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Abstract

This short bibliographic Bachelor’s thesis proposes itself as a first introduc-
tion to the study of chaos. In the first part the main tools used in the field are
introduced through direct examples and applications: Lyapunov exponents, cor-
relation functions, front propagation, as well as some classical chaotic systems
like the logistic and shift maps. In the second part Stable Chaos is presented
together with the notion of Chain Map Lattices and some generalization of
Lyapunov exponents, comoving and finite size. In the last part, an introduc-
tion to Reaction-Diffusion systems is given in order to make a comparison with
information propagation in spatially extended chaotic systems.
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Introduction

Edward Lorenz, the father of chaos theory, described chaos in these terms:
”when the present determines the future, but the approximate present does
not approximately determine the future”. This is exactly how I got into this
subject, almost randomly choosing, among others, a dynamical systems (DS)
course for my exchange semester at ETH Zurich. ( Although I enjoyed studying
this subject very much, I would not have had the chance of further investigation
once back at my home university in Turin, had I not decided to make it the core
of my Bachelor’s thesis. The idea was to explore a mathematical field and some
actual mathematical research in order to see if this could become a possible
future career.

This paper will first attempt to put this common but rather mysterious
word “chaos” into a mathematical and rigorous framework. When starting
with a more classical definition-theorem-proof approach the need to move to a
more loose and qualitative approach describing classical examples and modern
techniques of investigations becomes immediately clear. However, this should
not be seen as a negative aspect but rather the way research on this topic has
evolved for years. In the famous paper ”Deterministic Nonperiodic Flow” by
Lorenz (1963) one sees much more ”arguments in favour” then real and well-
established mathematical proofs. Nonetheless, no one would argue the role of
this text in the evolution of the subject.

Secondly, this essay will move to an actual topic of research, that of ”Stable
Chaos” (SC), for which very little mathematical theory has been written de-
spite having been investigated extensively via numerical tools for years. I will
approach not only its most important characteristics but also the fundamental
differences from classical chaotic phenomena- This work will be concluded with
a parallel between information propagation in spatially extended systems and
front propagation in reaction diffusion systems.
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Chapter 1

Deterministic chaos

This first chapter will attempt to give an overview, mainly through direct ex-
ample, of what deterministic chaos (DS) means and how it could be described,
using first formal then more computational tools.

1.1 Chaos: mathematical overview

In this first section we introduce the notion of chaos, and give a key example of a
chaotic iterated map, the logistic map, which was popularized in a seminal 1976
paper by the biologist Robert May [10] , in part as a discrete-time demographic
model analogous to the logistic equation firstly introduced by Pierre François
Verhulst. It should be immediately remarked that there exists no universally
accepted definition and we will stick on that given by Devaney R. in [1].

1.1.1 Preliminary definitions

We will initially consider a topological approach to chaos to move later on to
a measure theoretic set-up introducing the concept of Lyapunov exponents. As
dynamical systems we will consider, whenever differently stated, iterated maps
of metric spaces to themselves.

Definition 1.1.1. (Topological transitivity) Let f be a dynamical system on a
metric space (X, d). We say f is topologically transitive if for any non-empty
open subsets U, V of X exists n ∈ N such that:

fn(U) ∩ V 6= ∅

Definition 1.1.2. (SIC) Let f be a dynamical system on a metric space (X, d).
We say f has sensitive dependence on initial conditions (SIC) if there is δ > 0
such that for every x ∈ X and ε > 0 there exist y ∈ X and n ∈ N for which:

d(x, y) < ε⇒ d(fn(x), fn(y)) > δ (1.1)
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What this actually says is that minor changes in the initial state lead to
dramatically different long-term behaviours.

Definition 1.1.3. (Chaos) Let f be a dynamical system on a metric space
(X, d) with no isolated points. We say f is chaotic if:

• f has sensitive dependence on initial conditions.

• f is topologically transitive.

• The set of periodic points of f is dense in X.

Remark 1.1.1. It is possible to show that a dense set of periodic points along
with topological transitivity in a space X with isolated points, forces X to be
finite and equal to the orbit of one (thus all) of its points.

Definition 1.1.4. (Topological Conjugacy) Suppose f : X → X,g : Y → Y
are dynamical systems. We say that f and g are conjugate it there exists a
homeomorphism φ : Y → X such that the following graph commutes, namely
f ◦ φ = φ ◦ g:

Y Y

X X

g

Φ Φ

f

In the following we will consider as proved facts the following topological
invariants, i.e. properties that when verified for g are then also true for f , for
f and g as before:

• Dense set of periodic points.

• Topological transitivity.

One would actually really like to have chaoticity as a topological property, this
theorem comes very handy because frees chaos from being linked to the chosen
metric (which defines SIC) thus becoming a topological invariant.

Proposition 1.1.1. Let (X,d) be a metric space without isolated points, f :
X → X a dynamical system, which is both topologically transitive and has a
dense set of periodic points. Then f ha SIC w.r.t. any metric defining the
topology on X.

One of the first proofs of this appeared on [12], and we omit it.

1.1.2 A recall on 1D stability theory

We first recall some stability properties of iterated maps f : I ⊆ R→ R:
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Definition 1.1.5. (Hyperbolic Point) Let p be a periodic point of minimal pe-
riod n, then p is hyperbolic if |D(fn)(p)| 6= 1, we call this quantity its multiplier.

Proposition 1.1.2. (Attracting Hyperbolic Point) Let p be a periodic point
with multiplier less than one and minimal period k, then there exists U open
neighborhood of p s.t. ∀x ∈ U :

lim
n→∞

fnk(x) = p

We then say p is attracting and call U an attracting neighbourhood of p.

Proposition 1.1.3. (Repelling Hyperbolic Point) Let p be a periodic point
with multiplier bigger than one, then there exists U open neighbourhood of p
and k ∈ N s.t. ∀x ∈ U ,x 6= p,n ≥ k :

fn(x) /∈ U

We then say p is repelling and call U a repelling neighbourhood of p.

Definition 1.1.6. (Hyperbolic Set 1D) A set Γ ⊂ R is a repelling (resp. at-
tracting) hyperbolic set for f if Γ is closed, bounded and invariant under f and
there exists an N > 0 such that |(fn)′(x)| > 1 (resp. < 1) ∀n > N and ∀x ∈ Γ.

We will then say that a dynamical system is uniformly hyperbolic if the
entire space is an hyperbolic set, this idea could be generalized in higher di-
mensions for diffeomorfisms on manifolds as the splitting of the tangent space
in strongly contracting and strongly expanding directions, called stable and
unstable manifolds.

1.2 The logistic map

We define the logistic map to be:

Lr : xn+1 = rxn(1− xn) x ∈ [0, 1] r ∈ [0, 4] (1.2)

which is a smooth, unimodal i.e. with a unique maximum, continuous, one
parameter, map of the unit interval.

As pointed out by Robert May [10], despite appearing very ”simple” its
dynamic is utterly complicated. In 1976 he introduced this discrete dynami-
cal system as a demographic model, in particular the time n should represent
different generations while xn, ranging in [0, 1] was thought to be the ratio of
existing population to the maximum possible population. This map could be
seen as the discrete version of the continuous system, studied by Pierre Francois
Verhulst in 1838:

dN

dt
= rN − αN2

where N(t) represents the number of individuals at time t, r the intrinsic
growth rate, and α is a parameter related to crowding effects.
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1.2.1 Emergence of chaos: Non-chaotic regime r < r∞

We first introduce a new concept:

Definition 1.2.1. A bifurcation of a dynamical system fµ is a qualitative
change in its dynamics produced by continuously varying some control param-
eter µ, namely there exists some value µ = µ∗ for which the families of C0

equivalent systems (homeomorphic if f−1 invertible) F1 = {fµ : µ < µ∗} and
F2 = {fµ : µ > µ∗} are not C0 equivalent to each other i.e. it is not possible
to construct a continuous map Φ (homeomorphism if f−1 invertible) from a
member of F1 to a member of F2 and vice-versa.

