθ is larger for the good folder, thus indicating that
the collapsed state has a greater stability with respect to the bad folder. Moreover,
while for the good folder Tf > Tg, for the bad one this order is reversed. Therefore
the BF will most likely remain trapped in some misfolded configurations before
reaching the NC even at temperatures T ∼ Tf .

1In [65] for the sequence GF it has been found Tθ = 0.65 and Tf ∼ 0.34; however in the same
paper the authors suggested that the folding transition was associated to a shoulder in the C,
but this result has been recently criticized [70]. Moreover, more recent estimates, obtained by
employing different protocols, suggest that Tf ∼ 0.24 − 0.25 [29, 32] and Tg ∼ 0.15 [32], values
that are essentially in agreement with our results
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Figure 4.3: Total energy 〈E〉 as a function of the temperature T for good (a) and
bad (b) folder; the solid (red) line corresponds to US’s and the (blue) symbols to
FS’s. In the inset an enlargement for low temperatures: the dashed lines indicate
the glassy (Tg) (magenta) and folding (Tf ) (green) temperatures.

GF BF
Tθ 0.65(1) 0.46(2)
Tf 0.255(5) 0.24(1)
Tg 0.12(2) 0.27(2)

Table 4.1: Transition temperatures estimated for good and bad folder with the
corresponding error.

4.2 Extended Jarzynski equality reconstruction

In this section we present for both the sequences GF and BF the reconstruction of
the FEL, at various temperatures, as a function of the end-to-end distance ζ starting
from out-of-equilibrium measurements. The free energy profiles have been obtained
via the EJE by averaging over 28 − 250 repetitions of the same pulling protocol
depending on the pulling velocity as described in Section 2.1.3. We have generally
used the pulling configuration where the first bead is kept fixed and the 46th bead
is pulled (tail-pulled case). However, by considering the head-pulled case, where the
roles of the first and last bead are reversed. we obtain, for sufficiently low velocities
(namely, vp ≤ 5× 10−4 for the GF and vp ≤ 5× 10−5 for the BF), exactly the same
free energy profile (see Section 4.4). These results are essentially in agreement with
those reported in [72] for the GF.
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4.2.1 Good folder

Fig. 4.4a) shows the EJE reconstructions fJ(ζ) (symbols) for T=0.3 obtained at
various pulling velocities for the good folder together with the corresponding equi-
librium WHAM estimate fW (ζ) obtained with the procedure described in Section 3.1
(dashed lines). It is worth to stress that in principle the Jarzynski reconstruction is
independent of the protocol and of the pulling velocity used but only in the limit of
infinitely many realizations of the same manipulation experiment. Fig. 4.4a) shows,
instead, what happens when the manipulation protocol is repeated a finite number
of times and with an almost fixed number of experiments for all the velocities: in
this case to get the equilibrium profile, represented by the WHAM reconstruction,
it’s necessary to use a pulling protocol with a velocity sufficiently low. In particular,
for the good folder the equilibrium profile is reached for small ζ-values at a some-
how larger velocity (namely, for ζ < 10 already for vp = 5 × 10−4) than at larger
ζ . In particular, to reproduce fW (ζ) up to ζtrans the pulling should be performed at
vp = 5×10−6. Moreover, referring to Fig. 4.4, it is possible to identify the structural
transitions (STs) induced by the pulling experiment. As shown in Fig. 4.4b), the
equilibrium fJ(ζ) profile exhibits a clear minimum in correspondence of the end-
to-end distance of the NC (namely, ζ0 ∼ 1.9). In more detail, up to ζ ∼ 5.6, the
protein remains in native-like configurations characterized by a β-barrel made up
of 4 strands, while the escape from the native valley is signaled by the small dip at
ζ ∼ 5.6 and it is indicated as ST1 in Fig. 4.4b). This ST has been firstly identified
in [71] by analyzing the the potential energy of ISs measured during a mechanical
unfolding (numerical) experiment. In particular, Lacks [71] identifies this transition
as an irreversible transition, in the sense that above this transition it is no more
sufficient to reverse the stretching to recover the previously visited configurations 2.

For ζ > 6 the configurations are characterized by an almost intact core (made
of 3 strands) plus a stretched tail corresponding to the pulled fourth strand (see
configuration (b) in Fig. 4.5a)). The second ST amounts to pull the strand (PB)5P
out of the barrel. In the range 13 < ζ < 18.5 the curve fJ(ζ) appears as essentially
flat, thus indicating that almost no work is needed to completely stretch the tail once
detached from the barrel (see configuration (c) in Fig. 4.5a)). The pulling of the
third strand (that is part of the core of the NC) leads to a definitive destabilization
of the β-barrel. This transition is denoted as ST3 in Fig. 4.4a). The second plateau
in fJ(ζ) corresponds to protein structures made up of a single strand (similar to
configuration (d) in Fig. 4.5a)).

To distinguish between entropic and energetic costs associated to each ST we
have also evaluated separately the potential energy contributions Vi (i = 1, . . . , 4)
during the pulling experiment, these data are reported in Fig. 4.5b). From the

2Please notice that we observe this transition at ζ ∼ 5.6 and not at ζ = 4.782 as Lacks has
reported, since we are considering the free energy profile at T = 0.3, while Lacks’ analysis concerns
potential energies of the ISs. Our inspection of the average potential energies estimated during the
pulling experiments and reported in Fig. 4.13a) confirms this small mismatch.
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Figure 4.4: (a) Free energy profiles fJ for the good folder as a function of the end-to-
end distance ζ at T = 0.3, obtained with the EJE for various pulling velocities: from
top to bottom vp = 5×10−2, 1×10−2, 5×10−3, 5×10−4, 2×10−4, 2×10−5 and 5×10−6.
In (b) an enlargement of the curve for vp = 5×10−6 at low ζ is reported. The (black)
dashed curve in (a) and (b) refers to the WHAM reconstruction fW (ζ) with kW =
10. The number of different pulling experiments performed to estimate the profiles
ranges between 150 and 250 at the higher velocities and 28 at the lowest velocity
vp = 5 × 10−6. The letters indicate the value of f(ζ) for the pulled configurations
reported in Fig. 4.5a) and the (blue) vertical solid lines the location of the STs.

figure it is clear that the variation of the potential energy during the stretching is
essentially due to the Lennard-Jones term V4, while the other terms contribute to
a much smaller extent, at least up to ζ ∼ 35. The transition ST1 has essentially
only energetic costs, since ∆f = 7(1) and the potential energy varies almost of the
same amount, in particular ∆V ∼ ∆V4 = 8(1). The other transitions instead have
not negligible entropic costs, since the free energy barrier heights associate to ST2
and ST3 are 10(1) and 29(2), respectively; while the corresponding potential energy
barriers are higher, namely ∆V = 16(1) for ST2 and ∆V = 43(1) for ST3. The
complete stretching of the protein up to ζ = 35 has a free (resp. potential) energy
cost corresponding to ∆f = 30(2) (resp. ∆V = 49(1)). Above ζ ∼ 35, while the
Lennard-Jones and dihedral contributions vanish, the final (almost quadratic) rise
of the free energy is due to the harmonic and angular contributions, since we are
now stretching bond distances and angles beyond their equilibrium values. Due to
computational constraints and to the fact that this part of the FEL is not particularly
relevant, the reconstructions at the lowest velocities and the WHAM estimations
have been not performed for these large ζ-values.

In Fig. 4.6 the reconstruction of the FEL obtained at various temperatures is
shown. For temperatures around Tf one still observes a FEL resembling the one
found for T = 0.3, while by increasing the temperature the dip around ζ ∼ 6 − 7
(associated to ST1) disappears and the heights of the other two barriers reduce. By
approaching Tθ the first plateau, characterizing the transition from the NC to con-
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Figure 4.5: (a) Pulled configurations of the good folder at T = 0.3: the NC (a) has
ζ0 ∼ 1.9; the others are characterized by ζ = 6.8 (b), ζ = 16.8 (c), and ζ = 27.1 (d).
The beads of type N , B, and P are colored in green, red and yellow, respectively. (b)
Potential energies contributions as a function of the end-to-end distance ζ estimated
during a pulling experiment with speed vp = 5 × 10−6 and obtained by averaging
over 28 different realizations at T = 0.3. (Black) Stars indicate the entire potential
energy V , (orange) crosses V1, (blue) triangles V2, (magenta) diamonds V3, and
(red) squares V4. The (blue) vertical solid lines indicate the transitions previously
discussed in the text.

figurations of type (c), essentially disappears, and it is substituted by a monotonous
increase of fJ(ζ). This suggests that 4 stranded β-barrel configurations coexist with
partially unfolded ones. Above Tθ only one barrier remains indicating that at these
temperatures the protein unfolds completely in one step process.

The connection between dynamical properties of the system and the free energy
profile is still an open problem. In particular, the relationship between the unfolding
times and the free energy barriers has been previously discussed in Ref. [81] for
proteins and more recently the same problem has been addresses for Ising-like lattice
protein model in Ref. [82]. We have estimated average first passage times τ via USs
by recording the time needed to the protein to reach a certain end-to-end threshold
ζth once it starts from the NC at different temperatures. Our data, reported in
Fig. 4.7, clearly indicate that at low temperatures the simple result of the transition
state theory [83, 84, 85], namely

τ =
e∆f/T

T
, (4.3)

where ∆f = f(ζth) − f(ζ0), is in very good agreement with the numerics. However,
at high temperatures the agreement worsens. Therefore, in order to take in account
all the details of the free energy profile and not only the barrier height, we have
generalized a result of the Smoluchowski theory for the escape of a particle from a
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Figure 4.6: Free energy profiles fJ (ζ) obtained with the EJE for good folder at
various temperatures: T = 0.2 (red squares), 0.4 (green stars), 0.5 (orange circles),
0.6 (magenta plus) and 0.7 (blue triangles). In the inset, an enlargement is reported
at small ζ . Data refer to vp = 5 × 10−4. The number of different realizations
performed to estimate the averages at the different temperatures ranges between
160 and 250.

potential well [85] as follows [82]:

τ ∝
1

T

∫ ζth

ζ0

dy ef(y)/T

∫ y

ζ0

dze−f(z)/T (4.4)

where the potential energy has been substituted by the free energy profile. The
estimation obtained via Eq. 4.4 compare well with the numerical results at all the
considered temperatures, unfortunately apart an arbitrary scaling factor common
to all the temperatures that we are unable to estimate (see Fig. 4.7).

