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Introduction

The science of complexity represents a new and extremely interdisciplinary
field of research. Complex systems are systems composed of many interacting
elements, whose collective behavior does not turns out to be the simple sum
of all individual behaviors [1]. In the beginning the concept of complex sys-
tems has been associated with the temporal evolution of systems composed
of units with highly nonlinear dynamics. In the last decade, the interest of
researchers has shifted towards an even more intriguing topic: the emergence
of not trivial collective dynamics in networks composed of elements whose
evolution is extremely simple, such as periodic oscillators. In fact, the in-
teraction of these oscillators can give rise to macroscopic dynamics ranging
from periodic to quasi-periodic motions and included chaotic motions [2–5].
A relevant goal for applied mathematics, nonlinear dynamics and statistical
mechanics is the understanding of the mechanisms that lead to the emergence
of these collective behaviors in complex networks made up of simple units.
It goes without saying that network organization of the brain is complex
at almost every scale, from small neuronal circuits to large scale networks,
where the single neurons represent the fundamental units.
In this thesis we will focus on the dynamics of complex neuronal networks,
where each individual oscillator is schematized as a phase oscillator, in partic-
ular we will focus on the so-called Quadratic Integrate-and-Fire (QIF) model.
In the last few years, the analysis of complex neural networks has been mainly
addressed through numerical simulations with limitations imposed by com-
puting resources, on the maximum number of neurons to consider in the
network. The QIF model is widely used in neuroscience due to its simplicity,
but at the same time it is able to capture the essential elements of neuronal
dynamics. Furthermore, being very fast to integrate numerically, it is partic-
ularly suitable for large-scale network simulations. As we will see in Chapter
2, the QIF model represents the normal form of type I neurons [6].
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Alternatively, effective mean field theories for neural dynamics at the popu-
lation level have been formulated: the so-called neural mass models [7]. Neu-
ral mass models reproduce the mean dynamics of neural network in terms of
macroscopic variables, for example the average activity rate of the population
(the so-called average firing rate) or the average value of neuronal membrane
potentials, and the equations that bind these quantities are generally de-
rived in a phenomenological way [8, 9]. The work of this thesis is inspired
by a new generation of neural mass models, developed in a recent article of
E. Montbrió et al. [10], where the mean field equations are derived exactly
starting from the microscopic ones for the neural population composed of
QIF neurons . This innovative approach is based on recent results of statis-
tical physics, which have shown the possibility of deriving exact macroscopic
models for coupled phase oscillator networks [11, 12]. Mean field models are
particularly suitable for large-scale simulations, as well as when one is inter-
ested in collective behaviors emerging from the interactions of multiple units.
The reduction of a large-dimensional network dynamics to a low-dimensional
mean field model, in addition to speeding up simulation times enormously,
highlights macroscopic mechanisms that are difficult to foresee by the cor-
responding network model. However, the exact reduction derived in [10] is
only valid for fully coupled networks.
In Chapter 3 of this thesis we present an application of this reduced model
based on PING and ING fully coupled network configurations with the aim
of reproducing the experimental data reported in [13].
To analyze the effects on the dynamics of a sparse network, in [14] an exact
mean field model for sparse networks was also derived but the randomness
in the couplings is only taken into account as a noise quenched terms, and it
does not take into account fluctuations induced by the sparseness (endoge-
nous noise). In Chapter 4 we use the same approach in order to analyze the
dynamics of a single balanced sparse inhibitory network with a finite synap-
tic decay.
Since intrinsic fluctuations are necessary to give rise to the transition from
asynchronous state to collective oscillations [14], in Chapter 5 of this thesis,
following Brunel and Hakim’s approach developed for the IF model [15], we
performe a Fokker-Planck formulation of the system analyzed in [14] to take
into account such intrinsic fluctuations. The limitation of this formulation
consists in being high dimensional and therefore, always in Chapter 5, we
try to develop a low dimensional theory that takes into account the intrinsic
fluctuations following the recent results of D. Goldobin et al. on cumulants
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approximation [16,17].
In more detail the thesis is structured as follows. In the first chapter we
introduce the concept of phase oscillator and provide a detailed analysis of
the Kuramoto model [18]. We then show how it is possible to exactly reduce
a system of N phase oscillators to a macroscopic system of low dimension.
In this context two exact mean-field approaches have been developed. The
first approach, developed in 1993 by Watanabe and Strogatz [19], is devoted
to identical oscillators; while the second one, introduced in 2008 by Ott and
Antonsen [11], describes the macroscopic dynamics of non-identical oscilla-
tors.
In the second chapter we introduce the single QIF neuron model by providing
a detailed study of its dynamics. We then define the network model of fully
coupled QIF neurons showing how to move from the microscopic description
of a population of QIF neurons with instantaneous synapses, corresponding
to a system of N degrees of freedom, to the exact neural mass model with
only two degrees of freedom, that is in terms of the average firing rate and
the average membrane potential of the network [10].
In the third chapter we examine two set-ups able to support collective gamma
oscillations: the pyramidal interneuronal network gamma (PING) and the in-
terneuronal network gamma (ING). In both set-ups we observe the emergence
of theta-nested gamma oscillations by driving the system with a sinusoidal
theta-forcing in proximity of a Hopf bifurcation. From our analysis it emerges
that the locked states are more frequent in the ING set-up. In agreement
with the experiments, we find theta-nested gamma oscillations for forcing
frequencies in the range [1:10] Hz, whose amplitudes grow proportionally to
the forcing one and which are clearly modulated by the theta phase. At
variance with experimental findings, the gamma-power peak does not shift
to higher frequencies by increasing the theta frequency. This effect can be
obtained, in our model, only by incrementing, at the same time, also the
noise or the forcing amplitude. This chapter contains our recent work pub-
lished in Frontiers in Computational Neuroscience [20].
In the fourth chapter we study balanced sparse inhibitory networks of QIF
neurons characterized by a finite synaptic time scale. As the main result, we
show theoretically and numerically that a single inhibitory population can
give rise to the coexistence of slow and fast gamma rhythms corresponding
to collective oscillations of a balanced spiking network [21–23]. The slow
and fast gamma rhythms are generated via two different mechanisms: the
fast one being driven by the coordinated tonic neural firing and the slow one

3



by endogenous fluctuations due to irregular neural activity. We show that
almost instantaneous stimulations can switch the collective gamma oscilla-
tions from slow to fast and vice versa. This chapter contains our recent paper
published in Physical Review Research [24].
In the fifth chapter we consider a sparse balanced inhibitory network of QIF
neurons with instantaneous synapses proving the transition from the asyn-
chronous state to collective oscillations for large enough average connectivity
by solving the associated Fokker-Planck equation. This result is in good
agreement with network simulations. Moreover we try to extend the OA
theory for sparse network by considering the Circular Cumulant approxima-
tion (CCs) [16]. In particular we consider CCs until the second cumulant,
providing a four-dimensional system for the first and second cumulant. This
low dimensional system is able to capture the transition from asynchronous
state to collective oscillations, however the discrepancy with the network
simulations suggests to consider major order of cumulants. This chapter
contains our last paper in preparation.

Publications of the candidate based on his PhD activity

1.Theta-nested gamma oscillations in next generation neural mass
models: Segneri M., Bi H., Olmi S. & Torcini A. (2020). Frontiers in Com-
putational Neuroscience, 14:47.

2.Coexistence of fast and slow gamma oscillations in one popula-
tion of inhibitory spiking neurons: Bi, H., Segneri, M., di Volo, M. &
Torcini, A. (2020). Physical Review Research, 2(1), 013042.

3.Emergence of collective oscillations in balanced neural networks
due to intrinsic fluctuations: M. di Volo, M. Segneri, D. Goldobin, A.
Politi, & A. Torcini, in preparation (2020).
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Chapter 1

Exact reduction methods for
phase oscillators networks

Summary:

In this chapter we introduce the concept of phase oscillator and provide
a detailed analysis of the Kuramoto model [18]. We then show how it is
possible to exactly reduce a system of N phase oscillators to a macroscopic
system of low dimension. In this context two exact mean-field approaches
have been developed. The first approach, developed in 1993 by Watanabe
and Strogatz [19], is devoted to identical oscillators; while the second one,
introduced in 2008 by Ott and Antonsen [11], describes the macroscopic
dynamics of non-identical oscillators.

1.1 Introduction

Many systems in neuroscience and biology are organised on different lev-
els by interacting processes [25]. Networks of coupled oscillators provide
models for such systems. Each node in the network is an oscillator (a dy-
namical process) and the network structure encodes which oscillators interact
with each other [26]. In neuroscience, individual oscillators could be single
neurons in microcircuits or neural masses on a more macroscopic level [27].
Other prominent examples in biology include cells in heart tissue [28], flash-
ing fireflies [29], gait patterns of animals [30] or humans [31], cells in the
suprachiasmatic nucleus in the brain generating the master clock for the
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circadian rhythm [32–34], hormone rhythms [35], suspensions of yeast cells
undergoing metabolic oscillations [36,37], and life cycles of phytoplankton in
chemostats [38].
The function - or dysfunction - of these networks depends on the collective
dynamics of the interacting oscillatory nodes. Hence, one major challenge is
to understand how the underlying network shapes these collective dynamics.
In particular, one would like to understand how the interplay of network
properties (for example, connectivity and strength of interactions) and prop-
erties of the individual nodes shape the emergent dynamics. The question
of relating network structure and dynamics is particularly pertinent in the
study of large-scale brain dynamics, for example one can investigate how
emergent functional connectivity (a dynamical property) arises from specific
structural connectomes [39,40], and how each of these relates to cognition or
disease. Progress in this direction not only aims to identify how healthy or
pathological dynamics is linked to the network structure, but also to develop
new treatment approaches [41–43].
One of the most prominent collective behaviors of an oscillator network oc-
curs when nodes synchronize and oscillate in unison [44–46]; indeed, most of
the examples given above display synchrony in some form which appears to
be essential to the proper functioning of biological life processes. Here we
think of synchrony in a general way: it can come in many varieties, includ-
ing phase synchrony where the state of different oscillators align exactly, or
frequency synchrony where the oscillators’ frequencies coincide. Synchrony
may be global across the entire network or localized in a particular part - the
rest of the network being nonsynchronized - thus giving rise to synchrony
patterns. How exactly the dynamics of synchrony patterns in an oscillator
network relate to its functional properties is still not fully understood. In
the brain, there is a wide range of rhythms but the presence of dominant
rhythms in different frequency bands indicate that some level of synchrony
is common at multiple scales [47,48]. Indeed, synchrony has been associated
with solving functional tasks including memory [49], computational func-
tions [50], cognition [51], attention [52, 53], control of gait and motion [54],
or breathing [55, 56] . At the same time, abnormal synchrony patterns are
associated with malfunction in disorders such as epilepsy and Parkinson’s
disease [57–59].
Using a detailed model of each node and a large number of nodes in the
network, relating network structure and dynamics is a daunting task. Hence
simplifying analytical reduction methods are needed that, rather than be-
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ing purely computational, yield a mechanistic understanding of the inherent
processes leading to a certain dynamic macroscopic behavior. If many bio-
logically relevant state variables are considered in a microscopic model, each
node is represented by a large dynamical system by itself. Hence, a common
approach is to simplify the description of each oscillatory node to its simplest
form, a phase oscillator ; in the reduced system the state of each oscillator
is given by a single periodic phase variable that captures the state of the
periodic process. In this case, the complex biological process determining
intrinsic dynamics are captured by the evolution of the phase variable and
its interaction with the phases of the other nodes.
The main topic of this chapter is a review of recent advances that allow a
reduction in the complexity of the problem: under certain assumptions, it
is possible to replace a large number of nodes by a collective or mean-field
variable. We focus here on phase oscillator networks that are organized into
populations because of their practical importance. The mean-field reductions
we present allow one to replace a network by a (low-dimensional) set of col-
lective variables to obtain a set of dynamical equations for these variables.
This set of mean-field equations describes the system exactly. Reducing to a
set of mean-field equations provides a simplified - but often still sufficiently
complex - description of the network dynamics that can be analyzed by us-
ing dynamical systems techniques [60]. Compared to heuristic macroscopic
models, the reduced equations capture microscopic properties of individual
oscillators; because of this property these reduced equations have been re-
ferred to as being next-generation models [61].
This chapter is organized as follows. Section (1.2) sets the stage by intro-
ducing the notion of a sinusoidally coupled network and showing the main
results concerning the Kuramoto model. In Section (1.3), we give a general
theory for the mean-field reductions and discuss their limitations: the meth-
ods include the Watanabe-Strogatz reduction for finite or infinite networks of
identical oscillators and the Ott-Antonsen reduction for the continuum limit
of nonidentical oscillators.

1.2 Phase oscillators and Kuramoto model

We consider phase oscillator networks where the state of each node is given
by a single phase variable. More specifically, consider a population of N os-
cillators where the state of oscillator (i) is given by a phase θi ∈ T, where T
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indicates circle of all phases [0, 2π). Without input, the phase of each oscilla-
tor (i) advances at its intrinsic frequency ωi ∈ R. The input to oscillator (i)
is determined by a field Hi(t) ∈ C which is modulated by a sinusoidal func-
tion; this field could be due to an external driving or to network interactions
between oscillators both within the same population or other populations.
In other words, we consider oscillator networks whose phases evolve according
to

θ̇i = ωi + Im
(
Hi(t)e

−iθi
)

(1.1)

Since the effect of the field is mediated by a function with exactly one har-
monic, we call the oscillator populations sinusoidally coupled.
While we allow the intrinsic frequency and the driving field to depend on the
oscillator to a certain extent (i.e., they are nonidentical), we will henceforth
also assume that all oscillators within any given population are indistinguish-
able: this means that the properties of each oscillator in a given population
are determined by the same distribution. Specifically, suppose that the prop-
erties of each oscillator are determined by a parameter ηi - for example, the
excitability in the case of a QIF neuron we will describe in the next chapter.
Now let both the intrinsic frequencies and the field be functions of this pa-
rameter, that is, ωi = ω(ηi) and Hi(t) = H(t; ηi). The oscillators of a given
population are indistinguishable if all ηi are random variables sampled from
a probability distribution with density g(η). In the special case that all ηi
are equal (in this case g is a delta-distribution) the oscillators are identical.
Phase oscillator networks of the form (1.1) include a range of well-known
models, here we briefly review one of them relevant for the presentation of
this thesis, named the Kuramoto model [18].
The Kuramoto model (hereafter called KM) consists of a population of N
coupled phase oscillators, θi(t), having natural frequencies ωi distributed with
a given probability density g(ω), and whose dynamics is governed by:

θ̇i = ωi +
N∑
j=1

Kijsin(θj − θi), i = 1, ..., N. (1.2)

Thus, each oscillator tries to run independently at its own frequency, while
the coupling tends to synchronize it to all the others. Without loss of general-
ity, we can consider g(ω) with zero mean, that is a system of phase oscillators
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whose natural frequencies have zero mean. When the coupling is sufficiently
weak, the oscillators run incoherently whereas beyond a certain threshold col-
lective synchronization emerges spontaneously. Many different models for the
coupling matrix Kij have been considered such as nearest-neighbor coupling,
hierarchical coupling, random long-range coupling, or even state dependent
interactions [62].
The synchronization transition observable in model (1.2) was accomplished
by Kuramoto in the case of mean-field coupling, that is taking Kij = K/N >
0 in Eq.(1.2) [18, 63]. Such a form of network interaction is so called since
the drive H(t) to a single oscillator is proportional to an average formed from
the states of all oscillators in the network.
The model in Eq.(1.2) was then written in a more convenient form, defining
the (complex-value) order-parameter1:

Z = reiψ =
1

N

N∑
j=1

eiθj . (1.3)

that is, the mean of all phases on the unit circle. Here r(t) with 0 ≤ r(t) ≤ 1
measures the coherence of the oscillator population. Its magnitude r =
|Z| describes the level of synchronization of the oscillator population, see
Fig.(1.1): on the one hand, r = 1 if and only if all oscillators are phase
synchronized, that is, θk = θj for all k and j; on the other hand, we have
r = 0 for example if the oscillators are evenly distributed around the circle.
The argument ψ of the Kuramoto order parameter Z describes the ”average
phase” of all oscillators, that is, it describes the average position of the
oscillator crowd on the circle of phases.

With this definition, Eq.(1.2) becomes:

θ̇i = ωi +Krsin(ψ − θi), i = 1, ..., N, (1.4)

and it is clear that each oscillator is coupled to the common average phase
ψ(t) with coupling strength given by Kr. The order parameter (1.3) can be
rewritten as:

1The order ”parameter” Z is an observable which encodes the state of the system rather
than a system parameter.

9



Figure 1.1: The Kuramoto order parameter (1.3) encodes the level of syn-
chrony of a phase oscillator population. The state of each oscillator is given
by a phase θi (black dot, empty arrow) on the circle T. Panel (a) shows a
configuration with high synchrony where r = |Z| ≈ 1. Panel (b) shows two
configurations with r = |Z| ≈ 0: one where the oscillators are approximately
uniformly distributed on the circle, the other one where they are organized
into two clusters.

Z = reiψ =

∫ +π

−π
eiθ
( 1

N

N∑
j=1

δ(θ − θj)
)
dθ. (1.5)

In the limit of infinitely many oscillators, they may be expected to be dis-
tributed with a probability density ρ(θ, ω, t), so that the arithmetic mean in
(1.3) becomes now an average over phase and frequency, namely:

Z = reiψ =

∫ +π

−π

∫ +∞

−∞
eiθρ(θ, ω, t)g(ω)dθdω. (1.6)

This equation illustrates the use of the order parameter to measure oscillator
synchronization. In fact, when K → 0, Eq. (1.4) yields θi ≈ ωit+ θi(0), that
is the oscillators rotate at angular frequencies given by their own natural
frequencies. Consequently, setting θ ≈ ωt in Eq. (1.6), by the Riemann-
Lebesgue lemma, we obtain that r → 0 as t→∞ and the oscillators are not
synchronized. On the other hand, in the limit of strong coupling, K → ∞,
the oscillators become synchronized to their average phase, θi ≈ ψ, and Eq.
(1.6) implies r → 1. For intermediate couplings, Kc ≤ K ≤ ∞, part of
the oscillators are locked in phase ( θ̇i = 0), and part are rotating out of
synchrony with the locked oscillators. This state of partial synchronization
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yields 0 ≤ r ≤ 1 and will be further explained below. Thus, synchronization
in the mean-field KM (with N = ∞) is revealed by a nonzero value of the
order parameter [64, 65].
The concept of order parameter as a measure of synchronization is less useful
for models with short-range coupling. In these systems, other concepts are
more appropriate to describe oscillator synchronization since more complex
situations can happen [66, 67]. For instance, it could happen that a finite
fraction of the oscillators have the same average frequency ω̃i, defined by:

ω̃i = lim
t→∞

1

t

∫ t

0

θ̇idt, (1.7)

while the other oscillators may be out of synchrony or that the phases of a
fraction of the oscillators can change at the same speed (and therefore par-
tial synchronization occurs), while different oscillator groups have different
speeds (and therefore their global order parameter is zero).
A continuity equation for the oscillator density can be found by noting that
each oscillator in Eq.(1.2) moves with an angular or drift velocity vi =
ωi + Krsin(ψ − θi). Therefore, in the case of mean-field coupling, the one-
oscillator density obeys the continuity equation:

∂ρ

∂t
+

∂

∂θ
{[ω +Kr sin(ψ − θ)]ρ} = 0, (1.8)

to be solved along with (1.6), with the normalization condition:

∫ +π

−π
ρ(θ, ω, t)dθ = 1, (1.9)

and an appropriate initial condition. The system of equations (1.6) - (1.9)
has the trivial stationary solution ρ = 1/(2π), r = 0, corresponding to an
angular distribution of oscillators having equal probability in the interval [-π,
+π]. Then, the oscillators run incoherently, and hence the trivial solution
is called the incoherent solution. Let us now try to find a simple solution
corresponding to oscillator synchronization. In the strong coupling limit, we
have global synchronization (phase locking), so that all oscillators have the
same phase, θi = ψ = ωit+ θi(0), which yields r = 1. For a finite coupling, it
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may occur a smaller degree of synchronization with a stationary amplitude,
i.e. 0 < r < 1. How can be obtained this smaller value of r? A typical
oscillator running with velocity v = ω − Krsin(θ − ψ), will become stably
locked at an angle such that Krsin(θ − ψ) = ω and −π/2 ≤ (θ − ψ) ≤ π/2.
All such oscillators are locked in the natural laboratory frame of reference.
Oscillators with frequencies |ω| > Kr cannot be locked. They run out of
synchrony with the locked oscillators, and their stationary density obeys
vρ = C (constant), according to Eq. (1.8). We have obtained a stationary
state of partial synchronization, in which part of the oscillators are locked at
a fixed phase while all others are rotating out of synchrony with them. The
corresponding stationary density is therefore

ρ =

{
δ(θ − ψ − sin−1( ω

Kr
))H(cos(θ)) |ω| < Kr

C
|ω−Krsin(θ−ψ)| elsewhere

(1.10)

Here H(x) = 1 if x > 0 and H(x) = 0 otherwise, that is H(x) is the Heavi-
side unit step function. The normalization condition (1.9) for each frequency
yields C =

√
ω2 − (Kr)2/(2π).

We can now evaluate the order parameter in the state of partial synchroniza-
tion by using (1.6) and (1.10),

r =

∫ +π/2

−π/2

∫
|ω|<Kr

ei(θ−ψ)δ(θ − ψ − sin−1(
ω

Kr
))g(ω)dθdω

+

∫ +π

−π

∫
|ω|>Kr

ei(θ−ψ) Cg(ω)

|ω −Krsin(θ − ψ)|dθdω. (1.11)

Let us assume that g(ω) = g(−ω). Then, the symmetry relation ρ(θ +
π,−ω) = ρ(θ, ω) implies that the second term in this equation is zero. The
first term is simply:

r =

∫
|ω|<Kr

cos(sin−1(
ω

Kr
))g(ω)dω

=

∫ +π/2

−π/2
cosθg(Krsinθ)Krcosθdθ. (1.12)
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that is,

r = Kr

∫ +π/2

−π/2
cos2θg(Krsinθ)dθ. (1.13)

This equation has always the trivial solution r = 0 corresponding to the
regime of incoherence, ρ = (2π)−1. However, it also has a second branch of
solutions, corresponding to the partially synchronized phase (1.10), satisfying

1 = K

∫ +π/2

−π/2
cos2θg(Krsinθ)dθ. (1.14)

This branch bifurcates continuously from r = 0 at the value K = Kc obtained
by setting r = 0 in (1.14), which yields Kc = 2/[πg(0)]. Such a formula and
the argument leading to it were first found by Kuramoto [18]. Considering,
as an example, the Lorentzian frequency distribution:

g(ω) =
1

π

γ

γ2 + ω2
. (1.15)

In this case it is possible to estimate analytically the above integral (1.14).
By assuming the distribution of the frequencies is Lorentzian, Kuramoto was
able to find the folowing exact result [18]:

r =

√
1− Kc

K
. (1.16)

for all K > Kc = 2γ. For a general frequency distribution g(ω), an expansion
of the right-hand side of Eq. (1.13) in powers of Kr yields the scaling law

r ∼
√

8(K −Kc)

−K3
c g
′′(0)

. (1.17)

as K → Kc.
According to (1.17), the partially synchronized phase bifurcates supercriti-
cally for K > Kc if g

′′
(0) < 0, and subcritically for K < Kc if g

′′
(0) > 0, see
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Figure 1.2: (a) Supercritical bifurcation in a diagram of r vs. K. (b) Subcrit-
ical bifurcation.

Figs.(1.2) (a) and (b). Notice that Kuramoto’s calculation of the partially
synchronized phase does not indicate whether this phase is stable, either
globally or even locally.
The Kuramoto model (1.2) is an example of a sinusoidally coupled phase
oscillator network.
Using Euler’s identity eiφ = cos(φ) + isin(φ), we have

θ̇i = ωi + Im
(K
N

N∑
j=1

ei(θj−θi)
)

= ωi + Im
(
KZ(t)e−iθi

)
where the Kuramoto order parameter Z(t) = Z(θ1(t), ..., θi(t)), as defined
in (1.3), depends on time through the phases. Hence, the Kuramoto model
(1.2) is equivalent to (1.1) with H(t) = KZ(t) and the interactions between
oscillators are solely determined by the Kuramoto order parameter Z(t) time
the coupling K. Note that the field H(t) is proportional to K having assumed
that each oscillator is affected by a coupling equal to K/N independent of
time.

1.3 Exact mean-field description

We now review how sinusoidally coupled phase oscillator networks (1.1) can
be described in an exact way at a macroscopic level in terms of a mean-field
description.

14



1.3.1 Watanabe-Strogatz reduction

Mean-field reductions are possible for both finite and infinite networks for
populations of identical oscillators. These reductions are due to the high
level of degeneracy in the system, i.e., there are many quantities that are
conserved as time evolves. This degeneracy was first observed in the early
1990s for coupled Josephson junctions2 arrays [68], which relate directly to
Kuramoto’s model of coupled phase oscillators [69].
Watanabe and Strogatz [70] show that the N Josephson junctions system
has N -3 independent motion constants and there is a transformation of the
variables that reduce the system to a low dimensional one. Here the phase
θi(t) represents the quantum mechanical phase difference across the junction
i, but the same reduction method can be applied to all oscillator systems
that follow Eq. (1.1).
In this section we introduce a nonlinear transformation that explicitly reduces
a fairly large class of N -dimensional oscillator systems (N > 3) to three-
dimensional ones.
The general model is composed by N oscillators whose dynamics is governed
by a system of differential equations of the same dimension

θ̇j = f + gcosθj + hsinθj, j = 1, ..., N, (1.18)

where we will find a transformation that will reduce it to a 3-dimensional sys-
tem. Regarding the variables: θj is the phase of the j-th oscillator and f , g,
h are functions of the phases of all the oscillators in the system θ1, θ2, ..., θN ,
but they do not depend on the j-th index. The situation is similar to that of
the mean field models except that here they are not necessarily an average
of the state variables but on the contrary they are more general functions.
The phase space of (1.18) is N -dimensional, however we are going to demon-
strate that each path is going to be contained in a 3-dimensional space. For
this we consider the following change of variables

tan
(θj(t)−Θ(t)

2

)
=

√
1 + γ(t)

1− γ(t)
tan
(ψj −Ψ(t)

2

)
, (1.19)

2Josephson junctions are superconducting electrical devices that can generate potential
difference of high frequency, typically 1010-1011 cycles per second.
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where ψj are known as the constants of motion and 0 ≤ γ < 1. The first fact
that we have to highlight is that with this transformation a solution θj(t)
of the system (1.18) has the form of (1.19) and therefore can be generated
from a set of parameters ψj that are invariant in time. The three variables
Θ(t), γ(t) and Ψ(t) are known as WS variables and are the ones that allow
the reduction of the model. Let’s show where they come from and why we
introduce them, later we will see their physical interpretation and meaning.
The explanation of why this variable trasformation is used is predicted from
previous articles [71] where the system (1.18) is solved when f , g and h
are constant, in this way we can obtain θj(t) explicitly and it has the form
of (1.19) where Θ(t) and Ψ(t) are simply proportional to t while γ(t) is
constant. So the only thing to do to solve the problem when f , g, and h are
not constant, is to apply the method of variation of the parameters to get
the final expression (1.19). Let’s rewrite the system (1.18) in terms of the
new variables according to the transformation

cosθj =
(cos(ψj −Ψ)− γ)cosΘ−

√
1− γ2sinΘsin(ψj −Ψ)

1− γcos(ψj −Ψ)
,

sinθj =
(cos(ψj −Ψ)− γ)sinΘ−

√
1− γ2cosΘsin(ψj −Ψ)

1− γcos(ψj −Ψ)
.

(1.20)

Now we need to compute the derivative on time and we can do it directly
from the variable change (1.19)

θ̇j = Θ̇ +
γ̇sin(ψj −Ψ)− (1− γ2)Ψ̇√

1− γ2(1− γcos(ψj −Ψ))
; (1.21)

We already have all the elements necessary to express (1.18) in terms of the
new variables. Using the relations (1.21) and (1.20) in equation (1.18) and
rearranging we get:

0 = (Θ̇−
√

1− γ2Ψ̇− f + gγcosΘ + hγsinΘ)+,

+cos(ψj −Ψ)(−γΘ̇ + γf − gcosΘ− hsinΘ)+,

+sin(ψj −Ψ)
( γ̇√

1− γ2
+ g
√

1− γ2sinΘ− h
√

1− γ2cosΘ
)
.

(1.22)
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If we want equality to be verified for all j and for all t we have to cancel the
coefficients accompanying 1, cos(ψj − Ψ), sin(ψj − Ψ). For this we have to
impose three conditions on the variables γ, Θ, Ψ:

γ̇ = −(1− γ2)(gsinΘ− hcosΘ)

γΘ̇ = γf − gcosΘ− hsinΘ

γΨ̇ = −
√

1− γ2(gcosΘ + hsinΘ)

(1.23)

In this way we have achieved to reduce the system of N differentials equations
(1.18) to one of three real differential equations (1.23) expressed only in terms
of the variables (γ(t), Ψ(t), Θ(t)) and the functions f , g, h.
Once seen the form that the system takes in the new variables (1.23) it is
convenient clarify the meaning of these new variables that have made this
drastic reduction possible in our system ( see Fig. (1.3)). The variables γ, Θ
and Ψ describe the reduced system and for this we refer to them as ”bunch”
variables. Generally speaking the change we have made is somewhat similar
to a change to polar variable where γ is related to the bunch amplitude or
radius, Θ is related to the bunch phase or angle and Ψ is related to the phase
bunch distribution. Similar to the Kuramoto order parameter Z = reiψ

in Eq. (1.3), the mean amplitude γ and the mean phase Φ characterize
synchrony (or equivalently, the maximum of the phase distribution); while
Z and z = γeiΦ do not coincide in general, they do if the population is
fully synchronized. The phase distribution variable Ψ determines the shift
of individual oscillators with respect to Φ as illustrated in Fig. (1.3).

Thus the integration of the N -dimensional system (1.18) has been reduced
to the integration of the three-dimensional system (1.23). More precisely, we
have shown that (1.18) is equivalent to a (N -3)-parameter family of three-
dimensional system, where the parameters are the constants of motion ψj.
If we look at system (1.23), we see a singularity when γ = 0. To avoid this
singularity we can make a change of variables that takes us back to cartesian
coordinates:

x = γcosΘ, y = γsinΘ, Φ = Θ−Ψ. (1.24)

In these new variables (1.23) becomes:
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Figure 1.3: Illustration of the WS variables. Like the Kuramoto order pa-
rameter Z, the amplitude and phase in z = γeiΦ characterize the level of
synchrony. The quantities Z and z do however only coincide if the popula-
tion is fully synchronized or for uniformly distributed constants of motion in
the limit N → ∞. The variable Ψ is related to the phase shift and phase
distribution of individual oscillators with respect to Φ.


ẋ = −yf + xyg + (1− x2)h

ẏ = xf − (1− y2)g − xyh
Φ̇ = f − 1− 1−

√
1−γ2
γ2

(gx+ hy).

(1.25)

If we study the case in which γ = 0 we see that the expressions of ẋ, ẏ do
not give any problem while in Φ̇ there is an indeterminacy but in the limit
γ → 0, the new variables take the value:

ẋ = h, ẏ = −g, Φ̇ = f. (1.26)

We will now turn our attention to oscillator systems where the number of
oscillators tends to infinity, N →∞.
The main difference between the finite and infinite system is the way in
which we see the oscillators. In the discrete case, when N is finite, the phase
variables of the oscillators of the system θ1, θ2, ..., θN are as particles moving
in the unit circle. In the continuous case, when N → ∞, we are not longer
able to distinguish them individually but on the contrary we will treat them
as if they were a fluid characterize by a density ρ(θ, t) that indicates the
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oscillators with phase θ at time t.
Not surprisingly, the transition from a discrete to a continuous system and
the appearance of a density associated with system variables implies a series
of extra conditions that must be checked to consistently set the problem:

• The integral through the entire domain must to be one (normalization
of the probability distribution):

∫ 2π

0

ρ(θ, t)dθ = 1. (1.27)

• The conservation condition of the number of oscillators implies that
the dynamic is given by the transport equation3:

∂ρ

∂t
+

∂

∂θ
(ρv) = 0, (1.28)

where ν(θ, t) = f + gcosθ + hsinθ is the velocity of the fluid.

These conditions define the system in the continuous case. We now apply
the reduction like the one in the system (1.18), the idea is essentially the
same but the details change a little.
The main idea is to reduce (1.28) by making a change of variables that
removes the dependency of time, which is exactly what we have done before
when we went from θ to ψ by (1.19). Let us generalize (1.19) with the velocity
removing the subscripts, namely by considering the changing θj → θ. What
we want to do with this change is to find conditions on (γ, Ψ, Θ) that allow
to express the density ρ(θ, t) as a new time-independent density σ(ψ), where
ρ and σ are related by:

ρ(θ, t)dθ = σ(ψ)dψ ∀t, (1.29)

3Transport equations are common in physics. They are also known as the continuity
equation (or Liouville equation in classical statistical physics describing the ensemble evo-
lution in time) and play the important role of describing conservation laws. To visualize,
in the context of fluid dynamics, the density in (1.28) plays the role of a mass density and
(1.28) implies then that the total mass in the system is a conserved quantity.
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to conserve oscillators in any infinitesimal interval.
Performing the same derivation as before, recalling [70] for all the mathe-
matical details, we get the same system (1.23) that proves the validity of the
reduction in the continuous case.
At this point we have reported the main aspects of the WS reduction method
for a general class of coupled oscillators.

