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Discrete Stochastic Events

In several contexts the discrete nature of stochastic events should be taken into account

to correctly predict the system dynamics

Shot-noise: which is discontinous since it is conveyed by pulses (electric charges)

White noise : which is associated to thermal fluctuations and is continuous

Neural Dynamics

A neuron receives discrete inputs from other neurons via pulses: post-synaptic

potentials (PSPs)

The distribution of the PSPs displays long tails towards large amplitudes

B. Barbour, N. Brunel, V. Hakim, J.-P. Nadal, TRENDS in

Neurosciences (2007); S. Song, et al. PLoS Biology (2005)

Networks of inhibitory neurons with low connectivity (in-degree K = 30− 80) have

been identified in the cat visual cortex and in the rat hippocampus, where they are

believed to be at the origin of Global Oscillations (GOs) in the γ-band

G. Buzsáki, X.-J. Wang, Annual review of neuroscience (2012)
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Dynamical Regimes in the Brain

ASYNCHRONOUS STATE GLOBAL OSCILLATIONS
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Quadratic Integrate and Fire Neuron

This a very simple model, which can mimick realistic neural dynamics

dV

dt
= V 2 + I

V membrane potential with threshold Vth = +∞ and reset Vr = −∞
I neural excitabilty

I > 0 Tonic Neuron

I ≤ 0 Excitable Neuron

Normal form for the saddle-node on a limit cycle (SNIC) bifurcation

Hodgkin’s Class I excitable membrane

The model has been developed to reproduce parabolic bursting in neurons of the Aplysia

abdominal ganglion (when sinusoidally forced) and low firing neurons (Class I).

Ermentrout and Kopell, (1986) SIAM Journal on Applied Mathematics

Latham et al. (2000) Journal of Neurophysiology
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Quadratic Integrate and Fire Neuron

Tonic neuron I > 0

The firing period is Tfiring = π√
I

Excitable neuron I ≤ 0

If V (t0) ≤
√

|I| - Subthreshold

Dynamics V → Vrest = −
√

|I|
If V (t0) >

√

|I| emission of a spike

followed by relaxation to Vrest
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Balanced Inhibitory QIF Network

The simplest model exhibiting the balanced regime is a purely inhibitory network with a

constant excitatory drive, for simplicity we assume that

the in-degree is K for all neurons

all neurons receive exactly K inputs from randomly selected neighbours

due to this random choice the endogenous fluctuations in the input current are still

present

The evolution of the membrane potentials {Vi} for a network of inhibitory Quadratic

Integrate and Fire (QIF) neurons can be written as,

V̇i = I + V 2
i − g

N
∑

j 6=i

∑

n

εijδ(t− t
(n)
j ) i = 1, . . . , N

g =
g0√
K

and I =
√
Ki0

Monteforte & Wolf, PRL (2010); di Volo & AT PRL (2018)
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Mean-field : Langevin formulation

The evolution of the membrane potential of a generic neuron in the mean field

approximation can be written as

V̇ = F (V ) + I − gS(t) ; F (V ) = V 2 for the QIF

where

S(t) is assumed to be a Poissonian spike train

since the inputs can be assumed as uncorrelated K << N :

S(t) is a spike train with rate of arrival of the spikes R(t) = Kν(t)

ν(t) = 1
N

∑N
j=1

∑

n δ(t− t
(n)
j ) is the population firing rate
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Diffusion Approximation (DA)

Usually the Diffusion Approximation (DA) is applied to approximate the spike trains as

white continuous noise under the assumptions

the PSPs have small amplitudes g

the arrival rate is high (K >> 1)

The Poissonian spike train S(t) can be approximated as

S(t) = Kν(t) +
√

Kν(t)ξ(t)

and the Langevin equation becomes

V̇ = F (V ) +
√
K[i0 − g0ν(t)] + σ(t)ξ(t)