4.2.2 Bad folder

Fig. 4.8a) shows the free energy profiles fJ(ζ) reconstructed via the EJE at T = 0.3
for different pulling speeds (symbols) together with the estimated fW (ζ) (dashed
line); as in the case of the GF one observes a collapse to the equilibrium FEL
(represented by fW (ζ)) for a sufficiently small speed. In particular, at vp = 5×10−6

a reasonably good agreement between fJ and fW is already achieved.
For the BF the mechanically induced unfolding transition are less clearly iden-

tifiable from the inspection of the free energy profile for two reasons. Firstly, for
the BF not only the LJ interactions play a role in the STs but also the dihedral
terms: these two terms contribute with opposite signs to the whole potential energy
thus partially canceling each other. Moreover, as we will show in the following the
main contribution to the free energy is due to entropic terms. Therefore, in order
to identify the STs it is better to consider the distinct average profile of the sin-
gle potential contributions Vi (i = 1, . . . , 4) reported in Fig. 4.8b). In particular,
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Figure 4.7: Average unfolding times τ for the GF at various temperatures corre-
sponding to ζth = 4. Filled (black) circles denote the numerical data, the estimations
obtained via Eq. 4.3 and Eq. 4.4 are represented by empty (blue) diamonds and (red)
stars, respectively. The arbitrary scaling factor entering in Eq. 4.4 (see text) has
be set equal to 8. The average times have been estimated over 100, 000 – 200, 000
unfolding events for T = 0.7 and 0.6, 12, 000 events at T = 0.5 and as few as 200
and 60 events at the lowest temperatures, namely T = 0.4 and 0.3.

the most relevant is the Lennard-Jones term V4, due to the stabilizing effect of the
hydrophobic interactions on the protein structure. From the inspection of V4, at
least four different STs can be single out, occurring at ζ ∼ 7.3, 14.5, 19.3, and 26.3,
respectively.

The first transition amounts to pull the last part of the tail out of the NC, namely
the 6th and 5th strand that we have previously identified. To this ST is associated
a free energy increase of 3.1(5) and a potential energy variation of 8.0(5), once the
ST1 is completed the protein assumes the configuration (b) shown in Fig. 4.9. ST2
consists in pulling out from the compact configuration the whole tail (therefore to
detach also the 4th strand) and leaving the protein in a configuration composed by
the core (represented by the first three strands) plus a long tail (see configuration
(c) in Fig. 4.9). The entropic contributions to ST2 is quite relevant since to pass
from the NC to (c) the free energy increases of 3.8(5), while the associated potential
energy variation is almost the triple, i.e. 11.5(5). The third transition amounts
to detach the first β-strand (BNBPB3NP ) from the core and this operation has
much greater costs with respect to the previous STs, namely, ∆f = 7.0(5) and
∆V = 15(1). The complete opening of the core structure (now made only of the
second and third strand) occurs at ζ ∼ 27 amounting to a total free (resp. potential)
energy barrier to overcome of height 11(1) (resp. 23(1)). At variance with the GF
case, for the BF the entropic costs are never negligible and instead they always
amount at least at the half of the potential energy contributions in all the four
examined transitions. Finally, analogously to the GF for ζ > 35 the LJ and dihedral
contributions essentially vanish and the free energy increase is due to the harmonic
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Figure 4.8: (a) Free energy profiles fJ for the bad folder as a function of the end-
to-end distance ζ , obtained with the EJE for various pulling velocities: from top
to bottom vp = 5 × 10−4 and 160 realizations (black circles), 2 × 10−4 and 200
realizations (red squares), 1 × 10−4 and 200 realizations (blue triangles), 5 × 10−5

and 100 realizations (green diamonds), 5×10−6 and 28 realizations (magenta stars).
The WHAM estimate fW (ζ) is also shown (black dashed line). In the inset an
enlargement of the curve at low ζ for vp = 5×10−6 is reported together with fW (ζ).
Data have been obtained at T = 0.3. (b) Potential energies contributions as a
function of the end-to-end distance ζ estimated during a pulling experiment with
velocity vp = 5 × 10−6 and obtained by averaging over 28 different realizations at
T = 0.3. Black stars indicate the entire potential energy V , (orange) crosses V1,
(blue) triangles V2, (magenta) diamonds V3, and (red) squares V4. The (blue) solid
lines indicate the transitions discussed in the text.

and angular terms, only.

In Fig. 4.10 the reconstruction fJ of the FEL for the bad folder is reported at
three temperatures below Tθ. As one can notice the bad folder exhibits at compa-
rable temperatures much lower free energy barriers, indicating that the NC and the
partially folded structures are less stable, with respect to the GF. This is reflected
also in the value of Tθ that has a smaller value with respect to the GF: namely,
0.46 for BF and 0.65 for GF. By increasing T the heights of the free energy barriers
rapidly decrease and the various STs become less clearly defined. Moreover, the
FEL of the BF at the lower examined temperature (T = 0.2) reveals, besides the
absolute minimum (corresponding to the NC), other two local minima at ζ ∼ 7 and
ζ ∼ 11. This indicates that, at variance with the GF, the BF can remain trapped
even at T ∼ Tf , for some finite time, in intermediate (misfolded) states far from the
NC.
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Figure 4.9: Pulled configurations of the bad folder at T = 0.3: the reported config-
urations refer to ζ0 = 4.7 (NC) (a), ζ = 9.9 (b), 14.5 (c), 22.1 (d), 24.6 (e), and 29.7
(f).

4.3 Inherent structures landscape

In this section we compare the reconstructions of the FEL for the good and bad folder
obtained via the EJE and the IS approach with the WHAM equilibrium estimation.
As already explained in Section 3.4, we have created two IS data banks: the thermal
data bank (TDB) obtained by performing equilibrium canonical simulations and
the pulling data bank (PDB) by mechanically unfolding the protein. Fig. 4.11
shows for the GF the comparison, at three temperatures, between the estimate
fW (ζ) with fIS(ζ) and the fJ (ζ), obtained via the EJE reconstruction. The results
reveal an astonishingly good coincidence between fW (ζ) and fIS(ζ), obtained by
employing the PDB, at all the examined temperatures. For what concerns the EJE
reconstructions: at T = 0.3 fJ(ζ) is essentially in good agreement with the other
two estimations, while at higher temperatures the fJ curves slightly overestimate
the equilibrium free energy fW for ζ > 10. This discrepancy is probably due to a
non complete convergence of the EJE approach at the considered pulling velocities,
smaller velocities are required to recover the equilibrium profile at all th end-to-end
distances.

The further comparison reported in Fig. 4.11 between the IS reconstructions
obtained via the TDB and the PDB indicates a perfect coincidence up to ζ ∼ 17.
On the contrary, during the last stage of the unfolding process the two fIS differ: the
TDB FEL is steeper than the PDB one. This suggests that during the mechanical
unfolding the protein can easier reach states with low energies, even at large ζ .
These states have a very low probability to be visited during thermal equilibrium
dynamics. However, at T = 0.3 the value of the barrier to overcome and that
of the final plateau are quite similar to those of the PDB FEL, while at higher
temperatures the final energy plateaus of the TDB FEL are slightly larger than the
fW -plateaus. The reason of these discrepancies is related to the fact that, despite
the high number of IS forming the TDB, this data bank is far from containing all the
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Figure 4.10: Free energy profiles fJ(ζ) obtained via the EJE for bad folder at three
temperatures: namely, T = 0.2 (red squares), T = 0.3 (orange circles) , T = 0.4
(blue stars). In the inset an enlargement is reported at small ζ . Data refer to pulling
velocity vp = 5 × 10−6 and the averages are performed over 28 samples of the same
protocol.

relevant ISs, in particular those associated to high ζ-values are lacking. It should be
remarked that the IS conformation with the maximal end-to-end distance is the all
trans-configuration, corresponding to ζtrans = 35.70, therefore the IS approach does
not allow to evaluate the FEL for ζ > ζtrans. For the GF, we can safely affirm that
the out-of-equilibrium process consisting in stretching the protein is more efficient
to investigate the FEL, since a much smaller number of ISs are needed to reliably
reconstruct it, as reported in Table 3.1.

The comparison for the BF case is reported in Fig. 4.12 at T = 0.3 and 0.4.
Also in this case the fW (ζ) and fIS(ζ) essentially coincide, apart at T = 0.3 and
ζ > 20 where fW is slighty higher than fIS. In this case the agreement between the
two IS reconstructions is quite good at both the considered temperatures and for all
ζ-values. As far as the EJE reconstructions are concerned, at the employed pulling
velocity (namely, vP = 5 × 10−6) fJ can be considered as asymptotic at T = 0.3,
while probably at T = 0.4 is still slightly overestimating fW , but please notice the
really small range of the free energy scale reported in Fig. 4.12b) with respect to
the GF.

Furthermore, from the IS analysis by employing Eq. 3.36 we can obtain an esti-
mate of the profiles of the potential and vibrational free energies VIS(ζ) and RIS(ζ),
respectively. From the latter quantity, the entropic costs associated to the vari-
ous unfolding stages can be estimated. As shown in Fig. 4.13a), for the GF at
T = 0.3, the structural transitions ST2 and ST3 previously described correspond
to clear ”entropic” barriers, while the ST1 transition has only energetic costs since
∆RIS ∼ 0. This last result is in good agreement with the previously reported EJE
analysis. For what concerns the other two transitions, ST2 (resp. ST3) is associ-
ated to a decrease ∼ 6(1) (resp. 15(2)) of RIS(ζ) once more in agreement with the
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Figure 4.11: Free energy profiles fJ (blue solid lines) as a function of ζ for various
temperatures for the good folder: a) T = 0.3 for vp = 5 × 10−6 and 28 repetitions;
b) T = 0.4 for vp = 5 × 10−4 and 240 experiments; c) T = 0.5 for vp = 5 × 10−4

and 240 repetitions. The (black) dashed lines refer to the WHAM estimation fW (ζ),
(green) squares to fIS(ζ) obtained by employing the TDB and (red) circles to fIS(ζ)
obtained by employing the ISs in the PDB for each considered T .

EJE reconstruction. The complete opening of the protein is associated to a barrier
∆RIS(ζ) = 20(2), while the analysis reported in Sect. 4.2 indicates an entropic bar-
rier to overcome corresponding to ∼ 19(2). These results suggest that for the good
folder the entropic contributions to the free energy are essentially of the vibrational
type. Moreover, the reconstructed potential energies VIS(ζ) are in very good agree-
ment with the average potential energy evaluated during the corresponding pulling
experiments as shown in Fig. 4.13a).

Finally, one can try to put in correspondence the three unfolding stages previ-
ously discussed for the GF with thermodynamical aspects of the protein folding. In
particular, by considering the energy profile VIS(ζ), an energy barrier ∆VIS and a
typical transition temperature Tt = (2∆VIS)/(3N) can be associated to each of the
STs. The first transition ST1 corresponds to a barrier to overcome ∆VIS = 8(1)
and therefore to Tt = 0.11(1), that, within error bars, coincide with Tg. For the
ST2 transition the barrier to overcome is ∆VIS = 16(1) and this is associated
to a temperature Tt ≃ 0.23(2) (slightly smaller than Tf). At the ST3 transition
∆VIS = 43(2) corresponding to Tt = 0.62(2), while the energetic cost to completely
stretch the protein is 50(2) with an associated transition temperature Tt = 0.72(2):
the θ-temperature (Tθ = 0.65(1)) is well bracketed within these two transition tem-
peratures. At least for the GF , our results indicate that the observed STs induced
by pulling can be put in direct relationship with the thermal transitions usually
identified for the folding/unfolding process.