A period-doubling bifurcation corresponds to the creation or destruction of
a stable periodic orbit with the period double of the original orbit.

Remark 1.2.1. It is interesting to note that for maps f : I ⊆ R→ R as already
pointed out we can characterize the attracting behaviour of a n-periodic point
by the absolute value of the derivative of fn, being less then one, this shows
that when a stable periodic orbit becomes unstable two possibilities are allowed,
namely Dfnµ > 1 or Dfnµ < −1. This fact is proper of iterated maps and absent
in continuous dynamical systems.

In the case of the logistic map this parameter is r. It has been shown by May
(1976), that the dynamic of the logistic map for low values of r follows a so called
”cascade of period-doubling bifurcations”. There exists in fact a converging
increasing sequence { rk | rk ∈ [0, 4]}k≥0 such that for any value of rk < r < rk+1

and for almost all initial conditions x0, after an initial transient, the trajectory
converges to a 2k-periodic orbit. This fact is made clear in the bifurcation
diagram 1.1, in which orbits after their transient behaviour are displayed as a
function of a = r.

Remark 1.2.2. In the limit r∞ the attracting orbit becomes infinite and all other
(previously attracting) periodic points will have formed a Cantor type, repelling
hyperbolic set. A numerical estimation of this value has been found:

r∞ ≈ 3.56995

We now examine the behaviour of the logistic map for rk = 0, 1, 2 :

• r < r0 = 1

x∗ = Lr(x
∗)⇒ x∗1 = 0 |dLrdx (x∗)| = |r(1− 2x∗)| < 1 thus 0 is an attracting

point (population dies out).

• r0 < r < r1 = 3

x∗ = Lr(x
∗) ⇒ x∗1 = 0 x∗2 = 1 − 1/r |dLrdx (x∗1)| > 1 |dLrdx (x∗2)| < 1 thus

1−1/r is an attracting fixed point (population stabilizes to a fixed value).

• r1 < r < r2 = 3.448...

|dLrdx (x∗1)| > 1 |dLrdx (x∗2)| > 1 attracting point x∗2 has become repelling and
out of it a stable 2-periodic orbit (fixed point for L2

r) is born.
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Indeed, x∗ = L2
r(x
∗) gives 2 new (in addition to x∗1 x

∗
2) fixed points x∗3,4 =

(r+1)±
√

(r+1)(r−3)

2r which are attracting: |dL
2
r

dx (x∗3,4)| = |dLrdx (x∗4,3)dLrdx (x∗3,4)| <
1 (indexes exchange since Lr(x

∗
3,4) = x∗4,3).

• r2 < r < ... < r∞

In the same way, new orbits with periods double than the previous one
emerge at the biurcation points.

Figure 1.1: Bifurcation diagram for the logistic map, which shows some of the
chaotic and periodic windows. This figure is taken from [24].

Remark 1.2.3. for r exactly equal to 3, x∗3 = x∗4 = x∗2 one has |dL
2
r

dx (x∗2,3)| = 1 i.e.
L2
r is tangent to the first quadrant secant at x∗2. This completes the description

of how the doubling described before actually happens(recall that intersections
with the secant imply fixed points of the map), one first has, a single real and
2 imaginary solutions (r < 3) then 3 real coincident (r = 3) and finally 3 real
solutions of which 2 form a stable periodic orbit (r > 3), where by solution we
mean, solution of the system of equations y = x, y = L2

r(x), As in Figure 1.2.

This process increases the complexity and eventually, as we will prove later,
leads to chaos. Although this phenomenology might appear a very specific fea-
ture of the logistic map, it is proper of the large class of one parameter smooth
unimodal interval maps, for which some conjectures (Feigenbaum), generaliz-
ing their behavior, have been made (Renormalization Theory). As an example,
concerning distances (in parameter space) of two consecutive branching a uni-
versal constant independent of the studied problem, has been found:

rn − rn−1

rn+1 − rn
→ δ = 4.6692
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Figure 1.2: Birth of a new periodic orbit. The dashed line being the diagonal of
the first quadrant represents all the fixed point of the map. The three images
show how a fixed point for L2

r i.e. a 2-periodic orbit, has born from one fixed
point of Lr and thus also of L3

r, as described in the text.

1.2.2 Emergence of chaos: Typical chaos r∞ < r < 4

We now qualitatively address the question of what happens for r∞ < r < 4.
Looking at the figure 1.1 one can spot ”windows”, which open with a marked p-
periodic behaviour for a certain value rp∗ and close with chaotic, i.e. completely
filled vertical segments (the chaotic attractor is a subset of the unit interval).
The most evident is the ”period-3 window” marked as ”3-cycle” in the figure.
What happens is that at r = 4, and we will prove this fact rigorously, the
chaotic attractor fills the entire unit interval, going backward up to a value r′0
(marked as chaos in the figure immediately before 5-cycle), we have windows
ending up in a single smaller and smaller chaotic band, which splits in 2 parts
at r′0. Still proceeding backward one then sees that those chaotic segments get
divided more and more to become the infinite-period orbit at r∞.

It has been shown that those ”periodic behaviour windows are dense, how-
ever Jacobson found that the probability of randomly choosing a chaotic value of
r (eg. r′0) is non-zero and therefore we refer to chaos in the interval r∞ < r < 4
as ”typical chaos”:

”Each period p window essentially contains a replication of the bifurcation
diagram for the map over its whole range. Thus, the windows themselves have
windows, which themselves have windows ...” [13] pag. 40.

Remark 1.2.4. What we have seen could be proven using the so called Kneading
Theory, a refined version of symbolic dynamic for the specific case of uni-modal
maps of the interval.

1.2.3 Special value: r=4

Proposition 1.2.1. The logistic map is chaotic on I = [0, 1] for r = 4.

Proof. We will make use of the concept of topological conjugacy and the fact
that chaos is a topological invariant, consider the piecewise monotone maps:

Define T : [0 1] −→ [0 1] byf(x) =

{
2x if 0 ≤ x ≤ 1/2,

2(1− x) if 1/2 ≤ x ≤ 1.
(1.3)
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Define D : [0 1] −→ [0 1] byf(n) =

{
2x if 0 ≤ x ≤ 1/2,

2x− 1 if 1/2 ≤ x ≤ 1.
(1.4)

Define the homeomorphism, φ(x) = sin2(2x/π) since L4 ◦ φ = φ ◦ T , then φ
is a conjugacy from T to Lr.

We see that T ◦D = T ◦ T thus T ◦Dn = Tn+1.

Claim 1.2.1. Let p ∈ (0, 1). Then p is periodic under T if and only if p is a
rational number with even numerator and odd denominator.

Proof. Pick such a p then there will be a positive integer n ∈ N such that
Dn(p/2) = p/2, now Tn(p) = Tn+1(p/2) = T (Dn(p/2)) = T (p/2) = p as
desired, we will leave the proof of the converse since we won’t need it.

Since such rational numbers are dense in (0, 1) one has also that T has a
dense set of periodic points.

Claim 1.2.2. T is topologically transitive.

Proof. It is sufficient to note that T k(2m/2k) = 0 and T k((2m − 1)/2k) = 1,
pick then U ⊂ [0, 1] open non-empty, and m, k ∈ N sufficiently large that
I = [m/2k, (m+ 1)/2k] ⊂ U then T k(I) = [0, 1] which shows T k(U)∩ V 6= ∅ for
some k ∈ N.

Thanks to the conjugacy one has that L4 chaotic.

1.3 Chaos: experimental overview

In this section we will look at some experimental facts about chaos, meaning
some aspects, which may not be sufficient nor necessary conditions from a strict
mathematical point for chaotic behavior but are useful indicators, mostly being
numerically computable quantities.