ξ(t) is a random Gaussian variable

the noise amplitude is σ(t) = g0
√

ν0(t) independent of K
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Complete versus DA Approach

Small K = 20− 200 , large g0 = 1− 4

Black - Network simulations

Blue - DA

Red - Complete Approach

(a) Morris-Lecar Conductance Based model - Class II excitable membrane

(b) QIF Neuron : Current-based model of Class I excitability

We simulated N = 20000− 80000 uncoupled Langevin equations, where the firing rate

population ν(t) is self-consistently determined

The DA does not capture the global oscillations
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Complete Mean Field : Population Dynamics

In the MF framework the population dynamics is usually described in terms of

P (V, t) : distribution of the membrane potentials of the neurons at time t

The time evolution is given for the QIF by the complete continuity equation

∂tP (V, t) + ∂V [(V 2 + I)P (V, t)] = R(t)∆P (V, T )

with

boundary condition limV→∞ V 2P (V, t) = ν(t)

∆P (V, T ) = [P (V +, t)− P (V, t)] with V + = V + g.

The stationary solution P0(V, t) corrresponds to asynchronous dynamics, the study of

the instabilities of this solution will determine the emergence of Global Oscillations
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The Fokker Planck Equation

By assuming that g is sufficiently small we can expand the term

∆P (V, t) =
∞
∑

p=1

gp

p!
∂pV P (V, t) ;

by limiting to the first two terms in this expansion we recover the Diffusion Approximation

corresponding to the following Fokker-Planck Equation

∂tP (V, t) + ∂V [(V 2 + A(t)]P (V, T )] = D(t)∂2
V 2P (V, t)

where

D(t) =
g20ν0(t)

2
A(t) =

√
K[i0 − g0ν(t)]

and with boundary condition

lim
V→∞

V 2P (V, t) = ν(t)
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Complete Mean Field

The QIF model evolution can be transformed in that of a phase oscillator, by introducing

the phase :

ψ = 2arctan (V/
√
I) ∈ [−π, π]

which leads to a uniformly rotating phase in the absence of incoming pulses for

supra-threshold neurons with I > 0

By considering the probability distribution of the phases this can be expanded in Fourier

as follows

w(ψ, t) = P (V, t)
(

I + V 2
)

/(2
√
I) = (2π)−1

+∞
∑

n=−∞
zne

−inψ

where zn are the so-called Kuramoto-Daido order parameters, with z0 = 1 and

z−n = z∗n .
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Complete Mean Field

After laborious but straightforward calculations, one obtains the following evolution

equations

żn = i2n
√
Izn +Kν

[

+∞
∑

m=0

Inm(α) zm − zn

]

n = 1, 2, 3, . . .

where α ≡ g/
√
I = g0/(

√
i0K3/4) and

Inm(α) ≡ 1

2π

2π
∫

0

einψ
(

e−iψa

)m
dψ

1 + α2

2
+ α sinψ + α2

2
cosψ

.

The firing rate can be self-consistently determined by the flux at the firing threshold as

follows

ν = 2
√
Iw(π, t) =

√
I

π
Re

(

1 + 2
∞
∑

k=1

(−1)kzk

)
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Phase Diagram

Bifurcation Lines

Black - DA

Orange - CMF

Symbols - Network Simulations

The system is controlled by only two parameters: K and α. Therefore a bidimensional

phase diagram in the plane (i0/g20 ,K) is sufficient to cover all the macroscopic regimes

observable in the network.