Also for the BF the IS approach is able to well reproduce not only the average
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Figure 4.12: Free energy profiles fJ as a function of ζ for various temperatures for
the bad folder: a) T = 0.3 and b) T = 0.4. The data refer to a pulling velocity
vP = 5× 10−6 and 28 repetitions of the same pulling protocol. The symbols are the
same as in Fig. 4.11.

potential energy during the pulling experiment, as clearly shown in Fig. 4.13b),
but also to provide a good estimate of the “entropic” barriers associated to the
structural transitions. In particular, at T = 0.3 the vibrational free energy barriers
to overcome are ∆RIS = 5.3(5) at ST1, 8(1) at ST2, 10(1) at ST3 and 16(1) at
ST4. These values are in reasonably good agreement with those previously obtained
from the EJE reconstruction, apart at ST3 and ST4, where the analysis performed
in Sect. 4.2.2 indicates entropic barriers to overcome corresponding to ∼ 8(1) and
∼ 12(2), respectively. These underestimations at large ζ-values are probably due to
the fact that at this temperature the estimated fJ has not reached its equilibrium
profile at the employed velocity.

As already previously pointed out, the entropic contributions for the BF are
more relevant than for the GF: e.g while the ST2 transition is clearly visible by
the potential energy inspection it is almost absent by looking to the free energy
profile (compare the data reported in Fig. 4.8). Therefore we cannot expect to infer
information on the thermal transitions from the knowledge of the potential energy
barriers at the STs, as done for the GF. Indeed the estimated transition temperatures
Tt for the four examined structural transitions give values not corresponding to any
of the relevant temperatures reported in Table 4.1 for the BF.

To better understand this difference we have performed USs for the GF and BF
for Tg . T . Tθ and we have estimated the average, the minimal and the maximal
ζ associated to the visited ISs. The corresponding data are reported in Fig. 4.14.
While for the GF the minimal value remains essentially ζ0 for all the temperatures
and the maximum ζ increases smoothly up to ∼ 18 at T = Tθ, the dependence of
the minimal and maximal ζ-values on T are more dramatic for the BF. Up to the
temperatures T ∼ 0.5×Tθ, average , minimal and maximal ζ-values almost coincide
indicating that the protein is still confined around the NC, please remember that for
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Figure 4.13: Reconstructed VIS(ζ) (lower panel) and RIS(ζ) (upper panel) for good
folder (a) and bad folder (b) by employing ISs in the PDB at T = 0.3. In the lower
panel the blue dotted line refers to the average potential energy evaluated during
the corresponding pulling experiments (this has been already reported in Fig. 4.5b)
for the GF and in Fig. 4.8b) for the BF). Please notice that the data have been
vertically translated in order to have zero energy at the NC.

the BF Tg = 0.58 × Tθ. As soon as T > 0.6 × Tθ the maximum grows abruptly and
reach the upper bound corresponding to ζtrans already at T ∼ Tθ, on the other hand
the minimum value decreases indicating that at higher temperatures the protein can
access basins of ISs with end-to-end distance lower than ζ0. This last result indicates
that there is not a clear monotonic correspondence between the temperature increase
and the achievable protein extensions. Moreover, the fact that the protein can easily
attain also extremely stretched configurations at not too high temperatures suggests
that in the case of the BF the protein can easily escape form the native valley and
reach any part of the phase space, while for the GF the accessible IS configurations
are much more limited at comparable temperatures. All this amounts to say that
the end-to-end distance cannot be considered as a good reaction coordinate for the
BF.

4.4 Tail-pulling versus head-pulling

Since recent experimental results have shown that the pulling geometry influences
the mechanical resistance of a protein [60], besides the usual pulling configuration
(tail-pulled case) we have also considered a situation where the role of the first and
last bead are reversed (head-pulled case). In Fig. 4.15, the results obtained for
the tail and head-pulled configuration are compared: we find that the free energy
profiles for GF and BF, obtained at T = 0.3 by employing the largest speeds ensuring
asymptotic results, are identical. This implies that for the considered pulling speed
the mechanical unfolding pathways are the same, namely the various strands of the
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Figure 4.14: End-to-end distance of the ISs estimated during USs at various tem-
peratures: (black) circles represent the average value; (blue) stars the minimal
value; and (red) squares the maximal one. The upper panel refer to the BF and
the lower one to the GF. The horizontal magenta dashed line indicates the ζtrans-
value. For the GF (resp. BF) trajectories of duration t ∼ 100, 000 − 500, 000 (resp.
t ∼ 50, 000 − 250, 000) have been examined to obtain the ISs at constant time
intervals ∆t = 5.

protein open up following the same rupture order in both cases. These findings
essentially agree with those reported in [72] where the authors have found that
the sequence of unfolding events depends on pulling velocities and temperature,
moreover they observe that the strands open in the same order for sufficiently low
pulling velocities and temperatures3.

4.5 Concluding remarks

In conclusion, we can safely affirm that the reconstructions of the free energy land-
scape as a function of the end-to-end distance in terms of the ISs, obtained via
out-of-equilibrium mechanical unfolding of the heteropolymers, are in very good
agreement with the equilibrium weighted histogram estimate for the good and bad
folder sequences at all the examined temperatures. In particular, this result indi-
cates that the harmonic approximation employed to estimate the vibrational term
is quite good for temperatures in the range [Tf ;Tθ], as already pointed out in [32] by
considering the average potential energy. Moreover, the EJE reconstructions of the
free energy profile compare quite well with the other two approaches for sufficiently

3The lowest pulling velocity analyzed by the authors in Ref. [72] for the GF was vp = 0.36m/s
while the lowest temperature was T = 20K. In our adimensional units these values correspond to
vp ≃ 2.3× 10−3 and T ≃ 0.17. Therefore we are considering a much smaller speed, but a somehow
larger temperature. For a comparison with physical units see [69].
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Figure 4.15: Comparison of the EJE reconstruction of the free energy profile for
good folder in the tail-pulled (open black circles) and head-pulled (red squares)
case. (a) Good folder sequence at T=0.3 and vp = 5×10−4; (b) bad folder sequence
at T = 0.3 and vp = 5 × 10−5.

low pulling velocities. For the good folder, the quality of the free energy landscape
reconstruction via the extended Jarzinsky equality can be well appreciated by stress-
ing that from pure structural information about the landscape a good estimate of
dynamical quantities, like the unfolding times from the native configuration, can be
obtained.

Furthermore, for the good folder the information obtained by the equilibrium
FEL both with the EJE and the IS methodologies can be usefully combined to give
substantiated hints about the thermal unfolding. In particular the investigation of
the ISs allows us to give an estimate of the (free) energetic and entropic barriers sep-
arating the native state from the completely stretched configuration. These barriers
are associated to the structural transitions induced by the protein manipulation and
for the good folder they can put in direct relationship with the thermal transitions
usually identified during folding/unfolding process.

On the other hand for the bad folder the end-to-end distance appears not to
represent a good reaction coordinate, since mechanical and thermal unfolding seem
to follow different paths. In other terms the unfolding process for the good folder
consists of many small successive rearrangements of the NC, which are well captured
by the distribution of the corresponding ISs on the landscape. While for the bad
folder the thermal unfolding can involve also large conformational rearrangements,
thus implying jumps from one valley to another of the landscape associated to large
variations in the end-to-end distance, that cannot be well reproduces by the mechan-
ical stretching of the heteropolymer. Future work on more realistic heteropolymer
models is needed to clarify if the observed features, distinguishing good folders from
bad folders, can be really considered as a specific trademark of proteins.

A drawback of the EJE reconstruction is that extremely small velocities or an ex-
tremely large number of repetitions of the protocol are needed to achieve the collapse
towards the equilibrium profile, thus rendering the implementation of the method

57



quite time consuming. However, new optimized methods to obtain the asymptotic
FEL, by combining the Jarzinsky equality with the Crooks’ path ensemble average
theorem, have been recently published [117, 118] and it will be definitely worth to
test their performances in the next future with respect to complex landscapes, like
those of heteropolymers.
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Chapter 5

Mechanical unfolding of FNIII10

This Chapter is devoted to the study of mechanical unfolding of a real protein,
the tenth type III domain from fibronectin, FnIII10, both at constant force and at
constant pulling velocity, by all-atom Monte Carlo simulations. We observe both
apparent two-state unfolding and several unfolding pathways involving one of three
major, mutually exclusive intermediate states. All the three major intermediates
lack two of seven native β-strands, and share a quite similar extension. The un-
folding behavior is found to depend strongly on the pulling conditions. At low
constant force or low constant velocity, all the three major intermediates occur with
a significant frequency. At high constant force or high constant velocity, one of
them dominates over the other two. Using the extended Jarzynski equality, we also
estimate the equilibrium free-energy landscape, calculated as a function of chain
extension. The application of a constant pulling force leads to a free-energy profile
with three major local minima. Two of these correspond to the native and fully un-
folded states, respectively, whereas the third one can be associated with the major
unfolding intermediates.

5.1 Introduction

Fibronectin is a giant multimodular protein that exists in both soluble (dimeric)
and fibrillar forms. In its fibrillar form, it plays a central role in cell adhesion
to the extracellular matrix. Increasing evidence indicates that mechanical forces
exerted by cells are a key player in initiation of fibronectin fibrillogenesis as well
as in modulation of cell-fibronectin adhesion, and thus may regulate the form and
function of fibronectin [35, 36].

Each fibronectin monomer contains more than 20 modules of three types, called
FnI-II-III. The most common type is FnIII, with ∼90 amino acids and a β-sandwich
fold. Two critical sites for the interaction between cells and fibronectin are the RGD
motif Arg78-Gly79-Asp80 [86] on the tenth FnIII module, FnIII10, and a synergistic
site [87] on the ninth FnIII module, which bind to cell-surface integrins. In the
native structure of FnIII10, shown in Fig. 5.1, the RGD motif is found on the loop



connecting the C-terminal β-strands F and G. It has been suggested that a stretching
force can change the distance between these two binding sites sufficiently to affect
the cell-adhesion properties, without deforming the sites themselves [36]. Force
could also influence the adhesion properties by causing full or partial unfolding of
the FnIII10 module, and thereby deformation of the RGD motif [88]. Whether or
not mechanical unfolding of fibronectin modules occurs in vivo is controversial. It is
known that cell-generated force can extend fibronectin fibrils to several times their
unstretched length [89]. There are experiments indicating that this extensibility
is due to changes in quaternary structure rather than unfolding [90], while other
experiments indicate that the extensibility originates from force-induced unfolding
of FnIII modules [91, 92]. Also worth noting is that the FnIII10 module is capable
of fast refolding [93].