1.3.1 Lyapunov exponents

We move now to a different point of view of chaos that of ergodic theory, in
which we need a measure space equipped with an f -invariant measure, loosely
speaking the two approaches are equivalent as soon as one considers a measure
which is positive on open sets.

Definition 1.3.1. Lyapunov Exponent Let f : Rd → Rd be a differentiable
map on an open subset U ⊂ R into itself, and let

D(fn)(x) ◦ v

denote the derivative of fn at x in the direction v. For x ∈ U define the
Lyapunov Exponent (LE), λ(x, v) by:

λ(x, v) = lim sup
n→∞

1

n
ln ‖D(fn)(x) ◦ v‖ (1.5)
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The LE is then a measure of the exponential growth rate of tangent vectors
along orbits [2], indeed if f has uniformly bounded derivative LE is well defined.
Considering an orthonormal base for our space one could therefore calculate an
entire ”spectrum” of exponents.

There is a strong connection between positivity of Lyapunov exponents and
SIC, indeed one has for λ(x, v) > 0 a sequence nj →∞ such that:

‖Dfnj (x) ◦ v‖ ≥ e(λ(x)−ε)nj‖v‖ with ε > 0

Which shows the existence of y ∈ U such that for any ε > 0:

d(fnj (x), fnj (y)) ≥ 1

2
e(λ(x)−ε)njd(x, y)

Now the distance from x,y is not arbitrary small as required to have SIC, thus
considering the topological definition given, positive Lyapunov exponents do not
imply dependence on initial conditions. However one has:

Proposition 1.3.1. Sensitive dependence on initial conditions implies that
for some point x there exists a direction v such that the associated Lyapunov
exponent is positive.

Proof. Thanks to the Mean Value Theorem if say y, z arbitrarily closed points
are moved far apart after n application of f then there must be another point
x and a direction v for which‖Dfnj (x) ◦ v‖ > ‖v‖, as wished.

We recall here some result which will clarify the relation between chaos and
positive Lyapunov exponents, for simplicity we will assume a 1D system (thus
only one possible direction v), but those arguments suitable reformed hold also
in higher dimensions [14]:

The chain rule for an initial condition x0 and xi = f i(x0), gives:

Dfn(x0) = Df(xn)Dfn−1(xn−1) =

n−1∏
i=0

Df(xi)

Now assuming the existence of an ergodic measure µ for f , Birkhoff’s Ergodic
Theorem [2], gives:

λ(x0) = lim sup
n→∞

1

n
log | Dfn(x) |= lim sup

n→∞

1

n

i=n−1∑
i=0

log | Df(f i(x0)) |=
∫
X

log | Df(f i(x)) | dµ

thus λ(x0) = λ for almost all x0 ∈ X.
Now if one considers d(x, y) = δx0 as a perturbation of the initial state x0,

then neglecting higher order terms in the Fourier expansion:

δxn = d(fn(x), fn(y)) = d(fn(x0+δx0), fn(x0)) ≈ |fn(x0)+Dfn(x0)δx0−fn(x0)| = |Dfn(x0)|δx0

We could then regard Lyapunov exponents as the rate of information created
by the system with time i.e. complexity and chaoticity.

δxn ∼ eλnδx0 (1.6)

A new definition of chaos could then be considered [15]:

10



Definition 1.3.2. (Observable Chaos) We say that f has observable chaos
if λMAX > 0 on at least one positive Lebesgue measure set A, where λMAX

represents the maximum Lyapunov exponent at some x ∈ A.

Figure 1.3: Maximum Lyapunov exponent as a function of the parameter r, for
the Logistic map, the figure clearly shows a general increasing trend toward pos-
itive values i.e. chaotic behaviour, mixed with very negative peaks, confirming
the existence of stable periodic windows.

1.3.2 Strange Attractors

In dissipative systems i.e. systems where the volume in the phase space con-
tracts with time, are usually characterized by special type of attractors i.e. sets
on which trajectories settle after an initial thus transient behaviour. In fact
those systems are very common in physical applications, consider as an exam-
ple the famous Lorenz system which was initially proposed as a mathematical
model of atmospheric convections, it has been shown to have exponential vol-
ume contraction which leads to the creation of the so called Lorenz Attractor
[19].

”Such objects often arise when a diffeomorphism f stretches and folds an
open set U and maps the closure f(Ū) inside U (this is a typical situation, not a
necessary or a sufficient condition). The strange attractor A is visualized when
a computer plots the points xn = fn(x0) with almost any initial value x0 in U .”
[3]

Although there is no universally accepted definition Ruelle [4] defines it to
be an uniformly hyperbolic attractor:

Definition 1.3.3. (Uniformly Hyperbolic Attractor) A bounded set A is said
to be a uniformly hyperbolic attractor for a dynamical system f if it is an
hyperbolic set and there exist an open non-empty neighborhood of A such that:

1.
⋂
n≥0 f

n(U) = A .

2. Points in U have SIC.

11



3. There is no proper subset of A for which (1) and (2) hold.

Condition one express the fact that A is attracting, while condition two
makes evident the fact that is strange, finally condition three makes it indecom-
posable.

“There are points y close to x ∈ A such that the distance between fn(x)
and fn(y) grows exponentially with n until this distance becomes of the order
of the diameter of A. The exponential growth of dist(fn(x), fn(y)) expresses
chaos, or sensitivity to initial condition: if there is any imprecision on x, the
predictability of fn(x) is lost for large n. Here, f stretches the set U and
necessarily also “folds” this set to put f(Ū) back in U .” [3]

As cleared by Pesin in [20], the study of uniform hyperbolicity is of great
mathematical interest but has little physical relevance, generalisations of this
concept as non uniform hyperbolicity and partial hyperbolicity ”allows for great
applications outside of mathematics, such as to physics, biology, engineering,
and so on.”

Hyperbolic sets and the logistic map

In this section we show the existence of a chaotic hyperbolic set for r > 2 +
√

5.
We will make use of symbolic dynamics which will prove to be a very powerful
tool in this context.

Definition 1.3.4. Let
∑+

2 denote the space of infinite binary sequences x =
(x0, x1, ...) xk ∈ 0, 1 equipped with the metric d:

d(x,y) =

∞∑
k=0

|xk − yk|
2k

Moreover let the shift map σ :
∑+

2 →
∑+

2 be:

σ(x0, x1, ...) = (x1, x2, ...)

We will assume the following facts about σ and
∑+

2 :

•
∑+

2 is homeomorphic to the cantor set.

• σ is a chaotic continuous map.

Symbolic dynamics

The main idea of symbolic dynamic is to partition the space (or a subset we
want to focus on) in, say n subsets and to each one attribute a symbol. Orbits
could then be regarded as infinite sequences of formal symbols i.e. elements
of
∑+
n ,the evolution in time gives itineraries between different sets and is then

resembled by the shift operator σ. This clearly creates an ”uncertainty” given
by the max of the diameters of all the subsets.

Since we have r > 4 the whole unit interval I is no more forward invariant
thus we will restrict the domain of Lr to a new invariant subset Λ ⊂ I. In our
case the so called Markov Partition will be:
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Proposition 1.3.2. Define inductively:

A0 = {x ∈ I|Lr(x) /∈ I} ⇒ Ai = {x ∈ I|Lr(x) ∈ Ai−1}

Then Λ = I −
⋃
iAi is a Cantor set for r > 2 +

√
5, and is made of all those

points in I that under positive iterates of Lr don’t leave I.

Proof. Define I0 = [0, x−], I1 = [x+, 1]withx± =
1±
√

1−4/r

2 Looking at the
graph 1.4 one sees that Lr(I0) = Lr(I1) = I thus there must be two open
intervals in I0 and I1 mapped in A0 thus escaping I after two iterations so that
one has four closed intervals I00, I01, I10, I1 whose points are mapped outside
I after two iterations, this inductively, gives a nested sequence of non-empty
closed intervals, the limit, thanks to Cantor’s Intersection Theorem, exists, and
is a closed non-empty set as well and is by definition Λ, i.e. the set of points
not leaving I after infinite iterations.