The linear stability of the stationary solution by considering a truncation of the

Fourier expansion to M ≥ 100 modes in order to guarantee a numerical accuracy

of O(10−12) has allowed us to find the Hopf Bifurcatione lines to the Oscillatory

Regime

A weakly nonlinear approach allowed us to obtain the amplitude equations and to

determine the super- or sub-critical nature of the bifurcations

DA analysis in Di Volo, Segneri, Goldobin, Politi, AT Chaos (2022)
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Phase Diagram

Bifurcation Lines

Black - DA

Orange - CMF

Symbols - Network Simulations

DA disagrees with network simulations for i0/g20 < 0.2

DA reports only super-critical Hopf bifs. and Oscillations ONLY for K > 200

CMF agrees with network simulations in the whole phase diagram

CMF report sub- and super-critical HBFs with a coexistence region of

asynchronous and oscillatory solutions

CMF tells that we can have oscillatory regimes even for K = 10
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Bifurcations

A typical order parameter to measure the level of synchronization is

ρ2 ≡ σ2(V )
∑N
i=1 σ

2(vi)/N
V =

N
∑

i=1

vi

N
,

Perfect synchronization ρ = 1 — Asynchronous state (AS) ρ = 1/
√
N

Quasi-adiabatic simulations by varying K (i0)

(b) K = 100 – Sub-critical Hopf

(Hysteresis) : coexistence of AR and

OR

(c) i0 = 0.00055 - Two kinds of GOs

at small and large K

COMPENG2024, Firenze 22/07/24 – p. 17



Two kinds of Global Oscillations

The GOs are due to the neurons not receiving any inhibitory PSP from reset to

threshold (free suprathreshold neurons);

(K = 10) Cluster Activation a neuron fires delivering large amplitude inhibitory

PSPs inducing a transient synchronization in K neurons and a sub-group, not

receiving further PSPs, can eventually reach threshold together

(K = 210) Drift-driven at each population burst, a non negligible part of the

neurons can get synchronized by the discharge of small inhibitory PSPs, despite

the fluctuations a sufficient percentage of neurons is able to fire together
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Summary

We have developed a Complete Mean Field formalism for a inhibitory random QIF

neural network in the balanced regime by encompassing finite amplitude PSPs

The Complete approach reproduces quite well the emergence of Global

Oscillations via super- and sub-critical Hopf bifurcations at variance with the

Diffusion Approximation

Two different kinds of Global Oscillations are identified at low and large in-degree

The results can be extended to non instantaneouns synapses, e.g. by

considenting an exponential PSP profile

Our theoretical results support the Buzsaki hypothesis that γ-oscillations in the

hippocampus can be generated by sub-networks of interneurons with low

in-degrees K = 30− 80

di Volo, Goldobin, and Torcini, ArXiv (2024)
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Cortical Dynamics

A cortical area can be seen as a recurrent random network made of a large number N of

excitatory and inhibitory neurons, each one receiving many inputs (K ≃ 10, 000):

the output of a neuron is an input to another neuron of the same area, the input

and output firing rate should be quite similar;

the inputs are uncorrelated due to the high dilution in the connections K/N << 1;

neurons emit spikes in an irregular fashion and not too frequently despite the many

excitatory and inhibitory inputs. Why ?
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The Balanced Network

Each neuron in a random recurrent network receives independent Poissonian trains of

spikes of amplitude J from K neurons firing with frequency ν0. Therefore

Average Excitatory and Inhibitory Synaptic Currents Ie ≃ Ii ≃ JKν0

Fluctuations of the total current I = Ie + Ii σ2(I) ≃ J2Kν0

The neurons in the cortex fire quite irregularly with a finite frequency (≃ ν0), therefore

I = Ie + Ii and σ2(I) should be both O(1), this is possible if

Excitatory and Inhibitory Inputs cancel each

other at leading order O(K):

I = Ie + Ii ≃ 0 — σ(I) = J
√
Kν0

The neurons fire due to current fluctuations

Synaptic couplings scale as J ∝ 1√
K

Vogels, Rajan, Abbott, Annu. Rev. Neurosci. (2005); van Vreeswijk Sompolinsky,

Science (1996)
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A Balanced Inhibitory Network
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Asynchronous Dynamics

If the dynamics is asynchronous the population firing rate is constant ν0(t) = ν0