1.3.2 Ott-Antonsen reduction

The origin of the theory of Ott and Antonsen (OA) is more recent than that
of WS since their most relevant works in this field [11] and [72] date from 2008
and 2009. Both works are based on the same model of oscillators that we
have presented in Eq. (1.1) and the aim is to give an alternative methodology
to the one proposed by WS to reduce the dimensionality of this system. In
particular, they demonstrate that for Kuramoto-type systems (1.4), given
a certain distribution of the frequencies, there is a single complex ordinary
first-order differential equation (2 degrees of freedom) that determines the
dynamics of the system and also, given an initial conditions, they find their
exact solution analytically.
The Ott-Antonsen reduction applies to the continuum limit of populations
of indistinguishable sinusoidally coupled phase oscillators (1.1). We first
outline the basic steps to derive the macroscopic equations and highlight the
assumptions made along the way.
We now consider the dynamics of (1.1) in the (continuum) limit of infinitely
large networks, N →∞. To simplify the exposition, we consider the classical
case in which the intrinsic frequency, ωk = ηk, is a random parameter and
the driving field, Hk, is the same for all oscillators. Hence, suppose that
the intrinsic frequencies ωk are randomly drawn from a distribution with
density g(ω) on R. In the continuum limit, the state of a population at time
t is not given by a collection of oscillator phases, but rather by a probability
density ρ(ω, θ; t) for an oscillator with intrinsic frequency ω ∈ R to have phase
θ ∈ T at time t. For a set of phases B ⊂ T the integral

∫
B

∫
R ρ(θ, ω; t)dωdθ

determines the fraction of oscillators whose phase is in B at time t. Moreover,
we have

∫
T ρ(θ, ω; t)dθ = g(ω) for all times t by our assumption that the

intrinsic frequencies do not change over time.
The conservation of the total number N of the oscillators implies that the
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dynamics of (1.1) in the continuum limit is given by the transport equation4

∂ρ

∂t
+

∂

∂θ
(vρ) = 0 with v = ω + Im

(
H(t)e−iθ

)
(1.30)

exactly as we have shown in the case of WS.
Because the number of oscillators is conserved, the change of the phase distri-
bution over time is determined by the change of phases given by the velocity
v through (1.1) at time t of an oscillator with phase θ and intrinsic frequency
ω.
Ott and Antonsen [11] showed that there exists a manifold of invariant prob-
ability densities for the transport equation (1.30). Specifically, if ρ(θ, ω, 0)
satisfies the condition of the manifold (we will specify these conditions later),
so the density ρ(θ, ω, t) will satisfies the condition of the manifold as well,
for any time t ≥ 0.
Let

Z =

∫ +∞

−∞

∫ +π

−π
ρ(θ, ω, t)e−iθdθdω (1.31)

denote the Kuramoto order parameter (1.3) in the continuum limit. We will
see below that the evolution on the invariant manifold is now described by a
simple ordinary differential equation for Z.
In the following we outline the key steps to derive a set of reduced equations
and refer to [11, 72, 76] for further details. Suppose that ρ(θ, ω, t) can be
expanded into a Fourier series in the phase angle θ of the form

ρ(θ, ω, t) =
g(ω)

2π

(
1 + ρ+ + ρ−

)
where ρ+ =

+∞∑
n=1

ρ(n)(ω, t)einθ (1.32)

Here it is assumed that ρ+ has an analytic continuation into the complex
half plane { Im(θ)> 0 } (and ρ− = ρ+∗ into { Im(θ) < 0 }); even with this
assumption we can solve a large class of problems, but it poses a restriction
to a number of practical cases discussed in the section (1.3.3) below. Ott and

4 If the oscillators are subject to noise, the continuity equation is a Fokker-Planck
equation which contains an additional diffusive term [64,73–75].
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Antonsen now imposed the ansatz that Fourier coefficients are powers of a
single function a(ω, t),

ρ(n)(ω, t) = [a(ω, t)]n (1.33)

where |a(ω, t)| < 1 to avoid divergence (this ansatz is equivalent to the

Poisson kernel structure for the unit disk, ρ+ = aeiθ

1−aeiθ ). Substitution of
(1.32) into (1.30) yields

∂a

∂t
+ iωa+

1

2
(Ha2 −H∗) = 0. (1.34)

Thus, the ansatz (1.33) reduces the integral partial differential equation
(1.30) to a single complex ordinary differential equation in a. Finally, with
(1.33) we obtain

Z =

∫ +∞

−∞
g(ω)a(ω, t)dω, (1.35)

which relates a and the order parameter Z in (1.31). Assuming analyticity,
this integral may be evaluated using the residue theorem of complex analysis.
We now clarify under which conditions the OA ansatz is applicable. First
of all, performing the summation of the Fourier series and using

∑∞
n=1 x

n =
x/(1− x) in (1.32) :

ρ(θ, ω, t) =
g(ω)

2π

(1− |α|)(1 + |α|)
(1− |α|)2 + 4 |α| sin2[1

2
(θ − ψ)]

, (1.36)

where α ≡ |α| e−iψ and ψ real. In order that Eqs. (1.34) and (1.35) represent
a solution of Eq. (1.31) for all time, we require that, as α(ω, t) evolves under
Eq. (1.34) and Eq. (1.35), |α(ω, t)| ≤ 1 continues to be satisfied. This can
be shown by substituting α = |α| e−iψ into Eq. (1.34), multiplying by eiψ,
and taking the real part of the result, thus obtaining :

∂ |a|
∂t

+
1

2
(|a|2 − 1)Re[He−iψ] = 0. (1.37)
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We see from Eq. (1.37) that ∂ |a| /∂t = 0 at |a| = 1. Hence a trajectory of
Eq. (1.34), starting with an initial condition satisfying |α(ω, 0)| < 1 cannot
cross the unit circle in the complex α-plane, and we have |α(ω, t)| < 1 for all
finite time, 0 ≤ t < +∞.
To proceed further, we now introduce another restriction on our assumed
form of ρ; we require that α(ω, t) can be analytically continued from real ω
into the complex ω-plane, and that this continuation has no singularities in
the lower half ω-plane, and that |α(ω, t)| → 0 as Im(ω) → −∞. If these
conditions are satisfied for the initial condition, α(ω, 0), then they are also
satisfied for α(ω, t) for 0 < t < ∞. To see that this is so, we first note that
for large negative ωi = Im(ω), Eq. (1.34) is approximately ∂α/∂t = − |ωi|α,
and thus α(ω, t)→ 0 as ωi → −∞ will continue to be satisfied if α(ω, 0)→ 0
as ωi → −∞.
We can now exactly specify the invariant manifold M on which our dynamics
takes place. It is the space of functions of the real variable (ω, t) of the
form given by Eq. (1.36) where |α(ω, t)| ≤ 1 for real ω; α(ω, t) can be
analytically continued from the real ω−axis into the lower half ω-plane; and,
when continued into the lower half ω-plane, α(ω, t) has no singularities there
and approaches zero as ωi → −∞.
These equations take a particularly simple form if the distribution of intrinsic
frequencies g(ω) is Lorentzian with mean ω̂ and width ∆, i.e.,

g(ω) =
1

π

∆

(ω − ω̂)2 + ∆2
(1.38)

since g(ω) has poles at ω̂ ± i∆ and thus (1.35) gives Z = a(ω̂ − i∆, t). As
a result, we obtain the two-dimensional differential equation for the order
parameter of the population:

Ż = −(∆ + iω̂)Z +
1

2
H∗ − 1

2
HZ2 (1.39)

know as Ott-Antonsen equations.
We note that this reduction method also works for other frequency distribu-
tion g as outlined in [76], in which the authors show that the OA reduction
also applies for Maxwellian distribution ( gM(ω) ∼ e−(ω−ω̄)2/[2(∆ω)2] ) and sech
distribution (gs(ω) ∼ sech[(ω − ω̄)/∆ω]). In [11] it is showed that the OA
reduction also is possible for Lorentzian-type distribution as gL(ω) ∼ 1

ω4+1
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which decreases as ω−4 in contrast of the Lorentzian distribution (1.38).
Moreover in [72] the autors discuss that past numerical experiments com-
paring results obtained using Lorentzian g(ω) and using Gaussian g(ω) were
found to yield qualitatively identical bifurcation structures. However, the
resulting mean field equation will not always be a single complex ordinary
equation but could be a set of coupled complex ordinary equations. For ex-
ample, for multi-modal frequency distributions g the Ott-Antonsen equations
will have an equation for each mode; see [77–79] .
The derivation above only states that there is an invariant manifold of den-
sities ρ for the transport equation (1.30). What happens to densities ρ that
are not on the manifold as time evolves? Under some assumptions on the
distribution in intrinsic frequencies g, Ott and Antonsen also showed in [72]
that there are densities ρ that are attracted to the invariant manifold. In
particular in [72] they show that for a Lorentzian distribution of the form
(1.38), for ∆ > 0, the long time dynamics of the order parameter Z(t) is
governed by the ordinary differential equation (1.39) that describes its dy-
namics for distribution functions ρ(θ, ω, t) on the reduced manifold. Thus,
even if our desired condition Im(ω)→ −∞ is not satisfied initially, in many
cases, the result that the long time dynamics of Z(t) is described by (1.39)
may still apply.
In other words, the dynamics of the Ott-Antonsen equations capture the
long-term dynamics of a wider range of initial phase distributions ρ(θ, ω, 0),
whether they satisfy (1.33) initially or not.
We close this section showing as an example the Ott-Antonsen (OA) mean
field equations for the Kuramoto model.
Consider the continuum limit of the Kuramoto model (1.4) with a Lorentzian
distribution of intrinsic frequencies. Recall that the driving field for the Ku-
ramoto model is H(t) = KZ(t). Substituting this into (1.39) we obtain
Ott-Antonsen formulation for the Kuramoto model:

Ż = −(∆ + iω̂)Z +
K

2
Z − K

2
|Z|2Z (1.40)

1.3.3 Comments and Limitations

Before we apply the mean field reductions to particular neural model net-
works in the next chapter, let’s close this chapter with some comments on
the limitations of these approaches.
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As stated above, the main assumption for the validity of the OA reduction
is that the interactions is restricted to pure sinusoidal coupling function and
that the number of oscillators is infinite. Moreover the network must be fully-
coupled. There are explicit examples that show that the reductions become
invalid if these assumptions are not verified. This does not mean that the
reductions break down completely, and there may still be some degeneracy in
the system if the interaction is of a specific form; see [80] for a more detailed
discussion. It remains a challenge to identify which part of the mean-field
reduction (if any) remains valid for more general interaction functions and
phase response curves. Another example [17] come up considering the collec-
tive dynamics in large populations of coupled phase oscillators with intrinsic
noise.
The Ott-Antonsen reduction for the continuum limit allows for the oscillators
to be nonidentical. By contrast, the Watanabe-Strogatz reduction of finite
networks requires oscillators to be identical. Neither of these approaches ap-
plies to finite networks of nonidentical oscillators, and understanding such
networks remains a challenge. There has also been some recent progress ana-
lyzing situations in which the Ott-Antonsen or Watanabe-Strogatz equations
do not apply exactly, using perturbation approach for weakly nonidentical
oscillators ensembles [81].
Finally, Ott and Antonsen showed that the manifold of oscillator densities ρ
on which the reduction holds is attracting [72]. Their method of proof has
been shown to apply to a wider class of systems [77]. As pointed out by
Mirollo [82], their proof is based on a strong smoothness assumption on the
density ρ which implies limitations to this approach. More precisely, to be
able to evaluate contour integrals using the residue theorem, it is typically
assumed that the density is holomorphic. This assumption is only valid for
distributions g that allow for arbitrarily large (or small) intrinsic frequencies
with nonzero probability. Any distribution for which the intrinsic frequencies
are bound to a finite interval - the intrinsic frequencies of any finite collection
of oscillators will lie in a finite interval - are excluded. Hence, while the mani-
fold described by Ott and Antonsen attracts some class of oscillator densities
(which include some commonly used ones like Lorentzians and Gaussians),
it is not clear how large this class actually is.
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Chapter 2

QIF model and Firing Rate
Equations

Summary:

In this chapter we introduce the single QIF neuron model providing a de-
tailed study of its dynamics. We then define the network model of fully
coupled QIF neurons showing how to move from the microscopic description
of a population of QIF neurons with instantaneous synapses, corresponding
to a system of N degrees of freedom, to the exact neural mass model with
only two degrees of freedom, that is in terms of the average firing rate and
the average membrane potential of the network.

2.1 Introduction

Neurons, of various types and morphologies, are connected in very complex
networks through chemical and electrical synapses in the various areas of the
brain, present in all vertebrates and in many invertebrates. For example,
the human brain contains about 100 billion neurons and each neuron can
be connected to a large number of other neurons, up to 10,000. The com-
plexity of the network brain is such that it cannot be studied numerically
(or theoretically) with a direct approach, i.e. by making the most faithful
reproduction of the brain or portions of it, since going into extreme neural
network description details risks, due to the presence of a very high number
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of parameters to be calibrated, to make the state of the network very sensi-
tive to small variations of the parameters themselves, both because from a
numerical point of view, the simulation of this network would become very
expensive in terms of calculation, making possible only simulations for very
short time intervals.
The understanding of any complex system goes through the choice of a de-
scription level that captures the fundamental properties of the system and
overlooks those that are not essential to its purpose. In particular, if we
are interested in studying the collective phenomena of a neuronal network,
for example phenomena of synchronization, clustering, information coding,
memory formation, etc., then it is reasonable to use a simplified microscopic
representation of the neuron [83]. In neuroscience, the so-called formal spik-
ing neuronal models are used to perform theoretical analyses and simulations
of large-scale networks [84].
In this chapter we analyze one of these formal spiking models, the so-called
Quadratic Integrate-and-Fire model (QIF). In addition, given that there are
multiple simplified single models neuron, we will try to give a justification
for the reason for this choice.
In particular, in Section 2.2 we define the variables that describe the dynam-
ics of a neuron and we describe qualitatively the distinction between type I
and II neurons. Starting from this distinction we derive, in Section 2.3, the
QIF model providing a detailed description of its dynamics. In Section 2.4
we define the fully-coupled network model of QIF neurons and in Section 2.5
we illustrate how to reduce, under certain hypotheses, the detailed network
microscopic dynamics to a few simple equations that describe its macroscopic
dynamics. Finally, in Section 2.6, we discuss the validity of this reduction
method.

2.2 Type I and II neurons

Before moving on to the description of the QIF model, it is useful to summa-
rize how the dynamics of the individual neuron (i.e. its activity) originates,
through the illustration of some basic notions of neurophysiology.
The membrane potential of a neuron is defined as the difference potential
measured at the ends of two electrodes, one placed inside the neuronal cell
and one placed in the surrounding extracellular liquid. When we talk about
neuronal signal we refer to the temporal and spatial variation of the mem-
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brane potential. When the neuron is at rest, that is, it is not somehow
excited from the outside, the membrane potential assumes a characteristic
value called resting potential, typically of the order of −65 mV , i.e. the in-
terior of the cell is at a lower potential than on the outside.
Action potentials are typical voltage impulses generated during neuronal dy-
namics; they have an almost stereotyped form and are not subject to at-
tenuation or distortion during its propagation. The action potential is the
elementary unit associated with the transmission of neuronal signals. Typ-
ically when we refer to the signal emitted by a neuron we mean the time
sequence of these action potentials, called spike train.
We can schematize the emission of an action potential by a neuron i as fol-
lows. The neuron i receives a certain number of impulses from the neurons
pre-connected to it (called presynaptic neurons). If these impulses are re-
ceived in a sufficiently short time window, the neuron i responses roughly
linear, in the sense that its membrane potential increases approximately pro-
portionally to the input it receives. When the potential of neuron i reaches
a typical value, Vth, called the activation threshold, the behavior of the neu-
ron becomes highly not linear: it is generated an action potential that has
a stereotyped form and therefore unrelated to the stimuli that produced it;
moreover the neuron, for the entire duration of the emission of the action
potential, becomes insensitive, namely refractory, to the stimuli that come
from the other neurons.
In formal spiking models, the form of the action potential is not reproduced
and it is formally assumed that the neuron emits an impulse towards the
neurons connected to it at the precise moment when the value of the poten-
tial reaches a certain value. The idea behind the formal spiking models is to
describe the sub-threshold evolution of the membrane potential and to treat
the emission of the action potential as a stereotype event.
In the brain there are multiple types of neurons with different dynamics.
Despite this we can classify neurons into two general classes based on the
response of neuronal cells stimulated by a constant current [6, 85]:

• Type I: action potentials can be emitted with arbitrarily small fre-
quency, based on the intensity of the applied current.

• Type II: action potentials can only be emitted with a frequency above
a certain value and this frequency is relatively insensitive to the inten-
sity of the applied current.
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Experimental data comparing the two types of neuron are shown in Figure
(2.1). In the left panel of Fig. (2.1) we observe the data relating to a neu-
ron of the primary visual cortex of the rat1 which represents an example of
neuron type I while on the right the data relating to a neuron of the rat
midbrain, as an example of the type II. In the figure are reported the re-
spective empirical curves that express the Current-Frequency relationship.
Generally, type I neurons fire with one frequency that can vary continuously
covering a range from 2 Hz to 100 Hz, and even more depending on the spe-
cific class of neuron. The qualitative important distinction is that for type I
neurons the Current-Frequency relationship is comparable to one continuous
function, while for type II neurons, the transition from the quiescent state
to the tonic state of periodic emission of action potentials, occurs through a
discontinuous jump.
Due to this biological distinction, the mathematical models of a single neu-
ron are classified according to how such oscillations arise. In general, as
explained by Ermentrout and Rinzel in [87] and [88], the transition from the
silent state to the oscillatory state occurs through, typically, two different
bifurcations that correspond to the two types of neuron just illustrated. For
type II models, the transition occurs due to a Hopf bifurcation (supercritical
or subcritical), while for type I neurons, it occurs through a Saddle-Node
bifurcation on an invariant circle (SNIC).

In this thesis we will focus on type I behavior and therefore we report here
just an explanation of how the SNIC bifurcation occurs.
The SNIC bifurcation takes place in a space of at least 2 dimensions and
is illustrated in Fig. (2.2) in the planar case. It is called invariant because
any solution starting on the circle remains on the circle. Initially there are
3 points of equilibrium: a stable node (blue point), an unstable saddle point
(red point) and an unstable focus (white point). The unstable variety of the
saddle point is formed by two heterocline trajectories which, rising from the
saddle point, tend in infinite time towards the stable node. The combination
of these two trajectories forms a closed curve in the phase plane that contains
the unstable focus. The stable variety of the saddle point (colored green in
Fig. (2.2)) represents the ”threshold-variety” in the sense that an initial
condition on the left of this is attracted directly to the stable point, while an

1In the cerebral cortex of mammals there are many type I pyramidal neurons [6] and
this area of the brain is generally referred to as the area responsible for higher cognitive
functions [86].
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Figure 2.1: Comparison between a type I neuron and a type II neuron be-
longing to the brain of a rat. In the left column the data related to a type
I neuron, in the right column the data related to a type II neuron. Figure
taken from [6] and readjusted.

initial condition to the right of it is dragged around the unstable focus before
converging towards the stable node. This particular situation configures
the excitable state of the neuron. The ”long” path around the repulsive
focus corresponds to the mechanism of generation of the action potential,
while the ”short” path configures relaxation towards the resting state of the
neuron. The central picture in Fig. (2.2) shows the dynamics exactly on the
critical bifurcation value: the node and the saddle merge and at the same
time the heteroclinic orbit closes in on itself in a homoclinic orbit, that is
a cycle of infinite duration. Exceeded the critical bifurcation value (picture
on the right), the node and the saddle annihilate and, as a consequence, the
homoclinic orbit becomes a limit cycle. Therefore the oscillations in this
cycle arise with zero frequency and grow continuously.

2.3 Quadratic Integrate-and-Fire model

In this section we define the so-called Quadratic Integrate-and-Fire (QIF)
neuronal model, which will be the single neuron model that we will use in
the following to analyze the dynamics of neural populations. The QIF neuron
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Figure 2.2: Illustration of the SNIC bifurcation. Figure taken from [6] and
readjusted.

is the prototype of type I neurons, as it represents in paradigmatic way the
transition from a quiescent to an oscillatory state.
In [89] Ermentrout and Kopell demonstrate rigorously how to reduce the
equations of a dynamical system, near a SNIC bifurcation, to the following
quadratic ordinary differential equation:

ẋ(t) = x2(t) + I (2.1)

being I the controller parameter.
In order to avoid discontinuities, it is convenient to rewrite such equation
introducing the phase-variable θ = 2 arctan(x), obtaining the following equa-
tion:

θ̇ = [1− cos(θ(t))] + [1 + cos(θ(t))]I (2.2)

As explained in the previous paragraph, the SNIC bifurcation, by defini-
tion, is a global bifurcation in which multiple structures interact (heterocline
orbits, fixed points, etc.) in at least a two-dimensional space. However,
the universal dynamic that occurs on the invariant circle near an SNIC bi-
furcation is one-dimensional. The one-dimensional equation (2.2) describes
exactly this universal dynamic.
Equation (2.2) defines the so-called Theta-model (hereafter indicated as Θ-
model). The variables θ and I in (2.2) represent dimensionless the membrane
potential and the current injected into the neuron. In this representation neu-
rons are seen as simple phase oscillators characterized by an angular variable.
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Since the function θ(t) always appears as an argument of the periodic cosine
function, it is convenient to visualize the model on the unit circle.
We represent the curve (2.2) in the plane (θ, θ̇), considering |I| constant and
not too large. We can distinguish three qualitatively different cases: I < 0,
I = 0 and I > 0.
In the case I < 0, see Fig. (2.3), we have an unstable equilibrium solution
θinst close to zero (red point in Fig. (2.3)) and one stable θstab close to 2π
(blue point in Fig. (2.3)).

Figure 2.3: SNIC of the Θ-model. The three figures above show the curve
in Eq.(2.2), for different values of I, and its intersections with the axis θ̇ =
0. The three figures below show the same dynamic displayed on the unit
circle. The blue (red) point represents the stable (unstable) equilibrium
point, the pink one the neutral equilibrium point. Figures taken from [90]
and readjusted.

In this case, if we start with an initial condition slightly smaller than the
position of the unstable equilibrium point, θ(t0) < θinst, then the flow on
the circle transports the system towards the stable solution θstab. If instead
we start with a slightly larger initial condition, θ(t0) > θinst, then the flow
rotates the system along the whole circle, with a peak of speed in θ = π,
towards the stable solution. We can interpret the stable solution as the
resting potential value, while the unstable solution plays the important role
of the threshold value beyond which the mechanism for generating the action
potential is triggered, which we formally assume to be issued at the time tfire
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such that θ(tfire) = π.
Fig. (2.3) illustrates, varying I from negative to positive, the 3 characteristic
phases of the saddle-node bifurcation. For I < 0 there is the coexistence of
a stable and an unstable equilibrium point. As the current increases, these
equilibrium points merge exactly for I = 0, and then disappear for I > 0.
We model this event as the onset of the oscillatory state of the neuron.
In the case I > 0 the system rotates incessantly along the circle emitting
a train of periodic impulses. To calculate the frequency of this oscillatory
system suppose that we have at time t0 the initial condition θ(t0) = 0 and
let T be the time spent to make a lap. Therefore, θ(T ) = 2π and we can
express T through the integral relation:

T =

∫ 2π

0

dθ

1− cos(θ(t)) + [1 + cos(θ(t))]I
(2.3)

To obtain an explicit expression of the period it is sufficient to solve the last
integral, for example through the transformation;

V = tan
(θ

2

)
(2.4)

which maps the angle variable θ ∈ [0,+2π] in V ∈ [-∞,+∞].
Equation (2.2) becomes:

2

1 + V 2
V̇ = [1− 1− V 2

1 + V 2
] + [1 +

1− V 2

1 + V 2
]I (2.5)

from which we obtain:

V̇ (t) = V 2(t) + I. (2.6)

The integral (2.3) takes now the form:

T =

∫ +∞

−∞

dV

I + V 2
, (2.7)

from which we get:
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T =
1√
I

[
arctan(

V√
I

)
]+∞

−∞
=

π√
I
. (2.8)

Therefore, in the Θ-model the oscillations arise continuously with the increase
of I given by the formula:

ν =
1

T
=

√
I

π
, (2.9)

and therefore, according to the definition given in the previous section, this
model belongs to type I neurons.
Noteworthy is the fact that, experimentally, the Current-Frequency relation-
ship of type I neurons is well reproduced with a ”square root” function (see
Fig. (2.1)), and this adds further value to the Θ-model.
The Θ-model is often presented with another name: the QIF model because
of the quadratic term in the equation of the voltage. The QIF model is pre-
ferred because it has a more natural interpretation in terms of membrane
potential of the neuron. The equation governing the evolution of the QIF
model is exactly (2.6), which we rewrite below for clarity, where we denote
the constant I with η:

V̇ (t) = V 2(t) + η (2.10)

some solutions of equation (2.10) reach the infinite in a finite time. This
is a geometric consequence of the change of variable (2.4), in fact, equation
(2.10) describes the same dynamics of the Θ-model but ”observed” from
the local point of view in which the fusion of the saddle and the node takes
place. As much as it is true that equation (2.10) turns out exactly the normal
form obtained by approximating any dynamic system around a fixed point
that forks through a saddle-node. To capture the essence of the oscillation,
which occurs when the saddle-node bifurcation occurs on an invariant circle,
we accompany equation (2.10) with a reset rule: whenever the membrane
potential reaches the value Vth, then we reset the potential to the Vreset value
such that Vreset < Vth.
In the following of this thesis we set Vth = +∞ and Vreset = −∞, and
therefore it is perfectly equivalent to the Θ-model through the transformation
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(2.4).
Equation (2.10) can be solved analytically, the sign of the parameter η defines
two different types of behavior, represented in the phase plan (V, V̇ ) in Fig.
(2.4).

Figure 2.4: Phase plan (V , V̇ ) of the QIF model. On the left the case η > 0,
on the right the case η ≤ 0. Figures taken from [6] and readjusted.

2.3.0.1 Tonic neuron: η > 0

In the case η > 0, we have V 2(t) + η > 0, ∀t. Therefore, by separation of

the variables in equation (2.10), we get the relation: V̇ (t)
V 2(t)+η

= 1. Given an

initial condition (t0, V (t0)) and a time t1 > t0, we get:

∫ t1

t0

V̇ (t)

V 2(t) + η
dt =

∫ t1

t0

dt = t1 − t0, (2.11)

The integral on the left can be solved with elementary methods, providing:

1√
η

[
arctan

(V (t1)√
η

)
− arctan

(V (t0)√
η

)]
= t1 − t0, (2.12)

which, in particular, only makes sense if we assume (t1 − t0) ∈ [0, π√
η
].

By solving equation (2.12) for V (t1), we get:
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V (t1) =
√
η tan

(√
η(t1 − t0) + arctan

(V (t0)√
η

))
(2.13)

whose graph is illustrated in Fig. (2.5).

Figure 2.5: Tonic neuron. In red, the vertical asymptotes representing the
firing times tfire, expressed by (2.15), in which the neuron emits an action
potential. Function graph of V (t) in (2.13) with η = 3, V (t0) = 1.

Clearly the inversion makes sense as long as the argument of the tangent is
less than π

2
, since for this value the tangent has a singularity.

So in case η > 0, fixed an initial condition (t0, V (t0)), we can analytically
extend the solution of equation (2.10) up to time tfire such that

√
η(tfire −

t0) + arctan
(
V (t0)√

η

)
= π

2
and therefore up to the time :

tfire = t0 +
1√
η

(π
2

+ arctan
V (t0)√

η

)
. (2.14)

At this moment the neuron emits an action potential and the value of the
membrane potential is instantly reset to minus infinity:
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• V (t−fire) = +∞→ emission of the action potential2;

• V (t+fire) = −∞: resetting of the membrane potential.

At this point the neuron restarts with an initial condition given by (t0 =
t+fire, V (t0) = −∞) and we can repeat exactly the same procedure of before
integrating for a time interval π√

η
until a new singularity is encountered. We

therefore deduce that a QIF neuron with η > 0 emits periodic pulse trains
at times tfire given by:

tfire =
1√
η

(π
2

+ arctan
V (t0)√

η

)
± k π√

η
k ∈ Z, (2.15)

and we find again the important formula that expresses the dependence of
the period as a function of the value of η:

T =
π√
η

(2.16)

2.3.0.2 Excitable neuron: η ≤ 0

As in the case of a tonic neuron, by separation of the variables, we obtain
the equation (2.12). Since now η ≤ 0, we must exclude the instants of time
that provide constant solutions such that V (t) = Vstab and V (t) = Vinst. So,
let’s take an initial condition (t0, V (t0)) and choose a time t1 such that the
interval (t0, t1) do not contain the above mentioned times which achieve con-
stant solutions. We have to distinguish two cases.

Sub-threshold dynamics: |V (t0)| ≤
√
|η|

In this case V (t0) lies in the segment relative to the negative part of the
parabola in Fig. (2.4) and therefore the trend of the solution V (t) will be
strictly monotonous decreasing and will tend asymptotically to the resting
membrane value. Solving the integral in (2.11), being V (t0) > V (t1), we
finally obtain:

2the expression t−fire (t+fire) means the limit that tends to tfire from the left (right).
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V (t1) = −
√
|η| tanh

(√
|η|(t1 − t0) + arctanh

(V (t0)√
|η|
))

(2.17)

whose graph is illustrated in Fig. (2.6).
In particular, a QIF neuron with η < 0 and initial condition |V (t0)| ≤

√
|η|,

if isolated, will never emit any action potential.

Figure 2.6: Excitable neuron, Sub-threshold dynamics. In green the value of
the resting membrane potential, Vrest = −√−η, to which the neuron tends.
Trend of V (t) in (2.17) with η = −3, V (t0) = −η − 0.05.

Supra-threshold dynamics: |V (t0)| ≥
√
|η|

Assume that V (t0) >
√
|η| and therefore that V (t0) lies in the right half-

line of the positive part of the parabola in Fig. (2.4). In this case, from
equation (2.11), is possible to show that there exists a finite time tf such
that V (tf ) = +∞, giving by:

tf = t0 +
1√
|η|

arctanh
(√|η|
V (t0)

)
. (2.18)
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This means that if the neuron at time t0 has a membrane value V (t0) ≥
√
|η|,

then at the instant of time tf it will emit an action potential and instantly
reset its membrane value to -∞.
At this point, as already observed, the value of V (t) will tend to value
Vstab = −

√
|η| strictly monotonously increasing and the analytical form of

the solution can be obtained from the equation (2.11) writing:

∫ t1

t0

V̇ (t)

V 2(t) + η
dt =

∫ tf

t0

V̇ (t)

V 2(t) + η
dt+

∫ t1

tf

V̇ (t)

V 2(t) + η
dt, (2.19)

being V (t1) = +∞. Solving equation (2.19) and inverting we get:

V (t1) = −
√
|η|cotanh

(√
|η|(t1 − t0)− arctanh

(√|η|
V (t0)

))
(2.20)

whose graph is illustrated in Fig. (2.7).

Limit case: |V (t0)| =
√
|η|

In this particular case the differential equation of the QIF model takes the
form : V̇ (t) = V 2(t). Choosing an initial condition V (t0) = 0 we can proceed
with the separation of the variables and obtain the analytical solution:

V (t) =
V (t0)

1− V (t0)(t− t0)
. (2.21)

So if V (t0) > 0 then the neuron spikes at the time:

tf = t0 +
1

V (t0)
. (2.22)

The QIF neuron with η = 0 has a qualitatively similar dynamic to that of
the hyperbolic cotangent in Fig. (2.7), although the analytical solution is
different.
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Figure 2.7: Excitable neuron, Supra-threshold dynamics. In red the vertical
asymptote represents the spiking time tf , expressed by (2.18), in which the
neuron emits an action potential. In green the value of the resting membrane
potential, Vrest = −√−η, to which the neuron tends asymptotically after the
emission of the action potential. Trend of V (t) in (2.20) with η = −3,
V (t0) = −η + 0.05.

2.4 Population model of fully-coupled QIF neu-

rons

In this section we discuss the fully-coupled network model of QIF neurons
with instantaneous synapses, that is, each neuron interacts instantaneously
with everyone else.
To define a neural network we have to model the coupling between the indi-
vidual QIF neurons of the network, taking into consideration the electrophys-
iology of the biological synapses. In particular, we will deal with two types
of networks: one with synapses completely impulsive and one with impulsive
growth synapses and exponential decay.
A neural network is, formally, a graph whose nodes are made up of neurons
and whose connections represent synapses; in particular, each connection is
weighed with the corresponding synaptic efficiency [91]. The synaptic weights
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can be fixed or they can also evolve in the time (synaptic plasticity), accord-
ing with the past of the two nodes connected by the synapse [92,93].
The synapses thus constitute a graph with unidirectional and oriented con-
nections. Each node is characterized by an evolution equation in which the
state of the neuron depends on the neurons connected to it, namely the presy-
naptic neurons. In this thesis we assume that the synaptic weights remains
unchanged over time, that is, we do not take into account the presence of
synaptic plasticity.
Under these hypotheses the evolution equation of each node, of a network
composed of N QIF neurons, takes the form:

V̇i(t) = V 2
i (t) + ηi + JS(t) + Ie(t), i = 1, ..., N, (2.23)

We can interpret the elements of equation (2.23) as follows:

• the excitability ηi of the i-th QIF neuron of the network should be
thought as a parameter that grossly incorporates everything that char-
acterizes a specific neuron, i.e. in this constant all the internal char-
acteristics of the particular neuron are condensed (particular surface,
microscopic structure of the membrane, gating processes etc.), as well
as the external characteristics of the network that are attributable to
the particular area in which this neuron is located (presence of intense
electrical activity due to other neurons close to which it is not con-
nected, chemical composition of the extracellular liquid locally to the
neuron, etc.);

• the parameter J represents the synaptic weight, equal for all synapses
of the network, while S(t) is a function of time which represents the
average field of synaptic activation, that is a function that takes into
account the effective coupling between all the neurons of the network
at instant t. The sign of the constant J defines whether the impulse
received is of an excitatory type (J > 0), or inhibitory (J < 0). Fur-
thermore, since the synapses of the network are all the same, we can
define on the basis of the sign of J a completely excitatory or completely
inhibitory network;

• Clearly the field S(t) must be defined as a function of the impulses
emitted by neurons in the network. Therefore, assuming that t1, ..., tM
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are the past instants of time, i.e. preceding the current time t, in
which some neuron in the network has emitted an impulse, then we
define the evolution of the average synaptic field through the following
linear differential equation:

τdṠ(t) + S(t) =
1

N

M∑
k=1

δ(t− tk), (2.24)

where δ(t − tk) is the Dirac delta function centered on the instant of
the impulse and τd is the decay time of the synaptic field. A positive
value of τd stands for an exponential decay of the synaptic field, while
τd = 0 stands for an instantaneous decay. In this case we say that the
synaptic is impulsive.
We observe that in this formulation the interaction between neurons is
taken instantaneously, that is every time a neuron emits an impulse at
the instant tk then all the neurons of the network receive it, through
the field S, at that same instant. Moreover, this model provides for
self-stimulation, i.e. the possibility of the neuron being influenced by
its own impulse3.

• the time-dependent function Ie(t) represents a possible external current
applied to all the neurons of the network.

Therefore, given the initial network condition (V1(t0), ..., VN(t0), S(t0)) the
dynamics of the network model is formally defined by the following system
of N + 1 ordinary differential equations:

{
V̇i(t) = Vi(t)

2 + ηi + JS(t) + Ie(t), i = 1, ..., N,

τdṠ(t) + S(t) = 1
N

∑M
k=1 δ(t− tk),

(2.25)

together with the resetting rule ∀k = 1, ...,M , Vi(t
−
k ) = +∞ then Vi(t

+
k ) =

−∞, where, ∀t > t0 fixed, the finite number of instants tk with k = 1, ...,M
are implicitly defined by Vj(t

−
k ) = +∞ for some j ∈ {1, ..., N}.

3There are studies showing the existence of synapses between a neuron and a branch
of its own axon [94], and the presence of these links has an inhibitory functional role [95].
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The equation (2.25) can be easily generalized if there are multiple interacting
populations. Denoting with A and B two populations formed by, respectively,
NA and NB QIF neurons. Population A (B) is therefore described by the
membrane potentials of the individual neurons {V A

i } i = 1, ..., NA ({V B
i }

i = 1, ..., NB) and by the mean field of synaptic activation SA (SB). If
t1, ..., t

A
M (t1, ..., t

B
M) are the moments in which any neuron of population A

(B) emits a spike, then we describe the evolution of the two QIF networks
coupled through non instantaneous synapses (exponentially decaying) with
the following system of NA +NB + 2 differential equations:


V̇ A
i (t) = V A

i (t)2 + ηAi + JAAS
A(t) + JBAS

B(t), i = 1, ..., NA,

τAd Ṡ
A(t) + SA(t) = 1

NA

∑MA

k=1 δ(t− tAk ),

V̇ B
i (t) = V B

i (t)2 + ηBi + JBBS
B(t) + JABS

A(t), i = 1, ..., NB,

τBd Ṡ
B(t) + SB(t) = 1

NB

∑MB

k=1 δ(t− tBk ),

(2.26)
more the reset rule to each neuron.
In the system (2.26), the parameters JBA and JAB define the intensity with
which, respectively, the network B influences the network A and the network
A influences the network B. The term JAA (JBB) represents the weight of
the internal connections of network A (B).
To obtain, in practice, a macroscopic quantity that measures the intensity
of the activity of the neural network, we can proceed as follows: we divide
the time interval [t0, t], in which we observe the evolution of the network, in
L equispaced subintervals, I1, ..., IL, of length W = t−t0

L
. For each of these

subintervals Il, with l = 1, ..., L, we count the number of impulses Kl that are
emitted by neurons in the network in that time interval. Then the following
quantity

Rl =
1

N

Kl

W
, (2.27)

is an average index of the state of activity of the network. For L → +∞,
that is measuring on increasingly smaller intervals W → 0, (2.27) can be
written, in a distributional sense, as a linear superposition of delta functions
centered on the instants {t1, ..., tM} in which the pulses are emitted in the
time interval [t0, t].
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r(t) =
1

N

M∑
k=1

δ(t− tk), (2.28)

This object is defined as instantaneous population rate or population firing
rate, that is, the average instantaneous rate of emission of impulses by neu-
rons in the population. Therefore we can rewrite the equation of the field
S(t) in (2.24) as

τdṡ(t) + s(t) = r(t), (2.29)

where we just recall the capital S with the lowercase s since we are referring
to the macroscopic variable. Eq. (2.29) expresses the important relation
between the firing rate r(t) and the field s(t).
Another macroscopic quantity of particular interest is the average membrane
potential of the network, defined as:

v(t) =
1

N

N∑
j=1

Vj(t), (2.30)

that is, as the average of the membrane potentials of all neurons of the
network.