We first need a lemma:

Lemma 1.3.1. If r > 2 +
√

5 then |D(Lr)(x)| > 1 ∀x ∈ Λ

This combined with the subsequent results shows that Λ is Hyperbolic.

Proof. |D(Lr)(x)| = |r(1− 2x)| > 1 pick x = x+ then one has
√
r2 − 4r > 1⇒

r > 2 +
√

5

We have to show that Λ is perfect and totally disconnected:

• Perfect: The construction shows that is closed, suppose now x is an
isolated point of Λ then there would be an open neighbourhood U of x
s.t. U − {x} ∩ Λ = ∅ which implies that all points of U except for x are
mapped outside I i.e. they belong to Ak for some k. We distinguish two
cases:

1. There is a sequence of Ak whose endpoints converge to x.

2. Nearby points are mapped outside I by the same iteration of Lr.

To rule out the first case is sufficient to note that those points are all
mapped to 0 ∈ Λ after some iteration (look at the graph and use induc-
tion), and thus belong themselves to Λ, preventing x from being isolated.
In the latter case x is the endpoint of some Ak and thus we may assume
is mapped to zero while its neighbors are mapped outside I, but this is
possible only if x is a maximum i.e. using the chain rule: D(Lkr )(x) =∏k
i=1D(Lr)(L

i
r(x)) = 0 ⇔ ∃ i ≤ ks.t. D(Lr)(L

i
r(x)) = 0 ⇔ Lir(x) = 1/2

but then Li+1
r (x) /∈ I which is absurd since we where assuming Lir(x)→ 0.

• Totally disconnected: Suppose exists [x, y] ⊂ Λ the lemma gives |D(Lr)(x)| >
λ > 1 implying |Ljr(x)− Ljr(y)| > λj |x− y| > 1 but then one would have
either Ljr(x) or Ljr(x) not in Λ which is absurd since x, y ∈ Λ by assump-
tion. So we have proved there no closed intervals are contained in Λ, i.e.
is totally disconnected.
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Figure 1.4: Markov Partition described in the text. One clearly sees that point
which not lie in I0, I1 are sent from F (x) = Lr(x) outside the interval.

Remark 1.3.1. It is possible to show that Λ is a repelling Hyperbolic Cantor set
for r > 4 using a refined version of Symbolic Dynamics which is based on shifts
of finite type i.e. with a restricted domain of the shift map to the Lr-admissible
sequences only. Moreover, one can show that for r = r∞ a different hyperbolic
Cantor set exists as well. Unfortunately in both cases the finite shift operator
is not chaotic (in a topological sense).

Proposition 1.3.3. If r > 2 +
√

5 then S : Λ→
∑+

2 is a homeomorphism.
Where S is the itinerary map defined by:

S(x) = (s0, s1, ...) with sj =

{
1 if Ljr(x) ∈ I1,
0 if Ljr(x) ∈ I0.

Proof. Injectivity: Suppose there exists x, y ∈ Λ with x 6= y and S(x) =
S(y) = s. Then (from the definition of s) we see that Ljr(x) and Ljr(y) are
always on the same side of p = 1/2 (since they are always in the same interval
I0 or I1) which is |Ljr(x) − Ljr(y)| < 1/2 ∀ j ≥ 1. The lemma ensures that
|D(Lr)(x)| > λ > 1 implying |Ljr(x) − Ljr(y)| > λj |x − y| ∀ j ≥ 1, thanks to
the Mean Value Theorem. One then has that the right-hand side eventually
becomes greater than 1/2, so there is a contradiction unless |x − y| = 0 which
means we must have x = y.
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Surjectivity: Given an itinerary s = (s0, s1, ...) we need to show there
exists x ∈ Λ such that S(x) = s. We first note that I ∩L−1

r (I) = I0 ∪ I1, define
inductively the refinement of of our partition to be:

In = Is0 ∩ L−1
r (Is1) ∩ ... ∩ L−nr (Isn)

This procedure allow us to locate better, as n increases, the initial condition
i.e the position x which is represented symbolically by s since if x ∈ In then
Lir(x) ∈ Isi for 1 ≤ i ≤ n.

We now claim that In is a nested sequence of non-empty closed intervals
thus by Cantor’s Intersection Theorem I∞, limit of the sequence is non-empty
as well, proving the existence of an x represented by s which will then be unique
thanks to injectivity.

Arguing as in the proof above one shows that I1 = Is0 ∩ L−1
r (Is1) is a non

empty closed subset of Is0 what ever s0,s1, by induction on n one then has In−1

is closed and nested as well. Moreover:

In = Is0 ∩ L−1
r (In−1)

is closed being a finite intersection of closed sets, non-empty and nested since,
inductively one has In−1 ⊂ I0, and by definition In = In−1 ∩ L−nr (In) ⊂ In−1

this proves the induction step and therefore the claim.
Continuity of S, S−1: Set s = (s1, s2, ...) = S(x), t = (t1, t2, ...) = S(y)

now the following double implications follow: x → y ⇔ for some sequence
jk |Ljkr (x)− Ljkr (y)| < 1/2⇔ sjk = tjk ⇔ d(s, t)→ 0.

This theorem fabricates a conjugacy between the shift operator and the
restricted logistic map on Λ for r > 2 +

√
5. Thus the logistic map is chaotic on

this new domain and we can classify Λ as being a strange attractor.
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Chapter 2

Stable Chaos

In this chapter the main topic is discussed, here we adopted a more computa-
tional and qualitative approach to the subject, in order to make immediate and
clear, differences and similarities, of this strange phenomenon with respect to
the deterministic counterpart. Although appearing as an oxymoron [11], the
statement ”stable chaos” has nothing contradictory in it. It refers to a spe-
cial class of systems for which despite being the maximum LE negative (stable),
particularly long and unpredictable transients characterize the actual dynamics.
The discovery of SC is linked to coupled discontinuous maps, recent studies in
the field of neural networks [16] showed the relevance of SC in physical models,
as well.

2.1 A brief introduction

In this section the concept of spatially coupled systems is introduced, as this is
the environment in which stable chaos will be studied.

2.1.1 CML and Spatio-Temporal Chaos

To observe the phenomenon of SC one has to consider high-dimensional spatially
extended chaotic systems, it is, in fact, strongly linked with the concept of
spatio-temporal chaos. This phenomenon arises when, considering dynamics at
different locations in space for a fixed time t, unpredictability is displayed. In
those kind of system one has then, to take into account evolution in space and
time to fully characterize chaoticity.

Moreover, SC has mostly been found in a special class of such high-dimensional
systems called coupled map lattices CML, which are systems:

• Discrete in space: the ”spaces” in which CML live are networks, as in
figure 2.1, important parameters are then the number of sites along with
the degree and strength of connections of the lattice itself. In particular

16



Figure 2.1: CML f(i1, i2, k), defined on two coupled sites i1, i2, and evolving
with discrete time k. This figure is taken from [7].

the so called ”thermodynamical limit” i.e. when one consider an infinite
number of points, becomes an interesting limit-behavior to be studied.

• Discrete in time: we consider at each site in space an iterated map,
whose image is affected to some extent, by the behaviours of neighbours,
throughout coupling parameters.

• Continuous state: the possible range of states occupied by the system
varies in a continuous way, despite space and time variables being discrete.

Proved in [21], the existence of invariant measures (counterparts of SRB mea-
sures in high dimensionality) guarantees the meaningfulness of studying objects
like Lyapunov exponents, in that makes them well defined almost everywhere.