Figure 5.1: Illustration of the native structure of domain 10 of type III of fibronectin,
FnIII10 (Protein Data Bank ID 1ttf). The letters A-G label its seven β-strands.

Atomic force microscopy experiments have provided important insights into the
mechanical properties of FnIII modules [94, 11, 95]. Interestingly, it was found that,
although thermodynamically very stable [96], the cell-binding module FnIII10 is
mechanically one of the least stable FnIII modules [94]. Anyway for the aim of this
thesis the most relevant result was found by Li et al. [11] where it was shown that
the force-induced unfolding of FnIII10 using AFM with constant velocity protocol
often occurs through intermediate states, meaning that partially unfolded but stable
structures, capable to opposite to the unfolding forces, are visited in the way from the
native to the fully unfolded state. The presence of intermediates states is deduced
from the typical sawtooth pattern in the AFM force extension profile, where, also if
apparent one-step events (direct path from folded to unfolded configuration) were
seen as well, the majority of the unfolding events had a clear two-step character [11].
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Several groups have used computer simulations to investigate the force-induced
unfolding of FnIII10 [88, 97, 98, 99, 100, 101, 102]. An early study predicted the
occurrence of intermediate states [97]. In these simulations, two unfolding pathways
were seen, both proceeding through partially unfolded intermediate states. Both
intermediates lacked two of the seven native β-strands. The missing strands were A
and B in one case, and A and G in the other (for strand labels, see Fig. 5.1). A more
recent study reached somewhat different conclusions [99]. This study found three
different pathways, only one of which involved a partially unfolded intermediate
state, with strands A and B detached. The experiments [11] are consistent with
the existence of the two different intermediates seen in the early simulations [97],
but do not permit an unambiguous identification of the states. When comparing
the experiments with these simulations, it should be kept in mind that the forces
studied in the simulations were larger than those studied experimentally.

In this work we use the implicit-water all-atom model introduced by Irbäck et
al. [9, 10], described in Chapter 2, to investigate how the response of FnIII10 to a
stretching force depends on the pulling strength. We study the unfolding behavior
both at constant force and at constant pulling velocity. Some previous studies were
carried out using explicit-solvent models [88, 99, 100]. These models might capture
important details that the implicit-solvent model we used ignores, like weakening
of specific hydrogen bonds through interactions between water molecules and the
protein backbone [103]. The advantage of model that we use is computational
convenience. The relative simplicity of the model makes it possible for us to generate
a large set of unfolding events, which is important when studying a system with
multiple unfolding pathways.

Our analysis of the generated unfolding trajectories consists of two parts. The
first part aims at characterizing the major unfolding pathways and unfolding in-
termediates. In the second part, we use the extended Jarzynski equality (EJE)
to estimate the equilibrium free-energy landscape, calculated as a function of end-
to-end distance. This analysis extends previous work on simplified protein mod-
els [16, 17, 18] to an atomic-level model. This level of detail may be needed to
facilitate comparisons with future EJE reconstructions based on experimental data.
Indeed quite recently this approach has been successfully applied for the first time
to data obtained from nanomanipulation of titin I27 domain with atomic force mi-
croscopy [20, 21].

5.2 Analysis of pathways and intermediates

To characterize pathways and intermediates, we study the evolution of the native
secondary-structure elements along the unfolding trajectories. For this purpose,
during the course of the simulations, all native hydrogen bonds connecting two β-
strands (see Fig. 5.1) are monitored. A bond is defined as present if the energy
of that bond is lower than a cutoff (−2.4kBT ). Using this data, we can describe
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a configuration by which pairs of β-strands are formed (see Section 5.4 for the
description of the standard used to label intermediates). A β-strand pair is said
to be formed if more than a fraction 0.3 of its native hydrogen bonds are present.
Whether individual β-strands are present or absent is determined based on which
β-strand pairs the conformation contains.

The characterization of intermediate states requires slightly different procedures
in the respective cases of constant force and constant velocity. For constant force
simulations (see Fig. 5.2), a histogram of the end-to-end distance ζ , covering the
interval 3 nm < ζ < 27 nm, is made for each unfolding trajectory. Each peak in
the histogram corresponds to a metastable state along the unfolding pathway. To
reduce noise the histogram is smoothed with a sliding ζ window of 0.3 nm. Peaks
higher than a given cutoff are identified. Two peaks that are close to each other
are only considered separate states if the values between them drop below half the
height of the smallest peak. The position of an intermediate, ζI, is calculated as a
weighted mean over the corresponding peak.

In the constant-velocity runs, the unraveling of the native state or an interme-
diate state is associated with a rupture event, at which a large drop in force occurs
(see Fig. 5.3). To ascertain that we register actual rupture events and not fluctua-
tions due to thermal noise, the force versus time curves are smoothed with a sliding
time window of Tw = 0.3 nm/vp, where vp is the pulling velocity. Rupture events are
identified as drops in force that are larger than 25 pN within a time less than Tw.
The point of highest force just before the drop defines the rupture force, FI, and the
end-to-end distance, ζI, of the corresponding state. Only rupture events with a time
separation of at least 2Tw are considered separate events. The rupture force FI is
a stability measure statistically easier to estimate than the life time τI at constant
force.

For a peak with a given ζI, to decide which β-strands the corresponding state
contains, we consider all stored configurations with |ζ − ζI| < 0.1 nm. All β-strand
pairs occurring at least once in these configurations are considered formed in the
state. With this prescription, it happens that separate peaks from a single run
exhibit the same set of β-strand pairs. Distinguishing between different substates
with the same secondary-structure elements is beyond the scope of the present work.
Such peaks are counted as a single state, with ζI set to the weighted average position
of the merged peaks.

5.3 Description of the calculated unfolding traces

We study the mechanical unfolding of FnIII10 for six constant forces and four con-
stant velocities. Table 5.1 shows the number of runs and the length of each run
in these ten cases. At low force or low velocity, it takes longer for the protein to
unfold, which makes it necessary to use longer and computationally more expensive
trajectories.
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Fig. 5.2 shows the time evolution of the end-to-end distance ζ in a representative
set of runs at constant force (100 pN). Typically each trajectory starts with a long
waiting phase with ζ ∼ 5 nm, where the molecule stays close to the native conforma-
tion. In this phase, the relative orientation of the two β-sheets (see Fig. 5.1) might
change, but all native β-strands remain unbroken. The waiting phase is followed
by a sudden increase in the end-to-end distance. This step typically leads either
directly to the completely unfolded state with ζ ∼ 30 nm or, more commonly, to
an intermediate state at ζ ∼ 12–16 nm. The intermediate is in turn unfolded in
another abrupt step that leads to the completely stretched state. In a small fraction
of the trajectories, depending on force, the protein is still in the native state or
an intermediate state when the simulation stops. Intermediates outside the range
12–16 nm are unusual but occur in some runs. For example, a relatively long-lived
intermediate at 21 nm can be seen in one of the runs in Fig. 5.2.
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Figure 5.2: MC time evolution of the end-to-end distance (ζ) in 42 independent
simulations with a constant pulling force of 100 pN. The three most frequent inter-
mediates lack different pairs of native β-strands: AG, FG, or AB. Trajectories in
which these states occur are labeled green, blue and red, respectively. Apparent
two-state events are colored black.

Fig. 5.3 shows samples of unfolding traces at constant velocity (0.05 fm/MC
step). Here force is plotted against end-to-end distance. As in the constant-force
runs, there are two main events in most trajectories. First, the native state is pulled
until it ruptures at ζ ∼ 5 nm. The chain is then elongated without much resistance
until it, in most cases, reaches an intermediate at ζ ∼ 12–16 nm. Here the force
increases until there is a second rupture event. After that, the molecule is free to
elongate towards the fully unfolded state with ζ ∼ 30 nm. Some trajectories have
force peaks at other ζ . An unusually large peak of this kind can be seen at 22 nm
in Fig. 5.3. Inspection of the corresponding structure reveals that it contains a
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Figure 5.3: Force (F ) versus end-to-end distance (ζ) in 55 independent simulations
with a constant pulling velocity of 0.05 fm/MC step. Noise has been filtered out
using a sliding time window of 6 · 106 MC steps. The color coding is the same as in
Fig. 5.2, with the addition of a new category for a few trajectories not belonging to
any of the four categories in that figure. These trajectories are colored grey.

three-stranded β-sheet composed of the native CD hairpin and a non-native strand.
This sheet is pulled longitudinally, which explains why the stability is high. Another
feature worth noting in Fig. 5.3 is that the pulling velocity is sufficiently small to
permit the force to drop to small values between the peaks.

There are several similarities between the unfolding events seen at constant force
and at constant velocity. In most trajectories, there are stable intermediates, and
the unfolding from both the native and intermediate states is abrupt. Also, the vast
majority of the observed intermediates have a similar end-to-end distance, in the
range 12–16 nm. It should be noticed that experiments typically measure contour-
length differences rather than end-to-end distances. Below we analyze contour-
length differences between the native state and our calculated intermediates, which
turn out to be in good agreement with experimental data.

The trajectories can be divided into three categories: apparent two-state unfold-
ing, unfolding through intermediate states, and trajectories in which no unfolding
takes place. Table 5.2 shows the relative frequencies of these groups at the different
pulling conditions. The number of trajectories in which the protein remains folded
throughout the run obviously depends on the trajectory length. More interesting to
analyze is the ratio between the two kinds of unfolding, with or without intermedi-
ate states. In the constant-force runs, this ratio depends strongly on the magnitude
of the applied force; unfolding through intermediates dominates at the lowest force,
but is less common than apparent two-state unfolding at the highest force. In the
constant-velocity runs, unfolding through intermediates is much more probable than
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apparent two-state unfolding at all the velocities studied.

5.4 Identifying pathways and intermediates

The fact that most observed intermediates fall in the relatively narrow ζ interval of
12–16 nm does not mean that they are structurally similar. Actually, the data in
Figs. 5.2 and 5.3 clearly indicate that these intermediates can be divided into three
groups with similar but not identical end-to-end distances. The β-strand analysis
(see Section 5.2) reveals that these three groups correspond to the detachment of
different pairs of β-strands, namely A and G, A and B, or F and G. The prevalence
of these particular intermediate states is not surprising, given the native topology.
When pulling the native structure of FnIII10, the interior of the molecule is shielded
from force by the N- and C-terminal β-strands, A and G. Consequently, in 95 %
or more of our runs, either strand A or G is the first to detach, for all the pulling
conditions studied. Most commonly, this detachment is followed by a release of the
other strand of the two. But, when A (G) is detached, B (F) is also exposed to
force. We thus have three main options for detaching two strands, AG, AB or FG,
which actually correspond to the three major intermediates we observe.