For sufficiently large in-degree K >>> 1

the total input A(t) =
√
K[i0 − g0ν0] dynamically adjust

the system approaches the balanced state, where

lim
K→∞

ν0 =
i0

g0

Quadratic Integrate and Fire Morris-Lecar Model
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Fokker-Planck derivation (DA)

In order to solve the FPE, we map the membrane potential onto a phase variable

V = tan
(

θ
2

)

θ ∈ [−π, π[ the PDF now reads as

Rg(θ) = Pg(V )
dV

dθ
, where

dV

dθ
=

1

2 cos2 (θ/2)

and the FPE can be rewritten as

∂tRg(θ, t) = −∂θ [ψ0(θ)Rg(θ, t)− Z0(θ)∂θRg(θ, t)]

where

ψ0(θ) = (1− cos(θ)) + (Ag +Dg sin(θ))(1 + cos(θ)) ,

Z0(θ) = Dg(1 + cos(θ))2

with boundary condition 2
∫

dgRg(π, t)L(g) = ν(t) and L(g) is theLorentzian

distribution of the synaptic couplings
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Fokker-Planck derivation (DA)

Since we are now dealing with a phase variable, it is natural to express the PDF in

Fourier space,

Rg(θ, t) =
1

2π

[

1 +
∞
∑

m=1

(

am(g, t)e−imθ + c.c.
)

]

.

The associated Kuramoto-Daido order parameters for the population synchronization are

given by

zm(t) =

∫

dg am(g, t) L(g)

while the equations for the various modes are

ȧm = m

[

i(Ag + 1)am +
i

2
(Ag − 1)(am−1 + am+1)

]

− Dg

[

3m2

2
am + (m2 − m

2
)am−1 + (m2 +

m

2
)am+1

+
m(m− 1)

4
am−2 +

m(m+ 1)

4
am+2

]
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Fokker-Planck derivation (DA)

Since g is distributed according to a Lorentzian distribution

L(g) =
1

2i

[

1

(g − g0)− i∆g
− 1

(g − g0) + i∆g

]

,

with two complex poles at g = g0 ± i∆g . We can average over the heterogeneities by

invoking the Cauchy’s residue theorem and obtain the Kuramoto-Daido order parameters

zm(t) =

∫

dg am(g, t) L(g) = am(g0 − i∆g , t)
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Fokker-Planck derivation (DA)

By averaging the FPE over the g-distribution, one finds

żm = m

[

(iAg0 + i− νΓ)zm +
1

2
(iAg0 − i− νΓ)(zm−1 + zm+1)

]

− Dg0(1− i∆g

g0
)

[

3m2

2
zm + (m2 − m

2
)zm−1

+ (m2 +
m

2
)zm+1 +

m(m− 1)

4
zm−2 +

m(m+ 1)

4
zm+2

]

where Ag0 =
√
K[i0 − g0ν(t)], Dg0 = g20ν(t)/2 , Γ = ∆0g0
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Self Consistent Solution for the

Asynchronous Regime

In the Asynchronous Case the firing rate ν is stationary and therefore identical to the flux

for any V

ν(0) = [(V 2 + Ag0)P0(V )]− σ2∂V P0(V )

The solution of this self-consistent equation gives an analytic expression for P0(V ) and

its normalization ν

V = tan

(

θ

2

)

θ ∈ [−π, π[ 2 cos2(θ/2)R(0)(θ) = P0(V )
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Balanced Asynchronous State

The state is balanced if the total input current and the current fluctuations

Ag0 =
√
K[i0 − g0ν0] σ2 = CV 2g20ν0

remains finite in the limit K → ∞.
For K → ∞

ν0 = i0
g0

and σ2 is finite

the total input stays also finite

i0 = i∗ – Ag0 ≡ 0 – ∀K perfectly

balanced

i0 < i∗ – Ag0 < 0 – fluctuation driven

i0 > i∗ – Ag0 > 0 – mean driven

It is commonly believed that in the balanced state the dynamics is fluctuation driven:

not true A. Lerchner et al., Neural Comput (2006)
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Collective Oscillations in the Brain