In particular we will consider a 1D model of diffusively coupled maps, of the
type:

xi(t+ 1) = (1− ε)f(xi(t)) +
ε

2
[f(xi−1(t)) + f(xi+1(t))] (2.1)

with ε ∈ [0, 1] being the coupling strength and f being the piecewise continuous
(η > 0) linear map, defined by:

f(x) =


p1x+ q1 if 0 ≤ x ≤ xc,
1− (1− q2)(x− xc)/η if xc < x ≤ xc + η,

q2 + p2(x− xc − η) if xc + η < x ≤ 1.

(2.2)

with xc = (1 − q1)/p1. This represents a chain of coupled DS (Figure 2.2), in
general periodic boundary conditions are chosen, namely if N is the length of
the system then xN+1 = x1.

2.2 Some new tools

In this section we describe some very general computational tools that have
proved to be very useful in the study of SC.
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Figure 2.2: f(x), as described in the text with parameters, p1 = 2.7, q1 = 0,
q2 = 0.07, p2 = 0.1, η=0.04, except for the value of η the others are the ones
considered hereafter unless otherwise stated.

2.2.1 Comoving LEs

In order to study evolution of infinitesimal perturbations on networks one has to
consider both spatial and temporal components of the problem. In particular it
is useful to adopt a so called chronotopic approach. One should consider generic
perturbations with exponential profile in both space and time.

|δui(t)| ∝ eλt−µi ⇒

{
δui(t) = φi(t) exp(µi),

v(µ) = λ(µ)/µ.
(2.3)

This leads to the definition of specific or temporal Lyapunov exponents:

|δui(t)| ' |δui(0)|eλ(µ)t (2.4)

where µ represents the spatial growth (or decrease) rate of the perturbation.
and of spatial Lyapunov exponents:

|δui(t)| ' |δu0(t)|eµ(λ)i (2.5)

Another approach is that of perturbing the system at the origin and calculate
the LEs on a reference frame moving at constant velocity v. One considers
perturbations with exponential profile :

|δui(t)| ' |δu0(0)|eΛ(v=i/t)t ⇒ δui(t) = φi(t) exp(µi) (2.6)

Where Λ(v) is the largest comoving Lyapunov exponent along the world
line i = [vt] (where [·] stands for the integer part operator), whose operative
definition is given by:

Λ(v) = lim
t→∞

lim
L→∞

lim
|δu0(0)|→0

1

t
ln
|δui(t)|
|δu0(0)|

(2.7)
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Remark 2.2.1. The function Λ(v) has a typically parabolic shape [5] and is such
that:

• Λ(v = 0) = λmax if the moving reference frame is at rest one recovers the
standard definition of LE.

• Λ(vL) = 0 when the velocity of the moving frame resembles that of the
linear perturbation the relative velocity is null i.e. the perturbation neither
decreases nor increases. This actually proves to be useful when considering
the evolution of infinitesimal perturbations, in that one can, solving the
above equation find vL.

Remark 2.2.2. It will be particularly important for the study of SC to note the
order in which limits are taken: the thermodynamical limit should come before
looking at the long term behaviour (t → ∞) or otherwise the perturbation
would, in a finite time, reach the border of the chain, moreover, in order to
consider only linear effects on the perturbation, and therefore avoid possible
saturations due to non-linearities, the infinitesimal sized perturbation limit,
|δu0(0)| → 0 has to be taken first.

It is possible to calculate the comoving spectrum via linearisation:

u(t+ 1) = F(u(t))

This was done in [22] but here for simplicity, we will concentrate on the
maximum exponent only. To calculate the latter one should make use of the
Legendre transform between specific and comoving LE:

(λ(µ), µ)↔ (Λ(v), v)

which is given by:

λ(µ) = Λ(v)− v dΛ(v)

dv
(2.8)

Proof. From the definition of specific Lyapunov exponent λ(µ) one has:
One can the consider the expansion for long times:

Λ(
i+ 1

t
) ' Λ(

i

t
) +

dΛ(v)

dv
∆v

with ∆v = i+1
t −

i
t = 1

t .
One could then find an expression for µ by means of (2.4) and i = vt :

|δui+1(t)|
|δui(t)|

' eΛ( i+1
t )t

eΛ( it )t
= e

dλ(v)
dv

µ = ln
|δui+1(t)|
|δui(t)|

=
dΛ(v)

dv

which gives exponential growths :
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|δui(t)| ' |δu0(t)|eµi ⇒ |δui(0)| ∼ |δu0(0)|eµi

Substituting in (2.7) and comparing with (2.4):

|δui(t)| ' |δu0(0)|eµi+λ(µ)t ' |δu0(0)|eΛ(v)t ⇒ µi+ λ(µ)t = Λ(v)t

Which is (2.6). The inverse transform reads, then:

dλ(µ)

dµ
= −v (2.9)

Remark 2.2.3. For a numerical routine generally used to find the Lyapunov
spectrum see for example [23].

2.2.2 Finite Size LEs

Linear analysis of a system is indeed very useful to predict long-term behaviors
but for example when the non-linear part of the dynamics becomes preponder-
ant it won’t be as effective. One then has to focus on finite time scales and
finite perturbations rather then infinite time and infinitesimal perturbation. It
would anyway be desirable to apply linear techniques also in this context, to this
end, Finite Size Lyapunov Exponents (FSLEs), were introduced. Since those
quantities have a less firm mathematical background [7], an operative definition
will be given.

According to the definition of the Lyapunov exponent, for initial uncertainty
δ0, perturbation at time t equal to δt, in the limit |δ0| → 0, one can write:

|δt| ' |δ0|eλt

Which gives a new way of calculating the exponent as:

λ = lim
t→∞

lim
|δ0|→0

1

t
ln
|δt|
|δ0|

from this one can extract an effective Lyapunov exponent, for final perturbation
δ, over a time T , as:

γ =
1

T
ln

(
δ

δ0

)
The idea is the following, we pick a trajectory on the attractor and perturb

it, wait until the perturbation has grown by δn = ρnδ0, (for small w.r.t the size
of the attractor δ0 ) and calculate the time τ1 it takes to increase from δn to
δn+1, we than we then pick the non perturbed orbit at τ1, perturb it and wait
as done before obtaining a new time interval τ2, repeat this procedure N times,
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Figure 2.3: Algorithm for computing the FSLE, where one perturbs repeatedly
and orbit and waits for a certain increment. This figure is taken from [7].

finally averaging all data, we determine the FSLE as an effective Lyapunov
exponent over the length scale δn, and time interval T =

∑
i τi, for a graphical

explanation see figure 2.3.
Due to the fact that our system is discrete in time the above algorithm as-

sumes the following form: we consider a reference trajectory (which should be
chosen on the attractor in order to avoid transient effects) at x0 and a perturbed
one x̃0 = x0 + δx0, with ||δx0|| = δ0, we choose a finite number N of samplings
and an interesting scaling factor ρ (usually 1 < ρ ≤ 2), define:

δ(τ) = ‖xτ − x̃τ‖

δn = ρnδ0

Now for i = 1, ..., N we consider time intervals: τi(δn) as the minimum times τ
the perturbation takes to increase from δn to δ(τ) ≥ δn+1 at the i-th iteration
of the procedure above, where ≥ is due to the discreteness in time.

Calculate:

γi =
1

τi(δn)
ln

(
δ(τi(δn))

δn

)
The FSLE is then given by:

λ(δn) =
1

〈τ(δn)〉

〈
ln

(
δ(τ(δn))

δn

)〉
⇐


〈

ln

(
δ(τ(δn))
δn

)〉
=

∑
i γiτi∑
i τi

,

〈τ(δ)〉 =
∑
i
τi
N .

(2.10)
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Figure 2.4: λ(δ) versus δ for the Bernoulli shift map. The continuous line is
the analytical estimation of the FSLE. The map itself is shown in the inset.
One clearly sees that around 0.1 the plateaux which has value λ = λ(0) i.e. the
classical Lyapunov exponent grows making λ(δ) > λ(0). This figure is taken
from [9].