Intermediates outside the interval 12–16 nm also occur in our simulations. When
applied to the intermediates with ζ < 12 nm, the β-strand analysis identifies two
states with one strand detached, A or G. The intermediates with ζ > 16 nm are
scattered in ζ and correspond to rare states with more than two strands detached.
The intermediate at 21 nm seen in one of the runs in Fig. 5.2 lacks, for example, four
strands (A, B, F and G). However, in these relatively unstructured states with more
than two strands detached, the remaining strands are often disrupted, which makes
the binary classification of strands as either present or absent somewhat ambiguous.
Moreover, it is not uncommon that these large-ζ intermediates contain some non-
native secondary structure. In what follows, we therefore focus on the five states
seen with only one or two strands detached.

For convenience, the intermediates will be referred to by which strands are de-
tached. The intermediate with strands A and B unfolded will thus be labeled AB,
etc. Tables 5.3 and 5.4 show basic properties of the A, G, AB, AG and FG inter-
mediates, as observed at constant force and constant velocity, respectively.

From Tables 5.3 and 5.4, several observations can be made. A first one is that
the average end-to-end distance, ζ̄I, of a given state increases slightly with increasing
force. More importantly, it can be seen that the relative frequencies with which the
different intermediates occur depend strongly on the pulling conditions. At high
force or high velocity, the AG intermediate stands out as the by far most common
one. By contrast, at low force or low velocity, there is no single dominant state. In
fact, at F = 50 pN as well as at vp = 0.03 fm/MC step, all the five states occur with
a significant frequency.

Table 5.4 also shows the average rupture force, F̄I, of the different states, at the
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different pulling velocities. Although the data are somewhat noisy, there is a clear
tendency that F̄I, for a given state, slowly increases with increasing pulling velocity,
which is in line with the expected logarithmic vp dependence [108]. Comparing the
different states, we find that those with only one strand detached (A and G) are
markedly weaker than those with two strands detached (AG, AB and FG), as will
be further discussed below. Most force-resistant is the AB intermediate. This state
occurs much less frequently than the AG intermediate, especially at high velocity,
but is harder to break once formed. Compared to experimental data, our F̄I values
for the intermediates are somewhat large. For example the experiments by Li et al
found a relatively wide distribution of unfolding forces centered at 40–50 pN [11],
which is a factor two or more lower than what we find for the AG, AB and FG
intermediates. Our results for the unfolding force of the native state are consistent
with experimental data. For the native state, the experiments found unfolding forces
of 75 ± 20 pN [94] and 90 ± 20 pN [11]. Our corresponding results are 88 ± 2 pN,
99 ± 2 pN and 114 ± 3 pN at vp = 0.03 fm/MC step, vp = 0.05 fm/MC step and
vp = 0.10 fm/MC step, respectively.

The AG, AB and FG intermediates do not only require a significant rupture
force in our constant-velocity runs, but are also long-lived in our constant-force
simulations. In fact, in many runs, the system is still in one of these states when the
simulation ends, which means that their average life times, unfortunately, are too
long to be determined from the present set of simulations. Nevertheless, there is a
clear trend that the AB intermediate is more long-lived than the other two, which
in turn have similar life times. The relative life times of these states in the constant-
force runs are thus fully consistent with their force-resistance in the constant-velocity
runs.

At high constant force, we see a single dominant intermediate, the AG state, but
also a large fraction of events without any detectable intermediate. Interestingly, it
turns out that the same two strands, A and G, are almost always the first to break in
the apparent two-state events as well. Table 5.5 shows the fraction of all trajectories,
with or without intermediates, in which A and G are the first two strands to break,
at the different forces studied. At 192 pN, this fraction is as large as 98 %. Although
the time spent in the state with strands A and G detached varies from run to run,
there is thus an essentially deterministic component in the simulated events at high
force.

The unfolding behavior at low force or velocity is, by contrast, complex, with sev-
eral possible pathways. Fig. 5.9 illustrates the relations between observed pathways
at the lowest pulling velocity, 0.03 fm/MC step. The main unfolding path begins
with the detachment of strand G, followed by the formation of the AG intermediate,
through the detachment of A. There are also runs in which the same intermediate
occurs but A and G detach in the opposite order. Note that for the majority of
the trajectories the boxes A and G in Fig. 5.9 only indicate passage through these
states, not the formation of an intermediate state. In a few events, it is impossible
to say which strand breaks first. In these events, the initial step is either that the
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hairpin AB detaches as one unit, or that strands A and G are unzipped simulta-
neously. Detachment of the FG hairpin in one chunk does not occur in the set of
trajectories analyzed for Fig. 5.9. Finally, we note that in the few trajectories where
G occurs as an intermediate, the FG intermediate is always visited as well, but never
AG. Similarly, the few trajectories where the A intermediate occurs also contain the
AG intermediate, but not AB. We find no example where the AB intermediate is
preceded by another intermediate.

The unfolding pattern illustrated in Fig. 5.9 can be partly understood by count-
ing native hydrogen bonds. The numbers of hydrogen bonds connecting the strand
pairs AB, BE, CF and FG are nAB = 7, nBE = 5, nCF = 8 and nFG = 6, respec-
tively. In our as well as in a previous study [99], two hydrogen bonds near the
C terminus break early in some cases, which reduces the number of FG bonds to
nFG = 4. The transition frequencies seen in Fig. 5.9 match well with the ordering
nBE ∼ nFG < nAB < nCF. The first branch point in Fig. 5.9 is the native state.
Transitions from this state to the G state, N→G, are more common than N→A
transitions, in line with the relation nFG < nAB. The second layer of branch points
is the A and G states. That transitions G→AG are more common than G→GF and
that A→AG and A→AB have similar frequencies, match well with the relations
nAB < nCF and nFG ∼ nBE, respectively. Finally, there are fewer hydrogen bonds
connecting the AB hairpin to the rest of the native structure than what is the case
for the FG hairpin, nBE < nCF, which may explain why the AB hairpin, unlike the
FG hairpin, detaches as one unit in some runs.

Another feature seen from Fig. 5.9 is that the remaining native-like core rotates
during the course of the unfolding process. The orientation of the core is crucial,
because a strand is much more easily released if it can be unzipped one hydrogen
bond at a time, rather than by longitudinal pulling. The detachment of the first
strand leads, irrespective of whether it is A or G, to an arrangement such that two
strands are favorably positioned for unzipping, which explains why the intermediates
with only A or G detached have a low force-resistance (see Tables 5.3 and 5.4).
The AG, AB and FG intermediates, on the other hand, have cores that are pulled
longitudinally, which makes them more resistant. Also worth noting is that the core
of the AG intermediate is flipped 180◦, which is not the case for the AB and FG
intermediates.

5.5 Worm-like chain model analysis

The end-to-end distance of the intermediates cannot be directly compared with
experimental data. The experiments with AFM by Li et al. [11] measured dif-
ferences of the contour-lengths, Lc, rather than ζ , by fitting the constant-velocity
data with worm-like chain (WLC) [109] model; this is a polymers elasticity model
commonly used in the AFM experiments to retrieve the increment in the protein’s
lenght between successive rupture events. Using data at our lowest pulling velocity
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(0.03 fm/MC step), we now mimic this procedure. For each force peak, we determine
a contour length Lc by fitting the WLC expression

F =
kBT

p

[

1

4(1 − d/Lc)2
−

1

4
+

d

Lc

]

(5.1)

to data. Here p denotes the persistence length 1 and d is the elongation, defined as
d = ζ − ζN, where ζN is the end-to-end distance of the native state. Following Li et
al. [11], we use a fixed persistence length of p = 0.4 nm.

After each rupture peak follows a region where the force is relatively low. Here it
sometimes happens that the newly released chain segment forms α-helical structures,
indicating that our system is not perfectly described by the simple WLC model.
Nevertheless, the WLC model provides a quite good description of our unfolding
traces, as illustrated by Fig. 5.4. The figure shows a typical unfolding trajectory with
three force peaks, corresponding to the native (N), intermediate (I) and unfolded
(U) states, respectively. From the fitted Lc values, the contour-length differences
∆Lc(N → I), ∆Lc(I → U) and ∆Lc(N → U) can be calculated.
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Figure 5.4: WLC fits (Eq. 5.1) to a typical force-extension curve at vp =
0.03 fm/MC step. The arrows indicate contour-length differences extracted from
the fits: ∆Lc(N → I), ∆Lc(I → U) and ∆Lc(N → U).

Fig. 5.5 shows a histogram of ∆Lc(N → I), based on our 100 trajectories for
vp = 0.03 fm/MC step. For a small fraction of the force peaks, a WLC fit is not

1The persistence length is a mechanical property linked to the stiffness of a polymer and for
WLC model it can be shown that it is the characteristic distance along the chain over which the
tangent vector correlations die off.
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possible; e.g., the A state cannot be analyzed due to its closeness to the native
state. All intermediates analyzed have a ∆Lc(N → I) in the range 6–27 nm. They
are divided into five groups: AB, AG, FG, G and “other”. Most of those in the
category “other” have five strands detached (CDEFG or ABEFG) and a ∆Lc(N → I)
larger than 21 nm. These intermediates were not identified in the experimental study
by Li et al. [11], which did not report any ∆Lc(N → I) values larger than 18 nm.
These high-ζ intermediates mainly occur as a second intermediate, following one of
the main intermediates, which perhaps explains why they were not observed in the
experiments. The few remaining intermediates in the category “other” are all of
the same kind, ABG, but show a large variation in ∆Lc(N → I), from 10 to 19 nm.
The small values correspond to states where strand B actually is attached to the
structured core, but through non-native hydrogen bonds.
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Figure 5.5: Histogram of the contour-length difference ∆Lc(N → I), obtained by
WLC fits (Eq. 5.1) to our data for vp = 0.03 fm/MC step. A total of 121 force peaks
corresponding to intermediate states are analyzed. The intermediates are divided
into five groups: AB, AG, FG, G and “other”. The experimental ∆Lc(N → I)
distribution, obtained by Li et al. [11], is also indicated.

The three major peaks in the ∆Lc(N → I) histogram (Fig. 5.5) correspond to
the AG, AB and FG intermediates. Although similar in size, these states give rise to
well separated peaks, the means of which differ in a statistically significant way (see
Table 5.6). For comparison, Fig. 5.5 also shows the experimental ∆Lc(N → I) dis-
tribution [11]. The statistical uncertainties appear to be larger in the experiments,
because the distribution has a single broad peak extending from 6 to 18 nm. All our
∆Lc(N → I) data for the AB, AG, FG and G intermediates fall within this region.
The occurrence of these four intermediates is thus consistent with the experimental
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∆Lc(N → I) distribution. The highest peak, corresponding to the AG intermediate,
is located near the center of the experimental distribution.

Transitions from the native state directly to the unfolded state do not occur in the
trajectories analyzed for Fig. 5.5. For the contour-length difference between these
two states, we find a value of ∆Lc(N → U) = 30.9 ± 0.1 nm, in perfect agreement
with experimental data [11].