2.5 Exact macroscopic reduced model for fully-

coupled Network

In this section we show how to reduce, exactly, in the thermodynamic limit
N →∞, the infinite system of equations given by (2.25) to a system of few
differential equations, which express the evolution of the average macroscopic
quantities of the network: the instantaneous population rate r(t) defined in
(2.28), the mean membrane potential v(t) defined in (2.30) and the synaptic
activation field s(t) defined in (2.29).
The results showed in this section are the content of the article by Montbrió-
Pazó-Roxin [10], which extended the results obtained previously by Ott-
Antonsen for a phase oscillator network [11] to a network of QIF neurons.
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In the limit of infinite neurons we consider the network as a continuum,
that is, as a neural mass described through a probability density function
ρ(V, η, t). The parameters ηi become a continuous random variable η dis-
tributed according to a certain probability density function g(η) which re-
mains unchanged in time. In this context ρ(V |η, t)dV is the fraction of neu-
rons, characterized by a given value of η, which, at a given time t, have a mem-
brane potential between V and V + dV . Therefore

∫ +∞
−∞ ρ(V |η, t)dV = g(η)

represents the fraction of neurons characterized by a given value of η at time
t and hence this quantity is time-independent.
We consider η as a fixed parameter that, for shortness, we will not explicitly
indicate in the text when not necessary.
Let be:

[a, b] = {V ∈ R : V = V (t, V0) for V0 ∈ [a0, b0]} (2.31)

the interval of the points V = V (t, V0) reached at the instant t by the paths
that originate from the interval [a0, b0] at the initial instant t = t0.
Since each trajectory corresponds to a neuron, we can assume that the num-
ber of neurons is conserved:

∫ b0

a0

ρ(V0, t0)dV0 =

∫ b

a

ρ(V, t)dV. (2.32)

By changing the variable V = V (t, V0) in the integral of the member to the
right of equation (2.32) we obtain

∫ b0

a0

ρ(V0, t0)dV0 =

∫ b0

a0

ρ(V (t, V0), t)
∂V

∂V0

dV0 (2.33)

from which it follows, for the arbitrariness of the interval [a0, b0] that

ρ(V0, t0) = ρ(V (t, V0), t)
∂V

∂V0

. (2.34)
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Finally, deriving with respect to t we obtain

0 =
( ∂ρ
∂V

V̇ +
∂ρ

∂t

) ∂V
∂V0

+ ρ
∂

∂t

∂V

∂V0

=
( ∂ρ
∂V

V̇ +
∂ρ

∂t

) ∂V
∂V0

+ ρ
∂V̇

∂V0

=

=
( ∂ρ
∂V

V̇ +
∂ρ

∂t

) ∂V
∂V0

+ ρ
∂V

∂V0

∂V̇

∂V
(2.35a)

from which follows the continuity equation :

∂

∂t
ρ+

∂

∂V

[
ρ(V 2 + η + JS + Ie)

]
= 0 (2.36)

where we explicitly expressed the velocity field

V̇ = V 2 + η + JS + Ie (2.37)

according with the equation (2.23). The continuity equation (2.36) and the
synaptic field equation (2.24) represent together the continuous formulation
of the neuronal network (2.25) in the thermodynamic limit (N → +∞).
We observe that equation (2.36) admits a trivial stationary solution in the
case of external constant current. In fact, a time independent density func-
tion, ρ0(V |η), solves equation (2.36) if and only if it satisfies ∂V [(V 2 + η +
JS+ Ie)ρ] = 0. This is trivially true when the density ρ0, for any given value
of η, has the form

ρ0(V |η) ∝ 1

V 2 + η + JS + Ie
; (2.38)

this corresponds to a Lorentzian distribution with respect to the membrane
potential. Physically, Lorentzian density distribution simply means that the
tonics neurons characterized by the same η value will be distributed on the
axis V with a density inversely proportional to the speed V̇ they possess.
Proceeding as in [10], we also assume in the non-stationary case that, re-
gardless of the initial conditions, equations (2.36) and (2.24) redistribute the
membrane potentials of the QIF neural mass in a form similar to the station-
ary solution (2.38). More precisely we proceed with the following ansatz:
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Regardless of the form of the initial distribution ρ(V, η, 0), the solutions of
(2.36) and (2.24) converge to a Lorentzian density function with respect to
the membrane potentials:

ρ(V |η, t) =
1

π

x(η, t)

[V − y(η, t)]2 + x(η, t)2
(2.39)

where x(η, t) ≥ 0 is the half width at half maximum (HWHM).

In practice, this Lorentzian Ansatz (LA) consists of an assumption on the
form of the attractor of the system. This attractor is a sub-variety of all
possible density functions. Assuming that this hypothesis is valid, we can
therefore focus on the study of the dynamics on this subvariety, that is, study
how the statistical quantities x(η, t) and y(η, t) evolve. As we shall see, under
certain hypotheses the macroscopic dynamics on the attractor admits a finite-
dimensional description, although it has an infinite dimension (the set of all
possible x(η, 0), y(η, 0), the initial conditions). We will discuss the validity
of the Lorentzian Ansatz at the end of this chapter.
Applying the LA, we can express the quantities r(t) e v(t) in the following
way. Since the Lorentzian distribution of the membranes is symmetric and
centered on y(η, t), for each η and t fixed, then the following relationship
holds:

v(η, t) = y(η, t) = P.V

∫ +∞

−∞
ρ(V |η, t)V dV (2.40)

where P.V indicates the Cauchy principal value of the integral.
Therefore the average membrane potential of the network is expressed through
the following integral relation

v(t) =

∫ +∞

−∞
y(η, t)g(η)dη (2.41)

In the QIF model a neuron emits a pulse when it reaches the infinite potential
value. Therefore we can calculate the firing rate, for each value of η and t,
as the limit for the value of membrane potential that tends to infinity of the
flow of the neural mass
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r(η, t) = ρ(V → +∞|η, t)V̇ (V → +∞|η, t) (2.42)

that we can write through the relations (2.39) and (2.37) as

r(η, t) = lim
V→+∞

[ 1

π

x(η, t)

[V − y(η, t)]2 + x(η, t)2
(V 2 + η + JS + Ie)

]
(2.43)

In the limit in (2.43) the dominant infinite terms of the second order in V
are compensated, therefore we deduce the following important relation

r(η, t) =
x(η, t)

π
. (2.44)

Finally, the instantaneous population rate is expressed through the following
integral

r(t) =
1

π

∫ +∞

−∞
x(η, t)g(η)dη. (2.45)

We proceed by replacing the LA relationship expressed by (2.39) within the
continuity equation (2.36) and we rewrite the continuity equation as

− ∂

∂t
ρ =

∂

∂V

[
ρ(V 2 + Λ)

]
(2.46)

where Λ = η + JS + Ie, independent of V . The member of left, through
(2.39), becomes:

− 1

π

1

[(V − y)2 + x2]2

{
ẋ[(V − y)2 + x2]− x[−2ẏ(V − y) + 2xẋ]

}
. (2.47)

The right member becomes:

( ∂

∂V
ρ
)

(V 2 + Λ) + 2V
1

π

x

(V − y)2 + x2
=

=
1

π

( −2(V − y)x

[(V − y)2 + x2]2
(V 2 + Λ) +

2V x

(V − y)2 + x2

)
.

(2.48)
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Therefore, by equating (2.47) and (2.48), and assuming (x, V − y) 6= (0, 0),
we get the following relation

−ẋ[(V − y)2 + x2] + 2x[xẋ− ẏ(V − y)] =

= −2(V − y)x(V 2 + Λ) + 2V x[(V − y)2 + x2],
(2.49)

which must be satisfied ∀ V ∈ (−∞,+∞). Necessarily, the terms of each
power order of the variable V must vanish. Cubic terms in variable V vanish.
The vanishing of square order terms means that the following equation holds

ẋ = 2xy. (2.50)

From those of the first order we get 2ẋy − 2xẏ = 2xy2 + 2x3 − 2xΛ, from
which applying the equation (2.50) and assuming x 6= 0 finally we obtain:

ẏ = y2 − x2 + Λ. (2.51)

The zero-order term vanish if the equations (2.50) and (2.51) are satisfied,
therefore it does not contain any further information than the first and second
order terms.
Introducing the complex variable w = x + iy we can write in compact form
the (2.50) and (2.51) in the following way

ẇ = i(Λ− w2). (2.52)

Summarizing, under the hypothesis that the dynamics of the continuous
system formed by (2.36) and (2.24) distributes the membrane potentials of
neurons in a Lorentzian form as in (2.39), then the macroscopic dynamics
can be described exactly by the following reduced system

∂

∂t
w(η, t) = i[η + Js(t) + Ie(t)− w(η, t)2],

τd
∂

∂t
s(t) + s(t) =

1

π

∫ +∞

−∞
x(η, t)g(η)dη,

(2.53)
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in terms of average quantities w(η, t) = x(η, t) + iy(η, t) and s(t).
We observe that for the correct derivation of the macroscopic model (2.53)
it is necessary to assume x(η, t) 6= 0 ∀η ∈ R, t > 0. To ensure that w(η, 0) =
x(η, 0) + iy(η, 0), evolving with the law (2.53), really represents a physical
solution of our problem for any t > 0 we must impose that Re(w(η, t)) ≥ 0,
∀t > 0, as it defines the size of the distribution, namely, through (2.45), the
firing rate. It can be shown [11], that if the real functions x(η, 0), y(η, 0) of
real variable η satisfy

1. x(η, 0) 6= 0 ∀η ∈ R;

2. x(η, 0) and y(η, 0) are analytically continued from η ∈ R to η ∈ Ī− =
z ∈ C : Im(z) ≤ 0 without singularities and these extensions satisfy

lim
Im(η)→−∞

x(η, 0) = lim
Im(η)→−∞

y(η, 0) = 0 (2.54)

then w(η, t), evolving through (2.53), satisfies (1), (2), for all t > 0. In (2) the
lower half-plane is chosen to ensure that the quantity x(η, t) = Re(w(η, t))
remains positive. In fact from equation (2.53), extending η to a complex
variable, η = Re(η) + iIm(η), we have ∂

∂t
x(η, t) = −Im(η) + 2x(η, t)y(η, t)

which is positive in x = 0. The law of evolution described by (2.53) prevents
w from crossing the imaginary axis and therefore ensures to remain confined
in Re(w) ≥ 0. We can therefore precisely define the shape of the LA attractor
as:

M =
{
ρ(V |η, 0) =

1

π

x(η, 0)

[V − y(η, 0)]2 + x(η, 0)2
: w = x+ iy satisfy (1), (2)

}
.

To eliminate the dependence in η in (2.45) and (2.41), we assume that it is
distributed according to a Lorentzian density

g(η) =
1

π

∆

(η −H)2 + ∆2
, (2.55)

where H is the position of the peak and ∆ ≥ 0 the amplitude parameter.
We underline that this hypothesis is uncorrelated with the previous LA on
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the distribution of membrane potentials. The reason why we assume (2.55)
is because, with this particular choice, we are able to express analytically the
integral (2.45) and (2.41).
We extend the real variable η in a complex variable, η = ηr + iηi, and we
extend analytically w(η, t) and g(η) from η ∈ R to the complex half-plane
with negative imaginary part, η ∈ Ī−. The function g(η) : Ī− → C admits a
single pole of order 1 in η = H−i∆, as shown by the following decomposition

g(η) =
1

π

∆

[η − (H + i∆)][η − (H − i∆)]
. (2.56)

We proceed by calculating the integrals (2.45) and (2.41) through the residue
theorem. We consider the curve γ = γ1γ2 — where γ1(s) = s with s ∈
[− |η| ,+ |η|] parameterizes the real segment and γ2(s) = |η| e−is with s ∈
[0, π] parameterizes a semicircle — that winds the pole of g(η) clockwise. By
integrating on this curve and calculating the limit for |η| → +∞ we get

r(t) =
1

π

∫ +∞

−∞
x(η, t)g(η)dη =

1

π
[−2iπResx(H − i∆)] =

x(H − i∆)

π
,(2.57)

v(t) =

∫ +∞

−∞
y(η, t)g(η)dη = [−2iπResy(H − i∆)] = y(H − i∆), (2.58)

from which it follows

w(H − i∆, t) = πr(t) + iv(t), (2.59)

and therefore the firing rate r(t) and the average membrane potential v(t)
depend only on the value of w calculated on the pole of g(η) located in the
lower half-plane. Consequently, to get one relation dependent only on time
t it is sufficient to evaluate the equation (2.53) for η = H − i∆.

∂

∂t
[πr(t) + iv(t)] = i

{
H − i∆ + Js(t) + Ie(t)− [π2r(t)2 − v(t)2 + i2πr(t)v(t)]

}
,

τd
∂

∂t
s(t) + s(t) =

1

π

∫ +∞

−∞
x(η, t)g(η)dη,

(2.60)
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At this point, depending on the assumptions we make about the synaptic
dynamics, we get different reduced models for the population of QIF neurons.

Instantaneous synapses, τd = 0:

We assume that the interaction between two neurons is a completely im-
pulsive event. In this case, therefore, in the field equation (2.29) we choose
τd = 0, obtaining s(t) = r(t). So, breaking down the equation (2.60) in real
and imaginary part we obtain the following real two-dimensional system:{

ṙ = ∆
π

+ 2rv

v̇ = v2 +H + Jr + Ie − π2r2
(2.61)

The nonlinear system (2.61) describes exactly, in macroscopic terms, a popu-
lation of QIF neurons within the limit of an infinite number of neurons. The
equation of v(t) looks like the equation (2.10) of evolution of a single QIF
neuron of the network characterized by the average H value of the excitabil-
ity ηi of the network neurons. In this equation, the nonlinear term π2r2,
together with the evolution of the equation of r(t), formalizes the reset rule
at the network level; in fact, this term prevents an uncontrolled growth of
the variable v(t) by acting as a negative correction which leads to a decrease
in v(t) when network activity (namely r(t)) increases.

Exponentially decaying synapses, τd > 0:

Now we assume the interaction between neurons as an impulsive event that
decays exponentially. In this case, therefore, in the field equation (2.29) we
choose τd > 0. We can reduce, in the thermodynamic limit of infinite QIF
neurons, the system of equations (2.25) to the following system of ordinary
differential equations 

ṙ = ∆
π

+ 2rv

v̇ = v2 +H + Js+ Ie − π2r2

ṡ = 1
τd

[−s+ r].

(2.62)

The variable s models the average dynamics of the synapses, which in this
case results in an exponential decay, with decay constant τd, perturbed by
the positive action of the firing rate r. Furthermore, the s field affects the
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average membrane of the network by acting negatively or positively on it
according to the type of inhibitory synapses (J < 0) or excitatory (J > 0).
The fixed points of the system (2.62) are exactly the same as in the case
of instantaneous synapses. In fact, from ṡ = 0 it follows that s = r. So
the introduction of an exponentially decaying synapse does not change the
values of the fixed points but it can change the stability and the bifurcation
process.

2.5.1 Heterogeneous synaptic weights

Equation (2.60) has been derived assuming the currents ηi randomly dis-
tributed in according with (2.55). Let us now distribute the coupling Ji,
that is, we consider heterogeneity on the synaptic weights of the network. In
this case the network dynamics of QIF neurons is given by:

{
V̇i(t) = Vi(t)

2 + η + JiS(t) + Ie(t), i = 1, ..., N,

τdṠ(t) + S(t) = 1
N

∑M
k=1 δ(t− tk),

(2.63)

where now η is a fixed parameter and the couplings Ji are distributed in
according with:

h(J) =
1

π

Γ

(J − J̄)2 + Γ2
. (2.64)

We can now repeat exactly the procedure of the previous paragraph to obtain
the firing rate equations:

ṙ = Γr
π

+ 2rv

v̇ = v2 + η + J̄s+ Ie − π2r2

ṡ = 1
τd

[−s+ r],

(2.65)

where the difference with the model (2.62) lies in the term Γ
π

which is now
multiplied by r(t).
Equations (2.65) constitute the exact reduced model for a fully-coupled net-
work of QIF neurons with heterogeneity on the synaptic weights and expo-
nential synaptic decay.
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2.6 Validity of the Lorentzian ansatz

In this section we clarify why the Lorentzian Ansatz (2.39) holds for ensem-
bles of QIF neurons.
In the first chapter we explained how, through the Ott Antonsen’s ansatz,
it is possible to derive an exact finite-dimensional model from a system of
coupled oscillators, in the thermodynamic limit of infinite oscillators. As we
have already shown, the link between the QIF neurons and the phase oscil-
lators is highlighted by the change of variable Vi = tan(θi/2). In terms of
phase variables, the QIF neuron system given by (2.23) takes the form:

θ̇i = (1− cosθi) + (1 + cosθi)[ηi + JS(t) + I], i = 1, ..., N. (2.66)

In this new reference the LA on the form of the distribution of membrane
potentials in (2.39) becomes the following Ott-Antonsen (OA) ansatz on the
distribution of the oscillator phases on the unit circle:

ρ̃(θ|η, t) =
1

2π
Re
(1 + α(η, t)eiθ

1− α(η, t)eiθ

)
(2.67)

where the function α(η, t) is related to our w(η, t) = x(η, t)+ iy(η, t) through
the relation

α(η, t) =
1− w(η, t)

1 + w(η, t)
. (2.68)

The conformal map W (z) = 1−z
1+z

transforms the complex right half-plane into
the complex unit disk {Re(z) ≥ 0} → {|z| ≤ 1}. Using the conformal map
W , the density in terms of phase oscillators of the OA ansatz in (2.67) is
transformed into the density in terms of membrane potentials of the LA for
QIF neurons in (2.39); they are two equivalent representations of the Poisson
kernel, one defined in the right half-plane and the other in the unit disk.
The key observation supporting the applicability of the LA is the fact that
Eq. (2.67) turns out to be the ansatz discovered by Ott and Antonsen [11].
According to the OA theory in the thermodynamic limit, the dynamics of
the class of systems 1.1 generally converges to the OA manifold [Eq. (2.67)].
In the original work of Ott-Antonsen, showed in Section. 1.3.2, this result
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has been proven if the phase dynamics H(t) does not depend on the specific
oscillator ηi. On the other hand, in our case, for Eq. (2.66), we have ωi =
1 + ηi + JS + I and Hi(ηi, t) = i(−1 + ηi + JS + I), involving an intrinsic
dependence between an oscillator’s phase and its dynamics. The extent of the
OA ansantz for this type of parameter-dependent oscillatory systems Hi(ηi, t)
is proven in [77]. This result proves the equivalence between the Lorentzian
ansatz (2.39) for network of QIF neurons and the OA ansatz.
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Chapter 3

Theta-nested gamma
oscillations in next generation
neural mass models

Abstract:

Theta-nested gamma oscillations have been reported in many areas of the
brain and are believed to represent a fundamental mechanism to transfer
information across spatial and temporal scales. In a series of recent experi-
ments in vitro it has been possible to replicate with an optogenetic theta fre-
quency stimulation several features of cross-frequency coupling among theta
and gamma rhythms observed in behaving animals. In order to reproduce the
main findings of these experiments we have considered a new class of neural
mass models able to reproduce exactly the macroscopic dynamics of spiking
neural networks. In this framework, we have examined two set-ups able to
support collective gamma oscillations: the pyramidal interneuronal network
gamma (PING) and the interneuronal network gamma (ING). In both set-
ups we observe the emergence of theta-nested gamma oscillations by driving
the system with a sinusoidal theta-forcing in proximity of a Hopf bifurcation.
These mixed rhythms display always phase amplitude coupling. However 2
different types of nested oscillations can be identified: one characterized by a
perfect phase locking between theta and gamma rhythms, corresponding to
an overall periodic behavior; another one where the locking is imperfect and
the dynamics is quasi-periodic or even chaotic. From our analysis it emerges
that the locked states are more frequent in the ING set-up. In agreement
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with the experiments, we find theta-nested gamma oscillations for forcing
frequencies in the range [1:10] Hz, whose amplitudes grow proportionally to
the forcing one and which are clearly modulated by the theta phase. At
variance with experimental findings, the gamma-power peak does not shift
to higher frequencies by increasing the theta frequency. This effect can be
obtained, in or model, only by incrementing, at the same time, also the noise
or the forcing amplitude.

3.1 Introduction

Oscillations in the brain, reflecting the underlying dynamics of neural popu-
lations, have been measured over a broad frequency range [96]. Particularly
studied are γ-rhythms (30-120 Hz), due to their ubiquitous presence in many
regions of the brain, irrespectively of the species [97], and for their relevance
for cognitive tasks [98] and neuronal diseases [57,99].
Inhibitory networks have been shown to represent a fundamental ingredient
for the emergence of γ oscillations [97, 100]. Indeed, inhibition is at the ba-
sis of the two most known mechanisms: pyramidal interneuronal network
gamma (PING) and interneuronal network gamma (ING) [101]. The ING
mechanism is observable in purely inhibitory networks in the presence of few
ingredients: recurrent connections, a time scale associated with the synap-
tic GABAA receptors and an excitatory drive sufficiently strong to lead the
neurons supra-threshold [97]. The collective oscillations (COs) emerge when
a sufficient number of neurons begins to fire within a short time window and
generate almost synchronous inhibitory post-synaptic potentials (IPSPs) in
the post-synaptic interneurons. The inhibited neurons fire again when the
IPSPs have sufficiently decayed and the cycle will repeat. Thus, the main
ingredients dictating the frequency of the COs in the ING set-up are: the
kinetics of the IPSPs and the excitatory drive [102]. On the other hand the
PING mechanism is related to the presence of an excitatory and an inhibitory
population, in this case COs emerge whenever the drive on the excitatory
neurons is sufficiently strong to induce an almost synchronous excitatory
volley that in turn elicits an inhibitory one. The period of the COs is thus
determined by the recovery time of the pyramidal neurons from the stimulus
received from the inhibitory population [8]. A peculiarity of this mechanism,
observed both in vivo and in vitro experiments, is that there is a delay be-
tween the firing of the pyramidal cells and the interneuronal burst [97].
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In several parts of the brain, one can observe that γ oscillations are modulated
by θ oscillations, with θ frequencies corresponding to 4-12 Hz in rodents and
to 1-4 Hz in humans. Specific examples have been reported for the hippocam-
pus of rodents in behaving animals and during rapid eye movement (REM)
sleep [103–107], for the visual cortex in alert monkeys [108], for the neocortex
in humans [109] etc. This is an example of a more general mechanism of cross-
frequency coupling (CFC) between a low and a high frequency rhythm, which
is believed to have a functional role in the brain [110]. In particular, low fre-
quency rhythms (such as θ) are usually involving broad brain regions and are
entrained to external inputs and/or to cognitive events; on the other hand
the high frequency activity (e.g. the γ-rhythm) reflects local computation
activity. Thus CFC can represent an effective mechanism to transfer infor-
mation across spatial and temporal scales [110, 111]. Four different types of
CFC of interest for electrophysiology, have been listed in [112]: phase-phase,
phase-frequency, phase-amplitude and amplitude-amplitude couplings (PPC,
PFC, PAC, and AAC). Two more types of CFCs have later been added as
emerging from the analysis of coupled nonlinear oscillators [113] and coupled
neural mass models [114]: frequency-frequency and amplitude-frequency cou-
pling (FFC and AFC).
In this chapter we will consider θ-nested γ oscillations, where specific features
of the γ oscillations are correlated to the θ phase. In particular we will ana-
lyze PPC, PFC and PAC between θ and γ rhythms. The most studied CFC
mechanism is the PAC, which corresponds to the modification of the ampli-
tude (or power) of γ-waves induced by the phase of the θ-oscillations. This
mechanism has been reported in the primary visual cortex of anaesthetized
macaques subject to naturalistic visual stimulation [115], as well as during
the formation of new episodic memories in the human hippocampus [116].
As discussed in [112], the θ phase can often modulate both amplitude (PAC)
and frequency (PFC) of the γ oscillations, therefore these two mechanisms
can occur at the same time. PPC, which refers to n:m phase locking between
γ and θ phase oscillations [117], has been identified in the rodent hippocam-
pus during maze exploration [105].
Our study is mostly motivated by recent optogenetic experiments revealing
PAC in areas CA1 and CA3 of the hippocampus and in the medial enthori-
nal cortex (MEC) [13,118–120]. These experiments have shown that a sinu-
soidal optogenetic stimulation at θ-frequency of the circuits in vitro is able
to reproduce several features of θ-nested γ oscillations, usually observed in
behaving rats [121]. All these experiments suggest that inhibition has a key
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role in generating this cross-frequency rhythm; however both ING [119] and
PING [13,120] mechanisms have been invoked to explain locally generated γ
oscillations.
PING and ING oscillation mechanisms have been qualitatively reproduced
by employing heuristic neural mass models [8, 122]. However, these stan-
dard firing rate models do not properly describe the synchronization and
desynchronizaton phenomena occurring in neural populations [61, 123, 124].
In Section [2.5] we have delineated a new generation of neural mass models,
which are able to exactly reproduce the network dynamics of spiking neurons
of type I, for any degree of synchronization among the neurons [10,125–127].
In particular, for purely inhibitory networks, these mean-field models have
been able to reproduce the emergence of COs, observed in the corresponding
networks, without the inclusion of an extra time delay [123], as well as the
phenomenon of event related synchronisation and desynchronisation [61].
Our main aim is to understand how θ-nested γ oscillations can emerge when
a PING or ING mechanism is responsible for the fast oscillations and which
differences can be expected in the population dynamics in the two cases.
Therefore we will consider the new class of neural mass models introduced
in [10] in two configurations: namely, a purely inhibitory population (ING
set-up) and two coupled excitatory-inhibitory populations (PING set-up).
In both configurations we will examine the system response to an external
sinusoidal θ-drive.
Section 3.2 is devoted to the introduction of different spiking network con-
figurations of Quadratic Integrate-and-Fire (QIF) neurons able to generate
γ COs via PING and ING mechanisms and to the introduction of their cor-
responding exact neural mass formulations. A detailed bifurcation analysis
of the neural mass models for the PING and ING set-ups, in the absence
of any external forcing, is reported in Section 3.3. The PAC mechanism is
analysed and discussed in Section 3.4. First, by considering different types
of PAC states (namely, phase locked or unlocked) and second, by comparing
our numerical results for PAC dynamics with experimental findings reported
in [13] and [120], for the CA1 region of the hippocampus under sinusoidal
optogenetic stimulations. Finally, a discussion of our results and of their
implications, as well as of possible future developments, will be presented in
Section 3.5. The results reported in the chapter are mostly devoted to super-
critical Hopf bifurcations, however a specific example of a sub-critical Hopf
bifurcation leading to COs is discussed for the PING set-up in Appendix
A. Further network configurations ensuring the emergence of COs via PING
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mechanism are presented in Appendix B.

3.2 Models and Bifurcation analysis

Figure 3.1: Network topologies Two different network configurations have
been investigated: on the left side, an excitatory population (E) and an
inhibitory population (I) form a circuit that can generate oscillatory output
(PING set-up); on the right side one inhibitory population (I) is coupled to
itself with an inhibitory coupling (ING set-up). In both cases an external
current I(l) impinging on one single population has been considered.

3.2.1 Network Models

In this chapter we want to compare the two principal mechanisms at the
basis of the emergence of collective oscillatory dynamics in neural networks:
namely, the PING and ING mechanisms. Therefore we will consider QIF
neurons in the two following set-ups: an excitatory and an inhibitory popu-
lation coupled via instantaneous synapses (PING configuration) and a single
inhibitory population interacting via post-synaptic potentials (PSPs) with
exponential profile (ING configuration). The corresponding network config-
urations are shown in Fig. (3.1). Moreover, the neurons are assumed to be
fully coupled. As we will show in the following, both these two configurations
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support the emergence of COs.
The dynamics of the membrane potentials of the QIF neurons in the PING
configuration is given by

τ (e)
m V̇

(e)
k =

(
V

(e)
k

)2

+ η
(e)
k + τ (e)

m

[
J (ee)S(e) − J (ie)S(i)

]
+ I(e)(t) k = 1, . . . , N (e)

τ (i)
m V̇

(i)
j =

(
V

(i)
j

)2

+ η
(i)
j + τ (i)

m

[
J (ei)S(e) − J (ii)S(i)

]
+ I(i)(t) j = 1, . . . , N (i)

S(l) =
1

N (l)

∑
t
(l)
m

δ(t− t(l)m ) l ∈ {e, i} ; (3.1)

where the super-scripts e (i) denote the excitatory (inhibitory) population,

τ
(e)
m = 20 ms (τ

(i)
m = 10 ms) is the excitatory (inhibitory) membrane time

constant, η
(l)
k is the excitability of the k-th neuron of population l, J (ln) is

the strength of the synaptic coupling of population l acting on population
n. The term I(l)(t) represents a time-dependent external current applied
to the population l; usually we have considered the external drive to be
applied to the excitatory population only, i.e. I(e)(t) 6= 0 and I(i)(t) = 0.
The synaptic field S(l)(t) is the linear super-position of all the pulses Y (t)
emitted in the past within the l population, Y (t) being δ-functions in the
present case. Furthermore, since the neurons are fully coupled, each neuron
will be subject to the same synaptic field [4]. The emission of the m-th

spike in the network occurs at time t
(l)
m whenever the membrane potential

of a generic neuron j reaches infinity, i.e. V
(l)
j (t

(l)−
m ) → +∞, while the reset

mechanism is modeled by setting V
(l)
j (t

(l)+
j ) → −∞, immediately after the

spike emission.
The main part of our analysis of the PING set-up will be devoted to networks
with self-activation only (i.e. where J (ii) = 0), a configuration which is known
to favour the emergence of collective oscillations [8, 128, 129]. However, as
discussed in Appendix B, we have found that COs can arise in different
PING set-ups: in the presence of self-inhibition only (i.e. with J (ii) 6= 0 and
J (ee) = 0) and in the absence of both self-activation and inhibition (i.e. with
J (ee) = J (ii) = 0).
For what concerns the purely inhibitory network, the membrane potential
dynamics of the j-th neuron is ruled by the following equations:

62



τ (i)
m V̇

(i)
j =

(
V

(i)
j

)2

+ η
(i)
j − τ (i)

m J (ii)s(i) + I(i)(t)

τdṠ
(i) = −S(i) +

1

N (i)

∑
t
(l)
m

δ(t− t(i)m ) , (3.2)

where τ
(i)
m = 10 ms. In this case the synaptic field S(i)(t) is the super-position

of the exponential IPSPs Y (t) = e−t/τd/τd emitted in the past, where we set
τd = 10 ms.
As often done in previous chapters, we assume that the neuron excitabilities
η

(l)
i are randomly distributed according to a Lorentzian probability density

function (PDF)

g(l)(η) =
1

π

∆(l)

(η −H(l))2 + (∆(l))2
, (3.3)

where H(l) is the median and ∆(l) is the half-width half-maximum (HWHM)
of the PDF. Therefore each population will be composed of neurons supra-
(with η

(l)
j > 0) and sub-threshold (with η

(l)
j < 0), the percentage of one group

with respect to the other being determined by the Lorentzian parameters.
For the PING set-up we fix ∆(e) = ∆(i) = 1, whereas varying H(e) and H(i).
For the ING set-up we fix ∆(i) = 0.3 and analyze the dynamics by varying
H(i).
The dynamical equations are integrated by employing a 4th order Runge-
Kutta method in the absence of noise with a time step dt = 0.002 ms (dt =
0.001 ms) for the PING (ING) set-up. Moreover, we define a threshold
Vp = 100 and a reset value Vr = −100. Whenever the membrane potential
Vj of the j-th neuron overcomes Vp at a time tp, it is reset to Vr for a
refractory period equal to 2/Vj. At the same time the firing time is estimated
as tp+1/Vj; for more details see [10]. The membrane potentials are initialized
from a random flat distribution defined over the range [−100 : 100], while
the excitabilities are randomly chosen from the Lorentzian distribution (3.3).
For instantaneous synapses, we will only employ the following two indicators
to characterize the macroscopic dynamics:

r(l)(t) =
M (l)(∆t)

N (l)∆t
, v(l)(t) =

1

N (l)

N(l)∑
j

V
(l)
j (t), (3.4)
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which represent the average population activity and the average membrane
potential of the l-th population, respectively. In particular the average pop-
ulation activity of the l−network r(l)(t) is given by the number of spikes
M (l)(∆t) emitted in a time window ∆t, divided by the total number of neu-
rons in such population. For finite IPSPs we also consider the synaptic field
s(l)(t). Furthermore, the emergence of COs, corresponding to periodic mo-
tions of r(l)(t) and v(l)(t), are characterized in terms of their frequencies ν(l).
We assume that the driving current, mimicking the θ-stimulation in the opto-
genetic experiments, is a purely sinusoidal excitatory current of the following
form

Iθ(t) =
I0

2
[1− cos(2πνθt)] (3.5)

where νθ is the forcing frequency, usually considered within the θ-range, i.e.
νθ ∈ [1 : 10] Hz. In this context a theta phase associated with the forcing
field can be defined as θ(t) = mod(2πνθt, 2π). For the PING configuration
we set I(e)(t) = Iθ(t) and I(i)(t) ≡ 0 and for the ING set-up I(i)(t) = Iθ(t).

3.2.2 Neural mass models

As discussed in Chapter 2, an exact neural mass model has been derived
in [10] for a fully coupled network of QIF neurons with instantaneous synapses
and with Lorentzian distributed neuronal excitabilities. In this case the
macroscopic neural dynamics of a population l is described by two collec-
tive variables: the mean field potential v(l)(t) and the instantaneous firing
rate r(l)(t). In this context, the neural mass model for two coupled E − I
populations with instantaneous synapses, corresponding to the microscopic
model reported in Eq. (3.1), can be written as
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ṙ(e) =
∆(e)(
τ

(e)
m

)2

π
+

2r(e)v(e)

τ
(e)
m

(3.6)

v̇(e) =

(
v(e)
)2

+H(e) + I(e)(t)

τ
(e)
m

− τ (e)
m

(
πr(e)

)2

+ J (ee)r(e) − J (ie)r(i) + Aξ(e)

ṙ(i) =
∆(i)(
τ

(i)
m

)2

π
+

2r(i)v(i)

τ
(i)
m

v̇(i) =

(
v(i)
)2

+H(i) + I(i)(t)

τ
(i)
m

− τ (i)
m

(
πr(i)

)2

+ J (ei)r(e) − J (ii)r(i) + Aξ(i) .