Remark 2.2.4. The amount of perturbation δ is not completely arbitrary and
should be such that δ < 〈‖x−y‖〉µ, where µ is a natural measure for the system,
‖ · ‖ is some chosen norm, and x, y are arbitrary points on the attractor. This
fact also makes clear that this tool is intrinsically not well defined since the
choice of the norm strongly influences the results.

To make the procedure clearer, and to highlight some properties of discontin-
uous maps which will be useful later we calculate LE and FSLE for the Bernoulli
shift map [9]:

f(x) = 2x mod 1

choose τ(δ) = 1, then:

λ(δ) =

〈
ln

∣∣∣∣ f(x+δ/2)−f(x−δ/2)
δ

∣∣∣∣〉 = 〈I(x, δ)〉

for delta not to large:

I(x, δ) =

{
ln[2(2x− 1)/δ] if x ∈ [1/2− δ/2, 1/2 + δ/2],

ln 2 else
recall that the

Lebesgue measure is ergodic for this DS, thus integrating one has:

λ(δ) = (1− δ) lnβ + δ ln

(
1− βδ
δ

)
λ = λ(0) = ln(2)
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Figure 2.5: linear prediction λ(VL) = 0 and finite sized prediction
maxδ{λ(δ, Vp)} = 0 of front propagation speeds, for coupled shift maps with
parameters β = 1.1 and ε = 1/3. xi(t + 1) = (1 − ε)βx1(t) + εβx2(t) mod 1
i = 1, 2. This figure is taken from [9].

This shows that for some values of delta λ(δ) > λ, this behavior has to be
linked with the fact that, when 2 points , near the discontinuity x = 1/β, are
chosen, they will probably move far apart faster the other points as time goes
on. This phenomenon in which finite instabilities influence the dynamics has
been found also in continuous coupled maps (Figure 2.5) and is key in SC, where
evolution is mainly characterized by those. In particular the fact that the FSLE
is bigger then the LE is a clear sign of non-linear contributions to the dynamics.

2.2.3 Correlation functions

A way to characterize a signal changing in time x(t) (one could also extend
the notion for space), is via its auto-correlation function C(τ). Assuming the
system statistically stationary (time-invariant joint probability distributions)
one defines this new quantity to be [7, pag. 62]:

C(τ) = 〈x(t+ τ)− 〈x(t)〉)(x(t)− 〈x(t)〉)〉 = 〈x(t+ τ)x(t)〉 − 〈x(t)〉2 (2.11)

〈x(t)〉 = lim
T→∞

1

T

T−1∑
t=0

xt =

∫
Ω

x(t)dµ

where the last equality holds for ergodic systems, with µ a suitable invariant
measure, and Ω the phase space. The behavior of C(τ) gives a first insight of the
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Figure 2.6: Spatial and temporal (smoother curve) correlations for ε = 0.608.
This figure is taken from [5].

system global behavior, indeed for periodic or quasi-periodic systems C(τ) can’t
relax to zero, while in chaotic and stochastic systems C(τ), does for large values
of τ . This fact is in general interpreted as a ”loss of memory” at some point
the link between initial conditions and current state is completely forgotten by
the system. When the quantity C(τ) is integrable one can find a characteristic
”memory” time-scale τc for the system, as:

0 <

∫ ∞
0

dτC(τ) = A <∞ ⇒ τc =
A

C(0)
(2.12)

Remark 2.2.5. Although chaos and stochasticity might appear the same for and
external observer, the difference is deep, chaos is indeed deterministic while
stochasticity is governed by distributions of probability.

2.3 Emergence and characterization of SC

2.3.1 Systems with special transients

• Super-transients: It has been shown via numerical simulations, that
the dynamics of maps like (2.2) present a particularly long transient (
called very imaginatively super-transient) followed by a stable phase char-
acterized by motion along periodic orbits, as suggested by negativity of
maximum LE.

However,the length of the transient phase, scales exponentially with the
dimension N of the system [5], thus if one considers, as pointed out be-
fore, the thermodynamical limit, Lyapunov stability is practically never
reached. Phenomenon which makes clear the denomination ”stable chaos”.

Remark 2.3.1. Convergence towards a periodic orbit implies the existence
of a minimum threshold τ such that looking at the distance between two
configurations {xi}Ni=1(t), {xi}Ni=1(t+ τ) for some t > T , this will tend to
zero, which shows that τ is the period of the stable orbit and if T is the
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minimum possible time for this condition to be achieved, it will then be
the transient length.

• Unpredictable dynamics: Another crucial aspect is that the dynamics
is disordered and unpredictable for a wide range of coupling values as if
it was generated by genuine chaotic CMLs [7, pag. 349].

Indeed considering space and time correlation functions:

C(j) =
|〈xi(t)xi+j(t)〉|

xi(t)2
C(τ) =

|〈xi(t)xi(t+ τ)〉|
xi(t)2

where 〈·〉 is the ensemble average, one observes exponential decay [5].

This is, as described before a clear sign of rather complex and unpre-
dictable behavior in both space and time, testified by ”loss of memory”
at exponential rate.

2.3.2 ... and with special information propagation

Using the concept of comoving Lyapunov exponent revisited for finite sized
perturbations we now examine the way perturbations propagate which strongly
characterizes the phenomenon of stable chaos.

In DC the perturbation front evolves following linear mechanisms, the in-
finitesimal edge, which moves accordingly to Λ(vL) = 0, pulls the core of the
perturbation [9], forcing finite sized perturbation to evolve with the same ve-
locity vL. Moreover vL is selected by the dynamics as the minimum allowed, in
that, from (2.3) and the fact that vL = vL(µ∗) for some µ∗ one finds:

dvL
dµ

∣∣∣∣
µ=µ∗

=
d

dµ

(
λ(µ)

µ

)∣∣∣∣
µ=µ∗

=
1

µ

(
dλ

dµ
− λ

µ

)∣∣∣∣
µ=µ∗

= −Λ(vL(µ∗))

(µ∗)2
= 0 (2.13)

with

vL =
λ(µ∗)

µ∗
= −λ(µ)

dµ

∣∣∣∣
µ=µ∗

(2.14)

which shows that µ∗ is a critical point and is a minimum being λ(µ) a
Legendre transform (convex).

In SC non-linear mechanisms induce a faster propagation of information at
speed vF ≥ vL, it is like in front propagation discussed later where the front
propagation is due to the pushing on the already saturated part towards the
leading edge. Now comoving Lyapunov analysis allows one to take into account
only for linear propagation mechanisms hence SC could be studied via numerical
methods, only.

To better study the difference between those two phenomenon the parameter
η has been introduced in (2.2). SC was, in fact, known to exist in discontinuous
maps only i.e. for η = 0, introducing this parameter one could then have a
continuous map, whose steepness could be controlled, the lower η the steeper
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the map (a condition whose effect turned out to be similar to that discontinu-
ities), this idea lead to observation of SC also in continuous maps [5]. Moreover
continuously varying the parameter, one could observe the transition from SC
to DC together with some other interesting phenomena:

• Entropy jumps: While for η = 0 the topological entropy is null for
η → 0+ there is a finite jump to Htopol = ln((1 +

√
5)/2), thus in principle

genuine DC should be displayed.

• Negative average Lyapunov exponent: The average maximal Lya-
punov exponent however changes continuously in η and after a threshold
µ∗ pass from being negative to positive, shifting from a Lyapunov stable
system (SC indeed) to a genuine chaotic one.

Thus what happens is that for a little range 0 ≤ η < η∗ one has finite entropy
with negative Lyapunov exponents.