5.6 EJE reconstruction

In this section we present the reconstruction of the free-energy profile as a function of
the end-to-end distance, f 0

J (ζ) (where the superscript means at zero force), obtained
by applying the extended Jarzynski equality, EJE (see Eqs. 3.22 and 3.30), to the
constant-velocity trajectories. The number of trajectories analyzed can be seen in
Table 5.1. Fig. 5.6 shows the free-energy landscape f 0

J (ζ) as obtained using different
velocities vp. We observe a collapse of the curves in the region of small-to-moderate ζ .
Furthermore, the range of ζ where the curves superimpose, expands as vp decreases.
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Figure 5.6: EJE reconstruction of the free-energy landscape at zero force f 0
J (ζ) as

a function of the end-to-end distance ζ , using data at different pulling velocities vp

(given in fm/MC step).

As discussed in [17, 18, 19, 107] and in Chapter 4, the collapse of the recon-
structed free-energy curves, as the manipulation rate is decreased, is a clear signature
of the reliability of the evaluated free-energy landscape. Given our computational
resources, we are not able to further decrease the velocity vp, and for ζ > 15 nm
there is still a difference of ∼ 40 kBT between the two curves corresponding to the
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lowest velocities. The best estimate we currently have for f 0
J (ζ) is the curve obtained

with vp = 0.03 fm/MC step. This curve will be used in the following analysis.
Let us consider the case where a constant force F is applied to the chain ends.

The free energy then becomes fJ(ζ) = f 0
J (ζ)−F ·ζ . The tilted free-energy landscape

fJ(ζ) is especially interesting for small forces for which the unfolding process is too
slow to be studied through direct simulation.
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Figure 5.7: Tilted free-energy landscape fJ(ζ) = f 0
J (ζ)−F ·ζ for four different forces

F . The unperturbed landscape f 0
J (ζ) corresponds to the curve shown in Fig. 5.6 for

vp = 0.03 fm/MC step.

Fig. 5.7 shows our calculated fJ(ζ) for four external forces in the range 10–
50 pN. At F = 10 pN, the state with minimum free energy is still the native one,
and no additional local minima have appeared. At F = 25 pN, the situation has
changed. For 20 . F . 60 pN, we find that fJ(ζ) exhibits three major minima:
the native minimum and two other minima, one of which corresponds to the fully
unfolded state. The fully unfolded state takes over as the global minimum beyond
F = Fc ≈ 22 pN. The statistical uncertainty on the force at which this happens, Fc,
is large, due to uncertainties on fJ(ζ) for large ζ . For F = 25 pN, the positions of
the three major minima are 4.3 nm, 12 nm and 25 nm. As F increases, the minima
move slightly toward larger ζ ; for F = 50 pN, their positions are 4.6 nm, 14 nm
and 29 nm. The first two minima become increasingly shallow with increasing F .
For F & 60 pN, the only surviving minimum is the third one, corresponding to the
completely unfolded state.

These results have to be compared with the analysis above, which showed that
the system, on its way from the native to the fully unfolded state, often spends
a significant amount of time in some partially unfolded intermediate state with
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ζ around 12–16 nm. These intermediates should correspond to local free-energy
minima along different unfolding pathways, but in principle it’s not obvious that
they correspond to local minima of the one-dimensional global free energy fJ(ζ),
which is, roughly speaking, based on an average over the full conformational space.
As we just saw, we found that it turns out that fJ(ζ) actually exhibits a minimum
around 12–16 nm, where the most common intermediates are sited. It is worth noting
that above ∼ 25 pN this minimum gets weaker with increasing force. This trend is
in agreement with the results shown in Table 5.2: the fraction of apparent two-state
events, without any detectable intermediate, increases with increasing force.

For F = 25 pN and F = 35 pN, a fourth local minimum can also be seen in
Fig. 5.7, close to the native state. Its position is ≈ 6 nm. This minimum is weak
and has already disappeared for F = 50 pN. It corresponds to a state in which
the two native β-sheets are slightly shifted relative to each other and aligned along
the direction of the force, with all strands essentially intact. The appearance of
this minimum is in good agreement with the results of Gao et al. [99]. In their
constant force unfolding trajectories, Gao et al. saw two early plateaus with small
ζ , which in terms of our fJ(ζ) should correspond to the native minimum and to
this ζ ≈ 6 nm minimum. In our model, the ζ ≈ 6 nm minimum represents a non-
obligatory intermediate state; in many unfolding events, especially at high force, the
molecule does not pass through this state.

0 10 20 30 40 50 60
F (pN)

0

1

2

3

4

5

∆f
J (

kc
al

/m
ol

)

2 3 4 5 6
ζ (nm)

-15

-10

-5

0

f J (
kc

al
/m

ol
)

F=50 pN
F=38 pN
F=22 pN

Figure 5.8: Free-energy barrier ∆fJ , separating the native state from extended
conformations, as a function of the pulling force F . The solid line is a linear fit to
the data for forces F > 25 pN, while the dashed line refers to a linear fit to the
data in the interval 15 pN ≤ F ≤ 30 pN. The inset shows the free energy fJ(ζ) in
the vicinity of the native state for three values of the force (the vertical dashed line
indicates the position of the barrier).

Finally, Fig. 5.8 illustrates a more detailed analysis of the native minimum of
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fJ(ζ), for 20 pN < F < 60 pN. In this force range, we find that the first barrier is
always located at ζ = 5.0 nm, whereas the position of the native minimum varies
with force (see inset of Fig. 5.8). Hence, the distance between the native minimum
and the barrier, xu, depends on the applied force, as expected [110, 111, 81, 112].
Fig. 5.8 shows the force-dependence of the barrier height, ∆fJ (F ). The solid line is
a linear fit with slope xu = 0.4 nm, which describes the data quite well in the force
range 25–56 pN. At lower force, the force-dependence is steeper; a linear fit to the
data at low force gives a slope of xu = 0.8 nm (dashed line). Using this latter fit to
extrapolate to zero force, we obtain a barrier estimate of ∆fJ(0) ≈ 5 kcal/mol. Due
to the existence of the non-obligatory ζ ≈ 6 nm intermediate, it is unclear how to
relate this one-dimensional free-energy barrier to unfolding rates. Experimentally,
barriers are indirectly probed, using unfolding kinetics. For FnIII10, experiments
found a zero-force barrier of 22.2 kcal/mol [94], using kinetics. For the unfolding
length, an experimental value of xu = 0.38 nm was reported [94], based on data in
the force range 50–115 pN. Our result xu = 0.4 nm obtained using the overlapping
force range 25–56 pN, is in good agreement with this value.

5.7 Role of pulling strenght in mechanical unfold-

ing

By AFM experiments, Li et al. [11] showed that FnIII10 unfolds through intermedi-
ates when stretched by an external force. AFM data for the wild-type sequence and
some engineered mutants were consistent with the existence of two distinct unfolding
pathways with different intermediates, one being the AB state with strands A and
B detached and the other being either the AG or the FG state [11]. This conclusion
is in broad agreement with simulation results obtained by Paci and Karplus [97] and
by Gao et al. [99].

Comparing our results with these previous simulations, one finds both differences
and similarities. In our simulations, three major intermediates are observed: AB,
which was seen by Paci and Karplus as well as by Gao et al.; AG, also seen by Paci
and Karplus; and FG, which was not observed in previous studies. The most force-
resistant intermediate is AB in our as well as in previous studies. Frequencies of
occurrence of the intermediates are difficult to compare because the previous studies
were based on fewer trajectories. Nevertheless, one may note that the most common
intermediate in our simulations, AG, is one of two intermediates seen by Paci and
Karplus, and corresponds to one of three pathways observed by Gao et al. A and G
often being the first two strands to break is also in agreement with the simulation
results of Klimov and Thirumalai [98], who studied several different proteins using
a simplified model. Unlike us, these authors found a definite unfolding order for the
β-strands. The first strand to break was G, followed by A.

A key issue in our study is how the unfolding pathway depends on the pulling
strength. This question was addressed by Gao et al. [99]. Based on a simple ana-
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lytical model rather than simulations, it was argued that there is a single unfolding
pathway at low force and multiple unfolding pathways at high force. Our results
show the opposite trend. At our lowest force, 50 pN, we observe several different
unfolding pathways, and all the three major intermediates occur with a significant
frequency. At our highest force, 192 pN, unfolding occurs either in one step or
through one particular intermediate, the AG state. Moreover, at 192 pN, the same
two strands, A and G, are almost always the first to break in the apparent one-step
events as well. Hence, at our highest force, we find that the unfolding behavior
has an essentially deterministic component. The trend that the unfolding pathway
becomes more deterministic with increasing force can probably be attributed to a
reduced relative importance of random thermal fluctuations.

There is a point of disagreement between our results and experimental data,
which is that the rupture forces of the three major intermediates are higher in our
constant-velocity simulations than they were in the experiments [11]. Although the
statistical uncertainties are non-negligible and the pulling conditions are not identi-
cal (e.g., we consider a single FnIII10 module, while the experiments studied multi-
modular constructs), we do not see any plausible explanation of this discrepancy. It
thus seems that our model overestimates the rupture force of these intermediates.
Our calculated rupture force for the native state is consistent with experimental data
(see above). To make sure that this agreement is not accidental, we also measured
the rupture force of the native state for three other domains, namely FnIII12, FnIII13
and the titin I27 domain. AFM experiments (at 0.6µm/s) found that these domains
differ in force-resistance, following the order FnIII13 (∼ 90 pN) < FnIII12 (∼ 120 pN)
< I27 (∼ 200 pN) [94]. For each of these domains, we carried out a set of 60 un-
folding simulations, at a constant velocity of 0.10 fm/MC step. The average rupture
forces were 108 ± 4 pN for FnIII13, 135 ± 4 pN for FnIII12, and 159 ± 6 pN for I27,
which is in reasonable agreement with experimental data. In particular, our model
correctly predicts that the force-resistance of the native state decreases as follows:
I27 > FnIII12> FnIII13∼ FnIII10. Similar findings have been reported for another
model [100].

In this work times have been given in MC steps. In order to roughly esti-
mate what one MC step corresponds to in physical units, we use the average un-
folding time of the native state, which is ∼ 4 · 108 MC steps at our lowest force,
50 pN. Assuming that the force-dependence of the unfolding rate is given by k(F ) =
k0 exp(Fxu/kBT ) [113] with xu = 0.38 nm [94], this unfolding time corresponds to
a zero-force unfolding rate of k0 ∼ 1/(4 · 1010 MC steps). Setting this quantity
equal to its experimental value, k0 = 0.02 s−1 [94], gives the relation that one MC
step corresponds to 1 · 10−9 s. Using this relation to translate our pulling velocities
into physical units, one finds, for example, that 0.05 fm/MC step corresponds to
0.05µm/s. This estimate suggests that the effective pulling velocities in our simula-
tions are comparable to or lower than the typical pulling velocity in the experiments
by Li et al. [11], which was 0.4µm/s. That the effective pulling velocity is low in
our simulations is supported by the observation made earlier that the force drops to
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very small values between the rupture peaks.