In the equations for the evolution of the average membrane potentials we have
also inserted an additive noise term of amplitude A, employed in some of the
analysis to mimic the many noise sources present in the brain dynamics. In
particular the noise terms ξ(e) and ξ(i) are both δ-correlated and uniformly
distributed in the interval [−1 : 1].
In case of finite synapses, the exact derivation of the corresponding neural
mass model is still feasible for QIF neurons, but the macroscopic evolution
now contains further equations describing the dynamics of the synaptic field
characterizing the considered synapses [61, 123]. In particular, for a single
inhibitory population with exponential synapses, the corresponding neural
mass model reads as:

ṙ(i) =
∆(i)

(τ
(i)
m )2π

+
2r(i)v(i)

τ
(i)
m

(3.7)

v̇(i) =
(v(i))2 +H(i) + I(i)(t)

τ
(i)
m

− τ (i)
m (πr(i))2

− J (ii)s(i) + Aξ(i)

ṡ(i) =
1

τd
[−s(i) + r(i)].

In the present case the equation for the average membrane potential contains,
as already shown before in Eqs. (3.6), an additive noise term of amplitude
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A.
It should be noticed that in Eqs. (3.6) and (3.7) the noise has been added in
an effective manner and not with a consistent procedure, that would amount
to take into account the effect of microscopic noise on the mean-field for-
mulation. This can be achieved by considering a Fokker-Planck description
for the distribution of the membrane potentials, e.g. as done in [15], or by
considering a reduced approach in terms of circular cumulants [16,17]. How-
ever, all these formulations will lead to much more complicated evolution
equations for the macroscopic quantities.
To analyse the stability of the macroscopic solutions of Eqs. (3.6) and
(3.7), one should estimate the corresponding Lyapunov spectrum (LS) [130].
This can be done by considering the time evolution of the tangent vec-
tor, which for the PING set-up turns out to be four dimensional, i.e. δ ={
δr(e), δv(e), δr(i)δv(i)

}
. The dynamics of the tangent vector is ruled by the

linearization of the Eqs. (3.6), namely

δṙ(e) =
2
(
r(e)δv(e) + v(e)δr(e)

)
τ

(e)
m

(3.8)

δv̇(e) =
2v(e)δv(e)

τ
(e)
m

− 2τ (e)
m π2r(e)δr(e) + J (ee)δr(e) − J (ie)δr(i)

δṙ(i) =
2
(
r(i)δv(i) + v(i)δr(i)

)
τ

(i)
m

δv̇(i) =
2v(i)δv(i)

τ
(i)
m

− 2τ (i)
m π2r(i)δr(i) + J (ei)δr(e) − J (ii)δr(i) .

For the ING set-up the tangent vector is three dimensional, δ =
{
δr(i), δv(i), δs(i)

}
,

and its time evolution can be obtained by the linearization of Eqs. (3.8),
which reads as

δṙ(i) =
2
(
r(i)δv(i) + v(i)δr(i)

)
τ

(i)
m

(3.9)

δv̇(i) =
2v(i)δv(i)

τ
(i)
m

− 2τ (i)
m π2r(i)δr(i) − J (ii)δs(i)

δṡ(i) =
1

τd
[−δs(i) + δr(i)] .
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Please notice that the presence of additive external noise or of forcing terms
in Eqs. (3.6) and (3.7) does not modify the evolution equations in the tan-
gent space Eqs. (3.8) and (3.9).
The LS is composed by 4 (3) Lyapunov exponents (LEs) {λi} for the PING
(ING) set-ups, which quantify the average growth rates of infinitesimal per-
turbations along the orthogonal manifolds. In details, LEs are estimated as
follows

λi = lim
t→∞

1

t
log
|δi(t)|
|δi(0)| , (3.10)

where the technique described in [131] to maintain the tangent vectors δi
orthonormal during the evolution is employed. The autonomous system will
be chaotic for λ1 > 0, while a periodic (quasi-periodic) dynamics will be
characterized by λ1 = 0 (λ1 = λ2 = 0) and a fixed point by λ1 < 0. In a
non-autonomous system in the presence of an external forcing, one Lyapunov
exponent will be necessarily zero, therefore a periodic behaviour corresponds
to λ1 < 0 and a quasi-periodic dynamics to λ1 = 0 [130].
In the absence of noise, neural mass models have been directly integrated by
employing a Runge-Kutta 4th order integration scheme, while in the pres-
ence of additive noise with a Heun scheme. In both cases the time step has
been set to dt = 0.01 ms. In order to estimate the Lyapunov spectra we have
integrated the direct and tangent space evolution with a Runge-Kutta 4th
order integration scheme with dt = 0.001 ms, for a duration of 200 s, after
discarding a transient of 10 s.
Besides LEs, in order to characterize the macroscopic dynamics of the model,
we have estimated the frequency power spectra P

(e)
S (F ) (P

(i)
S (F )) of the mean

excitatory (inhibitory) membrane potential v(e)(t) (v(i)(t)) for the PING
(ING) set-up. The power spectra have been obtained by calculating the
temporal Fourier transform of the mean membrane potentials sampled at
time intervals of 2 ms. In the deterministic (noisy) case, time traces com-
posed of 2048 (1024) consecutive intervals have been considered to estimate
the spectra, which are obtained at a frequency resolution of ∆F = 0.244
Hz (∆F = 0.488 Hz). Finally, the power spectra have been averaged over
12 (488) independent realizations for the deterministic (noisy) dynamics. To
compare our numerical findings with the experimental results reported in [13],
as a measure of the power of the γ oscillations, we have estimated the area of
the power spectrum Pγ in an interval ±15 Hz around the main peak position
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Fr of the corresponding power spectrum.

3.3 Dynamics in the absence of forcing

Due to the low dimensionality of the neural mass models we have been able
to obtain the corresponding bifurcation diagrams by employing the software
MATCONT developed for orbit continuation [132].
In particular, we have derived the bifurcation diagrams in the absence of
forcing (I(e) = I(i) ≡ 0) as a function of the medians H(e) and H(i) of the
excitability distributions for the PING and ING configuration. In general, we
observe either asynchronous dynamics, corresponding to a stable fixed point
(a focus) of the neural mass equations, or COs, corresponding to stable limit
cycles for the same set of equations.

3.3.1 PING set-up

For the excitatory-inhibitory set-up, as already mentioned, we usually fix
H(i) = −5 and we vary H(e). In this case the inhibitory neurons are mostly
below threshold (apart from 6-7 % of them) and they can be driven supra-
threshold from the activity of the excitatory population for sufficiently large
values of H(e). COs emerge when a sufficient number of neurons is supra-
threshold, i.e. when H(e) becomes positive enough. Indeed, as shown in
Fig. 3.2 (a), at negative or low values of H(e), one can observe asynchronous
dynamics, where the neurons fire independently and without any collective
behaviour (as an example see Fig. 3.2 (c)). By increasing H(e), a supercritical

Hopf bifurcation occurs at H
(e)
c ' 1.5 leading to the emergence of COs. The

COs regime is characterized in the network by almost periodic population
bursts, where the neurons in one population partially synchronize over a short
time window in the order of a few milliseconds. An example for H(e) = 5 is
shown in Fig. 3.2 (d), where one can observe two salient characteristics of the
oscillatory dynamics. Firstly, the excitatory anticipates always the inhibitory
burst by a certain time interval Ta (in this case Ta ' 5 ms), as usually ob-
served for the PING mechanism [101]. Secondly, the bursts of the excitatory
population have a temporal width (' 8 ms) which is two or three times larger
than those of the inhibitory ones (' 2 − 3 ms). This is also due to the fact
that a large part of the inhibitory neurons is sub-threshold, therefore most
of them fire within a short time window, irrespective of their excitabilities,
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due to the arrival of the synaptic stimulation from the excitatory population.
Instead, the excitatory neurons, which are mostly supra-threshold, recover
from silence, due to the inhibitory stimulation received during the inhibitory
burst, over a wider time interval, driven by their own excitabilities. It is
evident that the CO frequency of the excitatory and inhibitory population
coincide in this set-up.
Moreover, it is important to investigate the bifurcation diagram of the system
at fixed median excitatory drive by varying H(i). The corresponding bifur-
cation diagram is displayed in Fig. 3.2 (b) for H(e) = 10. By increasing H(i),
COs emerge from the asynchronous state via a sub-critical Hopf bifurcation
at H

(i)
c1 ' −8.4 and they disappear via a super-critical Hopf bifurcation at

H
(i)
c2 ' 0.20. Since the first transition is hysteretical, COs disappear via a

saddle-node of the limit cycles at a value H
(i)
SN ' −10.00 lower than H

(i)
c1 .

Indeed, in the interval [H
(i)
SN ;H

(i)
c1 ] we have the coexistence of a stable focus

with a stable limit cycle. In summary, COs are clearly observable as long
as H(i) is negative or sufficiently small. If the inhibitory neurons become
mostly supra-threshold, this destroys the collective behavior associated with
the PING mechanism.
It is worth noticing that the frequencies of the COs are in the γ-range, namely
ν(e) ∈ [22 : 71] Hz (as shown in the inset of Fig. 3.2 (a)): in this set-up the
maximum achievable frequency ' 100 Hz, since the decay time of inhibition
is dictated by τ

(i)
m = 10 ms [101]. On the other hand, the influence of H(i)

on the frequency of the COs is quite limited. As shown in the inset of Fig.
3.2 (b) for a specific case corresponding to H(e) = 10.0, ν(i) ≡ ν(e) varies by
few Hz (namely, from 42.8 to 46.9 Hz), when H(i) is varied by an order of
magnitude.
For what concerns the delay Ta between the excitatory and inhibitory bursts,
we observe a decrease of Ta with the increase of the excitatory drive H(e),
from Ta ' 10 ms at the Hopf bifurcation, towards 2 ms for large H(e) value,
see Fig. 3.2 (e). The largest value of Ta is of the order of τ

(i)
m . This can

be explained by the fact that the excitatory stimulations should reach the
inhibitory population within a time interval of (at most) ' τ

(i)
m to be able to

sum up in an effective manner and to ignite the inhibitory burst. As shown
in the inset of Fig. 3.2 (e), the increase of H(i) has in general the effect to
reduce Ta; this should be expected since for larger excitabilities (larger H(i)),
the inhibitory neurons are faster in responding to the excitatory stimulations.
However, this is not the case in proximity of the saddle-node bifurcation at
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H
(i)
SN and for positive H(i), where the effect is reversed and Ta increases with

H(i).
It is worth noticing that the same parameters as in panel (a) are used for
the main panel (e), while in the inset of Fig. 3.2 (e), the data shown are
calculated for the same parameters as in panel (b).
For the PING set-up we can also observe sub-crtical Hopf bifurcations. A
specific example is discussed in some detail in Appendix A.

3.3.2 ING set-up

As shown in [123], in order to observe COs in globally coupled inhibitory
QIF networks and in the corresponding neural mass models, it is sufficient to
include a finite synaptic time scale τd. On the other hand, in sparse balanced
QIF networks, COs are observable even for instantaneous synapses [14]. In-
deed, for the set of parameters here employed, by varying the median of the
inhibitory excitabilities H(i), we observe a super-critical Hopf bifurcation at
H

(i)
c ' 2.4, from an asynchronous state to COs (see Fig. 3.3 (a)). Analo-

gously to the PING set-up, the frequencies of the COs observable in the ING
set-up are within the γ-range, namely ν(i) ∈ [26 : 83] Hz. In particular, we
observe an almost linear increase of ν(i) with H(i).
Therefore, the PING and ING set-ups considered here are ideal candidates
to analyze the influence of θ-forcing on γ-oscillatory populations, which rep-
resents the main focus of this chapter. In particular, the response of the
system to the excitatory θ-forcing current (3.5) can be interpreted in terms
of the bifurcation diagrams for the model in the absence of forcing shown,
respectively, in Fig. 3.2 (a) for the PING set-up and in Fig. 3.3 (a) for the
ING set-up. The interpretation is possible due to the fact that the response
of the system to the sinusoidal current (3.5) can be considered as almost adi-
abatic, because the forcing frequencies νθ ∈ [1 : 10] Hz are definitely slower
than those of the COs (ν(e) and ν(i)), which lie in the γ-range.
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Figure 3.2: (PING set-up) (a) Bifurcation diagram of the average mem-
brane potential v(e) as a function of H(e), for H(i) = −5.0. The black con-
tinuous (dashed) line identifies the stable (unstable) fixed point. The red
lines denote the maxima and minima of the limit cycles. The supercritical
Hopf bifurcation occurs at H

(e)
c = 1.5. The inset shows the frequency ν(e)

of the COs versus H(e). (b) Bifurcation diagram of the average membrane
potential v(e) versus H(i) for H(e) = 10. The Hopf bifurcations are located at
H

(i)
c1 = −8.4 and H

(i)
c2 = 0.20, while the saddle-node bifurcation of limit cycles

occurs at H
(i)
SN = −10.0. The inset show the frequency ν(i) ≡ ν(e) of the COs

versus H(i). (c-d) Raster plots of the excitatory (green dots) and inhibitory
(blue dots) networks are calculated in correspondence with the stable fixed
point for H(e) = −5.0 (c) and with the limit cycle for H(e) = +5.0 (d) for
the case analyzed in (a). For a better visualization, the activity of only 500
neurons of each population is shown. (e) Delay Ta as a function of H(e). The

red dashed line denotes H
(e)
c . Here we have used the same parameters as in

panel (a). In the inset is reported the dependence of Ta versus H(i) for the
parameters in panel (b). The other parameters of the system are J (ee) = 8,
J (ie) = J (ei) = 10, J (ii) = 0 and the sizes of the networks are N (e) = 5000,
N (i) = 5000.

71



0 10 20

H
(i)

-20

0

20

40

v
(i)

0 10 20
H

(i)
20

40

60

80
ν

(i) (a)

0

500

1000

0 100 200 300

time (ms)

0

500

1000

(b)

(c)

Figure 3.3: (ING set-up) (a) Bifurcation diagram of the average membrane
potential v(i) as a function of H(i). The black continuous (dashed) line iden-
tifies the stable (unstable) fixed point. The red lines denote the maxima
and minima of the limit cycles. The supercritical Hopf bifurcation occurs
at H

(i)
c ' 2.4. The inset shows the COs’ frequency ν(i) of the inhibitory

population as a function of H(i). (b-c) Raster plots of the inhibitory network
(blue dots) are calculated in correspondence with the stable fixed point at
H(i) = 0.0 (b) and with the limit cycle at H(i) = +10.0 (c). Only the firing
activity of 1000 neurons is displayed. Parameters of the system: J (ii) = 21.0,
H(i) = 2.0, ∆(i) = 0.3, τ

(i)
m = 10.0 ms, τd = 10.0 ms, A = 0. The system size

for the purely inhibitory network is N (i) = 10000.
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3.4 Dynamics under θ-forcing

As a first step, we have verified that the reduced mean-field models are
able to reproduce the macroscopic evolution of the spiking network in both
considered set-ups, under the external forcing (3.5). In particular, we set
the unforced systems in the asynchronous regime in proximity of a super-
critical Hopf bifurcation, by choosing H

(e)
0 = 1.3 < H

(e)
c and H

(i)
0 = −5

(H
(i)
0 = 2.0 < H

(i)
c ) and considered a forcing term with frequency νθ = 5 Hz

and amplitude I0 = 10 (I0 = 9) for the PING (ING) set-up.
The comparisons, reported in Figs. 3.4 (a) and (c), reveal a very good
agreement in both set-ups between the network and the neural mass simu-
lations, for the mean membrane voltages and the instantaneous firing rates.
Furthermore, in both cases, we clearly observe COs, whose amplitudes are
modulated by the amplitude of the θ-forcing term (3.5), suggesting that we
are in the presence of a Phase-Amplitude Coupling (PAC) mechanism [133].
The corresponding spectrograms shown in Figs. 3.4 (b) and (d) reveal that
the frequencies of the COs are in the γ-range with the maximum power local-
ized around 50-60 Hz. Moreover, the spectrograms indicate that the process
is stationary and due to the external stimulation. The gamma oscillations
repeat during each θ-cycle and they arrest when the external stimulation is
stopped. The characteristics of these COs resemble θ-nested γ-oscillations
reported in many experiments for neural systems in vitro under optogenetic
stimulation [13,118–120] as well as in behaving animals [134].
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Figure 3.4: Theta-nested gamma oscillations (PING set-up) (a) From
top to bottom: temporal traces of r(e), v(e), r(i), v(i), for the spiking network
(red curves) and the neural mass model (black curves). Iθ, reported in the
bottom panel in blue, is the external current (3.5). For the neural mass model
the average rates and membrane potentials are solutions of Eq. 3.6, while
for the network they are calculated according to Eq. 3.4. (b) Spectrogram of
the mean membrane potential v(e) (top) as a function of the external forcing
(bottom). The amplitude of the forcing is I0 = 10 and its frequency is νθ = 5
Hz. Parameters of the system: J (ee) = 8, J (ie) = J (ei) = 10, J (ii) = 0,
H

(e)
0 = 1.3, H

(i)
0 = −5.0, ∆(e) = 1, τ

(e)
m = 20, ∆(i) = 1, τ

(i)
m = 10.0, A = 0,

network size N (e) = N (i) = 5000. The average firing rates are R̄(e) ' 37 Hz,
R̄(i) ' 36 Hz. (ING set-up) (c) From top to bottom: temporal traces of
r(i), v(i) where the line colors have the same meaning as in panel (a). For
the neural mass model, average rates and membrane potentials are solutions
of Eq. 3.7. (d) Spectrogram of the mean membrane potential v(i) (top) as
a function of the external forcing (bottom). The amplitude of the forcing is
I0 = 9 and its frequency is νθ = 5 Hz. Parameters of the system: J (ii) = 21.0,
H

(i)
0 = 2.0, ∆(i) = 0.3, τ

(i)
m = 10.0 ms, τd = 10.0 ms, A = 0, system size for

the purely inhibitory network N (i) = 10000. The corresponding average firing
rate is R̄(i) ' 28 Hz. 74



3.4.1 Wavelet Analysis

To get a deeper insight into these dynamics we have estimated the contin-
uous wavelet transform of the average membrane potential on each θ-cycle.
As an example, we report in Fig. 3.5 the wavelet spectrogram of the mean
potential within a single θ-cycle for the previously examined PING (panel
(a)) and ING (panel (b)) set-ups. Indeed, from the comparison of panel (a)
and (b) in Fig. 3.5, we practically do not observe any difference: the system
responds with COs in the range [40, 80] Hz and it exhibits alternating max-
ima and minima in the wavelet spectrogram as a function of the θ-phase.
Similar results have been reported in Fig. 4G in [13] for the CA1-region of
rat hippocampus under optogenetic sinusoidal θ-stimulation.
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Figure 3.5: Wavelet Analysis Continuous wavelet transform over a single
θ-cycle of the mean membrane potentials v(e) and v(i) appearing in the neural
mass models for PING (a) and ING (b) set-up, respectively. This analysis
allows for accurate automated detection and extraction of γ activity without
the need for bandpass filtering. Parameters as in Fig. 3.4.

Differences among the two cases appear when one considers the wavelet spec-
trograms averaged over many θ-periods: for the PING case the spectrogram
remains unchanged, instead for the ING set-up the spectrogram smears out
and it does not present anymore the clear oscillations reported in Fig. 3.5
(b). This difference indicates that, in the PING case, the observed pattern
repeats exactly over each cycle: γ-oscillations and θ-oscillations are perfectly
phase locked. This is not the case for the ING set-up: although the PAC
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patterns appear quite similar in successive cycles, as shown in Fig. 3.4 (c),
indeed they do not repeat exactly. From the point of view of nonlinear dy-
namics, the PING case would correspond to a perfectly periodic case, while
the other case could be quasi-periodic or even chaotic. Therefore, we can
observe PAC with an associated phase locking, but also in the absence of
phase locking.
Furthermore, according to the data shown in Fig. 3.5, this can also repre-
sent an example of PFC, since COs with frequencies ' 40 Hz occur at small
and large θ-phases, while in the middle range π/2 < θ < 3π/2 one observes
similar oscillations with F ' 60 Hz.
For what concerns the wavelet analysis obtained from optogenetic experi-
ments and shown in Fig. 4G in [13], we should stress two important aspects:
(i) the wavelet spectrogram, averaged over several θ cycles (namely 30), dis-
plays clear correlations among the θ-phase and the γ-oscillations; (ii) the
spectrogram is highly asymmetric indicating that γ-oscillations emerge in
proximity of θ-phase ' π and disappear ' 3/2π. The former aspect reveals
that θ and γ oscillations were perfectly locked in the experiment, while the
latter suggests that the bifurcation associated with the emergence of COs in
the experiment is probably hysteretic. This would explain the asymmetry
that we do not observe here for super-critical Hopf bifurcations in Fig. 3.5,
but that emerges for sub-critical Hopf bifurcations, as discussed in Appendix
A.

3.4.2 Phase-Amplitude Locked and Unlocked States

To better examine the dynamical regimes emerging in our set-ups, we have
first estimated the maximal Lyapunov exponent λ1 associated with the neu-
ral mass models, for the same parameters considered in Fig. 3.4, over a wide
range of forcing amplitudes, that is 0 ≤ I0 ≤ 20. From the results reported
in Fig. 3.6 (a) and (b), it is clear that λ1 is almost always zero, apart from
some limited intervals where it is negative and a few values of I0 for the ING
set-up, where it can be even positive. This means that the dynamics is usu-
ally quasi-periodic, apart from some Arnold tongues where there is perfect
locking between the external forcing and the forced system.

We notice that for small amplitudes the forcing entrains the system in a 1 : 1
periodic locking, therefore the instantaneous firing rate displays one peak
for each θ-period with the same frequency as the forcing νθ. This locking is
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Figure 3.6: Maximal Lyapunov exponent λ1 estimated for the neural
mass models as a function of the forcing amplitude I0, for the PING (a) and
ING (b) set-ups. In both cases the system is subject to a forcing frequency
νθ = 5 Hz. Insets in panel a (b) report the instantaneous firing rate r(e)(t)
(r(i)(t) ) versus time for the PING (ING) set-up respectively. The three
cases shown are representative of the states identified by circles in the main
panels. The color code is the same, i.e. the color used in the inset identifies
the corresponding circle in the main panel. The black continuous lines in the
inset correspond to Iθ in arbitrary units. Parameters are the same as in Fig.
3.4.

present in a wider region in the ING case (namely, I0 < 1.70) with respect
to the PING set-up (namely, I0 < 0.40). More interesting locking regimes,
where the forced populations oscillate in the γ-range, emerge at larger I0.
These locking regimes can be considered as θ-nested γ-oscillations; most of
them are of the type m : 1, with m ∈ [5 : 10], which means that, for
each θ-period, the firing rate of the forced populations has m maxima (for
specific examples see the insets of Fig. 3.6 (a) and (b)). In extremely narrow
parameter intervals other, more complex, kinds of locking of the type m : n
emerge, where exactly m maxima in the population activity appear for every
n θ-oscillations. In the examined cases we have identified locked patterns with
n up to four. Moreover, for the ING case, we have even observed a chaotic
region (see Fig. 3.6 (b)), which emerges at quite large forcing amplitude
I0 ' 19. On the basis of our analysis we cannot exclude that chaos could
emerge also in the PING set-up, for sufficiently strong forcing.
Let us now focus on the m : 1 perfectly locked states with m > 1, which
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are worth investigating due to their relevance for θ-γ mixed oscillations, as
well as to their relative large frequency of occurrence with respect to more
complex m : n locked states. In particular, we have examined the response
of the system to different forcing amplitudes I0 ∈ [0 : 20] and frequencies
νθ ∈ [1 : 10] Hz. The m : 1 locked oscillations are reported in Figs. 3.7 (a)
and (b) and characterized by the number m of oscillations displayed within
a single θ-cycle.
These locked states appear only for νθ > 2−3 Hz. Moreover, the states with
equal m are arranged in stripes in the (νθ, I0)-plane. Locked states in the
PING configuration occur in separated stripes whose order m increases for
increasing I0; in particular, states with 3 ≤ m ≤ 10 are clearly identifiable.
In the ING set-up, for sufficiently large νθ and I0, we have a continuum of
locked states, thus indicating that, for the ING set-up, phase locking to the
forcing frequency is easier to achieve. In this case the order of occurrence of
m-order states is not clearly related to the forcing amplitude; however locked
states with order m and 2m are often nested within each other as shown in
Fig. 3.7 (b).
To examine which frequencies are excited in these states we have measured
for each amplitude I0 the minimal, the maximal and the average frequency
of the COs associated with m : 1 locked states over the whole range of ex-
amined forcing frequencies νθ. These frequencies are reported in Figs. 3.7
(c) and (d). The analysis clearly reveals that the minimal CO frequency
is essentially independent from I0 and its value is around 20 Hz, while the
maximal and the average grow with I0. However all these frequencies stay
within the γ-range for the examined forcing amplitudes.
To better understand the mechanism underlying the emergence of θ-nested
γ oscillations, we have reported in Figs. 3.7 (c) and (d) the COs frequencies
ν(e) (ν(i)) (green solid lines) obtained from the adiabatic bifurcation analysis
of the neural mass models (these frequencies are also shown in the insets of
Figs. 3.2 (a) and 3.3 (a)). The very good agreement between ν(e) and ν(i)

and the maximal frequency measured for the locked states suggests that the
nested COs are induced by the crossing of the super-critical Hopf bifurcation
during the periodic stimulation. In particular, during forcing, the maximal
achievable γ-frequency is the one corresponding to the maximal stimulation
current I0 +H

(e)
0 (I0 +H

(i)
0 ) for the unforced PING (ING) set-ups. Further-

more, under sinusoidal forcing, the system spends a longer time in proximity
of the maximal stimulation value, since it is a turning point. This explains
why this frequency is always present in the response of the driven system for
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Figure 3.7: Phase locked m : 1 states Locked states for the neural mass
models are displayed in panels (a) and (b) for the PING and ING set-ups,
respectively. The color code identifies the locked states according to the value
of m, from 3 to 15. (c,d) Minimal (red circles), average (blue circles) and
maximal (black circles) frequencies of the COs as a function of the forcing
amplitude I0 for PING (c) and ING (d) set-ups. These values are obtained
by considering all possible m : 1 locked states corresponding to the examined
I0. The frequencies ν(e) (ν(i)) (green solid lines) of the COs obtained from
the bifurcation analysis in the adiabatic set-up are reported as a function of
H(e) − H(e)

0 (H(i) − H(i)
0 ) for the PING (ING). Parameters are the same as

in Fig. 3.4.
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the considered locked states.

3.4.3 Comparison with Experimental Findings

In a series of recent optogenetic experiments on the mouse enthorinal-hippocampal
system, clear evidence has been reported that phase-amplitude coupled γ-
rhythms can be generated locally in brain slices ex vivo in the CA1-region, as
well as in the CA3 and MEC, under sinusoidal θ stimulations [13, 118–120].
In particular, in [120] the authors reported evidence that, for all the regions
CA1, CA3 and MEC, the generation of the γ-rhythms, under θ-rhythmic
activation of pyramidal neurons, is due to a PING mechanism.
However, due to the fact that pyramidal neurons are directly activated during
experiments, their result cannot exclude that tonic activation of interneurons
contributes to θ-γ oscillations in vivo. Furthermore, in [119] the authors af-
firm that θ-nested γ-oscillations due to the optogenetic θ-frequency drive, are
generated, in MEC, by local feedback inhibition without recurrent excitation,
therefore by a ING mechanism. In this Section we try to reproduce some of
the analyses reported in these experimental studies by employing both the
PING and ING set-ups, in order to understand if these two set-ups give rise
to different dynamical behaviors.
By following the analysis performed in [13, 120], we have considered the re-
sponse of the two set-ups to forcing of different frequencies νθ and amplitudes
I0. The results reported in Fig. 3.8 reveal that the phenomenon of PAC is
present for all the considered frequencies νθ ∈ [1, 10] Hz and amplitudes
I0 ∈ [1, 20] in both set-ups. Moreover, analogously to what was reported
in [13,120], the amplitude of the γ-oscillations increases proportionally to I0,
while the number of nested oscillations in each cycle increases for decreasing
νθ. On the basis of this comparison, the forced PING and ING set-ups dis-
play essentially the same dynamics.
To get a more detailed information about the dynamics in the two set-ups, we
will now consider the features of the power spectra P

(e)
S (P

(i)
S ) of the mean ex-

citatory (inhibitory) potential for the PING (ING) set-up. These features are
obtained for different forcing amplitudes and frequencies, somehow similar
to the analysis performed for the power spectra of the Local Field Potential
(LFP) in [13,120].
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Figure 3.8: Theta-Nested Gamma COs for PING (a-b) and ING
set-up (c-d) Left column: dependence of the mean membrane potential of
the excitatory (inhibitory) population v(e) (v(i)) on the frequency νθ of the
external forcing I(e) = Iθ (I(i) = Iθ) with I0 = 10 (I0 = 9) for the PING
(ING) set-up. The current profiles (blue lines) are displayed immediately
below the corresponding membrane potential evolution. From top to bottom,
the frequency νθ is 1 Hz, 5 Hz and 10 Hz. Right column: dependence of the
mean membrane potential v(e) (v(i)) on the amplitude I0 of the external
current. Here the forcing frequency is kept constant at the value νθ = 5Hz.
The amplitude is changed from 100% of maximum (top) to 20% of maximum
(bottom) in 20% increments, the maximum being given by I0 = 10. The data
refer to the evolution of neural mass models, the parameters are the same as
in Fig. 3.4.
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Let us first consider, as an example of the obtained power spectra, the case
corresponding to the PING set-up with a forcing characterized by νθ = 5 Hz
and amplitude I0 = 10, shown in Fig. 3.9 (a). In the spectrum we observe
very well defined spectral lines located at frequencies which can be obtained
as a linear combination of the forcing frequency νθ = 5 Hz and of the response
frequency Fr = 45 Hz. In particular Fr is associated with the main peak and
should correspond to the intrinsic frequency of the forced system. In the
present case, the adiabatic bifurcation diagram reported in Fig. 3.2 (a) tells

us that the maximal achievable frequency is ν
(e)
max ' 49.3 Hz, corresponding

to H(e) = I0 +H
(e)
0 = 11.3. Indeed Fr < ν

(e)
max due to the interaction with the

forcing current that eventually induces a locking phenomenon at a frequency
that is exactly a multiple of νθ, as it happens in the present case. However,
in general, a spectrum as the one shown in Fig. 3.9 (a), is the emblem of
a quasi-periodic motion characterized by two incommensurate frequencies.
This can be easily observable in most cases in our system, where νθ and Fr
are usually incommensurate.
The spectra obtained from optogenetic stimulation, reported in [13,120], do
not resemble the one shown in Fig. 3.9 (a); indeed they present only two
peaks: one corresponding to the stimulation frequency and one, quite broad,
associated with the γ-oscillations. We can expect that the difference is due
to the multiple noise sources that are always present in an experimental
analysis (in particular for neurophysiological data), but that are absent in
our model. Indeed, by considering the neural mass model for the PING set-
up with additive noise on the membrane potentials of suitable amplitude,
that is A = 1.4, we get a power spectrum resembling the experimental one,
as shown in Fig. 3.9 (b). The presence of noise induces the merging of the
principal peaks in a unique broad one and the shift of the position of the
main peak towards some larger values (Fr = 54 Hz in the present case) with
respect to the fully deterministic case.

Let us now consider the power spectra obtained for different forcing frequen-
cies νθ ∈ [1 : 10] Hz in the θ-range, in case of fixed forcing amplitude and
in the absence of noise. The position of the main and auxiliary peaks are
shown in Fig. 3.10 (a) (Fig. 3.10 (c)) for the PING (ING) set-up and com-
pared with the experimental results (red circles) obtained for the CA1 region
of the hippocampus in [13]. It is clear that, for both set-ups, the position
of the main peak Fr (green squares) has a value ' 50 Hz and it does not
show any clear dependence on νθ. This is in contrast with the experimental
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Figure 3.9: Power spectra for the PING set-up Spectra P
(e)
S of the

mean membrane potential v(e) of the neural mass model estimated when the
excitatory population is subject to an external drive with frequency νθ = 5
Hz and amplitude I0 = 10, in the absence of noise (a) and for additive noise
with amplitude A = 1.4 (b). The data refer to the evolution of neural mass
models, the parameters are as in Fig. 3.4.

data, which reveal an increase proportional to νθ from 49 Hz to 60 Hz. The
same trend is displayed in our simulation from the subsidiary peak located
at Fr + νθ (black stars), showing an increase with νθ.
Let us now take into account the power of the γ oscillations Pγ as defined in
Section 3.2.2. As shown in the insets of Fig. 3.10 (b) and (d), this quantity
remains essentially constant for low frequencies (namely, for νθ ≤ 5 Hz in
the PING and for νθ ≤ 7 Hz in the ING), while it drops to smaller values at
larger frequencies. On the other hand, the experimental results (red circles)
reveal a similar decrease at frequencies νθ > 5 Hz, but they also reveal an
increase at low frequencies, not present in our numerical data, thus suggest-
ing a sort of resonance at 5 Hz. For what concerns the dependence of Pγ on
the forcing amplitude, we have fixed νθ = 5 Hz and varied I0 in the range
[4 : 10] ([8 : 20]) for the PING (ING) set-up. In both cases and analogously
to experimental data, Pγ increases proportionally to I0, see Fig. 3.10 (b) and
(d).