Remark 2.3.2. Despite the average maximum LE being negative if one calculates
LEs given by different initial conditions over a time span t, and then fabricates
a probability P (λMAX , t) out of the different results, (multi-fractal analysis),
this would show the existence of a time increasing probability to have positive
LEs. Figure 2.7 shows how despite being the average Lyapunov exponent still
negative and increasing probability mass is moving towards the positive region.

Figure 2.7: Multifractal distribution of Lyapunov exponents for η = 1 × 10−4

, where the average Lyapunov exponent is still negative. This figure is taken
from [5].

In order to better understand the action of non-linear mechanisms a finite
perturbation propagation in coupled systems, comoving finite size Lyapunov
exponents have been introduced [8], which are a generalization for CML of
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Figure 2.8: Linear velocity vL (solid curve) and front velocity vF (dashed curve)
versus η. Deterministic chaos exists only for η > η∗. Beyond ηc, vL and vF
coincide numerically. This figure is taken from [5].

FSLE. In Particular an analogy with formula Λ(vL) = 0 has been conjectured
and positively tested via numerical simulations:

max
δ
{Λ(δ, vF )} = 0

The velocity of the front vF is indeed higher of the linear one vL discussed
before, coming back to our system looking at Figure 2.8 one observes that for
η < η∗ despite no linear velocity could be defined being the system stable
(no propagation of infinitesimal perturbations is possible), the front is indeed
propagating, moreover when η is sufficiently larger than η∗, vF and vL coincide
numerically.

This shows that when λ(δ, 0) > λ(0, 0) = λMAX , chaotic behaviour may be
displayed also when dealing with ”classically” stable systems, which is indeed
the essence of SC.

2.4 Analogies with Reaction Diffusion Systems

We conclude this thesis trying to give physical relevance to the study of CMLs
and stable chaos, in particular after an introduction to reaction-diffusion type of
equation we will construct a parallel between perturbation evolution in CMLs
and front propagations into unstable states in reaction-diffusion systems.

The perturbation evolution in spatially distributed systems can be described
as the motion of an interface separating perturbed from unperturbed regions.
In this spirit, one can wonder if and to what extent it is possible to draw an
analogy between the evolution of this kind of interface and the propagation of
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fronts connecting steady states in reaction diffusion systems. Let us start by
recalling the basic features of fronts propagation in reaction diffusion systems
with reference to the Fisher-Kolmogorov-Petrovsky-Piscounov, FKPP equation:

∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
+ f(u) (2.15)

where u(x, t) represents the concentration of a diffusing-reacting chemical specie
and the chemical kinetics is governed by f(u) . Typically the function f(u) ∈
C1[0, 1] with f(0) = 0, f(1) = 0, f ′(0) > 0 f ′(1) < 0. One immediately
observes that this PDE exhibits one linearly stable u = 1 and one linearly
unstable u = 0 stationary solution, since linearizing in time f(u) = f ′(0)u one
sees that f drives small u away from zero. Once the system is prepared on the
stable state u(x) = 0 ∀ x ∈ [0, 1], an initial sufficiently steep perturbation, e.g.
a delta function, will give rise to a smooth front with velocity v†, since this
equation admits translating front solutions we could regard the front profile
as an heteroclinic orbit in phase space connecting the unstable and the stable
states, depending on the non-linearity f(u) either pulled or pushed fronts will
show up.

2.4.1 Front propagation into Unstable States: Linear Spread

If we take the spatial Fourier transform of our field u(x, t):

ũ(k, t) =

∫ +∞

−∞
dxu(x, t)e−ikx

Substitute the separation Ansatz : ũ(k, t) = ũ(k)e−iω(k)t Then we are given
the dispersion relation ω(k), substituting the Fourier mode ikx−iω(k)t in the
linearized FKPP equation around the unstable state yields:

∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
+ f ′(0)u(x, t) (2.16)

ω(k) = i(f ′(0)−Dk2)

Then u = 0 is linearly unstable if Im[ω(k) > 0 ] = f ′(0) −Dk2
r + Dk2

i , for
some range of k = kr + iki values.

We then look at the linear spreading velocity:

v∗ = lim
t→∞

dxc(t)

dt
with u(xC , t) = C ∀ t

Which is well defined since being the evolution linear is independent of the
chosen C.

Now given ω(k) and ũ(k, t = 0) (which according to the ansatz is just the
Fourier transform of the initial condition) one could determine the time evolu-
tion via inverse transform:
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u(x, t) =
1

2π

∫ +∞

−∞
dk ũ(k)eikx−iω(k)t

In order to determine the asymptotic speed v∗ we first choose a co-moving
frame ξ = x− v∗t and write the transform in this new frame then applying the
saddle point approximation for large t at the point K∗ of the complex k−plane,
in such a way that the time dependent part of the exponent varies the least,
one has:

u(ξ, t) =
1

2π

∫ +∞

−∞
dk ũ(k)eikξ−i(x−v

∗t)+ikx−iω(k)t =
1

2π

∫ +∞

−∞
dk ũ(k)eikξ−i[ω(k)−v∗k]t

Pick k∗ given by:

d(ω(k)− v∗k)

dk

∣∣∣∣
k=k∗

= 0

Then in the ξ frame the perturbation neither increases nor decreases by
definition of v∗, thus:

ωi − v∗ki = 0⇒ v∗ =
ωi(k

∗)

k∗i

Where the indexes i, r stand for imaginary and real parts respectively. Fi-
nally set:

λ = ki and D = Re

[
i

2

d2ω(k)

dk2

∣∣∣∣
k=k∗

]
to be the spatial decay rate of the perturbation, and the effective diffusion
coefficient, in fact making use of the saddle point approximation and after a
Gaussian integral one can show:

|u(ξ, t)| ∼ 1√
t
e−λ

∗ξe−ξ
2/4Dt

For the linearized FKPP equation one has:

Re

[
i

2

d2ω(k)

dk2

∣∣∣∣
k=k∗

]
= D and v∗ = 2

√
Df ′(0)

An important thing to note here is that the method adopted above made a
crucial assumption, which is ũ(k) being an entire function i.e. having no poles
and therefore the growth of the integral being given by the exponential time
dependent part, since as already noticed ũ(k) given the ansatz is the Fourier
transform of the initial condition. For this to be true we then must consider only
steep enough initial condition like delta functions, or functions with compact
support, it can be shown [17] that the condition:

lim
x→∞

u(x, t = 0)eλ
∗x = 0

suffices.
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2.4.2 Front propagation into Unstable States: Non-Linear
Contributions

Let vfront(t) be some suitably defined instantaneous front velocity. The crucial
insight is that for front propagation, there are only two possibilities if we start
from steep initial conditions:

• lim
t→∞

vfront(t) = v∗.

• lim
t→∞

vfront(t) = v† > v∗.

Where here we are assuming (not being particularly rigorous) that non-
linearities can’t kill the linear behaviour of the system, i.e that the dynamic is
”local” and the only contribution of non-linear fronts is to speed up the linear
velocity which is the one asymptotically chosen by the dynamics for steep enough
initial conditions.

Figure 2.9: Illustration of the fact that when a non-linear front solution Φv†
exists, whose asymptotic steepness is larger than λ∗, then this front will gener-
ically emerge: it is the selected pushed front solution. (a) shows that if the
equation would be fully linear, the steep tail on the right, which moves at veloc-
ity larger than v∗, would cross over in the dashed region to the dashed profile
moving with asymptotic speed v∗. However, this does not happen. When the
steep profile matches up arbitrarily well with a fully non-linear profile,Φv† , this
faster front emerges. While (a) shows how only the pushed front solution ,Φv†
can asymptotically emerge, (b) illustrates how a pushed front solution invades
a region where the profile is close to that given by the linear spreading analysis.
The dashed line indicates the profile obtained only via linear spreading analysis.
This figure is taken from [17].