The force range studied in our simulations is comparable to that studied in AFM
experiments [94, 11, 95]. The exact forces acting on fibronectin under physiological
conditions are not known, but might be considerably smaller. For comparison, it was
estimated that physiologically relevant forces for the muscle protein titin are ∼ 4 pN
per I-band molecule [115]. For so small forces, the unfolding of FnIII10 occurs too
slowly in the model to permit direct simulation. Therefore, we cannot characterize
unfolding pathways and possible intermediates for these forces. On the other hand,
we have an estimate of the free-energy profile fJ(ζ) for arbitrary force, which can
be used, in particular, to estimate the force Fc, beyond which the fully extended
state has minimum free energy. Using our best estimate of fJ(ζ), one finds an Fc

of 22 pN (see above), but Fc depends on the behavior of fJ(ζ) for large ζ , where
the uncertainties are large and not easy to accurately estimate. Our estimate of
Fc indicates that unfolding of FnIII10 to its fully stretched state is a rare event for
small stretching forces. The major intermediates are also suppressed compared to
the native state for F . 10 pN (see Fig. 5.7). However, our results indicate that the
major intermediates are more likely to be observed than the fully stretched state for
these forces.

The reconstructed free energies f 0
J (ζ) and fJ(ζ) are thermodynamical potentials

describing the equilibrium behavior of the system in the absence and presence of
an external force F , respectively. For 20 . F . 60 pN, this function exhibits three
major minima corresponding to the folded state, the most common intermediates,
and the fully unfolded state, respectively. However, since fJ(ζ) describes the system
in terms of a single coordinate ζ and “hides” the microscopic configuration, one can-
not extract the full details of individual unfolding pathways from this function. For
example, one cannot, based on fJ(ζ), distinguish the AG, AB and FG intermediates,
which have quite similar ζ .

The height of the first free-energy barrier, ∆fJ , can be related to the unfolding
length xu, a parameter typically extracted from unfolding kinetics, assuming the
linear relationship ∆fJ(F ) = ∆f 0

J −F ·xu. The parameter xu measures the distance
between the native state and the free-energy barrier, which generally depends on
force. Our data for xu indeed show a clear force-dependence (see inset of Fig. 5.8).
However, over a quite large force interval, our xu is almost constant (xu = 0.4 nm
in the force range 25–56 pN) and similar to its experimental value of xu = 0.38 nm
obtained by [94] in a force range of 50–115 pN.

5.8 Concluding remarks

We have used all-atom MC simulations to study the force-induced unfolding of the
fibronectin module FnIII10, and in particular how the unfolding pathway depends
on the pulling conditions. Both at constant force and at constant pulling velocity,
the same three major intermediates were seen, all with two native β-strands miss-
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ing: AG, AB or FG. Contour-length differences ∆Lc(N → I) for these states were
analyzed, through WLC fits to constant-velocity data. We found not only a perfect
agreement with the experimenatl data but we also showed that the states, in prin-
ciple, can be distinguished based on their ∆Lc(N → I) distributions; unfortunately
the differences between the distributions are small compared to the resolution of
existing experimental data.

The unfolding behavior at constant force was examined in the range 50–192 pN.
The following picture emerges from this analysis:

1. At the lowest forces studied, several different unfolding pathways can be seen,
and all the three major intermediates occur with a significant frequency.

2. At the highest forces studied, the AB and FG intermediates are very rare.
Unfolding occurs either in an apparent single step or through the AG inter-
mediate.

3. The unfolding behavior becomes more deterministic with increasing force. At
192 pN, the first strand pair to break is almost always A and G, also in apparent
two-state events.

The dependence on pulling velocity in the constant-velocity simulations was
found to be somewhat less pronounced, compared to the force-dependence in the
constant-force simulations. Nevertheless, some clear trends could be seen in this
case as well. In particular, with increasing velocity, we found that the AG state
becomes increasingly dominant among the intermediates. Our results thus suggest
that the AG state is the most important intermediate both at high constant force
and at high constant velocity.

The response to weak pulling forces is expensive to simulate; our calculations,
based on a relatively simple and computationally efficient model, extended down to
50 pN. The reconstruction, based on extended Jarzynski equality, of the free energy
fJ(ζ) opens up a possibility to partially circumvent this problem. Our estimated
fJ(ζ), which matches well with several direct observations from the simulations,
indicates, in particular, that stretching forces below 10 pN only rarely unfold FnIII10
to its fully extended state, but this conclusion should be verified by further studies,
because accurately determining fJ(ζ) for large ζ is a challenge.
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Table 5.1: Number of runs and the length of each run, in number of elementary MC
steps, at the different pulling conditions studied.

pulling force or velocity runs MC steps/106

50 pN 98 1 000
80 pN 100 1 000

100 pN 100 250
120 pN 200 100
150 pN 340 50
192 pN 600 30

0.03 fm/MC step 100 1 167
0.05 fm/MC step 99 700
0.10 fm/MC step 99 350
1.0 fm/MC step 200 35

Table 5.2: The fractions of trajectories in which unfolding occurs either in an ap-
parent two-state manner (labeled n = 2) or through intermediate states (labeled
n ≥ 3). “No unfolding” refers to the fraction of trajectories in which the protein
remains folded throughout the run (with ζ < 8 nm).

pulling force or velocity n = 2 n ≥ 3 no unfolding

50 pN 0.01 0.79 0.20
80 pN 0.21 0.79 0

100 pN 0.23 0.77 0
120 pN 0.24 0.76 0
150 pN 0.29 0.72 <0.01
192 pN 0.54 0.46 0

0.03 fm/MC step 0.04 0.96 0
0.05 fm/MC step 0.07 0.93 0
0.10 fm/MC step 0.03 0.97 0
1.0 fm/MC step 0 1.0 0
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Table 5.3: Frequency f and average extension ζ̄I (in nm) of intermediate states in
the constant-force simulations. The label of a state indicates which β-strands are
detached, that is the state AG lacks strands A and G, etc. The frequency f is the
number of runs in which a given state was seen, divided by the total number of runs
in which unfolding occurred. The statistical uncertainties on ζ̄I are about 0.1 nm or
smaller. “—” indicates not applicable.

50 pN 80 pN 100 pN 120 pN 150 pN 192 pN
state f ζ̄I f ζ̄I f ζ̄I f ζ̄I f ζ̄I f ζ̄I

AG 0.46 13.9 0.49 14.3 0.65 14.3 0.69 14.5 0.69 14.6 0.45 14.7
AB 0.35 12.4 0.14 12.9 0.09 13.1 0.03 13.2 <0.01 — <0.01 —
FG 0.15 14.8 0.13 15.2 0.03 15.5 0.03 15.7 <0.01 — <0.01 —

G 0.19 11.1 0.04 11.8 0 — 0 — 0 — 0 —
A 0.13 6.7 0 — 0 — 0 — 0 — 0 —

Table 5.4: Frequency f , average rupture force F̄I (in pN) and average extension ζ̄I
(in nm) of intermediate states in the constant-velocity simulations. The statistical
uncertainties are 10–20 % on F̄I, about 0.1 nm or smaller on ζ̄I for AG and AB, and
about 0.5 nm on ζ̄I for FG, G and A.

0.03 fm/MC step 0.05 fm/MC step 0.10 fm/MC step 1.0 fm/MC step
state f F̄I ζ̄I f F̄I ζ̄I f F̄I ζ̄I f F̄I ζ̄I

AG 0.60 115 14.9 0.69 121 14.9 0.78 131 14.8 0.81 198 15.0
AB 0.14 283 13.7 0.09 289 13.8 0.08 333 13.9 0.04 318 13.9
FG 0.15 119 15.6 0.08 107 15.3 0.08 162 16.0 0.04 216 15.7

G 0.05 54 10.5 0.08 73 10.8 0.20 46 9.9 0.06 67 10.3
A 0.06 43 6.2 0.07 53 7.2 0.09 57 6.9 0.03 81 7.2
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Figure 5.9: Illustration of the diversity of unfolding pathways in the 100 constant-
velocity unfolding simulations at vp = 0.03 fm/MC step. The numbers indicate
how many of the trajectories follow a certain path. The boxes illustrate important
structures along the pathways and boxes with dark rims correspond to the most
long-lived states. Dark circles mark branch points. Most trajectories pass through
G or A, but only a fraction spend a significant amount of time there (see Table 5.4).
The line directly from G to U corresponds to events that either have no intermediate
at all or only have intermediates other than the main three. The direct lines N→AB
and N→AG describe events that do not clearly pass through A or G and examples
of structures seen in those events are illustrated by the unboxed cartoons next to
the lines.
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Table 5.5: The fractions of all unfolding events in which the first two strands to
break are A & G, F & G, and A & B, respectively, at different constant forces. The
first pair to break was always one of these three.

first pair 50 pN 80 pN 100 pN 120 pN 150 pN 192 pN

A & G 0.50 0.69 0.87 0.935 0.973 0.980
A & B 0.35 0.15 0.09 0.025 0.006 0.007
F & G 0.15 0.16 0.04 0.040 0.021 0.013

Table 5.6: The average contour-length difference ∆Lc(N → I) for different interme-
diates, as obtained by WLC fits (Eq. 5.1), to our data for vp = 0.03 fm/MC step.

state ∆Lc(N → I) (nm)

AG 12.1 ± 0.3
AB 10.1 ± 0.1
FG 13.4 ± 0.3

G 8.2 ± 0.9
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Conclusions and perspectives

The original research project of this thesis concerned the numerical study of the
mechanical unfolding of two different protein models: the first one is a minimalistic
model but, despite its semplicity, it shows the main thermodynamic features of a
protein-like behavior; the second one is a realistic model that allowed us the com-
parison with experimental data.

The first part of this thesis was devoted to the results about the simplified model,
that is a variant of the model originally introduced by Honeycutt-Thirumalai [7].
It was simulated via a Langevin molecular dynamics and with a constant pulling
velocity protocol. We have studied both a sequence of monomers previously identi-
fied as a reasonably fast folder (good folder), and a sequence randomly chosen (bad
folder) that it was not expected to have the folding properties of a protein.

In the second part we reported the results concerning the investigation of the
mechanical unfolding, both at constant force and at constant pulling velocity, of
a real protein, the tenth type III domain from fibronectin, FnIII10, by using an
implicit water all-atom model developed by Irbäck and coworkers [9, 10] and simu-
lated via Monte Carlo dynamics. In this case the results of the simulations led to
a good agreement with findings coming from available AFM experiments on FnIII10.