In both set-ups, our model is unable to reproduce, in the absence of noise
and for fixed forcing amplitude I0, the steady increase of Fr with νθ reported
in the experiments for the mice CA1 in [13]. Therefore, in order to cope with
this problem, we will now investigate how a similar trend can emerge in our
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Figure 3.10: Power spectra features (PING set-up) (a) Frequencies

of the peaks of the power spectrum P
(e)
S as a function of the stimulation

frequency νθ. Green squares correspond to the main peak frequency Fr, while
the black stars to Fr + νθ and the blue diamonds to Fr − νθ. The red circles
are the experimental data extrapolated from Fig. 4C of [13]. The amplitude
of the forcing is I0 = 10. (b) Normalized power of the γ oscillations Pγ/P

max
γ

associated with the signal v(e) as a function of the amplitude stimulation,
where we set Imax0 = 20 and the frequency of stimulation at νθ = 5 Hz.
In the inset we report the same quantity as a function of the frequency
stimulation νθ for I0 = 10. The black stars correspond to our simulations,
while the red circles to experimental data extrapolated from Fig. 4E (Fig.
4B for the inset) of Ref. [13] (filled circles) and from Fig. 4C of Ref. [120]
(empty circles). The other parameters are as in Fig. 3.4. (ING set-up) (c)

Same as in panel (a) for the power spectrum P
(i)
S with I0 = 9. (d) Same as

panel (b) for the signal v(i) with Imax0 = 40. The data refer to the evolution
of neural mass models. For the inset we set I0 = 9, other parameters as in
Fig. 3.4.
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data. In particular, in the remaining part of the chapter we consider noisy
dynamics, to have a better match with experiments where is unavoidable. In
Fig. 3.10 (a) we report, for the PING set-up, the estimated power spectra
for different noise levels, under constant external sinusoidal forcing. The ef-
fect of noise is to render the spectrum more flat and to shift the position of
the peak in the γ-range towards higher frequencies. As shown in the inset
of Fig. 3.10 (a), the frequency Fr is almost insensitive to the noise up to
amplitudes A ' 1.0, then it increases steadily with A from ' 45 Hz to ' 62
Hz. The effect of varying the forcing amplitude I0, for constant forcing fre-
quency νθ = 5 Hz and noise amplitude A = 1.4, is shown in Fig. 3.10 (b). In
this case the amplitude increase of the forcing leads to more defined peaks
in the γ-range and to an almost linear increase with I0 of Fr, as reported
in the inset. In the same inset we also have reported the results related to
two optogenetic experiments for the CA1-region of the mice hippocampus.
In particular, the data-sets refer to two successive experiments performed by
the same group: namely, red filled circles refer to [13] and red open circles
to [120]. While in one experiment (red open circles) a constant increase of Fr
with the forcing amplitude is observable from 60 to 70 Hz, in the other one
(red filled circles) the frequency initially increases with I0 and then decreases
with it. As a matter of fact in the latter case, Fr remains around 45− 50 Hz
for a variation of I0 from 40 to 100 % of the maximal amplitude Imax0 . From
the comparison with our results, we can affirm that our data reproduce the
correct range of frequencies in both experiments and also the dependence on
the forcing amplitude for I0/I

max
0 ≥ 60% reported in [120]. The decrease

of Fr for I0/I
max
0 larger than the 50% reported in [13] is inconsistent with

our data, but also with the experimental results of the same group published
in [120].
From this last analysis we have understood that, for constant forcing fre-
quency, the γ-peak shifts towards higher frequencies by increasing the forcing
amplitude or the noise level, i.e. by increasing the stimulation power.
Therefore, to obtain an increase of Fr with the forcing frequency νθ, anal-
ogously to the results reported in [13] (and displayed as filled red circles in
Fig. 3.10(a) and (c)), we perform numerical experiments where νθ increases
together with A or I0. The simplest protocol is to assume that A (I0) will
increase linearly with νθ. The results obtained for the PING (ING) set-up
are reported in Fig. 3.12 (a) (Fig. 3.12 (b)). As evident from the figures, in
both set-ups and for both protocols we obtain results in reasonable agreement
with the experiments. In the present framework, we have also analyzed the
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Figure 3.11: Power spectra dependency on noise and forcing ampli-
tudes (PING set-up) Power spectra P

(e)
S for different noise level A (a) and

different amplitude of the external input I0 (b), for a fixed forcing frequency
νθ = 5 Hz. In the insets are reported the frequencies Fr of the main peak as
a function of the noise level (a) and of the amplitude of the external drive I0

(b). In the inset of panel (b) are also reported experimental data extracted
from Fig. 4F of Ref [13] (filled red circles) and from Fig. 4D of Ref. [120]
(open red circles). The curves in (a) are obtained by varying the noise am-
plitude A ∈ [0.9 : 3.0] with a step of 0.3, while keeping I0 = 10 fixed. On the
other hand the curves in (b) refer to different forcing amplitudes 2 ≤ I0 ≤ 20,
varied in steps of 0.2, with fixed noise amplitude A = 1.4. The other pa-
rameters are as in Fig. 3.4. Data have been obtained by the integration of
neural mass models.

dependence of the γ-power Pγ on νθ. In particular, this quantity increases
almost linearly with the forcing frequency, at variance with the experimental
results in [13] which revealed a sort of resonance with an associated maximal
γ-power around νθ = 5 Hz (the experimental data are displayed as red circles
in the insets of Fig. 3.10 (b) and (d)).
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Figure 3.12: Influence of the theta frequency on the gamma oscil-
lations Frequency Fr of the main peak of the power spectrum P

(e)
S versus

νθ for the PING (a) and ING (b) set-ups. Red filled circles represent the
experimental data extrapolated from Fig. 4C in [13]. Black stars (magenta
triangles) refer to numerical data obtained by varying linearly the noise am-
plitude A (the forcing amplitude I0) as a function of νθ and maintaining the
forcing amplitude I0 (the noise amplitude A) constant. The data shown as
black stars for the PING (ING) set-up in panel (a) (panel (b)) are obtained
by adding white noise to the evolution of the mean membrane potentials and
by varying linearly its amplitude in the interval A ∈ [1.4 : 2.9] as a function
of νθ with I0 = 10 (I0 = 9). The magenta triangles refer to data obtained
by keeping fixed the noise amplitude at the value A = 1.4 and by varying
linearly with νθ the forcing amplitude I0 in the range [9.5 : 18] ([8 : 14]) for
the PING (ING) set-up in panel (a) (panel (b)). Other parameters for as in
Fig. 3.4. Data are obtained from neural mass models integration.
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3.5 Discussion and Conclusions

In this chapter we have analyzed the dynamics of a new class of neural mass
models arranged in two different set-ups: an excitatory-inhibitory network
(or PING set-up) and a purely inhibitory network (or ING set-up). These
neural mass models are extremely relevant to mimick neural dynamics for
two reasons. On one side, because they are not derived heuristically, since
they reproduce exactly the dynamics of excitatory and inhibitory networks
of spiking neurons for any degree of synchronization [10, 123,135]. On other
side, these neural masses reproduce the macroscopic dynamics of quadratic
integrate-and-fire neurons, which are normal forms of type I neurons, there-
fore they are expected to represent the dynamics of this large class of neu-
rons [89].
In this present work we have shown that θ-nested γ oscillations can emerge
both in the PING and ING set-up under an external excitatory θ-drive when-
ever the system, in the absence of forcing, is in a regime of asynchronous
dynamics, but in proximity of a Hopf bifurcation towards collective γ oscil-
lations. The external forcing drives the system across the bifurcation inside
the oscillatory regime, thus leading to the emergence of γ oscillations. The
amplitude of these collective oscillations is related to the distance from the
bifurcation point, therefore it depends on the phase of the θ-forcing term.
These nested oscillations can arise in proximity of a super-critical and also
a sub-critical Hopf bifurcations. As shown in Appendix A, in the latter case
the amplitudes are no more symmetric with respect to the maximum value
of the theta stimulation, analogously to the experimental findings reported
in [13].
Equivalent results have been reported for an excitatory-inhibitory network
with a recurrent coupling among the excitatory neurons, by considering
the Wilson-Cowan rate model [129]. However, at variance with our neu-
ral mass model, the Wilson-Cowan model fails to reproduce the emergence
of γ-oscillations, displayed by the corresponding spiking networks, in several
other set-ups. In particular, the Wilson-Cowan model is unable to display
COs for purely inhibitory populations (the ING set-up), without the addi-
tion of a delay in the IPSPs transmission, delay that is not required in the
network model. Moreover, the Wilson-Cowan model is unable to display COs
even for excitatory-inhibitory coupled populations in the absence of a recur-
rent excitation [123, 129]. As shown in Appendix B, the considered neural
mass model in the PING set-up displays clear θ-nested γ-oscillations in the
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absence of any recurrent coupling or with recurrent couplings only among
the inhibitory neurons.
Furthermore, we have identified two different types of phase amplitude cou-
plings. One characterized by a perfect locking between θ and γ-rhythms,
corresponding to an overall periodic behaviour dictated by the slow forcing.
The other one where the locking is imperfect and the dynamics is quasi-
periodic or even chaotic. The perfectly locked θ-nested γ oscillations display
in turn two types of cross-frequency coupling: phase-phase and phase am-
plitude coupling [133]. These states arise for νθ larger than 2-3 Hz and for
sufficiently large forcing amplitudes. From the results reported in [13] for
the CA1-region of the hippocampus under sinusoidal forcing in vitro, it is
evident that perfectly phase locked PACs have been observed in each single
slice. However, in vivo this perfect phase-phase locking cannot be expected,
see the detailed discussion of phase-phase coupling reported in [136], where
the authors clarify that phase locking is indeed observable, but only over a
limited number of successive θ-cycles. Therefore, PAC with an underlying
chaotic (or noisy) dynamics is the scenario usually expected in behaving an-
imals.
From our analysis it also emerges that locked states are more frequent in
the ING set-up. The purely inhibitory population is more easily entrained
by the forcing with respect to the coupled excitatory-inhibitory population
system, where the forcing is applied to the excitatory population. This result
is somehow in agreement with recent findings based on the analysis of phase
response curves, which suggest that stimulating the inhibitory population
facilitates the entrainment of the gamma-bands with an almost resonant fre-
quency [137,138]. However, these analyses do not consider θ-γ entrainment:
this will be a subject of future studies based on exact macroscopic phase
response curves [138,139].
Our modelization of the PAC mechanism induced by an external θ-forcing
is able to reproduce several experimental features reported for optogenetic
experiments concerning the region CA1, CA3 of the hippocampus, as well as
MEC [13,118–120]. In agreement with the experiments, we observe nested γ
COs for forcing frequencies in the range [1 : 10] Hz, whose amplitude grows
proportionally to the forcing one. Furthermore, the γ-power and the fre-
quency of the γ peak increase almost linearly with the forcing amplitude,
i.e. with the input θ-power. Moreover these findings are consistent with
recent results for behaving rats, where it has been shown that hippocampal
γ-frequency and the associated power increase proportionally to the animal
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speed [140,141]. In addition, in [142], the authors have clearly demonstrated
that the hippocampal θ-power and the mouse speed are positively corre-
lated. This proportionality between the θ-power and the mouse speed has
been recently employed to develop a computational model able to success-
fully reproduce CA1 network activity [143].
However, the neural mass model in all the examined PING and ING set-ups
is unable to reproduce the increase in frequency of the γ-power peak with νθ
reported in [13]. Indeed, such effect was expected by the observation that
during movement, both the frequencies of hippocampal θ oscillations [144]
and γ oscillations [140] increase with the running speed of the animal. How-
ever, the variation of the γ frequency reported in [140] for behaving animals
amounts to 40-60 Hz, while in the optogenetic experiment by [13], the in-
crease was limited to ' 10 Hz. In order to get a similar increase in the
neural mass model, we have been obliged to assume that the stimulation
power (namely, the noise or the forcing amplitude) increases proportionally
to νθ. On one side, further experiments are required to clarify if, during op-
togenetic experiments, the forcing (or noise amplitude) affecting the neural
dynamics is indeed dependent on νθ. This could be due to a reinforcement of
the synaptic strengths for increasing forcing frequencies, or to the fact that
higher θ frequencies can favour neural discharges in regions different from
CA1, thus being assimilated to external noise. On another side it should be
analyzed if other bifurcation mechanisms, beside the Hopf one, here consid-
ered, can give rise to such a dependence of γ power on θ forcing.
Finally, experiments on behaving rodents report clear evidence that θ-power
and νθ, as well as the power of the γ-peak and the corresponding frequency,
increase all proportionally to the animal speed [140–142, 144]. Furthermore,
in [141] the authors report evidence of the increase of the phase-amplitude
coupling with the speed. This scenario is consistent with the results reported
in our analysis, where we have shown that an increase of νθ and of the stim-
ulation power leads to an increase of Pγ and of the frequency of the γ peak
as well as of the PAC. It is worth noting that the mean field models we
have adopted in this chapter are far from being biologically realistic in this
state. The enrichment of these models with more real biological features
constitutes a necessary step if we want to reach a deeper contact with the
experimental data. For this reason, the choice of the parameters made long
this analysis tries to be on the one hand as close as possible to the typical
values of the parameters obtained experimentally (such as for the membrane
time constants and the synaptic time decay), on the other hand to give rise to
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complex dynamical behavior, as for the case of the excitabilities and synaptic
strengths, for which there are no corresponding experimentally measurable
quantities with our model. Our aim is mostly to propose simple models ca-
pable of giving rise to complex mechanisms. As we have shown, for example,
the increase of noise in our model induces, counterintuitively, an increase in
the response frequency of the system. Although the biological reason for this
is not clear to our knowledge, we think that the analysis of this mechanism
deserves to be addressed from a mathematical point of view.
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Chapter 4

Coexistence of fast and slow
gamma oscillations in one
population of inhibitory spiking
neurons

Abstract:

Oscillations are a hallmark of neural population activity in various brain
regions with a spectrum covering a wide range of frequencies. Within this
spectrum gamma oscillations have received particular attention due to their
ubiquitous nature and to their correlation with higher brain functions. Re-
cently, it has been reported that gamma oscillations in the hippocampus of
behaving rodents are segregated in two distinct frequency bands: slow and
fast. These two gamma rhythms correspond to different states of the net-
work, but their origin has been not yet clarified. Here, we show theoretically
and numerically that a single inhibitory population can give rise to coexist-
ing slow and fast gamma rhythms corresponding to collective oscillations of a
balanced spiking network. The slow and fast gamma rhythms are generated
via two different mechanisms: the fast one being driven by the coordinated
tonic neural firing and the slow one by endogenous fluctuations due to ir-
regular neural activity. We show that almost instantaneous stimulations can
switch the collective gamma oscillations from slow to fast and vice versa. Fur-
thermore, to make a closer contact with the experimental observations, we
consider the modulation of the gamma rhythms induced by a slower (theta)

93



rhythm driving the network dynamics. In this context, depending on the
strength of the forcing, we observe phase-amplitude and phase-phase cou-
pling between the fast and slow gamma oscillations and the theta forcing.
Phase-phase coupling reveals different theta-phases preferences for the two
coexisting gamma rhythms.

4.1 Introduction

The emergence of collective oscillations in complex system has been a sub-
ject largely studied in the last decades from an experimental as well as from
a theoretical point of view, for a recent review see [145]. In particular, the
transition from asynchronous to collective dynamics in networks of heteroge-
neous oscillators has been characterized in terms of methods borrowed from
statistical mechanics [25, 146,147] and nonlinear dynamics [74,148,149].
Oscillatory dynamics is fundamental for the functioning of the mammalian
brains, rhythms ranging from 1 to 500 Hz have been measured at a meso-
scopic level, corresponding to the dynamics of neural populations, by em-
ploying electroencephalography (EEG), magnetoencephalography (MEG), or
local field potential (LFP) [96].
In particular, gamma oscillations (30-100 Hz) have been suggested to un-
derlie various cognitive and motor functions. Oscillations in the gamma
band have been related to attention selection [150], memory formation and
retrieval [121,151], binding mechanisms for sensory awareness [152], and hu-
man focal seizures [153].
Gamma oscillations have been observed in many areas of the brain and
their emergence has been shown to be crucially dependent on inhibitory
networks [97,100]. By following [97] gamma oscillations in purely inhibitory
networks can emerge only via two mechanisms: the single neurons can fire
periodically locked in phase [154] or each neuron can have irregular ac-
tivity, but sufficiently strong recurrent interactions can render the asyn-
chronous state unstable against fluctuations and collective oscillations (COs)
can arise [14, 15, 155]. On one hand, the role of the synaptic mechanisms
in promoting tonic synchronization in the gamma range has been clarified
in [100,156]. On the other hand, fast network oscillations with irregular neu-
ral discharges can emerge when the neurons are operating in the so-called
balanced state [157–161], a typical cortical state, where the balance of exci-
tation and inhibition allows for a healthy activity of the brain. The balanced
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state has been observed in vitro and in vivo experiments in the cerebral
cortex [162, 163] and reported in simulations of networks of excitatory and
inhibitory spiking neurons [155, 164, 165] as well as of purely inhibitory cir-
cuits driven by external excitatory currents [23,166].
Recently, the co-existence of gamma oscillations in three distinct bands has
been reported for the cornu ammonis area 1 (CA1) of the hippocampus [105]:
namely, a slow one (' 30-50 Hz), a fast (or intermediate) one (' 50-90 Hz),
and a so called ε-band (' 90-150 Hz). However, only the two lower bands
show a clear correlation (P-P coupling) with the theta rhythm during maze
exploration and REM sleep, thus suggesting their functional relevance [105].
There are several further evidences that these two gamma bands correspond
to different states of the hippocampal network [167]. In particular, in freely
behaving rats place cells code differently the space location and the running
speed during theta-nested slow or fast gamma rhythms [167–169]. More-
over, gamma rhythms with similar low and high frequencies subtypes occur
in many other brain regions, besides the hippocampus [170, 171]. Despite
their relevance, the mechanisms behind the emergence of these two distinct
gamma bands are not yet clarified.
For what concerns the hippocampus, experiments show that slow gamma
rhythms couple the activity of the CA1 area to synaptic inputs from CA3,
while fast gamma rhythms in CA1 are entrained by inputs from medial Entor-
inhal Cortex (mEC) [171]. Slow and fast oscillations have been recorded also
in CA3, where fast gamma are entrained by synaptic inputs from mEC [104].
These findings suggest that CA3-activated interneurons drive slow gamma,
while mEC-activated interneurons drive fast gamma. Nonetheless, it has
been shown that a substantial proportion of CA1 interneurons phase-lock
to both slow and fast gamma LFP oscillations [104, 105, 172]. Therefore, as
suggested by L.L. Colgin in [171], such interneurons may be part of a net-
work that can generate either slow or fast gamma, depending on the state
of the network. Furthermore there are experimental evidences that gamma
rhythms can be generated locally in vitro in the CA1, as well as in the CA3
and mEC, thanks to optogenetic stimulations [13, 118, 119] or pharmacolog-
ical manipulations, but at lower gamma frequencies with respect to optoge-
netics [173–176]. A recent theoretical work has analyzed the emergence of
gamma oscillations in a neural circuit composed by two populations of in-
terneurons with fast and slow synaptic time scales [177, 178]. Based on the
results of this idealized rate model and on the analysis of experimental data
sets for the CA1 area the authors showed that multiple gamma bands can
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arise locally without being the reflection of feedforward inputs.
In the present work, we show, for the first time to our knowledge, that a sin-
gle inhibitory population, characterized by only one synaptic time, can dis-
play coexisting fast and slow gamma COs corresponding to different network
states. In particular, the slow gamma oscillations are associated to irregular
spiking behaviors and fluctuations driven, while the fast gamma oscillations
coexist with a much more regular neural dynamics and they can be character-
ized as mean driven [179, 180]. Furthermore, in presence of theta forcing we
observe different theta-gamma cross-frequency coupling scenarios depending
on the forcing amplitude. For small amplitudes we have theta-nested gamma
oscillations resembling those reported for various brain areas in vitro under
optogenetic sinusoidal theta-stimulation [13, 118, 119]. At larger amplitudes
the two types of gamma COs phase lock to the theta rhythm, similarly to
what has been reported experimentally for the CA1 region of the hippocam-
pus [104, 105]. More specifically we have studied balanced sparse inhibitory
networks of quadratic integrate-and-fire (QIF) neurons pulse coupled via in-
hibitory post-synaptic potentials (IPSPs), characterized by a finite synap-
tic time scale. For this sparse network we derived an effective mean-field
(MF) by employing recently developed reduction techniques for QIF net-
works [10,14,61,123]. In the MF model, in proximity of the sub-critical Hopf
bifurcations, we report regions of bistability involving one stable focus and
one stable limit cycle. In direct simulations of the corresponding spiking
network we observe the coexistence of two distinct COs with frequencies in
the slow and fast gamma band. The slow gamma COs are due to the mi-
croscopic irregular dynamics, characteristic of the balanced dynamics, which
turns the damped oscillations towards the MF focus in sustained COs. The
fast gamma COs are instead related to the oscillatory branch emerging via
the sub-critical Hopf bifurcation from the asynchronous state. The network
can be driven from one kind of COs to the other by transiently stimulating
the neurons. In presence of a theta forcing nested gamma oscillations char-
acterized by a P-A coupling appear for small forcing amplitudes, while at
intermediate amplitudes slow and fast gamma phases lock to the theta phase
displaying P-P coupling between the rhythms. For even larger amplitudes
only fast gamma are observables with a maximal power in correspondence of
the maximum of the stimulation.
The chapter is organized as follows. In Section (4.2), we introduce the model
for an inhibitory sparse balanced network of QIF neurons as well as the
macroscopic and microscopic indicators employed to characterize its dynam-
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ics. Section (4.3) is devoted to the derivation of the corresponding effective
MF model and to the linear stability analysis of the asynchronous state. Sim-
ulation results for the network for high and low structural heterogeneity are
reported in Section (4.4) and compared with MF forecasts. The coexistence
and transitions from slow (fast) to fast (slow) gamma oscillations is analyzed
in Section (4.5) together with the cross-frequency coupling between theta and
gamma oscillations. A concise discussion of the results and of possible future
developments is reported in Section (4.6). Finally, Appendix C is devoted
to the analysis of coexisting gamma oscillations in Erdös-Renyi networks,
while Appendix D discusses of a general mechanism for the coexistence of
noise-driven and tonic oscillations.
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4.2 Methods

4.2.1 The network model

We consider N inhibitory pulse-coupled QIF neurons [89] arranged in a
random sparse balanced network. The membrane potential of each neuron
evolves according to the following equations:

τmV̇i(t) = I + V 2
i (t)− τmJSi(t) (4.1a)

τdṠi(t) = −Si(t) +
∑

j εjiδ(t− tj(m)) , (4.1b)

where τm = 15 ms represents the membrane time constant, I an external
DC current, encompassing the effect of distal excitatory inputs and of the
internal neural excitability. The last term in (4.1a) is the inhibitory synaptic
current, with J being the synaptic coupling and Si the synaptic field seen
by neuron i. Whenever the membrane potential Vi reaches infinity a spike is
emitted and Vi resetted to −∞. The field Si is the linear superposition of
all the exponential IPSPs Y (t) = e(−t/τd) received by the neuron i from its
pre-synaptic neurons in the past, namely

Si(t) =
1

τd

∑
j∈pre(i)

∑
m|tj(m)<t

εjiH(t− tj(m))Y (t− tj(m)) (4.2)

where τd is the synaptic time constant, tj(m) the spike time of the m-th spike
delivered by the j-th neuron, H(t) is the Heaviside function and εji is the
adjacency matrix of the network. In particular, εji = 1 (0) if a connection
from node j to i exists (or not) and ki =

∑
j εji is the number of pre-synaptic

neurons connected to neuron i, or in other terms its in-degree.
In order to compare the simulation results with the exact MF recently derived
[10,14,123], we consider sparse networks where the in-degrees ki are extracted
from a Lorentzian distribution

P (k) =
∆k

(k −K)2 + ∆2
k

, (4.3)

peaked at K and with a half-width half-maximum (HWHM) ∆k, the pa-
rameter ∆k measures the level of structural heterogeneity in the network,
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and analogously to Erdös-Renyi networks we assumed the following scaling
for the HWHM ∆k = ∆0

√
K. The DC current and the synaptic coupling

are rescaled with the median in degree K as I = I0

√
K and J = J0/

√
K, as

usually done to achieve a self-sustained balanced state for sufficiently large in
degrees [157–159,161,165]. In this chapter we will usually consider I0 = 0.25,
N = 10000 and K = 1000, unless stated otherwise.

4.2.2 Simulation Protocols

The network dynamics is integrated by employing a standard Euler scheme
with an integration time step ∆t = τm/10000. The coexistence of solutions
in proximity of a sub-critical Hopf bifurcation is analyzed by performing
adiabatic network simulations where a control parameter (e.g. the synaptic
time τd ) is slowly varied. In particular, these are performed by starting with

an initial value of τ
(0)
d and arriving to a final value τ

(1)
d in M steps, each time

increasing τd by ∆τd = (τ
(1)
d − τ

(0)
d )/(M − 1). Once the final value τ

(1)
d is

reached, the synaptic time is decreased in steps ∆τd down to τ
(0)
d . Each step

corresponds to a simulation for a time Ts = 90 s during which the quantities
of interest are measured, after discarding a transient Tt = 15 s. The initial
condition for the system at each step is its final configuration at the previous
step.
For what concerns the analysis of the crossing times tc from slow (fast) to fast
(slow) gamma in a bistable regime, reported in Section (4.5.1), we proceeded
as follows. Let us first consider the transition from slow to fast gamma
COs. We initialize the system in the slow gamma state at a current I0 ≡ I1

ensuring the bistability of the dynamics. Then we increase the DC current
to a value I0 ≡ I2 for a time interval TP , after that time we return to the
original value I0 ≡ I1 and we check, after a period of 1.5 s, if the system is in
the slow or fast gamma regime. Then we repeat the process M = 30 times
for each considered value of TP and we measure the corresponding transition
probability. The crossing time tc is defined as the minimal TP giving 80%
of probability that the transition will take place. To analyze the transition
from fast to slow, we initialize the system in the fast gamma state at a DC
current I1, we decrease the current to a value I0 ≡ I3 for time TP and then
we proceed as before. To examine the influence of noise on such transitions
we added to the membrane potential evolution a noise term of zero average
and amplitude An.
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4.2.3 Indicators

To characterize the collective dynamics in the network we measure the mean
membrane potential v(t) =

∑N
i=1 Vi(t)/N , the instantaneous firing rate r(t),

corresponding to the number of spikes emitted per unit of time and per neu-
ron, as well as the mean synaptic field s(t) =

∑N
i=1 Si(t)/(NK)1.

The microscopic activity can be analyzed by considering the inter-spike in-
terval (ISI) distribution as characterized by the coefficient of variation cvi
for each neuron i, which is the ratio between the standard deviation and the
mean of the ISIs associated to the train of spikes emitted by the considered
neuron. In particular, we will characterize each network in terms of the av-
erage coefficient of variation defined as CV =

∑
i cvi/N . Time averages and

fluctuations are usually estimated on time intervals Ts ' 90s, after discard-
ing a transients Tt ' 15s.
Phase entrainment between an external forcing characterized by its phase
θ(t) and the collective oscillations induced in the network can be examined
by considering the following phase difference:

∆nm(t) = n ∗ θ(t)−m ∗ γ(t); (4.4)

where γ(t) is the phase of the COs defined by considering the time occur-
rences Tk of the k maximum of the instantaneous firing rate r(t) of the
network, namely γ(t) = 2π(t− Tk)/(Tk+1 − Tk) with t ∈ [Tk, Tk+1]2.
We have a n : m phase locking whenever the phase difference (4.4) is bounded
during the time evolution, i.e. |∆nm(t)| < const.
This somehow qualitative criterion can be made more quantitative by con-
sidering statistical indicators measuring the level of n : m synchronization
for irregular/noisy data. In particular, an indicator based on the Shannon
entropy has been introduced in [117], namely

enm =
(Emax − E)

Emax
with E = −

M∑
k=1

pkln(pk) (4.5)

1In the definition of the mean synaptic field we have divided the sum also by the median
in-degree K, because on average a neuron is subject to K spike trains.

2This definition of the phase avoids spurious phase locking indications in terms of the
Kuramoto order parameter arising with not perfectly harmonic signals as pointed out
in [136]
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where E is the entropy associated to the distribution of ∆nm(t) and Emax =
ln(M) with M number of bins.
The degree of synchronization among the phases can be also measured by
the Kuramoto order parameter, namely [64,105]

ρnm =

∣∣∣∣∣ 1L
L∑
k=1

ei∆nmtk

∣∣∣∣∣ (4.6)

where |·| represents the modulus and tk = k TW
L

are L successive equispaced
times within the considered time window TW . For completely desynchronized
phases ρnm ∝ 1/L, while partial (full) synchronization will be observable
whenever ρnm is finite (one).
To assess the stationarity and the statistical significance of the obtained
data we measured the above indicators within a time window TW and we
averaged the results over several distinct time windows in order to obtain
also the corresponding error bars. Furthermore, to avoid the detection of
spurious phase locking due to noise or band-pass filtering one should derive
significance levels e

(S)
nm and ρ

(S)
nm for each n : m phase locking indicators enm

and ρnm [117,136]. The significance levels have been estimated by considering
surrogate data obtained by randomly shuffling the original time stamps of
one of the two considered phases. Moreover, by following [136] we considered
also other two types of surrogates for the generation of ∆nm(t) (4.4) within
a certain time window TW . These are the time-shift surrogate, obtained by
time shifting the origin of one time series for the phases with respect to the
original one in the definition of (4.4) and the random permutation surrogate,
obtained by randomly choosing the origins of two time windows of duration
TW to estimate ∆nm(t).

4.3 Effective Mean-Field model for a sparse

QIF network

By following [14] we derive an effective MF formulation for the model (4.1).
As a starting point we consider the exact macroscopic model derived in (2.65)
for fully coupled networks of pulse-coupled QIF [10], in particular we focus
on inhibitory neurons coupled via exponentially decaying IPSPs [123]. As re-
ported in (2.5.1), for a structurally inhomogeneous network made of identical
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QIF neurons, with the synaptic couplings randomly distributed according to
a Lorentzian, the MF dynamics can be expressed in terms of only three
collective variables (namely, v, r and s), as follows:

τmṙ = 2rv +
Γ

π
s (4.7a)

τmv̇ = v2 + I + ḡτms− (πτmr)
2 (4.7b)

τdṡ = −s+ r (4.7c)

where ḡ is the median and Γ the HWHM of the Lorentzian distribution of
the synaptic couplings.
At a mean-field level, the above formulation can be applied to a sparse net-
work, indeed the quenched disorder in the connectivity distribution can be
rephrased in terms of a random synaptic coupling. Namely, each neuron i is
subject in average to an inhibitory synaptic current of amplitude g0kis/(

√
K)

proportional to its in-degree ki. Therefore at a first level of approximation
we can consider the neurons as fully coupled, but with random values of the
coupling distributed as a Lorentzian of median ḡ = −J0

√
K and HWHM

Γ = J0∆0. The MF formulation (4.7) takes now the expression:

τmṙ = 2rv +
∆0J0

π
s (4.8a)

τmv̇ = v2 +
√
K(I0 − J0τms)− (πτmr)

2 (4.8b)

τdṡ = −s+ r. (4.8c)

As verified in [14] for instantaneous PSPs this formulation represents a quite
good guidance for the understanding of the emergence of sustained COs in
the network, despite the fact that the MF asymptotic solutions are always
stable foci. Instead in the present case, analogously to what found for struc-
turally homogeneous networks of heterogeneous neurons in [123], we observe
that for IPSPs of finite duration oscillations can emerge in the network as
well as in the mean-field, as shown in Fig. (4.1). The data reported in the
figure confirm that the MF formulation (4.8), despite not including current
fluctuations, reproduces quite well the macroscopic evolution of the network
in the oscillatory regime also for a sparse network.
Therefore we can safely employ such effective MF model to interpret the phe-
nomena observed in the spiking network and to obtain theoretical predictions
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Figure 4.1: Comparison of the spiking dynamics with the mean-field
results. Collective variables v (a), r (b) and s (c) versus time, obtained
from simulations of the spiking network (4.1a) (blue circles) as well as from
the MF formulation (4.8) (black line). In (d) the corresponding raster plot is
also displayed, revealing clear COs with frequency νOSC ' 24 Hz. Dynamics
of the network of N = 10000 neurons with median in-degree K = 1000 and
∆0 = 0.3. Other parameters are I0 = 0.25, J0 = 1.0 and τd = 15 ms.

for its dynamics.
In the next two subsections we will firstly study analytically the linear sta-
bility of the asynchronous state, which corresponds to a fixed point of (4.8),
and then we will describe the bifurcation and phase diagrams associated to
the MF model (4.8).
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4.3.1 Linear stability of the asynchronous state

The fixed point solution (v∗, r∗, s∗) of (4.8) is given by:

v∗ = −∆0J0

2π
, (4.9a)

r∗τm =
J0

√
K

2π2

(√
1 +

4π2

√
K

I0

J2
0

+
∆2

0

K
− 1

)
, (4.9b)

s∗ = r∗ . (4.9c)

By performing a linear stability analysis around the fixed point solution
(v∗, r∗, s∗) we obtain the following secular equation:∣∣∣∣∣∣

2v∗ − Λτm 2r∗ −2v∗

−2(πτm)2r∗ 2v∗ − Λτm −J0

√
Kτm

1 0 −1− Λτd

∣∣∣∣∣∣ = 0. (4.10)

in a more explicit form this is

(1 + Λτd)
[
(Λτm − 2v∗)2 + (2πr∗τm)2

]
+ 2v∗ (Λτm − 2v∗) + 2J0

√
Kr∗τm = 0 (4.11)

In the present case, for inhibitory coupling (i.e. J0 > 0) the solutions of the
cubic equation (4.11) are one real and two complex conjugates. The real one
is always negative therefore irrelevant for the stability analysis, while the cou-
ple of complex eigenvalues Λ = ΛR± iΛI can cross the imaginary axes giving
rise to oscillatory behaviours via Hopf bifurcations. The presence of the two
complex conjugate eigenvalues implies that whenever the asynchronous state
is stable, this is always a focus characterized by a frequency of relaxation to-
wards the fixed point given by νD = ΛI/2π. For excitatory coupling, the real
eigenvalue can become positive with an associated saddle-node bifurcation
and the emergence of collective chaos [5, 181].
By following [123], the Hopf boundaries can be identified by setting Λ =
i2πνO in (4.11) and to zero the real and imaginary part of the resulting
equation, namely one gets

(1−4τdv
∗)(2πνO)2

r∗
− (2π)2r∗τm − 2J0

√
K = 0 (4.12)

[(2πνO)2τm − 4(v∗)2 − (2πr∗τm)2]− 2 τmv
∗

τd
= 0 .
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4.3.2 Phase Diagrams of the Mean-Field Model

Apart from the linear stability of the asynchronous state and the associated
Hopf boundaries which can be worked out analytically, the limit cycle solu-
tions of the MF model and the associated bifurcations have been obtained by
employing the software XPP AUTO developed for orbit continuation [182].
The MF model (4.8), apart from the membrane time constant τm, which sets
the system time scale, and the median in-degree K, which we fixed to 1000,
is controlled by four independent parameters: namely, ∆0, J0, I0, τd. In the
following we will give an overview of the possible behaviors of the MF model
in terms of two parameters phase diagrams for the most relevant combina-
tions of the four mentioned parameters. The results of these analysis are
summarized in Figs. (4.2) and (4.3).

Our analysis of the stationary solutions has revealed three possible regimes:
stable foci (I); stable COs (II); coexistence of these two stable solutions (III).
The stability boundaries of the COs are delimited by three kind of bifurca-
tions: super-critical Hopf (black lines in the figures); sub-critical Hopf (red
lines) and saddle-node (SN) of limit cycles (blue lines). Stable (unstable)
COs emerge from stable foci at super-critical (sub-critical) Hopfs, while sta-
ble and unstable limit cycles merge at the SNs.
A fundamental parameter controlling the emergence of COs in the MF model
is the synaptic time τd, indeed in absence of this time scale no oscillations
are present at the MF level [14]. On the other hand too large values of τd
also lead to COs suppression, since the present model reduces to a Wilson-
Cowan model for a single inhibitory population, that it is know to be unable
to display oscillations [123]. As shown in Figs. (4.2) and (4.3), oscillations
are observable for intermediate values of τd and not too large J0, since large
inhibition leads to a quite reduced activity of the neurons not sufficient to
ignite a collective behaviour. This is in agreement with the fundamental role
played by gamma-Aminobutyric acid (GABA) in the emergence of epilep-
tic seizures, characterized by an anomalous level of synchronization among
the neurons, indeed the occurence of seizures seems strongly correlated with
a GABA deficit, corresponding to a reduction of J0 in our case [183, 184].
Moreover, in order to observe COs the excitatory drive I0 should be larger
than some critical value, as shown in Fig. (4.2) (c-d). This is consistent
with the observation of the emergence of gamma oscillations in hippocampal
slices induced through the acetylcoline agonist charbachol [173, 185], which
leads to a decrease of the conductances of potassium channels, which can
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Figure 4.2: Phase diagrams of the mean-field model in the (τd, J0)-
plane (a-b) and in the (τd, I0)-plane (c-d). The left panels refer to
∆0 = 0.3 and the right ones to ∆0 = 3. The red (black) line corresponds to
sub-critical (super-critical) Hopf bifurcations, while the blue curve indicates
saddle-node bifurcations of limit cycles. In the region I (white) the only stable
solutions are foci and in the region II (light shaded) these are limit cycles.
The dark shaded area (III) represents the region of coexistence of stable
foci and limit cycles. The colored symbols indicate the states analyzed in
Section 4.4. The parameters are I0 = 0.25 in (a-b) and J0 = 1.0 in (c-d) and
K = 1000.
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Figure 4.3: Phase diagrams of the mean-field model in the (τd,∆0)-
plane (a-c) and in the (J0,∆0)-plane (d-f) The line colors, the colored
symbols and regions are defined as in Fig. (4.2). For the parameters we fixed
I0 = 0.25 and K=1000.

be mimicked as an increase of I0 [186, 187]. Indeed, by increasing the struc-
tural heterogeneity (measured by ∆0), which acts against coherent dynamics,
larger values of I0 are required for COs as well as smaller synaptic couplings
(see Figs. (4.2) (b),(d) and (4.3) (d-f)). Therefore the emergence of COs can
be triggered by self-disinhibition as well as by an external excitatory drive,
and we expect to observe in both cases the same scenarios.
As already mentioned, for infinitely fast synapses (τd → 0) the only pos-
sible solutions of the MF are foci characterized by two complex conjugate
eigenvalues. Nevertheless, in the corresponding network the irregular firings
of the neurons, due to the dynamical balance, can sustain COs, which are
predicted to relaxed toward the fixed point in the MF. In the next Section
we will analyze the role of these microscopic fluctuations in triggering the
network dynamics also for finite τd.
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4.4 Network dynamics

We investigate in this Section the dynamics of the network by considering
the parameter plan (τd, J0). In particular, we want to examine the role
of structural heterogeneity (measured by ∆0) in shaping the dynamical be-
haviours. This characteristic of the network structure is extremely relevant,
as it can determine even if the system is in a balanced or in an imbalanced
regime [14,188,189].