Collective oscillations (COs) have been observed experimentally over a broad

range of frequencies in the cortex

The neurons fire irregularly with a firing rate ν0 much lower than those of COs

In theoretical studies

COs emerge in sparse networks due to endogeneous fluctuations via a Hopf

bifurcation from an asynchronous state in presence of a synaptic time scale

τe or transmission delay τe

the COs’ frequencies are related to the extra time scale fCO ≃ 1/(2τe)

(Brunel, 2000; Brunel & Hakim, 1999; van Vreeswijk et al., 1994)

Open Questions:

How can be the broad range of observed COs’ frequencies explained ?

Which is the role of the neural fluctuations due to balance ?
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COs in inhibitory balanced network

without an extra time scale
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Transition from AS to COs

A typical order parameter to measure the level of synchronization is

ρ2 ≡ σ2(V )
∑N
i=1 σ

2(vi)/N
V =

N
∑

i=1

vi

N
,

Perfect synchronization ρ = 1 — Asynchronous state (AS) ρ = 1/
√
N

By increasing K we have a

clear transition from AS to

COs

The microscopic dynamics is

always irregular CV ≃ 0.8
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Role of neural fluctuations

Range of COs frequencies

Neural fluctuations, due to balance, are necessary to observe collective oscillations

Frequencies of the COs can range over a wide interval νosc ∝ (i0)1/2K1/4
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Phase diagram of the homogeneous case

A phase diagram in the plane (i0,K) for the homogeneous case can be obtained within

the Fokker-Planck formulation:

a super-critical Hopf bifurcation line leads from asynchronous dynamics to

collective oscillations

a reasonable good agreement with direct simulations is observable

Black dashed line : Poisson

approximation

Orange dashed line : renewal

approximation with CV = 0.8

green dot : network simulations
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Homogeneous Case
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Nature of the Oscillatory Regime

Almost silent intervals alternate to

short bursts of activity (log scale)

The bursts are not related to a

synchronous activity

Just before the burst the PDF of the

membrane potentials is very broad

(magenta line) (log scale)

The narrow peak is a consequence of

an increasingly fast dynamics due to

the fact that many membrane

potentials (7 %) find themselves in a

region where their “velocity” is very

large just before the threshold
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Nature of the Oscillatory Regime
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The average firing rate < ν >≃ Np ∗ fCO , where the number of neuron in the burst Np

is independent by K, therefore < ν > scales as fCO ∝ K1/4
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Mean field for a heterogeneous network

In the mean field hypothesis the synaptic currents can be approximated as

Isyni =
g0√
K

∑

j∈pre(i)
εijδ(t− t(j)) ≃ g0√

K
kiR = giR

where the in-degrees ki are Lorentzian distributed with median K and HWHM

∆K = ∆0

√
K.

We can consider the neurons as fully coupled but but with random values of the coupling

gi distributed as a Lorentzian with

Median ḡ = −g0
√
K and HWHM Γ = g0∆0

By employing the residues’ theorem we can take into account exacly of the Lorentzian

distribution of the heterogeneities and end up in a Fokker-Planck formulation analogous

to that for the homogeneous case

See I. Ratas and K. Pyragas, Phys. Rev. E (2019) for an analogous

approach for a globally coupled heterogeneous QIF network with additive Gaussian

noise
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Heterogeneous Network
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Ott-Antonsen Approach

If one neglects fluctuations (i.e. setting Dg0 = 0), the Ott-Antonsen (OA) manifold

zm = (z1)m is invariant and attractive, and the FPE reduces to

2ż1 = (iAg0 − νΓ)[1 + z1]
2 − i[1− z1]

2

where

z1 =
1−W ∗

1 +W ∗ with W = πν + iν

The application of this transformation leads to the two following ODEs for v(t) and ν(t) :