For what concerns the simplified model we reconstructed the free energy land-
scape as a function of an internal reaction coordinate, namely the extension of
the chain. At variance with previous studies here we exploited two independent
methods: the first one relies on an extended version of the Jarzynski equality
(EJE) [12, 13, 14, 15], that links the work done in an out-of-equilibrium process,
as the mechanical unfolding actually is, to the difference of the free energy between
two equilibrium states; the second method is based on thermodynamic averages over
the local minima, or inherent structures (IS), of the potential energy of the protein
and on the approximation that such basins of attraction are harmonic. Both meth-
ods are compared with the reconstruction performed using a standard equilibrium
technique (i.e. umbrella sampling used in conjunction with the weighted histogram
analysis method).
In order to apply the EJE reconstruction many realizations of the same constant
velocity pulling protocol are performed.



For the ISs approach it was necessary to sample the different ISs and so we built up
two data banks of local mimina: the thermal data bank (TDB) obtained by perform-
ing equilibrium canonical simulations without any constraints and the pulling data
bank (PDB) obtained starting from the configurations visited during the pulling
process of the protein. It is known in fact that thermal and mechanical unfolding
can follow different pathways in between the native and the completely open con-
figuration and so these two methods can have a different efficiency in sampling the
ISs of the potential energy landscape.
We showed that the reconstructions of the free energy landscape in terms of inherent
structures, obtained via out-of-equilibrium mechanical unfolding of the heteropoly-
mers, are in very good agreement with the equilibrium umbrella sampling technique,
used in conjunction with the weighted histogram method, for the good and bad folder
sequences at all the examined temperatures. In particular, this result indicates that
the harmonic approximation (employed to estimate the vibrational contribution to
the free energy that describes the fluctuations of the protein’s configuration in the
attraction basin) is quite good for temperatures in the range between the folding and
the hydrophobic collapse temperature, as already pointed out in [32] by considering
the average potential energy. Moreover, the EJE reconstructions of the free energy
profile compare quite well with the other two approaches for sufficiently low pulling
velocities.
Furthermore, for the good folder the information obtained by the equilibrium FEL
both with the EJE and the IS methodologies can be usefully combined to give sub-
stantiated hints about the thermal unfolding. In particular the investigation of the
ISs allows us to give an estimate of the (free) energetic and entropic barriers sepa-
rating the native state from the completely stretched configuration. These barriers
are associated to the structural transitions induced by the protein manipulation and
for the good folder they can be put in direct relationship with the transition tem-
peratures usually identified during thermal folding/unfolding processes, namely: the
glassy temperature, below which the freezing of large conformational rearrangements
occurs and so the system can be trapped in local minima of the potential energy
without reaching in the finite time the native configuration; the folding temperature,
below which the protein stays predominantly in the native valley; and finally the
hydrophobic collapse temperature, that discriminates between phases dominated by
random-coil configurations and phases with collapsed structures.
It is worth to mention that for the good folder, from the free energy landscape re-
constructed as a function of only a single reaction coordinate it was possible to get
a good estimate of dynamical quantities, like the unfolding times from the native
configuration.
On the other hand for the bad folder from the ISs approach is not possible to get
the thermal transition temperatures: in this case the chain extension appears not to
represent a good reaction coordinate and this kind of unidimensional reconstruction
is not sufficient to completely describe the system’s dynamics. Therefore in this case
mechanical and thermal unfolding seem to follow different paths. In other terms the
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unfolding process for the good folder consists of many small successive rearrange-
ments of the native configuration, which are well captured by the distribution of
the corresponding ISs on the landscape. While for the bad folder the thermal un-
folding can involve also large conformational rearrangements, thus implying jumps
from one valley to another of the landscape associated to large variations in the
chain extension, that cannot be well reproduced by the mechanical stretching of the
heteropolymer.
Anyway further work on more realistic heteropolymer models is needed to clarify
if the observed features, distinguishing good folders from bad folders, can be really
considered as a specific trademark of proteins.

The main aim of the project concerning the mechanical unfolding of FnIII10 was
devoted to study how the pulling conditions affect the unfolding pathway followed
by this protein from the folded to the completely unfolded conformation. FnIII10 has
a β-sandwich structure with seven β strands (labelled with letters A-G) and so the
unfolding pathway describes the order of rupture of these sub-structures.
Atomic force microscopy experiments have provided important insights into the me-
chanical properties of FnIII modules [94, 95]. Anyway for the aim of this thesis
the most relevant result was found by Li et al. [11] where it was shown that the
force-induced unfolding of FnIII10 using AFM with constant velocity protocol of-
ten occurs through intermediate states; this means that, during the manipulation
process, partially unfolded but stable structures are visited. The presence of in-
termediates states is deduced from the typical sawtooth pattern in the AFM force
extension profile, where, also if apparent one-step events (direct path from folded to
unfolded configuration) were seen as well, the majority of the unfolding events had
a clear two-step character [11].
Several research groups have used computer simulations to investigate the force-
induced unfolding of FnIII10 [88, 97, 98, 99, 100, 101, 102]. An early study by Paci
and Karplus [97] predicted the occurrence of intermediate states. In these simula-
tions two unfolding pathways were seen, both proceeding through partially unfolded
intermediate states. Both intermediates lacked two of the seven β-strands of the
native structure; but the missing strands were A and B in one case, and A and G
in the other. A more recent study by Gao et al. [99] reached somewhat different
conclusions, because three different pathways were found and only one of which in-
volved a partially unfolded intermediate state, with strands A and B detached. The
experiments by Li et al., above cited, are consistent with the existence of the two
different intermediates seen in the early simulations by Paci and Karplus, but do
not permit an unambiguous identification of the states.
Anyway when comparing the experiments with these simulations it’s absolutely cru-
cial to keep in mind that the forces studied in the simulations were larger than those
studied experimentally, because the pulling strenght can play a role in changing the
mechanical unfolding pathway.
The results obtained in this thesis revealed first of all that both apparent two-state
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unfolding and several unfolding pathways are present, both at constant force and
at constant pulling velocity. The unfolding pathways involve one of three major,
mutually exclusive intermediate states, that lack two of the seven native β-strands
and share a quite similar extension. The unfolding behavior is found to depend
strongly on the pulling conditions. In particular, we observe large variations in the
relative frequencies of occurrence for the intermediates. At low constant force or
low constant velocity, the behavior of the system is characterized by a wide vari-
ability, meaning that several different unfolding pathways can be seen and all the
three major intermediates occur with a significant frequency. On the other hand at
high constant force or high constant velocity, one of them dominates over the other
two, and so in this regime the unfolding behavior becomes more deterministic. To
compare the numerical results obtained via the constant velocity pulling protocol
with the results of Li et al. we used the worm-like chain (WLC) model analysis that
is a standard technique used in the AFM experiments to retrieve the increment in
the protein’s lenght between successive unfolding events represented by the rupture
peaks in the sawtooth pattern. One of the main result of this thesis is the good
agreement obtained with the experimental data of Li et al.; moreover we found that
these intermediates states, in principle, can be distinguished using the analysis of
the increment in the protein’s lenght, but the differences are small compared to the
resolution of existing experimental data.
As a further test of the obtained results, from the constant velocity unfolding trajec-
tories and using the extended Jarzynski equality, we also estimated the equilibrium
free-energy landscape as a function of chain extension for FnIII10 as we did for the
simplified model. Once we reconstructed the zero force landscape, the application
of a constant pulling force leads to tilted free-energy profile wich exhibits three ma-
jor local minima: two of these correspond to the native and fully unfolded states,
respectively, whereas the third one can be associated with the major unfolding in-
termediates found with the direct observation of the unfolding trajectories from the
simulations.

We would like to remember that, in the context of glassy systems, the concept
of ISs has been critically compared to that of pure states [119], the latter being
local minima of the free energy landscape, while the ISs are minima of the potential
energy, as discussed above. In FnIII10 mechanical unfolding the relevance of pure
states for protein dynamics has been shown by putting them in direct correspon-
dence with unfolding intermediates observable in pulling trajectories.
One of the main technique used in this thesis for reconstructing the free energy profile
was the extended Jarzynski equality. Anyway a drawback of the EJE reconstruc-
tion is that extremely small velocities or an extremely large number of repetitions
of the protocol are needed to achieve the collapse towards the equilibrium profile,
thus rendering the implementation of the method quite time consuming. However,
new optimized methods to obtain the equilibrium FEL, by combining the Jarzynski
equality with the Crooks’ path ensemble average theorem, have been recently pub-
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lished [117, 118] and it will be definitely worth to test their performances in the next
future with respect to complex landscapes, like those of heteropolymers. The power
of these new bidirectional methods, that can also be applied to pulling experiments
on real proteins, relies on the optimal combination of pulling trajectories got in the
forward process, from the native to the stretched structure, in conjunction with the
pulling trajectories obtained in the backward process, where the protein is driven
from the unfolded towards the compact conformation.

85





Bibliography

[1] T.E. Creighton, Proteins, W. H. Freeman and Company, sixth printing (2002).

[2] J. Kurchan, J. Stat. Mech. P07005 (2007).

[3] G.E. Crooks, Phys. Rev. E 60 , 2721 (1999).

[4] C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).

[5] C. Jarzynski, Phys. Rev. Lett. 56, 5018 (1997).

[6] J. Liphardt, S. Dumont, S.B. Smith, I. Tinoco Jr. and C. Bustamante, Science

296, 1832 (2002).

[7] J.D. Honeycutt and D. Thirumalai, Proc. Natl. Acad. Sci. USA 87, 3526 (1990).

[8] R.S. Berry, N. Elmaci, J.P. Rose, and B. Vekhter, Proc. Natl. Acad. Sci. USA

94, 9520 (1997).
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[112] O.K. Dudko, J. Mathé, A. Szabo, A. Meller, and G. Hummer, Biophys. J. 92,

4186–4195 (2007).

[113] G.I. Bell, Science 200, 618–627 (1978).

92



[114] A. Imparato and A. Pelizzola, Phys. Rev. Lett. 100, 158104 (2008).

[115] H. Li, W.A. Linke, A.F. Oberhauser, M. Carrion-Vazquez, J.G. Kerkvliet, H.

Lu, P.E. Marszalek, and J.M. Fernandez, Nature 418, 998–1002 (2002).

[116] H.P. Erickson, Proc. Natl. Acad. Sci. USA 91, 10114–10118 (1994).

[117] R. Chelli, S. Marsili, and P. Procacci, Phys. Rev. E 77, 031104 (2008).

[118] D.D.L. Minh and A.B. Adib, Phys. Rev. Lett. 100, 180602 (2008).

[119] G. Biroli and R. Monasson, Europhys. lett. 50, 155 (2000).

93



94



Ringraziamenti

Bisogna cominciare subito con un grazie al dott. Alessandro Torcini che mi ha se-

guito in questi tre anni e che ha anche alternato le funzioni di tutore con quelle di

allenatore...e quindi gli dico che ancora i Renai ci mancano!

Ringrazio quindi il prof. Alberto Imparato, il prof. Anders Irbäck ed il dott. Simon

Mitternacht con i quali, insieme ad Alessandro Torcini, è stato svolto questo lavoro
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