4.4.1 High structural heterogeneity

We consider first a relatively high value for the structural heterogeneity,
namely ∆0 = 3.0. For sufficiently large synaptic time constant τd, the bifur-
cation diagram reveals the emergence of oscillations in the MF model (4.8)
via super-critical Hopf bifurcations, analogously to what has been reported
for globally coupled networks [123]. An example of the bifurcation diagram,
displaying the extrema of the mean membrane potential v as a function of
τd is reported in Fig. (4.4) (a) for J0 = 1.6. In particular, we observe for
instantaneous synapses (τd → 0) a stable focus, as expected from the anal-

ysis previously reported in [14]. The focus is stable up to τ
(H)
1 where it is

substituted by a stable oscillatory state via a super-critical Hopf bifurcation.
Oscillations are observable up to τ

(H)
2 , where via a second super-critical Hopf

bifurcation they disappear and the unique stable solution for the MF system
remains a focus. The typical stable regimes are denoted in Fig. (4.4) (a) by
three capital letters: namely, (A) corresponds to a focus, (B) to a limit cycle
and (C) to another focus. The network dynamics corresponding to these
typical MF solutions is examined in the remaining panels of Fig. (4.4). For
the focus solutions the network dynamics is asynchronous, as clearly visible
from the corresponding raster plots in Fig. (4.4) (b) and (d). Furthermore,
the dynamics of the neurons is quite regular in this case, as testified from
the values of the average coefficients of variation, namely CV ' 0.14 and
CV ' 0.04 corresponding to the distributions reported in Fig. (4.4) (e) and
(f), respectively. At intermediate values of τd, as predicted by the MF analy-
sis, we observe COs with frequency νOSC ' 34 Hz in the network dynamics,
see Fig. (4.4) (c). However, also in this case the dynamics is dominated by
supra-threshold neurons with an associated very low CV , as evident from
the large peak present at cvi ' 0 in the distribution P (cvi) shown in Fig.
(4.4) (g).

108



Figure 4.4: High Structural heterogeneity: super-critical Hopf bi-
furcation. (a) Bifurcation diagram of the MF model (4.8) displaying the
extrema of v versus τd, black solid (dashed) lines refer to the stable (unstable)
focus, while blues solid lines to the oscillatory state. The supercritical Hopf
bifurcations take place for τ

(H)
1 = 3.14 ms and τ

(H)
2 = 10.59 ms. The capital

letters in (a) denote three stationary states corresponding to different synap-
tic time scales, namely: (A) τd = 0.15 ms, (B) τd = 4.5 ms and (C) τd = 45
ms. The network dynamics corresponding to these states is reported in the
panels below: the left column corresponds to (A), the central to (B) and
the right one to (C). For each column, the top panels are the corresponding
raster plots (b,c,d) and the bottom ones the distributions of the {cvi} of the
single neurons (e,f,g). The average firing rates r̄ are: (A) r̄ = 11.68 Hz, (B)
r̄ = 24.89 Hz and (C) r̄ = 10.39 Hz. Network parameters are N = 10000,
K = 1000 and ∆0 = 3.0. Other parameters are I0 = 0.25 and J0 = 1.6.
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For lower synaptic coupling J0 the phase portrait changes, as shown in Fig.
(4.5) (a) for J0 = 0.5. In this case the MF analysis indicates that the tran-
sition from a stable focus to the oscillatory state occurs by increasing τd via
a sub-critical Hopf bifurcation. At large synaptic time constant, the sta-
ble focus is recovered via a super-critical Hopf bifurcation taking place at
τ

(H)
2 , analogously to what has been seen for larger coupling. An interesting

regime is observable between τ (S), where the stable and unstable limit cy-
cle merge via a saddle-node bifurcation, and τ

(H)
1 , where the focus become

unstable. In this interval the MF model displays two coexisting stable solu-
tions: a limit cycle and a focus. It is important to verify if also the finite
size sparse network displays this coexistence, indeed as shown in Fig. (4.5)
depending on the initial conditions the network dynamics can converge to-
wards COs or towards an asynchronous state. In particular, we observe that
the asynchronous dynamics is associated to extremely low cv-values (see Fig.
(4.5) (d)) suggesting that this can be considered as a sort of irregular splay
state [190]. However, also the COs with νOSC ' 58 Hz are characterized by a
low average coefficient of variation, namely CV ' 0.014 indicating that the
dynamics is mean driven. The sub-critical Hopf, as expected, is associated to
a hysteretic behavior, this effect can be revealed by considering simulations
concerning an adiabatic variation of τd. The results of these simulations are
reported in Fig. (4.5) (b), where the maximal values of the instantaneous
firing rate rM are reported as a function of τd for the adiabatic protocol and
compared with the MF estimations of rM . From the figure it is clear that
the transition from the focus to the stable limit cycle occurs at τd < τ

(H)
1

and the system returns from the oscillatory state to the asynchronous one at
τd definitely smaller than τ (S). These are finite size (and possibly also finite
time) effects, indeed as shown in Fig. (4.5) (b) by increasing N the transition
points approach the MF ones.
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Figure 4.5: High structural heterogeneity: sub-critical Hopf bifur-
cation. (a) Bifurcation diagram of the MF model analogous to the one
reported in Fig. (4.4) (a). The super-critical (sub-critical) Hopf bifurcation

takes place at τ
(H)
2 = 27.96 ms (τ

(H)
1 = 0.61 ms), the saddle node of limit

cycles at τ (S) = 0.43 ms. The capital letters in (a) denote two stationary
states corresponding to the same synaptic time scales τd = 0.45 ms. The
network dynamics corresponding to these states is reported in the panels
below: the left column correspond to (A) and the right one to (B). For each
column, the top panels display the raster plots (c,d) and the bottom ones the
distribution of the {cvi} of the single neurons (e,f). In panel (b) are reported
the maximal values of the rate rM obtained by performing adiabatic simu-
lations by first increasing and then decreasing the synaptic time τd (green)
diamonds for N = 10000 and (blue) circles for N = 20000, the arrows denote
the jump from one state to the other. The MF results are also displayed:
solid (dashed) black lines refer to stable (unstable) foci, while solid (dashed)
blue lines to stable (unstable) limit cycles. The average firing rates r̄ are:
(A) r̄ = 26.16 Hz and (B) r̄ = 57.35 Hz. Parameters are the same as in
Fig. (4.4), apart for J0 = 0.5, the parameters for the adiabatic simulations

are ∆τd = 0.03 ms, τ
(0)
d = 0.21 ms and τ

(1)
d = 0.81 ms.

111



4.4.2 Low structural heterogeneity

We consider now a relatively low value of the structural heterogeneity, i.e.
∆0 = 0.3, which for instantaneous synapses can sustain a dynamically bal-
anced state [14]. Let us first consider a relatively large coupling, namely
J0 = 17.0, the corresponding bifurcation diagram for the MF model is re-
ported in Fig. (4.6) (a). This is quite similar to the one previously shown for
high structural heterogeneity in Fig. (4.4) (a). However, peculiar differences
are observable at the level of network simulations. Indeed in this case COs
are present for all the considered τd-values, even if these correspond to stable
foci in the MF (states (A) and (C) in Fig. (4.6) (a)) as evident from the
raster plots reported in Fig. (4.6) (b) and (d). In particular we measured
the following frequencies for the observed COs: νOSC ' 57 Hz for state (A),
νOSC ' 30 Hz for (B) and νOSC ' 16 Hz for (C). Furthermore, the network
dynamics is now definitely more irregular than for high ∆0 with distributions
P (cvi) centered around cvi = 1 for the states (A) and (C) in Fig. (4.6) (a)
corresponding to stable foci in the MF formulation (see Fig. (4.6) (e) and
(g)) and with P (cvi) extending towards values around cvi ' 1 for the oscil-
latory state (B), as shown in Fig. (4.6) (i). This irregularity in the spike
emissions is a clear indication that now the dynamics is mostly fluctuation
driven due to the dynamically balanced dynamics observable in the sparse
network for sufficiently low structural heterogeneity. Furthermore, as shown
in [14] for instantaneous synapses, these current fluctuations are able to turn
the macroscopic damped oscillations towards the stable foci, observable in
the MF model, in sustained COs in the network. The origin of the COs
observable for the state (B) is indeed different, since in this case sustained
oscillations emerge due to a super-critical Hopf bifurcation both in the MF
and in the network dynamics.

By decreasing the synaptic coupling J0 (Fig. (4.7) (a)) we observe in the MF
phase diagram the emergence of regions where the oscillations coexist with
the stable focus in proximity of a sub-critical Hopf bifurcation, analogously
to what has been reported for high heterogeneity (see Fig. (4.5) (a)). At
variance with that case, we have now in the network a bistability between
two COs whose origin is different: one emerges via a Hopf bifurcation and
it is displayed in Fig. (4.5) (d), while the other is sustained by the irregular
spiking associated to the balanced state and the corresponding raster plot is
reported in Fig. (4.5) (c).

In particular, the latter COs are associated to large cv-values (Fig. (4.7) (e))
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Figure 4.6: Low structural heterogeneity: super-critical Hopf bifur-
cation. The panels here displayed are analogous to the ones in Fig. (4.4).

In this case the super-critical Hopf bifurcations occur for τ
(H)
1 = 3.33 ms and

τ
(H)
2 = 12.61 ms and the stationary states in (a) corresponding to the capital

letter (A), (B) and (C) refer to τd = 0.15 ms, τd = 3.75 ms and τd = 22.5 ms,
respectively. The average firing rates r̄ are: (A) r̄ = 4.92 Hz, (B) r̄ = 11.31
Hz and (C) r̄ = 1.93 Hz. The parameters are the same as in Fig. (4.4),
apart ∆0 = 0.3. and J0 = 17.
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Figure 4.7: Low structural heterogeneity: sub-critical Hopf bifurca-
tion. The panels here displayed, apart panel (b), are analogous to the ones

in Fig. 4.5. In the present case the sub-critical Hopf occurs at τ
(H)
1 = 0.097

ms, while the super-critical Hopf at τ
(H)
2 = 531.83 ms and the saddle-node of

limit cycles at τ (S) = 0.028 ms, and the coexisting states (A) and (B) shown
in (a) refer to τd = 0.06 ms. Panel (b) reports the frequency of collective os-
cillations as measured via adiabatic simulations for N = 2000 by considering
Ts = 90 ms (blue circles) and Ts = 1500 ms (green diamonds), the transient
time Tt = 15 ms is unchanged. The solid lines in (b) refer to the MF results,
namely the black line to νD and the blue one to the limit cycle frequency
νO. The average firing rates r̄ are: (A) r̄ = 22.75 Hz and (B) r̄ = 59.9 Hz.
The parameters are as in Fig. (4.6) apart for J = 1.0 and for the adiabatic

simulations are ∆τd = 0.015 ms, τ
(0)
d = 0.015 ms and τ

(1)
d = 0.30 ms.
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typical of a balanced regime, while the other COs are extremely regular as
shown in Fig. (4.7) (f) resembling the dynamics of a highly synchronized
system.
In order to analyze the coexistence region, we report in Fig. (4.7) (b) the
frequencies νOSC of the collective oscillations as measured via adiabatic sim-
ulations of the network (symbols). Furthermore, the MF results for νD asso-
ciated to the foci and the frequencies νO of the limit cycles are also reported
in the figure as black and blue solid line, respectively. The frequencies of
the COs in both states are reasonably well captured by the MF approach,
furthermore the two frequencies can be quantitatively associated to fast and
slow gamma oscillations. The comparison reveals that the COs induced by
microscopic irregular firing exist far beyond τ

(H)
1 , despite here the unique sta-

ble solution predicted by the MF should be the almost synchronized bursting
state shown in Fig. (4.7) (d). On the other hand the backward transition is
almost coincident with the MF prediction for τ (S) as displayed in Fig. (4.7)
(b). As reported in Fig. (4.7) (b), we observe that also the forward transition

value approaches to τ
(H)
1 by increasing the duration Ts of the adiabatic steps.

Therefore this result suggest that the observed discrepancies are due to finite
time (and possibly finite size) effects affecting the network simulations.

4.5 Coexistence of slow and fast gamma os-

cillations

In the previous Section we have shown, for a specific choice of the parameters,
that fast and slow collective gamma oscillations can coexist. However, the
phenomenon is observable in the whole range of coexistence of the stable
foci and of the stable limit cycles. In particular, in Fig. (4.8) we report in
the (τd, J0)-plane the frequencies νD associated to the damped oscillations
towards the MF focus in panel (a) and the frequencies νO of the limit cycles
in panel (b). It is evident that νD ' 30 − 40 Hz, while the frequencies of
the limit cycle νO are of the order of 60 Hz, thus in the network we expect
to observe coexisting COs characterized by slow and fast rhythms in a wide
range of parameters.

For this parameter set νD seems to depend only slightly on τd and J0. On
the contrary the frequency νO, characterizing the more synchronized events,
is influenced by these parameters. In particular, νO decreases for increasing
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Figure 4.8: Coexisting fast and slow gamma oscillations (a) Frequen-
cies νD associated to the damped oscillations towards the stable foci; (b)
frequencies νO of the limit cycles. Red lines refer to the sub-critical Hopf
boundaries, while the blue ones to saddle-node bifurcations of limit cycles.
Parameters as in Fig. (4.2)

IPSP time duration, similarly to what observed experimentally for cholinergic
induced gamma oscillations in the hippocampus in vitro [173]. Moreover,
barbiturate, a drug often used as anxiolytic, is known to increase IPSP time
duration [191] and slow down gamma oscillations [192], in accordance with
our scenario. Furthermore, for τd > 1 ms the increase of J0 leads to a decrease
of νD, similarly to the effect of alcohol that induces an increase of inhibition
associated to a decrease in gamma oscillation frequencies measured in the
human visual cortex [193].
The coexistence of fast and slow gamma COs is a quite general phenomenon
not limited to the specific network topology we employed, i.e. that associate
to the Lorentzian in-degree distribution. Indeed, as shown in Appendix C it
can be observed also for a sparse Erdös-Renyi network.

4.5.1 Switching gamma rhythms

As a further aspect, we will consider the possibility to develop a simple
protocol to drive the system from slow gamma COs to fast ones (and vice
versa) in the bistable regime. Let us consider the case where the network is
oscillating with slow gamma frequency as shown in Fig. (4.9) for I0 ≡ I1 =
0.25. The protocol to drive the system in the fast gamma band consists in
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delivering a step current I2 to all the neurons for a very limited time interval
Tsh. In this way the system is transiently driven in a regime where oscillatory
dynamics is the only stable solution, as a matter of fact the neurons remain
in a high frequency state even after the removal of the stimulation, when I0

returns to the initial value I1 (see Fig. (4.9)). In order to desynchronize the
neurons and to recover the slow gamma COs , we delivered random quenched
DC currents I0(i) (with i = 1, . . . , N) to the neurons for a time period Tsl.
The currents I0(i) are taken from a flat distribution with a very low average
value I3 and a width ∆I3 corresponding to a parameter range where the MF
foci are the only stable solutions. As shown in Fig. (4.9) in this case to drive
the system from fast to slow gamma oscillations it was sufficient to apply the
perturbation for a much smaller period Tsl << Tsh.
Let us now try to characterize in more details the observed switching transi-
tions. This can be done by considering the MF bifurcation diagram in terms
of the external DC current I0 reported in Fig. (4.10) (a) for the examined
parameters. The diagram reveals a sub-critical Hopf bifurcation taking place
at I(H) ' 0.43 and a region of bistability extending from I(S) ' 0.06 to
I(H). Therefore, if we consider a DC current in the bistable interval (namely,
I0 ≡ I1 = 0.25) and we prepare the system in the slow gamma regime a
transition to the fast gamma COs will be observable whenever the DC cur-
rent is increased to a value I0 ≡ I2 > I(H). However, if we return in the
bistable regime at I0 ≡ I1, after delivering the perturbation I2 for a time
interval TP , it is not evident in which regime (fast or slow) the system will
end up. Thus we have measured the transition probability from slow to fast
gamma for different TP and I2 by following the protocol reported in Section
4.2.2. We analyzed these transitions in presence of a small additive noise on
the membrane potentials of amplitude An, somehow encompassing the many
sources of noise present in neural circuits.
The results shown in Fig. (4.10) (b) for I2 = 1.0 and An = 0.05 reveal that
even if I2 > I(H) the perturbation should be applied for a minimal time in-
terval TP > tc ' 0.12 s to induce the transition to the fast gamma COs in
at least the 80% of cases. It is interesting to note that the noise amplitude
can play a critical role on the switching transition, indeed the increase of An
can desynchronize the fast gamma regime even for TP > tc, see Fig. (4.10)
(c). Therefore tc depends critically not only on I2 but also on An: as ex-
pected by increasing I2 the crossing time drops rapidly towards zero, while
the switching transition is delayed to longer times for larger An (see Fig.
(4.10) (d)).
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Figure 4.9: Switching from fast (slow) to slow (fast) gamma oscilla-
tions Results of the switching experiments described in the text, from top to
bottom: (a) spectrogram of the mean membrane potential v; (b) the firing
rate r(t); (c) the raster plot and (d) the stimulation protocol reporting the
average external DC current. The parameters are the same as in Fig. (4.7)
(in particular τd = 0.06 ms), apart Tsh = 0.015 s, Tsl = 0.0015 s, I1 = 0.25,
I2 = 20.0, I3 = 0.012, ∆I3 = 0.01.
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Figure 4.10: Statistics of the switching transitions (a) Bifurcation dia-
gram of the MF model reporting the extrema of the mean membrane poten-
tial v as a function of I0 displaying stable (solid line) and unstable solutions
(dashed lines) for foci (black) and limit cycles (blue). The vertical dashed
(orange) line refers to I0 = 0.25. (b) Transition probability as a function of
TP , the orange dashed line denotes the 80 % for I2 = 1.0, in the inset the
data for the transition from fast to slow gamma is reported for I3 = 0.03, in
both cases An = 0.05 (c). Transition probability as a function of the noise
amplitude An for I2 = 1 and TP = 8.48τm. (d) Crossing times tc versus the
perturbation amplitude I2 for various noise levels: An = 0.02 (black circles)
and 0.07 (red circles). The vertical orange line indicates the value I(H). Pan-
els (c-d) refer to the transition from slow to fast gamma COs, while the inset
in (b) to the transition from fast to slow gamma. The parameters are the
same as in Fig. (4.7).
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For what concerns the transition from fast to slow gamma, this occurs in
an irreversible manner only for amplitude of the perturbation I3 < I(S), an
example is shown in the inset of Fig. (4.10) (b). Despite the switching transi-
tion can be observed also for I3 > I(S) this will be much more complex due to
the competition of the two stable states in the interval I0 ∈ [I(S) : I(H)] and
more specific protocols should be designed to obtain the desynchronization
of the system.

4.5.2 Theta-gamma cross-frequency coupling

So far we have described a simple protocol where external constant stimu-
lations to the inhibitory network can drive the neural population from one
state to the other. However, gamma oscillations are usually modulated by
theta oscillations in the hippocampus and in the neocortex during movement
and REM sleep [170, 194]. This has recently inspired a series of optogenetic
experiments in vitro intended to reproduce the effect of the theta forcing
and the activity observed in vivo [13, 118, 119]. To make a closer contact
with these experiments we decided to consider a periodic stimulation of all
neurons in the network as follows:

I0(t) = Iθ[1− cos(2πνθt)] ; (4.13)

where the phase of the theta forcing is defined as θ(t) = 2πνθt. The term ap-
pearing in (4.13) corresponds to the synaptic input received by the neurons,
in order to compare this forcing term with the LFPs experimentally measured
in [104, 105] and which reveals theta oscillations, one should remember that
the LFP corresponds to the electrical potential measured in the extracellular
medium around neurons [195]. Therefore for a meaningful comparison with
the synaptic input (4.13) the sign of the LFP should be reversed. This is
consistent with the observations reported in [104,105] that the maximum of
activity of the excitatory (pyramidal) cells is observed in correspondence of
the minimum of the LFP.
We considered the network dynamics in presence of the periodic forcing (4.13)
and additive noise on the membrane potentials (with zero mean and ampli-
tude An). As shown in Fig. (4.11), the response of the system to the forcing
is controlled by the value of the amplitude Iθ in (4.13): for small Iθ ≤ 0.20
one observes only slow gamma COs; for intermediate values of the amplitude
0.20 < Iθ ≤ 0.32 one has the coexistence of slow and fast gamma COs; while
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for Iθ ≥ 0.32 only fast oscillations are present.
For small Iθ, as one can appreciate from the raster plot in panel (m), the fir-
ings of the neurons, despite being partially synchronized, are quite irregular.
Furthermore the corresponding spectrogram in Fig. (4.11) (k) reveals that
the power is concentrated at frequencies below 50 Hz and that the amplitude
of the spectrum has a modulated structure as a function of the phase. This is
confirmed by the analysis of the power of the spectrum PS (PF ) restricted
to the slow (fast) gamma band (see Fig. (4.11) (n)). These are indications
of theta-nested gamma oscillations, as confirmed by the instantaneous firing
rate reported in Fig. (4.11) (l), which reveals also an evident P-A coupling
between the gamma phases and the theta forcing.
These results resemble experimental observations of theta-nested gamma os-
cillations induced in vitro by sinusoidal optical stimulation at theta frequency
in the medial entorhinal cortex (mEC) [119] and in the areas CA1 [13] and
CA3 [118] of the hippocampus. In all these experiments single neurons spiked
quite irregularly, while the collective dynamics was oscillatory, analogously
to our dynamics as shown in Fig. (4.11) (l) and (m). As previously discussed,
these COs are induced by intrinsic fluctuations and characterized at a MF
level by frequencies ' νD (green solid line), which represents a reasonable
estimation of the position of the maxima of the spectrogram as shown in Fig.
(4.11) (k).
The situation is quite different for sufficiently large forcing amplitude, where
the neuronal dynamics becomes quite regular and highly synchronized, as
evident from Figs. (4.11) (d) and (e). In this case the power is concentrated
in the fast gamma band and it is maximal in correspondence of the largest
value of I0 occuring at θ = π (see Figs. (4.11) (c) and (f)). Furthermore
the profile of the maximal power in the spectrogram follows reasonably well
the MF values νO (red solid line) expected for fast gamma COs, as evident
from Fig. (4.11) (c). For these large currents we have a sort of pathological
synchronization usually observable in connection with neuronal diseases. In
particular, highly synchronized fast gamma oscillations have been observed
in patients with neocortical epilepsy [196].
The most interesting situation occurs for intermediate amplitudes, specifi-
cally we considered Iθ = 0.30. As evident from Figs. (4.11) (h) and (i) in
this case the network dynamics can vary noticeably from one theta cycle to
the next, due to the switching from one gamma regime to the other occur-
ring erratically. However by averaging over a sufficiently large number of
cycles we can identify stationary features of this dynamics. In particular, we
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observe that the values of maximum power in the averaged spectrum corre-
spond to different theta phases for the slow and fast gamma COs: namely,
for slow gamma the maximal activity is observable at small angles, while for
fast gamma this corresponds to the largest value of the forcing current (4.13)
(see Figs. (4.11) (g) and (j)).
These findings resemble the experimental results reported in [104] for the
region CA1 of the hippocampus in freely moving rats, where it has been
reported that slow gamma power were peaked around θ ' 0.4π and fast
gamma power around θ ' π, corresponding also to the maximum of activity
of excitatory place cells. Similar results have been reported in [105] for what
concerns the slow gamma rhythm, however in those experiments fast gamma
(referred in as intermediate gamma) occurs earlier in the theta cycle.
The network response to the external periodic forcing (4.13) can be inter-
preted in terms of an adiabatic variation of the external current whenever
the time scale of the forcing term is definitely slower with respect to the
neuronal time scales (i.e. τm and τd). Since this is the case, we can try to
understand the observed dynamics at a first level of approximation by em-
ploying the bifurcation diagram of the MF model obtained for a constant DC
current I0, which is shown in Fig. (4.11) (a) for the set of parameters here
considered. The diagram reveals that the system bifurcates via a sub-critical
Hopf from the asynchronous state to regular oscillatory behavior at a current
I(H) ' 0.159 and that the region of coexistence of stable foci and limit cycles
is delimited by a saddle-node bifurcation occurring at I(S) ' 0.012 and by
I(H).
The forcing current (4.13) varies over a theta cycle from a value I0 = 0 at
θ = 0 up to a maximal value I0 = 2Iθ at θ = π and returns to zero at
θ = 2π. Since the forcing current will start from a zero value, we expect that
the network will start oscillating with slow gamma frequencies associated to
the stable focus which is the only stable solution at small I0 < I(S). Fur-
thermore, if Iθ < I(H)/2 the system will remain always in the slow gamma
regimes during the whole forcing period, since the focus is stable up to the
current I(H).
For amplitudes Iθ > I(H)/2 we expect a transition from slow to fast COs
for a theta phase θ(H) = arccos [(Iθ − I(H))/Iθ] corresponding to the cross-
ing of the sub-critical Hopf. Since this transition is hysteretic the sys-
tem will remain in the fast regime until the forcing current does not be-
come extremely small, namely I0 < I(S), corresponding to a theta phase
θ(S) = 2π − arccos [(Iθ − I(S))/Iθ].
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The performed analysis is quasi-static and does not take into account the
time spent in each regime. If Iθ >> I(H) the time spent by the system in the
slow gamma regime is extremely reduced, because θ(H) ' 0 and θ(S) ' 2π,
and this explains why for large Iθ we essentially observe only fast gamma.
On the other hand, we find only slow gamma COs for Iθ up to 0.20, a value
definitely larger than I(H)/2, and this due to the fact that a finite crossing
time is needed to jump from one state to the other as discussed in the pre-
vious subsection.
Let us now focus on the case Iθ = 0.3, where we observe the coexistence
of fast and slow gamma COs. As already mentioned we have stable foci in
the range I0 ∈ [0 : I(H)], this in terms of θ-angles obtained via the relation-
ship (4.13) for Iθ = 0.3 corresponds to an interval θ/π ∈ [0 : 0.34], roughly
matching the region of the spectrogram reported in Fig. (4.11) (g) where
the maximum power of slow gamma oscillations is observable. As already
mentioned, even if the forcing current I0(θ) decreases for θ → 2π, we would
not observe slow gamma at large θ-angles due to the hysteretic nature of the
sub-critical Hopf transition. Slow gamma COs are associated to fluctuation
driven dynamics with frequency ' νD (green solid line), as confirmed also
by the comparison with the maxima of the power spectrum reported in Fig.
(4.11) (g).
For currents I0 > I(H) only the limit cycles (corresponding to fast gamma
COs with frequencies νO) are stable, indeed the maximum of the power spec-
trum for fast gamma COs occurs for θ ' π where I0 ' 0.6 > I(H) is maximal.
As expected, the CO frequency associated to the maximum of the power spec-
trum is well reproduced by νO (see the red solid line in Fig. (4.11) (g)).
As a last point, let us examine if the coexistence of fast and slow gamma COs
is related to some form of P-P locking between theta forcing and gamma os-
cillations [105,117]. As evident from Fig. (4.12) (a) and (b) the theta forcing
at νθ = 10 Hz locks the collective network dynamics, characterized by the
mean membrane potential and by the γ-phase defined in Section 4.2.3. In
particular, for this specific time window we observe for each θ-oscillations
exactly six γ-oscillations of variable duration: slower at the extrema of the
θ-window and faster in the central part. In agreement with the expected
coexistence of γ rhythms of different frequencies.
Let us quantify these qualitative observations by considering statistical indi-
cators measuring the level of n : m synchronization for irregular/noisy data
over a large number of theta cycles. In particular, we will employ the Ku-
ramoto order parameter ρnm and the normalized entropy enm introduced in
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Section 4.2.3 measured over time windows of duration TW and averaged over
many different realizations.
As shown in Fig. (4.12) (c) and (d), both these indicators exhibit two maxima
showing the existence of two different locking between θ and γ oscillations for
n : m equal to ' 3− 4 and ' 8, thus corresponding to slow and fast gamma
(being νθ = 10 Hz). By following [136], in order to test if the reported P-P
couplings are significant, we have estimated ρnm over time windows of in-
creasing duration, namely from 0.1 s to 1 s. As shown in Fig. (4.12) (c)
the measured values do not vary substantially even by increasing TW by a
factor 10. This is a clear indication of the stationarity of the P-P locking
phenomenon here analysed [136]. Furthermore, we measured enm also for
surrogate data obtained by random permutation and by time-shift (for the
exact definitions see Section 4.2.3 and [136]), the values obtained for these
surrogate data are almost indistinguishable from the original ones (see Fig.
(4.12) (d)). These results demand for the development of more effective ap-
proaches able to distinguish true locked state from spurious locking.
Finally, the significance level of the reported measurements have been eval-
uated by randomly shuffling the time stamps of the γ-phases and denoted
as ρ(S) and e(S), respectively (dashed lines in Fig. (4.12) (c) an (d)). The
values of ρ(S) and e(S) are definitely smaller than those of the corresponding
indicators in correspondence of the observed P-P lockings, thus confirming
their significance.
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Figure 4.11: Fast and slow gamma oscillations entrainement with
the theta forcing (a) Bifurcation diagram of the MF model analogous to
the one reported in Fig. (4.10) (a). (b) Theta forcing (4.13) versus time.
The three lower rows refer from top to bottom to Iθ = 0.35, 0.3 and 0.1.
In the left column are reported the averaged spectrograms as a function of
the theta phase. In the same panels are reported νD (solid green line), νO
(solid red line) as a function of θ, as well as the forcing in arbitrary units
(white solid line). The central column displays an instance of a short time
interval of the corresponding raster plots and instantaneous firing rates r(t).
The right column reports the ratio PF/PS of the power contained in the
fast (50 < νOSC < 100 Hz) and slow (30 ≤ νOSC ≤ 50 Hz) gamma bands
as a function of the θ phase. In this case the error bars are displayed, but
are almost invisible on the reported scale. Parameters are J0 = 1, τd = 0.15
ms, ∆ = 0.3 and K = 1000, for the simulations we considered N = 10000,
and νθ = 3 Hz and An = 1.1× 10−3, the data for the spectrograms (left row)
have been obtained by averaging over 30 theta cycles and those for PF/PS
(right row) over 400 cycles.
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Figure 4.12: Phase-phase coupling n : m between theta forcing and
gamma oscillations (a-b) Locking of the gamma oscillations to the exter-
nal theta forcing: (a) average membrane potential v versus time, the black
dashed line is the forcing (4.13) in arbitrary units; (b) gamma (red solid)
and theta (black dashed) phases for the corresponding time interval. (c)
Kuramoto order parameter ρnm for the phase difference ∆nm(t) for time win-
dows of duration TW = 0.1 s (green), 0.5 s (red) and 1 s (blue) averaged over
70 < M < 700 different realizations. (d) Normalized entropy enm for a time
window TW = 0.5 s averaged over M = 140 realizations (green), surrogate
data are also reported corresponding to random permutation (red) and time
shift (blue) of the original data averaged over M = 100 independent real-
izations. The reported data refer to the simulation of the spiking network
subject to the external forcing (4.13) with additive noise on the membrane
potentials. Parameters are the same as in Fig. (4.11), apart for Iθ = 0.3,
νθ = 10 Hz and An = 1.0× 10−3, the histogram of ∆nm(t) employed for the
estimation of enm have been evaluated over M = 50 bins. The results refer
only to phases associated to gamma frequencies in the band 30 − 100 Hz.
The error bars in (c) and (d) are of the order of the size of the symbols and
the significance levels are reported as dashed cyan lines in (b) ρ(S) = 0.009
and (c) e(S) = 0.016.
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4.6 Conclusions