ν̇ = ν(2v + Γ/π) ; v̇ = v2 +
√
K(i0 − g0ν)− (πν)2

This reduced mean field model has been studied in diVolo, Torcini PRL (2018)

and it does not give rise to collective oscillations

Ott, E., & Antonsen, T. M., Chaos (2009)
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Exact mean field model
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Mean field for a sparse network

In the mean field hypothesis the synaptic currents can be approximated as

Isyni =
g0√
K

∑

j∈pre(i)
εijδ(t− t(j)) ≃ g0√

K
kiR = giR

where the in-degrees ki are Lorentzian distributed with median K and HWHM

∆K = ∆0

√
K.

We can consider the neurons as fully coupled but but with random values of the coupling

gi distributed as a Lorentzian with

Median ḡ = −g0
√
K and HWHM Γ = g0∆0

Therefore the mean field (MF) for the random network can be written as

τmṘ = R(2V + g0∆0

π
)

τmV̇ = V 2 +
√
K(I0 − τmg0R)− (πRτm)2 .
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Asynchronous Dynamics

The MF dynamics has as stationary state a fixed point solution (V̄ , R̄) :

V̄ = (−g0∆0)/(2π)

R̄τm = g0
√
K

2π2

(
√

1 + 4π2√
K

I0
g2
0

+
∆2

0

K
− 1

)

→ I0
g0
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Linear Stability Analysis
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Circular Cumulants

In presence of weak noise a possible approach to go beyond the Ott-Antonsen Ansazt

consists in circular cumulants (CCs) {κm}.

Transfom QIF model in θ-model via the nonlinear transformation Vi = tan
(

θi
2

)

with θi ∈ [−π, π];
Write the FPE in Fourier space for a network in presence of extrinsic or intrinsic

noise fluctuations;

The FPE in Fourier consists of evolution equations involving the moments {Zn} of

the observable eiθ that are the Kuramoto-Daido order parameters.

The CCs are the cumulants associated to the moments {Zn}

I.V. Tyulkina, D.S. Goldobin, L.S. Klimenko, A. Pikovsky PRL (2018) have shown that a

truncations in terms of few CCs is able to describe the system dynamics in presence of

noise, the truncation in terms of CCs is much more effective that in terms of

Kuramoto-Daido order parameters.
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Circular Cumulants

We have applied the CCs approach to homogeneous and heterogeneous balanced

sparse QIF networks : M. di Volo, M. Segneri, D.S. Goldobin, A. Politi, AT Chaos (2022)

We observed that

even 2 CCs are sufficient to capture the emergence of COs via a Hopf bifurcation

for homogeneous and heterogeneous cases;

the 2 CCs are not able to well reproduce the mean field variables (r, v) and the

nature of the bifurcation;

The evolution equations of the CCs are quite complicated to treat because by

increasing the order of the expansion (e.g. from 2 to 3 CCs):

all the evolution equations are modified ;

even the definitions of the firing rate and of the mean membrane potential are

modified.
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Circular Cumulants
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Circular Cumulants: homogeneous
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Circular Cumulants: heterogeneous
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Diffusive versus Shot Noise

The nature of the noise can change the collective dynamics of the network

60 70 80 90 100

time
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FP shot noise
FP 3rd order
Rete 10K (average 50)

QIF Model Homogeneous Sparse Network
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Brunel-Hakim explanation for COs

purely inhibitory spiking network

a system with current fluctuations of amplitude σ

the spikes are transmitted with a synaptic delay τe

The explanation if the following:

1) a fluctuation leads to an increase of the input current δI and of the the firing rate

of the inhibitory neurons of δR

2) after a delay τe the input current is reduced by −JδR and so the firing rate of

the inhibitory neurons

3) after another delay τe the input current increases due to the reduction of the

firing rate, and the process repeats

The period of COs TCO ≃ 2τe, to have a frequency fCO ≃ 50 Hz, I should consider a

delay of order τe ≃ 10 ms
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