This is why one calls the first case pulled front, in which the linearities lead
the dynamic while the second case takes then name of pushed front meaning
that a crossover at some finite time of the non-linear front over the linear one
takes place, governing thereon the asymptotic behaviour of the system.
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Figure 2.10: Sketch of the flow in the phase space (U ;U ′) shown are uniformly
translating solutions. The solid lines at the two fixed points indicate the shape
of the stable and unstable manifolds obtained by linearization. The arrows in-
dicate the directions of the flow, and the double arrow at (0; 0) indicates that
the contraction along this eigendirection is stronger than along the other one
(λ2 ≥ λ1). The dashed trajectory is the heteroclinic orbit connecting the two
fixed points which corresponds to the front solution connecting the stable and
the unstable state. (a) shows the case v = max(v†; v∗), in fact the trajectory ap-
proaches the origin along the slowest contracting direction. (b) instead displays
what happens if for some v = v† the dashed trajectory becomes a “strongly
heteroclinic orbit” which approaches the origin along the strongly contracting
direction i.e. the equation admits a pushed front solution. This figure is taken
from [17].

For the FKPP one could go deeper and observe that admits a family of
uniformly translating solutions, parametrized by v, namely:

u(x, t) = Uv(ξ) = Uv(x− vt)

We could then build a coupled system of differential equations, in this new
frame:

dU(ξ)

dξ
= U ′

dU ′(ξ)

dξ
= − v

D
U ′(ξ)− 1

D
f(U)

Looking at stability matrices at (0, 0) and (0, 1), in the frame (U,U ′) one
sees that the origin is a stable fixed point while (0, 1) is unstable, in this sense
one could regard the translating front as an heteroclinc orbit connecting those
2 fixed points. Given the dimensionality of the system we distinguish 2 cases:

• The orbit asymptotically reaches the slowest contracting direction, which
we will see corresponds to pulled fronts.

• The orbit asymptotically reaches the strongest contracting direction, which
instead corresponds to pushed fronts.
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Our solution in the neighbourhood of the origin and for some admissible
v† ≥ v∗ (whose existence is proved in [18]) will look like:

Uv†(ξ) ≈ a1e
−λ1ξ + a2e

−λ2ξ

Where a1,a2 can be found only considering the full non-linear behaviour,
and λ1, λ2 are the linear decaying rates along the two orthogonal contracting
directions given by the stability matrix at the origin.

Thus condition a1 = 0 is sufficient to observe a pushed front since any linear
character we have seen would fall as e−λ

∗ξ for large ξ leaving space for faster
v† ≥ v∗ and steeper non-linearities to prevail [17].

We could give an approximation for the maximum speed achievable by a uni-
formly translating solution calculating the dispersion relation and the spreading
velocity v∗max considering the bound from above of f(u) given via:

f(u) ≤ sup
0≤u≤1

[
f(u)

u

]
u

Which gives a linear spreading:

v∗max = 2

√
D sup

0≤u≤1

[
f(u)

u

]
If then the criterium above, which depends on the functional form of f(u),

allows for a pushed front the admissible velocities will lie in [v∗, v∗max] (a more
rigorous geometrical argument in favour of those bounds is given in [18]).

2.4.3 CMLs and Reaction-Diffusion Systems

We know move to the comparison between the CML illustrated above and the
FKPP equation.

We start with a direct comparison between 2.12 and the shapes for the fronts
sketched in Figure 2.9, it is immediate to note ,how despite being rather different
systems the behaviour is surprisingly similar.

What we want to analyse is the spreading of perturbations in a chaotic
system. In order to compare our case with the FKPP, we should consider the
time evolution of the difference of two (initially nearby) chaotic trajectories
{δxi}Li=1. However, the nature of the two phases separated by the front is now
different from the FKPP case. The interface separates in fact an unstable (
δxi = 0 because of SIC) state from a fluctuating one (chaotic) in the bulk of
the perturbation, which is clearly not stable in a usual sense. However taking a
statistical mechanic approach one could observe that it fluctuates in a stationary
way around an average value, so we might say is ” statistically stable ” and
therefore by averaging the perturbation evolution over many different initial
conditions, many similarities could be observed. Once the chaotic fluctuations
are neglected, one can express the average perturbation growth in any site of
the chain via the following mean-field approximation:
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Figure 2.11: Evolution of the perturbation ∆xi(t), for a chain of coupled tent
map lattices with a coupling ε = 2/3. The initial perturbation is taken as 10−8.
This is an example of pulled front. This figure is taken from [9].

Figure 2.12: Evolution of the perturbation ∆xi(t), for a chain of coupled shift
map lattices with a coupling ε = 1/3 and parameter β = 1.03. The initial
perturbation is taken as 10−8. This is an example of pushed front, in that after
an initial stage similar to Fig. 2.6 an higher velocity is selected. This figure is
taken from [9].
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ui(t+ 1) = eλ(ũi(t))ũi(t)

with:

ũi(t) = (1− ε)ui(t) +
ε

2

[
ui−1(t) + ui+1(t)

]
Reorganize the equation as follows:

ui(t+ 1) = eλ(ũi(t))

[
(1− ε)ui(t) +

ε

2
[ui−1(t) + ui+1(t)]

]
Introduce discrete time and space resolutions δt and δx related by diffusive

scaling δt ∼ δ2x:

ui(t+ δt)− eλ(ũi(t))δtui(t)

δt
= eλ(ũi(t))δ

2x ε

2

[(ui−δx(t) + ui+δx(t)− 2ui(t)]

δ2x

Expand, order zero in space and first order in time the exponential for small
δ’s :

ui(t+ 1)− (1− λδt)ui(t)
δt

=
ε

2

[ui−1(t) + ui+1(t)− 2ui(t)]

δ2x

Finally taking the limit δt, δ2x→ 0:

∂tu(x, t)− λ(u)u =
ε

2
∂xxu(x, t)

If we set D = ε/2 and f(u) = λ(u)u one recovers the FKPP equation,
moreover:

v∗ =
√

2ελ

v∗max =
√

2ε sup
0≤u≤1

λ(u)

It is interesting to note how the model obtained from the FKPP matches nu-
merical prediction of Vp using the marginal stability criterium described before
with comoving FSLE, comoving LE and direct measurement.
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Figure 2.13: Information propagation velocities for the shift map with β =
1/3: boxes=linear velocities VL and crosses=directly measured nonlinear ones.
The two lines correspond to v∗=dotted line and to the propagation velocity for
the comparison model with λ(u) given by

√
2εmaxu{λ(u)/u}=solid line. The

dashed curve with asterisks is
√

2εmaxδ{λ(δ)}.
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Conclusions

What this work has definitely pointed out is the variety of techniques that could
be used in analysing a problem in the field of dynamical systems. What really
struck me initially, and what I feel it is really the gap between mathematics
and applications, is the fact that in order to introduce rigour one has to give
definitions and most of these are set in order to prove a particular result. Here
I am not saying that one loses generality but rather that different approaches
to the same problem may lead to a different contextualisation of the subject
making it sometimes difficult to understand the real property one wants to
point out when imposing some mathematical structure. A clear example of
this is the definition of SIC in a topological sense or in the Lyapunov exponent
sense, seen in the first paragraphs. However, I find this really intriguing. It
is indeed, a clear signal of how the field is vast and from how many radically
different points of view one could look at it, topology and geometry, ergodic
theory, functional analysis and sometimes even number theory finds its place,
this just to mention the more abstract parts. There is in fact, also a strong
computational aspect, which is not really treated in this work but surrounds
each result and statement, in the sense that the main source of information
here is indeed given by numerical simulations from which, strictly mathematical
objects, like theorems and propositions may later rise. Despite my original idea
of writing a more standard mathematical work, it turned out that for some
parts was not even possible to find a well-established formal theory and this
leaves open space for research and new possible studies. This paper shows that
no mathematical theory of stable chaos exists but only facts emerging from
numerical simulations. Exploring general conditions behind the existence of
such a phenomenon could actually be a possible topic of research for the future.
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