In this chapter we have shown in terms of an effective mean-field that in
a sparse balanced inhibitory network with finite synaptic decay COs can
emerge via super or sub-critical Hopf bifurcations from a stable focus. Fur-
thermore, in the network (for sufficiently low structural heterogeneity) the
macroscopic focus turns out to be unstable towards microscopic fluctuations
in the firing activity leading to the emergence of COs characterized by a
frequency corresponding to that of the damped oscillations towards the MF
focus. Therefore in proximity of the sub-critical Hopf bifurcations the coex-
istence of two COs with different origins is observable: slow (fast) gamma
oscillations being fluctuation (mean) driven.
From our analysis it emerges that two ingredients are needed to observe co-
existing slow and fast gamma COs: the sparseness in the connections and
the dynamical balance of the network activity. In particular, the sparseness
has a twofold effect at the macroscopic and at the microscopic level. In a
mean-field framework the randomness in the in-degree distribution can be
reinterpreted as a quenched disorder in the synaptic couplings, which gives
rise to the coexistence of stable foci and limit cycles. However, in a fully
coupled network with heterogeneous parameters we would not observe strong
irregular fluctuations at the level of single neurons, analogous to Poissonian-
like firings ususally observed in the cortex [123, 180, 197]. These can emerge
only in sparsely connected networks [15, 155]. Moreover, the balance mech-
anism guarantees that the irregular spiking dynamics will not disappear in
the thermodynamic limit [14, 157–159]. These persistent microscopic fluc-
tuations are able to trigger slow gamma COs in the network, which coexist
with fast gamma COs corresponding to the limit cycle solutions in the MF.
These two ingredients usually characterize real brain networks, where our
prediction that slow (fast) gamma oscillations are associated to more (less)
irregular neuronal dynamics can be experimentally tested e.g. by measur-
ing the coefficient of variation associated to these two states. Furthermore,
previous theoretical analysis of gamma oscillations based on two interacting
Wilson-Cowan rate models with different synaptic times revealed only the
possible coexistence of two stable limit cycles both corresponding to tonic
collective firing (i.e. mean driven COs) [177,178].
Our model is not meant to explicitly replicate the dynamics of specific brain
areas, but rather to illustrate fundamental mechanisms by which slow and
fast gamma oscillations may arise and coexist due to local network inhibitory
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features. However, several phenomena we reported resemble experimental re-
sults obtained for different brain regions in vitro as well as in vivo and our
findings can stimulate new experiments or lead to novel interpretation of the
existing data.
Of particular interest is the possibility, analysed in Section (4.5.1), to switch
from a gamma rhythm to the other by performing transient stimulations.
This mechanism can allow a single inhibitory population to pass from a cod-
ing task to another following an external sensory stimulus. Indeed it has
been shown that distinct gamma rhythms are involved in different coding
processes: namely, fast gamma in new memory encoding, while slow gamma
has been hypothized to promote memory retrieval [198].
On one side, pathological synchronization is usually associated to neuronal
diseases [58, 153, 199]. On another side, aberrant gamma oscillations have
been observed in several cognitive disorders, including Alzheimer’s disease,
Fragile X syndrome and neocortical epilepsy [196, 198]. Furthermore, deep
brain stimulation (DBS) techniques have been developed along the years
to treat some of these diseases, e.g. essential tremor and Parkinsons’ dis-
ease [200–202]. We have presented a simple model exhibiting the coexistence
of highly synchronized states and asynchronous or partially synchronized
regimes. Therefore, our model can represent a simple benchmark where to
test new DBS protocols to obtain eventually less invasive technique to desyn-
chronize pathological states [203–205] or to restore healthy gamma rhythms,
as suggested in [198].
Moreover, the richness of the dynamical scenario present in this simple model
indicates possible future directions where intrinsic mechanisms present in
real neural networks like spike frequency adaptation could permit a dynam-
ical alternation between different states. In this direction, a slow variable
like adaptation could drive the system from ”healthy” asynchronous or oscil-
latory dynamics to periods of pathological extremely synchronous regimes,
somehow similar to epileptic seizure dynamics [206].
In Section (4.5.2), we have analyzed the emergence of COs in our network in
presence of an external theta forcing. This in order to make a closer contact
with recent experimental investigations devoted to analyze the emergence of
gamma oscillations in several brain areas in vitro under sinusoidally modu-
lated theta-frequency optogenetic stimulations [13,118,119]. For low forcing
amplitudes, our network model displays theta-nested gamma COs at fre-
quencies ' 50 Hz joined with irregular spiking dynamics. These results are
analogous to the ones reported for the CA1 and CA3 areas of the hippocam-
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pus in [13,118], moreover theta-nested oscillations with similar features have
been reported also for the mEC [119], but for higher gamma frequencies.
Furthermore, for intermediate forcing amplitudes we observe the coexistence
of slow and fast gamma oscillations, which lock to different phases of the
theta rhythm, analogously to what reported for the rat hippocampus during
exploration and REM sleep [104,105]. The theta-phases preferences displayed
in our model by the different gamma rhythms are due to the hysteretic na-
ture of the sub-critical Hopf bifurcation crossed during the theta stimulation.
Finally, for sufficiently strong forcing, the model is driven in the fast gamma
regime.
Our analysis suggests that a single inhibitory population can generate locally
different gamma rhythms and lock to one or the other in presence of a theta
forcing. In particular, we have shown that fast gamma oscillations are locked
to a strong excitatory input, while slow gamma COs emerge when excitation
and inhibition balance. These results can be useful in revealing the mecha-
nism behind slow and fast gamma oscillations reported in several brain areas:
namely, hippocampus [171], olfactory bulb [207], ventral striatum [208], vi-
sual cortical areas [209] and neocortex [170]. Particularly interesting are the
clear evidences reported in [170] that different gamma rhythms, phase locked
to the hippocampal theta rhythm, can be locally generated in the neocortex.
Therefore future studies could focus on this brain region to test for the va-
lidity of the mechanisms here reported.
For what concerns the CA1 area of the hippocampus, where most of the
experimental studies on theta-gamma oscillations have been performed. De-
spite the experimental evidences that different gamma oscillations emerging
in CA1 area at different theta phases are a reflection of synaptic inputs
originating from CA3 area and mEC [104, 172] this does not exclude the
possibility that a single CA1 inhibitory population can give rise to different
gamma rhythms depending on the network state [171]. This hypothese is
supported by experimental evidences showing that a large part of CA1 in-
terneurons in vivo can lock to both slow and fast gamma [104,105, 172] and
that in vitro gamma rhythms can be locally generated in various regions of
the hippocampus due to optogenetic stimulations [13, 118, 119] or pharma-
logical manipulation [173–176]. However, much work remains to be done to
clarify if local mechanisms can give rise to coexisting gamma rhythms also
in the CA1 area.
At variance with previous results for purely inhibitory populations report-
ing noise sustained COs in the range 100 − 200 Hz [97] our model displays
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slow gamma rhythms characterized by irregular firing of the single neurons.
Therefore in our case it is not necessary to add an excitatory population to
the inhibitory one to slow down the rhythm and to obtain oscillations in the
gamma range as done in [164, 210]. Evidences have been recently reported
pointing out that gamma oscillations can emerge locally in the CA1 induced
by the application of kainate due to purely inhibitory mechanisms [176].
However, other studies point out that in the same area of the hippocampus
excitatory and inhibitory neurons should interact to give rise to oscillations
in the gamma range [13,175]. Preliminary results obtained for QIF networks
with a sinusoidal theta forcing show that theta-nested gamma oscillations
with similar features can emerge for purely inhibitory as well as for mixed
excitatory-inhibitory networks [20].
As shown in Section (4.3.2) the same kind of bifurcation diagram can be
observed by considering the external excitatory drive as well as the self-
disinhibition of the recurrently coupled inhibitory population. This suggests
that in our model the same scenarios reported in Section (4.5) for an exci-
tatory theta forcing can be obtained by considering an external inhibitory
population which transmits rhythmically its activity to the target population.
This somehow mimicks the pacemaker theta activity of a part of the medial
septum interneurons on the interneurons of the hippocampus experimentally
observed in [211]. This subject will be addressed in future studies due to
its relevance in order to clarify the origin of theta-gamma oscillations in the
hippocampus, however it goes beyond the scopes of the present analysis.
In this chapter we considered a model including the minimal ingredients nec-
essary to reproduce the phenomenon of coexisting gamma oscillations cor-
responding to quite simple (namely, periodic) collective regimes. However,
the introduction of synaptic delay in the model can lead to more complex
coexisting states, like quasi-periodic and even chaotic solutions, as recently
shown for fully coupled networks in [181,212]. The inclusion of delay in our
model can enrich the dynamical scenario maybe allowing to mimic further
aspects of the complex patterns of activity observed in the brain, like e.g.
sharp-wave ripples observed in the hippocampus and which are fundamen-
tal for memory consolidation [213]. Due to the large variety of interneurons
present in the brain and in particular in the hippocampus [214] a further
step in rendering our model more realistic would consist in considering mul-
tiple inhibitory populations characterized by different neuronal parameters.
By manipulating the influence of a population on the others it would be
interesting to investigate the possible mechanisms to switch COs from one
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gamma rhythm to another, following the richness of the bifurcation scenarios
presented in Figs. (4.2) and (4.3).
The generality of the phenomena here reported is addressed in Appendix C
and D. In particular in Appendix C we show that the mechanisms leading to
the coexistence scenario of fast and slow gamma oscillations are not peculiar
of Lorentzian in-degree distributions (that we employed to allow a compar-
ison of the network simulations with the MF results), but that they are
observable also in the more studied Erdös-Renyi sparse networks. Appendix
D is devoted to the analysis of a suitable normal form, which reproduces the
dynamics of the MF in proximity of the sub-critical Hopf bifurcation. In par-
ticular, the noisy dynamics of the normal form reveals coexisting oscillations
of different frequencies. More specifically the addition of noise leads from
damped oscillations towards the stable focus to sustained oscillations char-
acterized by the same frequency. This latter result links our findings to the
more general context of noise-induce oscillations for non-excitable systems
examined in various fields of research: namely, single cell oscillations [215],
epidemics [216], predator-prey interactions [217] and laser dynamics [218].
At variance with all previous studies we have analyzed noise-induced oscil-
lations coexisting and interacting with oscillations emerging from the Hopf
bifurcation. Furthermore, the mechanism leading to the irregular fluctua-
tions in our case is quite peculiar. Single cells oscillations are believed to be
driven by molecular noise, induced by the small number of molecules present
in each cell, and therefore disappearing in the thermodynamic limit [219].
Recently, another possible mechanism leading to fluctuation amplification in
a feed-forward chain has been suggested as a pacemaking mechanism for bi-
ological systems, in this context the amplitude of the oscillations grows with
the system size [220]. Instead in our case, the dynamical balance provides
intrinsic noise and oscillations of constant amplitude, essentially indepen-
dent from the number of synaptic inputs (in-degree) and from the number
of neurons in the network.

Author Contributions:
Hongjie Bi, Marco Segneri and Matteo di Volo performed the simulations and
data analysis. Matteo di Volo and Alessandro Torcini were responsible for
the state-of-the-art review and the paper write-up. All the authors conceived
and planned the research.

131



132



Chapter 5

Emergence of collective
oscillations in balanced neural
networks due to intrinsic
fluctuations

Abstract:

Collective oscillations have been observed in sparse balanced inhibitory net-
works of QIF neurons with instantaneous synapses for sufficiently connected
network. Their origin is due to the microscopic irregular firings that is able,
in the balanced state, to sustain collective oscillations. Effective mean field
models have been proposed in order to capture the transition from asyn-
chronous to oscillatory behavior. However they failed to include noise fluc-
tuations that are present at the network level. These fluctuations can be
considered by developing a Fokker-Planck formulation for the distribution
of the membrane potentials of the QIF neurons. Here we analytically solve
the Fokker-Planck equation associated to a sparse network and we prove the
transition from asynchronous state to collective oscillations. However, since
this approach is infinite dimensional, we also employ the Circular Cumulant
Approximation in order to derive a mean field model that takes into account
noise fluctuation.

133



5.1 Introduction

Oscillations are a hallmark of neural population activity in various brain re-
gions with a spectrum covering a wide range of frequencies. In particular,
gamma oscillations (30-100 Hz) have been suggested to underlie various cog-
nitive and motor functions, as already pointed out in Chapter 3 and 4.
Due their relevance, many mechanisms have been proposed in order to achieve
such dynamical regime. For example, in [123] it has been shown that a sin-
gle fully-coupled inhibitory population with finite synaptic decay is able to
generate self-sustained oscillations in the gamma-band. In Chapter 3 we
have shown that gamma oscillations can emerge in a fully-coupled inhibitory
population coupled with an excitatory population (PING set-up) without
any synaptic decay. In Chapter 4 we have shown that a sparse balanced in-
hibitory population with finite synaptic decay can give rise to the coexisting
slow and fast gamma rhythms.
In particularly in Chapter 4 we discussed that the presence of sparseness
in a balance network can give rise to collective oscillations (COs) but the
corresponding effective mean-field model does not capture the emergence of
such COs. This peculiar aspect had been already noticed in [14], where the
authors showed that a single sparse balanced inhibitory network of QIF neu-
rons with instantaneous synapses gives rise to COs by increasing the network
connectivity (in-degree). They showed that the COs can survive only in the
presence of irregular spiking dynamics due to the dynamical balance, sug-
gesting that the presence of sparseness in the connections is a key ingredient
for the transition from the asynchronous state to COs. Actually, the pres-
ence of the sparseness in the network can be reinterpreted as an intrinsic noise
term describing the irregular microscopic fluctuations of the input current on
the single neuron and these fluctuations trigger COs from the asynchronous
state.
In [14] an effective mean-field model is also employed for sparse balanced
networks whose analytic stability analysis reveals that the asymptotic solu-
tion is a stable focus. This means that such mean-field model is not able to
reproduce the transition to COs observed in the corresponding network since
it takes into account the sparseness as a noise quenched term, but it neglects
the dynamic current fluctuations.
In this chapter we want to develop a mean-field model of a sparse balanced
inhibitory network of QIF neurons with instantaneous sinapses, the same
network set-up analyzed in [14], able to reproduce the transition between the
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asynchronous and the oscillatory states. For this aim, we solve the corre-
sponding Fokker-Planck equation (FPE). In this way the sparseness of the
network is taken into account by considering an irregular fluctuating input
current in the microscopic dynamic of the single neuron. Since the FPE for-
mulation is still high-dimensional, we also try to extend the OA reduction by
considering the Circular Cumulant approximation (CCs) that represents a
recently developed approach [16] useful to study the impact of weak intrinsic
noise on the network dynamics. In [16], the authors show that, in presence
of noise, the OA equations 1.39 can be generalized to a system of infinite
equations written in terms of circular cumulants. For non-vanishing noise,
generally all the infinite cumulants are non-zero. However, for weak noise,
one can expect the cumulants with orders larger than one to be small and
neglect them, providing a closed low-dimensional system of equations for the
leading cumulants.

5.2 Methods

5.2.1 The network model

We consider N inhibitory pulse-coupled QIF neurons [89] arranged in a
random sparse balanced network. The membrane potential of each neuron
evolves according to the following equations:

τmV̇i(t) = I + V 2
i (t)− τmJ

∑
j

εjiδ(t− tj(m)) (5.1)

where τm = 15 ms represents the membrane time constant, I an external
DC current, encompassing the effect of distal excitatory inputs and of the
internal neural excitability. The last term in (5.1) is the inhibitory synaptic
current, with J being the synaptic coupling. The synaptic current is the
linear super-position of all the instantaneous IPSPs S(t) = δ(t) received by
the neuron i from its pre-synaptic neurons in the past, tj(m) is the spike
time of the m-th spike delivered by the j-th neuron, and εji is the adjacency
matrix of the network. In particular, εji = 1 (0) if a connection from node
j to i exists (or not) and ki =

∑
j εji is the number of pre-synaptic neurons

connected to neuron i, or in other terms its in-degree.
Whenever the membrane potential Vi reaches infinity a spike is emitted and Vi
resetted to −∞. In absence of the synaptic coupling the QIF model displays
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excitable dynamics for I < 0, while for positive DC currents it behaves as an
oscillator with period T0 = π/

√
I, as shown in Chapter 2.

In order to compare the simulation results with an exact MF recently derived
[10,14,123], we consider sparse networks where the in-degrees ki are extracted
from a Lorentzian distribution

L(k) =
∆k

(k −K)2 + ∆2
k

(5.2)

peaked at K and with a half-width half-maximum (HWHM) ∆k, the param-
eter ∆k measures the level of structural heterogeneity in the network, and
analogously to Erdös-Renyi networks we assumed the following scaling for
the HWHM ∆k = ∆0

√
K. The DC current and the synaptic coupling are

rescaled with the median in-degree K as I = i0
√
K and J = g0/

√
K, as

usually done to achieve a self-sustained balanced state for sufficiently large
in-degrees [157–159,161,165].

5.2.2 Simulation Protocols

The network dynamics is integrated by employing a standard Euler scheme
with an integration time step ∆t = τm/10000.

5.2.3 Indicators

To characterize the collective dynamics in the network we measure the mean
membrane potential v(t) =

∑N
i=1 Vi(t)/N and the instantaneous firing rate

r(t), corresponding to the number of spikes emitted per unit of time and per
neuron.
In order to measure the level of coherence in the network dynamics, a com-
monly used order parameter is [221]

ρ2 ≡ 〈v〉
2 − 〈v〉2

〈v2 − v2〉
; (5.3)

where the overbar denotes a time average. In practice, ρ is the rescaled
amplitude of the standard deviation of the average 〈v〉. When all neurons
behave in exactly the same way (perfect synchronization), the numerator and
the denominator are equal to one another and ρ = 1. If instead, they are
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independent as in an asynchronous regime, ρ ≈ 1/
√
N due to the central

limit theorem.
The degree of synchronization among the phases can be also measured by
the Kuramoto order parameter, namely [64]

z1 =

∣∣∣∣∣ 1

N

N∑
k=1

eiθk

∣∣∣∣∣ ; (5.4)

where | · | represents the modulus. For completely desynchronized phases
|z1| ∝ 1/

√
N , while partial (full) synchronization will be observable when-

ever |z1| is finite (one).
The microscopic activity can be analyzed by considering the inter-spike in-
terval (ISI) distribution as characterized by the coefficient of variation cvi
for each neuron i, which is the ratio between the standard deviation and
the mean of the ISIs associated to the train of spikes emitted by the con-
sidered neuron. In particular, we will characterize each network in terms of
the average coefficient of variation defined as CV =

∑
i cvi/N . Time aver-

ages and fluctuations are usually estimated on time intervals Ts ' 90 s, after
discarding transients Tt ' 15 s.

5.3 Mean-Field Approaches

At a mean-field level the evolution equation (5.1) can be rewritten for the sub-
population of neurons with in-degree kj as the following Langevin equation

V̇j = V 2
j + Agj(t) + σgj(t)ξj(t) (5.5)

where ξj is a δ-correlated Gaussian noise with unitary variance (i.e. 〈ξj(t)ξm(t)〉 =
δjmδ(t)) and

Agj(t) =
√
K [i0 − gjr(t)] (5.6)

σgj(t) =
√
g0gjr(t) (5.7)

where r(t) is the instantaneous firing rate and Agj is the total input current.
The amplitude of the synaptic current fluctuations σgj is estimated for a suf-
ficiently sparse network within the Poissonian approximation [155] and we
have defined an effective synaptic coupling gj = g0kj/K, which is obviously
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distributed as a Lorentzian L(g) peaked at g0 with HWHM ∆g = Γ/
√
K

with Γ = ∆0g0.
In a more general framework the variance of the current fluctuations is given
by σ2

gj
(t) = FFg0gjr(t), where FF is the Fano factor measuring the ratio

between the variance of the spike count and its average [222, 223]. For a
stationary renewal process FF = (CV )2, where CV is the coefficient of vari-
ation of the spike train [222]. Therefore at a first level of approximation the
effect of non Possonian distributions can be taken into account by rewriting
the amplitude of the current fluctuations as

σ(R)
gj

(t) = CV
√
g0gjr(t) . (5.8)

5.3.1 Fokker-Planck Approach

The Langevin equation (5.5) for the dynamics of the membrane potential of
neurons of the sub-population with effective coupling g can be transformed
into a Fokker-Planck equation describing the evolution of the probability
distribution Pg(V, t), namely:

∂tPg(V, t) = −∂V [(V 2 + Ag(t))Pg(V, t)] +Dg(t)∂
2
V 2Pg(V, t) (5.9)

where Dg = σ2
g/2. This can be rewritten as a continuity equation as follows:

∂Pg(V, t)

∂t
= − ∂

∂v
Fg(V, t) (5.10)

where Fg(V, t) represents the flux

Fg(V, t) = (V 2 + Ag)Pg(V, t)−Dg
∂Pg
∂V

(5.11)

with the boundary condition
∫
dgFg(V = +∞, t)L(g) = r(t).

In order to solve the FP, we will transform the membrane potential in a phase
variable by performing the transformation from QIF to θ-neuron model [89],
namely:

V = tg(θ/2) with θ ∈ [−π : π] (5.12)

The new variable θ is associated to the following PDF :
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Rg(θ) = Pg(V )
dV

dθ
where

dV

dθ
=

1

2 cos2 (θ/2)
(5.13)

and the Fokker-Planck equation (5.9) can be rewritten as:

∂tRg(θ, t) = −∂θ [ψ0(θ)Rg(θ, t)] + ∂θ [Z0(θ)∂θRg(θ, t)] (5.14)

with

ψ0(θ) = (1− cos(θ)) + (Ag +Dg sin(θ))(1 + cos(θ)) (5.15)

Z0(θ) = Dg(1 + cos(θ))2. (5.16)

Finally,

Qg(θ, t) = ψ0(θ)Rg(θ, t)− Z0(θ)∂θRg(θ, t) (5.17)

represents the flux in the new coordinates. The flux at the threshold θ = π
is linked to the firing rate by the following condition of self-consistency:∫

dgQg(π, t)L(g) = 2

∫
dgRg(π, t)L(g) = r(t) (5.18)

Since we are now dealing with a phase variable it is natural to rewrite Eq.
(5.14) in the Fourier space, the PDF reads as

Rg(θ, t) =
1

2π

[
1 +

∞∑
m=1

am(t)e−imθ + c.c.

]
(5.19)

and the associated Kuramoto-Daido order parameters for the population
synchronization are given by

zm =

∫
dg am L(g) (5.20)

the FPE in the Fourier space for the mode am reads as

ȧm = m

[
i(Ag + 1)am +

i

2
(Ag − 1)(am−1 + am+1)

]
− Dg

[
3m2

2
am + (m2 − m

2
)am−1 + (m2 +

m

2
)am+1

+
m(m− 1)

4
am−2 +

m(m+ 1)

4
am+2

]
(5.21)
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and here, by definition, a0 = 1, a−m = a∗m.
Thanks to the fact that we are considering a Lorentzian distribution for g the
effect of this heterogeneity can be taken into account in an analytic manner
by averaging over the parameter g. In particular by rewriting the distribution
as

L(g) =
1

2i

[
1

(g − g0)− i∆g

− 1

(g − g0) + i∆g

]
we observe that it has two complex poles at g = g0 ± i∆g. Therefore by
employing the residues theorem one can estimate explicitly the Kuramoto-
Daido order parameters as

zm =

∫
dg am(g) L(g) = am(g0 − i∆g) (5.22)

and by averaging Eq. (5.21) over the distribution of the parameters g one
can find also the dynamical evolution of these quantities, namely

żm = m

[
(iAg0 + i− rΓ)zm +

1

2
(iAg0 − i− rΓ)(zm−1 + zm+1)

]
− Dg0(1−

i∆g

g0

)

[
3m2

2
zm + (m2 − m

2
)zm−1 + (m2 +

m

2
)zm+1

]
− Dg0(1−

i∆g

g0

)

[
m(m− 1)

4
zm−2 +

m(m+ 1)

4
zm+2

]
(5.23)

As shown in [10] the population firing rate r and the mean average membrane
potential v can be obtained from the Kuramoto-Daido order parameters from
the following series:

W ≡ πr + iv = 1− 2
∞∑
k=1

(−1)k+1z∗k (5.24)

5.3.2 Ott-Antonsen Ansatz

If one neglects the fluctuations (i.e. Dg0 = 0) Eq. (5.23) reduces to the usual
form where the Ott-Antonsen manifold zm = (z1)m is attracting [11, 82]. In
this case one finds

2ż1 = (iAg0 − rΓ)[1 + z1]2 − i[1− z1]2 . (5.25)
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By applying the OA Anstanz to Eq. (5.24) one obtains the following confor-
mal mapping transformation [10]:

z1 =
1−W ∗

1 +W ∗ ; (5.26)

which put in direct relationship the Kuramoto order parameter with the
characteristic macroscopic functions describing the neural network dynamics,
namely v(t) and r(t).
By applying this transformation to (5.25) one obtains the following ODEs
for the dynamical evolution of v(t) and r(t)

ṙ = r(2v + Γ/π)

v̇ = v2 +
√
K(i0 − g0r)− (πr)2 (5.27)

These mean-field set of equations has been analyzed in [14], where it has
been shown that it exhibits a stable focus solution for any parameter choice.
However, the network dynamics reveal clear COs for sufficiently large in-
degrees K. Therefore the neglected fluctuations are fundamental in order to
capture the network dynamics at a macroscopic level.
Despite its inability to capture the emergence of COs the model (5.27) was
able to give several correct previsions not only about the asynchronous state,
but also for what concerns oscillatory dynamics. In particular, in [14] the
authors have shown that the frequency of the damped oscillations towards
the stable focus provide an accurate estimation of νCO over a wide range of
parameters. Moreover, they have been able to provide, for sufficiently large
in-degree K and I0, the following asymptotic scaling law

νCO ' I1/2 = I
1/2
0 K1/4 . (5.28)

5.3.3 Circular Cumulants’ Approximation

We can go beyond the OA Ansazt in presence of weak noise by considering the
so called circular cumulant approximation as suggested in [16]. The authors
of this paper noticed that the Kuramoto-Daido order parameters

zm =

∫
dg

∫
dθRg(θ, t)L(g)eimθ = 〈eimθ〉 (5.29)
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are the moments of the observable eiθ. These moments can be determined
via the moment-generating function

F (k) = 〈exp (keiθ)〉 ≡
∞∑
m=0

zm
km

m!
(5.30)

The circular cumulants κm can be obtained from the cumulant-generating
function [16]

Ψ(k) = k∂k lnF (k) ≡
∞∑
m=0

κmk
m (5.31)

From (5.30) and (5.31) one can find the relationships among zm and κm,
namely

κN = zN −
N−1∑
m=1

(
N − 1

m− 1

)
κmzN−m (5.32)

from this the first two circular cumulants are simply given by

κ1 = z1 κ2 = z2 − z2
1 (5.33)

Whenever the OA Ansatz holds, i.e. the manifold zm = zm1 is attracting, one
simply obtains F (k) = ekz1 and Ψ(k) = kz1 and the only non zero circular
cumulant is κ1 = z1. In general when the OA manifold is not attracting,
as in presence of fluctuations, all the circular cumulants are non zero. In-
deed in presence of a noise term of variance Dg0 in [16] it was shown that

κm ' D
(m−1)
g0 , whenever κ1 ' O(1) as in our case.

Therefore it makes sense to consider a simple approximation that takes
into account only the first two cumulants κ1 and κ2, and in this case the
Kuramoto-Daido order parameters are simply given by

zm = zm1 + κ2z
m−2
1

m(m− 1)

2
(5.34)

and this can be interpreted as a correction to the OA manifold in presence
of noise.
The two circular cumulants’ approximation for the FPE (5.23) correct to the
order o(Dg0) reads as
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ż1 = z1(iAg0 + i− Γr) +H(1 + κ2 + z2
1) + (5.35)

− Dg0

2
(1− i∆g

g0

)(1 + z1)3

κ̇2 = 2(iAg0 + i− Γr)κ2 + 4Hz1κ2 +

− Dg0(1− i
∆g

g0

)

(
1

2
(1 + z1)4 + 6(1 + z1)2κ2

)
with:

H =
1

2
[i(Ag0 − 1)− Γr] .

In this approximation the firing rate r and the average membrane poten-
tial v can be obtained from Eq. (5.24) by limiting to the first two circular
cumulants, namely:

W ∗ = πr − iv =
1− z1

1 + z1

+
2κ2

(1 + z1)3
(5.36)

this is a generalization of the conformal transformations (5.26) to situation
where the OA Ansatz is no more valid.

5.4 Homogeneous Case

Let us now limit our analysis to the homogeneous case where the in-degree
has a constant value K for all the neurons, i.e. ∆g = ∆0 = 0. The fact
that K is constant does not imply that there are no fluctuations in the
system, indeed Dg0 is not zero, and this is due to the random distribution
of the links: each neuron receives inputs from a different random ensemble
of K pre-synaptic neurons [155]. In this case the Kuramoto-Daido order
parameters will coincide with the coefficient of the Fourier expansion of the
PDF Rg0(θ, t), namely zm ≡ am(g0).

5.4.1 Asynchronous State

In this sub-section we would like to characterize the asynchronous solu-
tion that one observes in the studied system for sufficiently small in-degrees
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K < Kc, where Kc ' 120 for the parameter values considered in [14]. The
asynchronous state corresponds to a stationary PDF R(0)(θ) and it can be ob-
tained by solving the stationary FPE in the Fourier space (5.21) truncated
to some order M . In particular, we have solved iteratively the stationary
FPE (5.21), which is simply a linear system in the coefficients am and a∗m,
with the following nonlinear consistency condition to be satisfied

r(0) = 2R(0)(π) =
1

π

[
1 +

∞∑
m=1

(−1)m+1(a(0)
m + a(0)

m

∗
)

]
(5.37)

where the firing rate r(0) and the coefficients {a(0)
m } correspond to the station-

ary solution. The modulus of the obtained coefficients is shown in Fig. 5.1
for a certain choice of the parameters, we observe that the amplitude |am|
decays exponentially with m with an exponent that approaches ' −0.564
for sufficiently large m. Therefore, the truncation to M = 64 Fourier modes
is already quite accurate, since it amounts to neglect terms O(10−12), and
indeed we do not observe substantial differences by considering M = 128 or
even M = 256.
In Fig. 5.2 we display for various in-degrees the results of the stationary so-
lution of the FPE (5.21) obtained for M = 64 by considering for the synaptic
current fluctuations σg either the Poisson approximation (Eq. (5.7)) or the
renewal one (Eq. 5.8). In the same figure are reported the numerical esti-
mations of R(0)(θ) for K = 20, 40 and 80 with N = 16000. We have verified
that R(0)(θ) converges to an asymptotic profile by increasing N from 4000
to 16000, furthermore averaging the PDF over 20 different neurons was suf-
ficient to reproduce the average PDF with negligible differences with respect
to average over the whole ensemble of neurons.
The agreement between the numerical findings and the mean-field estima-
tions is reasonably good. The main differences are present around the peak
position of R(0)(θ), the MF distributions are peaked at more negative θ-values
with respect to the ones obtained by the direct simulation. For increasing K
the positions of the peaks approach, as expected for MF results. However, the
estimations, reported in Fig. 5.2, capture reasonably well the tail of the dis-
tributions R(0)(θ), therefore also the average firing rate since r(0) = 2R(0)(π)
as reported in Table 5.1. In particular, the agreement improves noticeably
by passing from the Poissonian to the renewal approximation with a value
CV = 0.8, corresponding to the one measured in the network simulations for
these parameter values.
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Figure 5.1: Modulus of the Fourier coefficients am. The blue dashed curve
corresponds to an exponential decay law with exponent −0.564. Parameters
I0 = 0.006, g0 = 1, ∆g = and K = 40.

Figure 5.2: Stationary PDFs R(0) versus the angle θ estimated numerically
from the network simulations (blue solid line) and theoretically from the
FPE truncated at M = 64 by estimating the current fluctuations within
the Poisson approximation Eq. (5.7) (red solid line) and within the renewal
approximation Eq. (5.8) with CV = 0.8 (green dashed line). From top to
bottom K = 20, 40 and 80. The numerical data are obtained for a network
of size N = 16000 and by averaging over 20 different neurons. Parameters
I0 = 0.006, g0 = 1 and ∆g = 0.
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K 〈r〉 r(0) r
Network FPE(P) FPE(R) 2CCs

20 0.0114 0.0138 0.0110 0.0129
40 0.0100 0.0112 0.0094 0.0105
80 0.0089 0.0096 0.0084 0.0089

Table 5.1: Average firing rate versus the in-degree K for asynchronous dy-
namics. The second columns report 〈r〉 as estimated by averaging the activity
of a network of N = 16000 neurons. The third and fourth columns report
the estimation of the firing rate obtained by the stationary PDF, namely
r(0) = 2R(0)(π). In particular, the third (fourth) column displays the MF
results obtained by the self-consistent solution of the stationary Eq. (5.21)
for M = 64 with current fluctuations estimated within the Poisson approxi-
mation Eq. (5.7) (FPE(P)) (within the renewal approximation Eq.(5.8) with
CV = 0.8 (FPE(R))). The fifth column refers to the two circular cumulants
(2CCs) approximation where the expression (5.36) has been employed to es-
timate the population firing rate r. Parameters I0 = 0.006, g0 = 1 and
∆g = 0.
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Figure 5.3: Circular cumulants κm as a function of the in-degree. From top
to bottom κ1, κ2, κ3, κ4 and κ5. The cumulants are estimated from the
stationary solution a

(0)
m of the FPE Eq. (5.21) wth M = 64. Parameters

I0 = 0.006, g0 = 1 and ∆g = 0.
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Let us now consider the two circular cumulants (2CCs) approximation for
the homogeneous case. To verify that the approximation is indeed justified,
we report in Fig. 5.3 the first five cumulants for different in-degree values.
As expected κ1 ' O(1), while for the other terms κm ' O(D

m/2
g0 ), therefore

we can safely affirm that to neglect the cumulants beyond the second one is
indeed justified. Furthermore, we observe that the circular cumulants scale
as κm ' K−ε(m) with the mean in-degree with ε(m) ' 0.030 + 0.046(m− 1)
for m ≥ 2.
The two circular cumulants approximation can be used in the present context
to estimate the average population firing rate r from Eq. (5.36). As shown in
Table 5.1 the obtained values are in good agreement with the average firing
rate measured form the network simulations.

5.4.2 Linear Stability of the Asynchronous State

In order to study the linear stability of the asynchronous state we consider
the linearization of Eq. (5.21) around the stationary solution {a(0)

m }, namely
this corresponds to

δȧm = m

[
(iA(0)

g0
+ i)δam +

1

2
(iA(0)

g0
− i)(δam−1 + δam+1)

]
+ imδAg0

[
a(0)
m +

a
(0)
m−1 + a

(0)
m+1)

2

]

− D(0)
g0

[
3m2

2
δam + (m2 − m

2
)δam−1 + (m2 +

m

2
)δam+1

]
− D(0)

g0

[
m(m− 1)

4
δam−2 +

m(m+ 1)

4
δam+2

]
− δDg0

[
3m2

2
a(0)
m + (m2 − m

2
)a

(0)
m−1 + (m2 +

m

2
)a

(0)
m+1

]
− δDg0

[
m(m− 1)

4
a

(0)
m−2 +

m(m+ 1)

4
a

(0)
m+2

]
; (5.38)

where A
(0)
g0 and D

(0)
g0 are estimated with the firing rate of the stationary

solution r(0)(5.37) and
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δAg0 = −
√
Kg0δr , δDg0 =

g2
0

2
δr (5.39)

δr =
1

π

∞∑
m=1

(−1)m+1(δam + δa∗m) . (5.40)

We have considered the system Eq. (5.38) truncated to order M and esti-
mated the corresponding spectrum by solving the system for solutions like
δa(t) = eiλktδa(0), where δa = (δa1, δa2, . . . , δaM) is the infinitesimal per-
turbation vector, with complex eigenvalues {λk} k = 1, . . .M . The asyn-
chronous solution is stable (unstable) whenever Re{λk} < 0 ∀k (at least one
eigenvalue has Re{λk} > 0).
The estimated spectra for Poissonian noise are displayed in Fig. 5.4 (a) for
different truncations of the Fourier expansion and for K = 40, instead in
Fig. 5.4 (b) is reported the dependence of the spectra on the in-degrees K
for M = 64. From the figures it is evident that each spectrum is symmetric
with respect to the axis Im{λ} = 0 and therefore composed of couples of
complex conjugate eigenvalues. Each part of the symmetric spectrum is then
composed of two branches: a central one that approaches almost linearly the
axis Re{λ} = 0 with Im{λ} < 10 and another branch at larger values of
Im{λ} that approaches tangentially the axis Re{λ} = 0 at very large val-
ues of Im{λ}. Furthermore, the spectrum displays two isolated couples of
eigenvalues with Re{λ} > −1, it is the couple with the largest real part that
crosses the axis Re{λ} = 0 for K > Kc ' 330 identifying the bifurcation
to COs as a supercritical Hopf (see the inset of Fig. 5.4 (b)). The spec-
trum is composed also of several isolated couples of eigenvalues with very
negative real parts, but these couples are irrelevant for the stability of the
asynchronous state.

Furthermore, we noticed that by rescaling the real and imaginary part of the
spectra for fixed K as a function of number of modes (namely, as Re(λ) →
Re(λ)/M and Im(λ)→ Im(λ)/M3/2) we obtain that the two main branches
almost overlap. This indicates that this part of the spectrum can be consid-
ered as reliable and not affected by truncation errors.
From this analysis we have obtained also the two eigenvectors in Fourier
space associated to the two dimensional unstable manifold: e1 and e2.
From the anti-Fourier transform of the linear combinations of these two eigen-
vectors v = a1e1 +a2e2 we have reconstructed the shape of the perturbations
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Figure 5.4: Real and imaginary part of the eigenvalues {λk} of the asyn-
chronous state. (a) In the main panel the axis are rescaled with the number
of modes as Re(λ)/M and Im(λ)/M3/2, while these are not rescaled in the
enlargement in the inset. The data refer to K = 40 for different truncation of
the Fokker-Planck equation in Fourier space: namely, M = 32 (black circles),
M = 45 (red circles), M = 64 (green circles) and M = 90 (blue circles). (b)
The reported data refer to K = 80 (black circles), K = 160 (red circles) and
K = 1280 (blue circles) for a truncation to M = 64 Fourier modes. The inset
displays an enlargement of the central branch of the spectrum in proximity
of the axis Re λ = 0. Here we considered the Poissonian approximation for
the current fluctuations reported in Eq. (5.7). Parameters I0 = 0.006, g0 = 1
and ∆g = 0.
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in the θ-space p(θ) leading to a destabilization of the asynchronous state.
These functions p(θ) are perturbations to the stationary PDF R(0)(θ) and
therefore they should be at area zero, two examples are reported in Fig. 5.5
for (a1, a2) = (1, 0) (orange solid line) and to (a1, a2) = (0, 1) (blue solid
line). In particular, their shapes (the amplitude is here arbitrary) resemble
that of the first and second derivative of the PDF with respect to θ, shown
as green and red dashed lines in Fig. 5.5.

Figure 5.5: Perturbations p(θ) of the stationary PDF R(0)(θ) (black dashed
line) as a function of θ. The two reported perturbations corresponds to
(a1, a2) = (1, 0) (orange solid line) and to (a1, a2) = (0, 1) (blue solid line).
The green dashed line refers to dR(0)(θ)/dθ and the red dashed line to
d2R(0)(θ)/dθ2 reported in arbitrary units. Parameters as in Fig. 5.4.

The linear stability analysis of the asynchronous state can be performed also
for the two CCs approximation, in this case the linear evolution of the system
can be obtained from Eqs. (5.35), as
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with the stationary values for Ag0 and Dg0 estimated with the stationary
population firing rate, namely

r(0) =
1

π
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1− z(0)

1

1 + z
(0)
1

+
2κ

(0)
2

(1 + z
(0)
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(5.41)

and with

H(0) =
1

2
[i(Ag0 − 1)]

Furthermore, the linearization of Ag and Dg are now given by

δAg0 = −
√
Kg0δr , δDg0 =

g2
0

2
δr (5.42)
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]}

5.4.3 Bifurcation to Collective Oscillations

As mentioned in the previous sub-section the instability of the asynchronous
state leads to the emergence of COs in the system. The transition has been
analyzed in the network by considering the indicator ρ introduced in Eq.
(5.3) measured for increasing in-degrees K for different system sizes, namely
N = 2000, 4000, 8000 and 16000. The numerical data are reported in Fig.
5.6 and reveals a transition from asynchronous dynamics to COs around
Kc ' 170− 180.
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Figure 5.6: Order parameter ρ versus the in-degree K for different network
sizes: namely N = 2000 (black circles), 4000 (red circles), 8000 (green circles)
and 16000 (blue circles). The vertical magenta (orange) dashed line denotes
Kc as estimated within a MF approach for the FPE truncated toM = 64 with
a Poissonian (Renewal) approximation for the current fluctuations Eq. (5.7)
(Eq.(5.8) with CV = 0.8). The dot-dashed vertical magenta line indicates
Kc obtained within the two circular cumulants approximation. The inset
report the scaling of ρ versus N for K = 20, the red dashed line corresponds
to a power law N−1/2. Parameters as in Fig. 5.4.

In the same figure are reported also the estimates of Kc found by the lin-
ear stability analysis of the FP solution for M = 64 with the Poissonian
(Renewal) approximation for the noise fluctuations Eq. (5.7) (Eq.(5.8) with
CV = 0.8). It is evident from the Renewal approximation with CV = 0.8
gives a very good estimation of Kc ' 190, while the Poissonian approxi-
mation was largely over estimating the transition point (Kc ' 330). For
completeness, also Kc estimated within the 2CCs approximation is reported
as a dash-dotted magenta line in Fig. 5.6. The result Kc ' 50 indicates that
this approach has severe limitations in the homogeneous case, where the OA
manifold is definitely not attracting.

Let us now analyze more in details the regime of COs. We have firstly
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Figure 5.7: Instantaneous firing rate r(t) versus time. The data refer to
network simulations with N = 16000 (red line), to MF solutions obtained by
truncating the FPE to M = 64 modes for the Poissonian noise (black line)
or the Renewal approximation with CV = 0.8 (blue line), as well as to the
2CCs approximation (green line). Parameters as in Fig. 5.4 and K = 640.

considered the evolution of the instantaneous firing rate r(t) reported in Fig.
5.7 for K = 640. We observe that the period of the COs is nicely captured
by the FPE with M = 64 and Poissonian noise, however the amplitude of
the oscillations is under-estimate by the MF results. On the other hand by
taking in account the variance of the fluctuations within a Renewal approach
wth CV = 0.8 allow to better reproduce the amplitude of the COs, but these
results (blue line in Fig. 5.7) have a small drift with respect to the network
simulations indicating a faster period of oscillation. The 2CCs approximation
(displayed as a green line in Fig. 5.7) overestimates both the amplitude and
the period of the COs.

As shown in Fig. 5.8, the frequency of the COs νCO measured in a network of
N = 8000 neurons reveals a power-law increase with the in-degree with an ex-
ponent ' 0.234 (red filled circles) not too far from the exponent 1/4 (dashed
magenta line) predicted from the scaling-law in (5.28) [14]. In particular, this
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Figure 5.8: Frequency of the COs νCO versus the in-degree K. Numerical
data refer to N = 8000 (red filled circles), the estimation based on the direct
integration of the FPE with M = 128 modes are shown as black line (Poisson
Approximation) and blue line (Renewal Approximation with CV = 0.8) and
the 2CCs approximation as a green line. Parameters as in Fig. 5.4.

law was predicted analytically by considering the damped oscillation frequen-
cies towards stable foci in the MF model (5.27). It should be however stressed
that the latter MF model is unable to forecast the emergence of sustained
COs via a super-critical Hopf bifurcation. The comparison with the estima-
tions obtained by the FPE with M = 128 reveal an almost perfect agreement
over the whole range of the considered in-degrees both within the Poissonian
and the Renewal approximation, while the 2CCs slightly under-estimate νCO
but also in this case the scaling with K is almost the same.
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5.5 Heterogeneous case

5.5.1 Circular two cumulants’ approach

In Fig. 5.9 and 5.10 we report direct simulations of the order parameter ρ for
different system sizes to show various transitions from asynchronous dynam-
ics to collective oscillations in presence of heterogeneity in the connectivity
in-degree (∆0 > 0). The estimations of the transition line in terms of the
2CCs Eq. (5.35) approach are also reported. These estimations are based on
the linear stability of the asynchronous state and indicates when the state
bifurcates to an oscillatory regime through a supercritical Hopf.

Asynchronous dynamics is observable also in the heterogeneous case for suf-
ficiently sparse networks (small K), indeed a clear transition is observable
from an asynchronous state to collective oscillations for K larger than a crit-
ical valuer Kc. As observable from Fig. 5.9, where we report the coherence
indicator ρ as a function of K for various system sizes N , the transition from
the asynchronous dynamics to COs is predicted by the 2CCs approximation.
The numerical data obtained by network simulations reveals a transition
from asynchronous dynamics to COs around Kc ' 170−180, while the 2CCs
predicts a transition point around Kc ' 200.
The relevance of the microscopic fluctuations for the existence of the col-
lective oscillations can be appreciated by considering the behavior of ρ as
a function of the external current I0 and of the parameter controlling the
structural heterogeneity, namely ∆0. The results of these analyses are shown
in 5.10 (a) and (b) where we also report the transition point predicted by
the 2CCs (red line). In both cases we fix an in-degree K > Kc in order to
observe collective oscillations and then we increase I0 or ∆0. We observe
that for large I0 (∆0) the microscopic dynamics is now imbalanced with few
neurons firing regularly with high rates and the majority of neurons sup-
pressed by this high activity. At large I0 the dynamics of the network is
controlled by neurons definitely suprathreshold and the dynamics becomes
mean driven [14,179,180]. This occurs at a critical value I0c ' 0.6− 0.8.
The same occurs by increasing ∆0, when the heterogeneity in the in-degree
distribution becomes sufficiently large (∆0c ' 0.4−0.5) only few neurons, the
ones with in degrees in proximity of the mean K, can balance their activity,
while for the remaining neurons it is no more possible to satisfy the balance
conditions, as recently shown in Refs [188,189,224]. Even in these cases the
2CCs approximation is able to predict such a transition.
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Figure 5.9: Transition for the heterogeneous case: order parameter ρ versus
K. Symbols refer to direct simulations of the network for different system
sizes: namely, N = 2000 (black), 5000 (red), 10000 (green) and 20000 (vio-
let). The red dashed vertical line denotes the transition estimation obtained
form the linear stability analysis of asynchronous state obtained within the
2CCs framework. Parameters ∆0 = 0.1, I0 = 0.006, g0 = 1.
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Figure 5.10: Transitions for heterogeneous case: order parameter ρ versus
I0 (a) and ∆0 (b). Symbols refer to direct simulations of the network for
different system sizes as in Fig. (5.9). The red dashed vertical line denotes
the transition estimation obtained form the linear stability analysis of asyn-
chronous state obtained within the 2CCs framework. approach. Parameters
K = 1000, I0 = 0.006, g0 = 1 and ∆0 = 0.1, when not differently specified.
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In particular 2CCs captures very well the transition point varying the exter-
nal excitatory input (I0c ' 0.6) while it underestimates the transition point
varying the heterogeneity (∆0c ' 0.15).

5.6 Conclusions

In this chapter we derived the Fokker-Planck equation associated to a sparse
balanced inhibitory network of QIF neurons with instantaneous synapses in
order to characterize the transition from the asyncronous state to collec-
tive oscillations. Specifically, we considered the noise terme entering in the
Fokker-Planck equation in two different ways: namely, within a Poissonian
approximation (FPE(P)) or within a renewal approximation (FPE(R)). We
find that, in the homogeneous case, the transition occurs for sufficiently large
in-degree and that FPE(R) captures more accurately the transition point
compared to FPE(P). This is due to the fact that in the renewal approxima-
tion the fluctuating current term is better estimated in comparison with the
Poissonian approximation, where the spike emissions are assumed to be com-
pletely uncorrelated. The linear stability analysis of the associated Fokker-
Planck equation reveals that such a transition is due to a super-critical Hopf
bifurcation. The effective mean-field model derived in [14] is not able to ex-
hibit such a bifurcation, exhibiting a stable focus solution for any parameter
choice, since in such mean-field model the sparseness was considered just as
a quenched noise term changing the effective coupling of the neurons. How-
ever, in such approach the fluctuations of the input currents to the neurons
were neglected. Anyway the frequency of the relaxation oscillations towards
the stable focus, provided by the effective mean-field model, represents a
good approximation of the frequency of the sustained collective oscillations
observed in the network. Here we show that both FPE(P) and FPE(R) are
able to reproduce almost perfectly the COs frequencies as a function of the
median connectivity in-degree compared with the network simulations.
We also employ the Circular Cumulants approximation [16] truncated at the
second cumulant order (2CCs), providing a mean-field model of two differen-
tial complex equations for the first and the second cumulant. We show that
this model is able to display the transition from the asyncronous state to
COs but the transition point is widely underestimated in the homogeneous
case, since this approach is particularly suited for heterogeneous networks,

158



as shown in [16, 17]. Moreover, the 2CCs slightly underestimate COs fre-
quencies but also in this case the scaling with the connectivity in-degree is
in good agreement with network simulations.
We conclude that a sparse balanced inhibitory network of QIF neurons with
instantaneous synapses is able to exhibit collective oscillations also for ran-
dom networks with identical in-degree, enriching the result found in [14]
where only the heterogeneous case was considered.
Our result shows the emergence of CO due to the presence of endogenous
noise. In recent work, the emergence of CO has been reported by increasing
the amount of heterogeneity in the excitabilities of neurons [225]. While this
heterogeneity is different from the endogenous noise leading to CO in our
model, the comparison between the differences form of disorder (annealed
and quenched) deserves to be investigated in future works. In addition to
the analysis referred to the homogeneous case we also investigate the tran-
sition from the asynchronous state to collective oscillations in presence of
heterogeneity in the in-degree distribution by employing the 2CCs approxi-
mation. We find that this model reproduce quite well the transition from the
asynchronous state to COs as a function of the median in-degree. Moreover,
we also analyze how both the external excitatory input and the heterogeneity
in the in-degree distribution affect the transition from asynchronous dynamic
to COs. The impact of both the excitatory input and the heterogeneity in the
connectivity in-degree manifest the relevance of the microscopic fluctuations
in the network dynamics. As a result, COs disappear as soon as the micro-
scopic fluctuations, due to balanced irregular spiking activity, vanish. The
2CCS approximation reproduces quite well all these transitions. However,
further refinements of the mean-field approach can be obtained by consider-
ing higher order cumulants. This analysis will be subject of future studies.
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Summary and perspectives

This thesis work is based on a neural mass model developed for spiking
network of QIF neurons. The QIF neuronal model is extremely important
becasue it respresents an excitable membrane model prototype of type I neu-
rons [89]. In particular, we consider a neural mass model that is exaclty
derived [10], this entails the description of the network in terms of aver-
age membrane potential and firing rate, unlike standard heuristic models [8]
where only the firing rate is involved.
Chapters 1 and 2 are dedicated to a detailed review concerning the theory
of phase oscillators with particular attention to the techniques of macro-
scopic reduction of networks of these oscillators based on the Ott-Antonsen
ansatz [11]. Particularly relevant for the drafting of this thesis is the recent
article by E. Montbrió, D. Pazó, A. Roxin [10] in which an exact mean field
model is analytically derived from a microscopic network of fully-coupled QIF
neurons. Specifically, the authors extended the approach developed by Ott
and Antonsen for heterogeneous networks of phase oscillators to neural mod-
els. This is possible given that models of QIF neurons are essentially phase
oscillators coupled together in an impulsive way. Thanks to this reduction
methodology, the dynamic evolution of the mean membrane potential and
of the firing rate of the neuronal population are perfectly reproduced with a
model of only two ordinary differential equations.
In the rest of the thesis, namely in the chapters 3, 4 and 5, we take into
consideration various network topologies and we study their dynamics. Our
attention is particularly focused on the mechanisms that can give rise to col-
lective oscillations in the gamma-band (30-90 Hz).
In Chapter 3 we study the dynamic of PING and ING fully-coupled configu-
rations in order to reproduce the experimental data reported in [13]. We show
that the corresponding mean-field model is able to reproduce part of these
experiments but fails for others. In particular, we have shown that θ-nested γ

161



oscillations can emerge both in the PING and ING set-up under an external
excitatory θ-drive in proximity of a super-critical and also a sub-critical Hopf
bifurcations. As shown in Appendix A, in the latter case the amplitudes are
no more symmetric with respect to the maximum value of the theta stimula-
tion, analogously to the experimental findings reported in [13]. Furthermore,
we have identified two different types of phase amplitude couplings (PACs):
one characterized by a perfect locking between θ and γ-rhythms, correspond-
ing to an overall periodic behaviour dictated by the slow forcing, the other
one where the locking is imperfect and the dynamics is quasiperiodic or even
chaotic. Our modelization of the PAC mechanism induced by an external
θ-forcing is able to reproduce several experimental features reported for op-
togenetic experiments concerning the region CA1, CA3 of the hippocampus,
as well as MEC [13,118–120]. In agreement with the experiments, we observe
nested γ COs for forcing frequencies in the range [1 : 10] Hz, whose ampli-
tude grows proportionally to the forcing one. Furthermore, the γ-power and
the frequency of the γ peak increase almost linearly with the forcing ampli-
tude, i.e. with the input θ-power. However, the neural mass model in all
the examined PING and ING set-ups is unable to reproduce the increase
in frequency of the γ-power peak with the stimulation frequency reported
in [13]. In order to get a similar increase in the neural mass model, we have
been obliged to assume that the stimulation power (namely, the noise or the
forcing amplitude) increases proportionally with the stimulation frequency.
Further studies, with the aim of reproducing experimental observations, can
be addressed considering more complex set-ups. For example, in the case of
the PING model, a synaptic time decay could be introduced. Furthermore,
it is known that the structure of the network in the brain changes with our
every-day experience, a mechanism called synaptic plasticity. An exciting
future perspective is to include synaptic plasticity in our model, paving the
way to a simple model to study the learning capacities and working memory
ability (WM) of neural networks [226–228]. For example we would like to
introduce short-term synaptic plasticity (STP), introduced by Mongillo et al.
in [229], for which the corresponding exact neural mass model has recently
been derived for heterogeneous spiking neural networks [230].
While in chapter 3 we consider ideal fully-coupled networks, a first step in
the direction of more realistic models of brain circuits is to consider net-
works with randomly assigned connections between neurons, namely sparse
networks, for which the exact reduction presented in chapter 2 is no longer
valid. Indeed in Chapter 4 we consider an effective reduced neural mass
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model reproducing a sparse network, where the random distribution of the
number of presynaptic neurons is considered as a quenched disorder. We
propose a minimal model capable of giving rise to the coexistence of fast
and slow gamma oscillations considering a single sparse balanced inhibitory
population. We also present a simple protocol to drive the system from slow
gamma oscillations to fast ones (and vice versa) by injecting a fast external
stimulus. This mechanism can allow a single inhibitory population to pass
from a coding task to another following an external sensory stimulus. Indeed
it has been shown that distinct gamma rhythms are involved in different
coding processes: namely, fast gamma in new memory encoding, while slow
gamma has been hypothized to promote memory retrieval [198].
We have analyzed the emergence of COs in our network also in presence of
an external theta forcing. This in order to make a closer contact with re-
cent experimental investigations devoted to analyse the emergence of gamma
oscillations in several brain areas in vitro under sinusoidally modulated theta-
frequency optogenetic stimulations [13,118,119]. For low forcing amplitudes,
our network model displays theta-nested gamma COs at frequencies around
50 Hz joined with irregular spiking dynamics, analogously to the ones re-
ported for the CA1 and CA3 areas of the hippocampus in [13, 118]. Fur-
thermore, for intermediate forcing amplitudes we observe the coexistence of
slow and fast gamma oscillations, which lock to different phases of the theta
rhythm, analogously to what reported for the rat hippocampus during ex-
ploration and REM sleep [104, 105]. Finally, for sufficiently strong forcing,
the model is driven in the fast gamma regime. These results can be useful in
revealing the mechanism behind slow and fast gamma oscillations reported in
several brain areas: namely, hippocampus [171], olfactory bulb [207], ventral
striatum [208], visual cortical areas [209] and neocortex [170].
Future studies can be addressed considering intrinsic adaptation dynamics
of the network. A slow adaptation variable could drive the system from one
oscillatory state to the other without the need of external stimulus. In the
same spirit, the coupling between this inhibitory population and an excita-
tory one could guide autonomously the system between one oscillatory state
and the other. Due to the large variety of interneurons, present in the brain,
a further step in rendering our model more realistic would consist in con-
sidering multiple inhibitory populations characterized by different neuronal
parameters. By manipulating the influence of a population on the others it
would be interesting to investigate the possible mechanisms to switch COs
from one gamma rhythm to another.
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In chapter 4 we have developed a low dimensional mean-field model for a
sparse network, where the disorder has been considered only at the level of
quenched random terms. However, we failed to include noise fluctuations
that are present in the network. The fluctuations can be considered in the
dynamical evolution by developing a Fokker-Planck formalism for the dis-
tribution of the membrane potentials of the QIF neurons. This has been
done in Chapter 5, by developing the Fokker-Planck approach in Fourier
space, thanks to the angular nature of the variable employed to describe the
QIF neuron. Specifically, we solved the Fokker-Planck equation associated
to a sparse balanced inhibitory network of QIF neurons with instantaneous
synapses and we prove the transition from the asynchronous state to collec-
tive oscillations. However, this approach is infinite dimensional.
A promising low dimensional reduced mean-field model, successfully ap-
plied to noisy phase oscillators networks, is the Circular Cumulants ap-
proach [16, 17]. In particular, we have extended this methodology to the
QIF sparse networks, where the noise has an endogenous nature. We showed
that the reduced mean field model derived considering the second order cu-
mulant is able to catch the transition between the asynchronous and the
oscillatory state.
Furthermore, the theory could be extended by taking into account more bio-
logically realistic characteristics, such as the presence of conductance-based
synapses. Recently, mean field model have been developed [225, 231–233] in
order to take into account such non-linearity in the dynamic, revealing that
the network response depends on the state of the conductance. The exten-
sion of our approach to conductance-based synapses could clarify the role
of this non-linearity for different regimes, such as fast oscillations. Indeed,
even if preliminary results indicates that the introduction of conductances in
our model does not represent any difficulty from the analytic point of view,
their presence could radically change the response of the system. This new
approach paves the way to a large variety of future studies. For example, by
employing the Circular Cumulants approach we can envisage in the future
to address excitatory-inhibitory sparse balance networks resembling realistic
neural circuit [21].
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Appendix A

PING set-up: sub-critical Hopf

In the PING set-up with only recurrent excitation (i.e. with J (ee) 6= 0,
J (ii) = 0 and J (ie) = J (ei) 6= 0), it is possible to observe the emergence
of COs also via a sub-critical Hopf bifurcation, by using H(e) as control
parameter, as shown in Fig. A.1 (a). This is due to the nature of the Hopf
bifurcation that can be modified by simply varying the value of H(i). In this
case we observe three regimes: an asynchronous one for H(e) < H

(e)
SN ; an

oscillatory one for H(e) > H
(e)
c and a bistable one in the range [H

(e)
SN : H

(e)
c ].

The frequency of the COs ν(e) is always in the γ-range with a minimal value
' 36 Hz achievable at the Hopf bifurcation, see the inset of Fig. A.1 (a).

If we consider the unforced system with H(e) < H
(e)
SN and we apply a θ-

forcing, we observe PAC oscillations. However when considering v(e), the
COs are now asymmetric with respect to the maximum of the stimulation
current I(e) = Iθ(t) (see Fig. A.1 (b)). This effect is even more pronounced
by observing the wavelet spectrogram reported in Fig. A.1 (c), where a
clear PFC is also observable. The asymmetry in the onset of the gamma
oscillations is clearly visible in the continuous wavelet transform obtained
from the experimental data and reported in Fig. 4G in [13]. This asymmetry
can be explained in an adiabatic framework by considering the corresponding
bifurcation diagram shown in Fig. A.1 (a). Indeed for the sub-critical Hopf,

the COs will emerge for Iθ > [H
(e)
c − H(e)], but they will disappear for a

different value of the forcing, namely Iθ < [H
(e)
SN−H(e)]. Instead, for a super-

critical, Hopf the emergence and disappearance of the oscillations will occur
at the same forcing amplitude, namely Iθ = [H

(e)
c −H(e)].

167



0 10 20

H
(e)

-40

-20

0

20

40

v
(e)

0 10 20

H
(e)40

60

ν
(e)

(a)

0

500

1000

-20

0

20

v
(i)

-20

0

20

v
(e)

0 200 400 600

time (ms)

0

10

20

I
(e)

(b)

0 π/2 π 3π/2 2π

Theta Phase

0

40

80

F
(H

z
)

(c)

-40

-20

0

20

40

Figure A.1: (PING set-up: subcritical Hopf) (a) Bifurcation diagram of
the neural mass model of the average membrane potential v(e) as a function
of H(e). The black continuous (dashed) line identifies the stable (unstable)
fixed point. The red lines denote the maxima and minima of the limit cycles.
The subcritical Hopf bifurcation occurs at H

(e)
c ' 7.8 while the saddle-node

of limit cycles occurs at H
(e)
SN = 5.8. In the inset the COs’ frequency ν(e) is

displayed as a function of H(e). (b) From top to bottom: raster plot where
green (blue) dots refer to excitatory (inhibitory) neurons in a network of
10000 neurons; average membrane potentials v(i) and v(e) as obtained by the
evolution of the neural mass models and forcing current I(e) for H(e) = −5 <
H

(e)
SN and νθ = 5 Hz. (c) Continuous wavelet transform over a single θ cycle

for v(e) with system setting as in (b). The remaining system parameters are
J (ee) = 8, J (ii) = 0, J (ie) = J (ei) = 10, H(i) = −8.0 and the size of the
excitatory (inhibitory) network is N (e) = 5000 (N (i) = 5000).

168



Appendix B

Different PING set-ups

In the main text we have considered a unique configuration giving rise to COs
via the PING mechanism: namely, two cross coupled inhibitory and excita-
tory populations with recurrent excitation and no recurrent inhibition (i.e.
J (ee) 6= 0 and J (ii) = 0). However, other network configurations can give rise
to PING induced oscillatory regimes. In particular, we have observed such
oscillations with only cross-couplings in the absence of recurrent excitation
and inhibition (i.e. J (ee) = J (ii) = 0), as well as in the presence of recurrent
inhibition only (i.e. J (ee) = 0 and J (ii) 6= 0). In the following we refer to
the former configuration as PING0 set-up, while the latter configuration with
recurrent inhibition is identified as PINGI set-up. In both configurations the
neural mass reproduces the emergence of γ oscillations via a super-critical
Hopf bifurcation for increasing values of H(e), as shown in Figs. B.1 (a)
and (b). Indeed the frequencies of the COs are in the range [26 : 63.5] Hz
([29.1 : 53.9] Hz) for PING0 (PINGI) set-up. In both configurations the
corresponding bifurcation, as a function of the parameter H(i), is sub-critical
and COs disappear for sufficiently positive values of H(i), analogously to what
is reported in the main text for the PING set-up with only recurrent exci-
tation. It should be stressed that the standard Wilson-Cowan neural mass
model gives rise to COs only in the presence of a recurrent excitation [8],
thus being unable to reproduce the spiking network dynamics [138]. In the
presence of an external θ-forcing with νθ = 5 Hz, we clearly observe θ-nested
γ-oscillations, as shown in the raster plots reported in Figs. B.1 (top rows of
panels (b) and (d)). These oscillations are phase amplitude modulated from
the forcing, as it results to be evident from the shape of the mean membrane
potentials V (e) and V (i) reported in the middle rows of Figs. B.1 (c) and (d).
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Figure B.1: (Different PING set-ups) Bifurcation diagram for the neural
mass model versus H(e), for the PING0 (a) and PINGI (b) set-ups for H(i) =
−0.5. The corresponding insets show the bifurcation diagrams as a function
of H(i), for H(e) = 10. θ-nested γ oscillations emerging in the PING0 (c) and
PINGI (d) configurations for I0 = 20 and νθ = 5 Hz. From top to bottom the
raster plot where green (blue) dots refer to excitatory (inhibitory) neurons in
a network of 10000 neurons; the average membrane potentials v(i) and v(e) as
obtained by the evolution of the neural mass models and the forcing currents
I(e). Parameters for the PING0 set-up are Jee = Jii = 0, while for PINGI are
Jee = 0 and Jii = 8. In both cases Jie = Jei = 10 and H(i) = −0.5. In the
corresponding insets we set H(e) = 10. The size of the excitatory (inhibitory)
network shown in panels (c), (d) is N (e) = 5000 (N (i) = 5000).
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Appendix C

Slow and fast gamma
oscillations in Erdös-Renyi
network

In order to compare the network simulations with the MF results we have
considered in the article a Lorentzian distribution for the in-degrees. It is
therefore important to show that the same phenomenology is observable by
considering a more standard distribution, like the Erdös-Renyi (ER) one. The
results of adiabatic simulations, reported in Fig. (C.1), confirm that also for
ER networks a bistable regime, characterized by COs with different gamma-
frequencies (see panel (b)), is indeed observable. In particular, slow gamma
COs characterized by an average firing rate r̄ ' 25 Hz and irregular neuronal
firings (as shown in panels (c) and (e)) coexist with almost synchronized fast
gamma COs with neurons tonically firing with r̄ ' 60 Hz (see panels (d) and
(f)).
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Figure C.1: Erdös-Renyi Network Results of adiabatic simulations for
an ER network obtained by varying the synaptic time τd: (a) maximal firing
rates rM and (b) frequencies νOSC of the COs. Two coexisting states (A) and
(B) are considered at τd = 0.15 ms. In the left and right row are reported the
raster plots (c,d) and the distributions of the cvi (e,f) for the state (A) and
(B), respectively. Parameters for the simulations are N = 10000, K = 1000,

I0 = 0.25, J0 = 1.0 and ∆τd = 0.015 ms, τ
(0)
d = 0.015 ms, τ

(1)
d = 0.45 ms.
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Appendix D

A general mechanism for the
emergence of coexisting
oscillations

We investigate here the generality of the mechanism for the coexistence of
COs observed in the network of QIF neurons. In particular, we have shown
that this phenomenon occurs when in the MF model we have a focus coex-
isting with a limit cycle, while in the sparse network we have fluctuations
sustained by the dynamical balance. If this is the mechanism we expect to
see a similar phenomenon whenever we consider a system in proximity of a
sub-critical Hopf bifurcation and we add noise of constant amplitude to the
dynamics.
Therefore, to asses the generality of the phenomenon we consider the normal
form of a Hopf bifurcation in two dimensions leading to the birth of a limit
cycle from an equilibrium, namely [234,235]:

τmẋ = βx− y + σxr2 − (x+ γy)r4 + I1 (D.1)

τmẏ = x+ βy + σyr2 + (γx− y)r4 + I2 , (D.2)

where r2 = x2 + y2, τm = 4 ms is an arbitrary time scale, I1(t) and I2(t) are
generic external time dependent forcing, β is the bifurcation parameter, the
parameter σ sets the nature of the bifurcation and γ controls the frequency
of the stable and unstable limit cycles. Notice that we added a quintic term,
absent in the original normal form [234, 235], in order to maintain bounded
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the values of x and y while keeping the same bifurcation structure. For
I1 = I2 = 0 we will have a sub-critical (super-critical) Hopf for σ = +1
(σ = −1). In this case it is convenient to rewrite (D.2) in polar coordinates
(x, y) = (r cosφ, r sinφ), as follows:

τmṙ = βr + σr3 − r5 (D.3)

τmφ̇ = 1 + γr4 . (D.4)

The stationary solutions are r = 0 corresponding to stable focus character-
ized by relaxation oscillations with a frequency νD ' 39 Hz and a stable and
unstable limit cycles of amplitudes r2 = (σ ±

√
σ2 + 4β)/2.

In Fig. (D.1) (a) we report the bifurcation diagram for σ = +1 and I1 = I2 =
0. We observe that the sub-critical Hopf bifurcation occurs at β = βc = 0
and for β < 0 it exists a region where a stable (green dots) and unstable
(blue dashed line) limit cycles coexists with a stable focus (red line), exactly
as it happens for the QIF MF model (see Fig. (4.7) (a)). The stable and
unstable limit cycles merge at a SN bifurcation located at β = −σ2/4.
As previously stated, the MF model cannot capture the endogenous fluctu-
ations, naturally present in sparse balanced networks. In order to emulate
this effect we consider I1(t) and I2(t) to be two i.i.d. Gaussian white noise
processes (i.e. Iq(t) = Aqξq(t) with q = 1, 2, where ξq(t) are random, Gaus-
sian distributed, variables of zero average and unitary variance). In presence
of these additive noise terms and in proximity of the Hopf bifurcation, we
observe the coexistence of two oscillatory regimes as shown in Fig. (D.1)
(b). One oscillation, characterized by higher amplitude (green line), corre-
sponds to the limit cycle present in the non-noisy dynamics (green line in
the bifurcation diagram reported in Fig. (D.1) (b).). The other oscillation
is the result of a constructive role of noise that excites the stable focus thus
generating robust oscillations at the frequency νD (red line). Analogously to
what shown for the network of QIF neurons (see Fig. (4.8)), it is possible
to switch between the two kind of oscillations via a pulse current of posi-
tive (negative) amplitude with respect to the baseline (see the dashed line
in panel b)). Moreover the frequencies of the two oscillations, generated by
two different mechanisms, corresponds to slow and fast gamma oscillations
as observable in the corresponding power spectra S(ν) reported in the inset
of Fig. (D.1) (b).
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Figure D.1: a) Bifurcation diagram for the variable x as a function of the
parameter β. Green (blue) lines indicate a stable (unstable) limit cycle and
red (black) line a stable (unstable) focus. b) Fixing β in the bistability region
we report the time trace of x(t) in presence of a zero-mean gaussian noise
of amplitude A1 = A2 = 0.14. An external pulse of current is added to
the evolution equation for x in (D.2) for a time window of 56 ms to induce
a switching between the oscillatory states (the black dashed line, shifted
on the x axe to be visible while the actual baseline value is zero). In the
inset we report the power spectrum of the two different oscillatory regimes
obtained over long time traces (hundreds of seconds) in order to check that
the oscillations persist in time. Parameters are β = −0.16, σ = 1, γ = 1.5.
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[10] Ernest Montbrió, Diego Pazó, and Alex Roxin. Macroscopic description
for networks of spiking neurons. Physical Review X, 5(2):021028, 2015.

[11] Edward Ott and Thomas M Antonsen. Low dimensional behavior of
large systems of globally coupled oscillators. Chaos: An Interdisci-
plinary Journal of Nonlinear Science, 18(3):037113, 2008.
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[134] JJ Chrobak and G Buzsáki. Gamma oscillations in the entorhinal
cortex of the freely behaving rat. Journal of Neuroscience, 18(1):388–
398, 1998.

189



[135] Andrea Ceni, Simona Olmi, Alessandro Torcini, and David Angulo-
Garcia. Cross frequency coupling in next generation inhibitory neural
mass models. arXiv preprint arXiv:1908.07954, 2019.

[136] Robson Scheffer-Teixeira and Adriano BL Tort. On cross-frequency
phase-phase coupling between theta and gamma oscillations in the hip-
pocampus. Elife, 5:e20515, 2016.

[137] Akihiko Akao, Yutaro Ogawa, Yasuhiko Jimbo, G Bard Ermentrout,
and Kiyoshi Kotani. Relationship between the mechanisms of gamma
rhythm generation and the magnitude of the macroscopic phase re-
sponse function in a population of excitatory and inhibitory modified
quadratic integrate-and-fire neurons. Physical Review E, 97(1):012209,
2018.

[138] Grégory Dumont and Boris Gutkin. Macroscopic phase resetting-curves
determine oscillatory coherence and signal transfer in inter-coupled
neural circuits. PLoS computational biology, 15(5):e1007019, 2019.

[139] Grégory Dumont, G Bard Ermentrout, and Boris Gutkin. Macroscopic
phase-resetting curves for spiking neural networks. Physical Review E,
96(4):042311, 2017.

[140] Omar J Ahmed and Mayank R Mehta. Running speed alters the fre-
quency of hippocampal gamma oscillations. Journal of Neuroscience,
32(21):7373–7383, 2012.

[141] Alex Sheremet, JP Kennedy, Yu Qin, Yuchen Zhou, Sarah D Lovett,
Sara N Burke, and Andrew P Maurer. Theta-gamma cascades and
running speed. Journal of neurophysiology, 121(2):444–458, 2019.

[142] Gregory R Richard, Ali Titiz, Anna Tyler, Gregory L Holmes, Rod C
Scott, and Pierre-Pascal Lenck-Santini. Speed modulation of hip-
pocampal theta frequency correlates with spatial memory performance.
Hippocampus, 23(12):1269–1279, 2013.

[143] Caroline Haimerl, David Angulo-Garcia, Vincent Villette, Susanne Re-
ichinnek, Alessandro Torcini, Rosa Cossart, and Arnaud Malvache.
Internal representation of hippocampal neuronal population spans a
time-distance continuum. Proceedings of the National Academy of Sci-
ences, 116(15):7477–7482, 2019.

190
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