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Chapter 1

Introduction

Few disciplines in the last decades have attracted as much attention as the neu-
rosciences. The rapid growth of new techniques capable of measuring in-vivo and
in-vitro the activity of the brain, has lead to a formidable increase of the efforts
aiming to understand the functioning of the most complicated structure of living
bodies. These techniques cover a wide range of spatial and temporal resolutions
[1, 2, 3, 4]: From techniques aiming to the meausrement of the collective behav-
ior of large neuronal networks during long time spans, such as EEG or fMRI, to
more refined techniques designed for the measurement of single cells dynamics
with a time precision to the order of milliseconds, for instance Dynamic Patch
Clamp technique [1, 5] (see Fig. 1.1). The application of these techniques has
helped neuroscientists to reveal the mechanisms involved in cognitive, behavioral
and sensory-motor functioning at different scales [6].

Parallel to the development of biomedical and neural engineering procedures,
an important part of the progress in the neuro-engineering field has been achieved
thanks to mathematical models implemented to explain the experimental findings.
The in-silico approach to the study of the brain represented a break-through in
neuroscience starting from the seminal works by Hodgkin and Huxley on the squid
giant axon [7, 8, 9, 10, 11]. Their description of the neuronal activity in terms
of a set of ordinary differential equations, published in 1952 and awarded with
the Nobel prize in 1963, turned out to be very accurate as it characterized in
detail the dynamics of ionic channels present in real neurons. Since then, most
of the contributions to the modeling of neuronal dynamics had the purpose of
simplifying the mathematical description of the neuronal activity, allowing for a
mathematical treatment [12]. Examples of remarkable simplified models, include
the FitzHugh-Nagumo [13, 14] and the Ingq, + I, model [15], (see [16] for other
examples). Among the simplified models, one of the most employed is the Leaky
Integrate-and-Fire (LIF) model (see [17, 18] for a review). Its simplicity has al-
lowed for the employment of statistical mechanics tools (such as the Fokker-Planck
description) to analyze the response of neural networks via mean field reductions
[19, 20, 21, 22]. Throughout this dissertation, the LIF neuron model is regarded
as our working tool.

The simplification of the neural dynamics in the LIF formulation is certainly
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Figure 1.1: Spatio-temporal scale resolution of some of the most widely used neural
engineering techniques. Vertical (horizontal) axis depicts the scale of spatial (tem-
poral) resolution. EEG: Electroencephalography; fMRI: Functional Magnetic Res-
onance Imaginig; PET: Positron Emission Tomography; 2DG: 2-deoxy-D-glucose
Imaging. Figure taken from [1]

a drawback from the single cell dynamics viewpoint. However this simplified form
allows for the study of the behavior of large number of interacting neurons. Un-
derstanding how the neurons interact among them is a fundamental process when
formulating a network model. The communication among neurons occurs via the
transmission of electrical pulses termed action potentials. Action potentials are
delivered by specialized structures: the synapses. The action potential emitted
by the pre-synaptic neuron, arrives to the axon terminal and produces the release
of neurotransmitters. After release, these neurotransmitters are bound to special-
ized receptors at the post-synaptic neuron which allows the flow of specific types
of ions. If the ionic current at the synapse contributes to the depolarization of
the membrane potential in the post-synaptic neuron it is called Excitatory Post-
synaptic Potential (EPSP), if it hyperpolarizes the membrane potential it is termed
Inhibitory Post-synaptic Potential (IPSP) [23]. The whole process of the synapse
takes place in a finite time which represents a time scale to be included in the
mathematical formulation of a system of interacting neurons (neural networks).
Simpler formulation of the interaction of LIF neurons, where the synaptic time
scale is neglected, and the Post-Synaptic Potentials are assumed to be described
by d-functions, permit a simpler analytic (and numerical) treatment, but it over-
simplifies important features that may arise as a consequence of synaptic dynamics
[24, 25, 26, 27]. We will address this issue by considering the LIF neurons coupled
via a-shaped pulses which captures some of the realistic aspects of synaptic dy-
namics (see Fig. 1.2), and such description will be maintained throughout all this
dissertation.

The final aim of modeling neural circuits is to mimic the different phenomena
observed experimentally, explain the mechanisms underlying such observations,
and hopefully provide some predictive strategies. Modeling should include the
most important aspects of neural dynamics. However, it is also a trade-off be-
tween the inclusion of (too many) realistic aspects and the necessity to limit the
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Figure 1.2: Scheme of neuronal interaction. At the top: Action potentials arrive
to the neuron represented by the grey circle. At the synapse, the pre-synaptic
signal is transformed into a post-synaptic potentials (in this case excitatory post-
synaptic potential EPSP) with a prototypical shape of an « function. Bottom:
Membrane potential (u) of the neuron in time. At each time of spike arrival the
membrane potential integrates the EPSP increasing the value of u until it reaches
the threshold value. Figure taken from [12].

number of parameters and variables entering in the model. Inevitably, this leads
to the question: Can a simple/minimalist model such as the a-pulse coupled LIF
network model account for biologically relevant applications? And if so, which are
the structural properties of the model that allows for such biological significance?
These two questions will be fundamental in our study. To answer them, we will
present a detailed description of the role of several features of the a-LIF network
in shaping collective emergent dynamics, and how these dynamics are compatible
with experimental evidences.

Processing and coding of information in the brain necessarily imply the coor-
dinated activity of large ensembles of neurons. Recent experiments in cognitive
neuroscience have demonstrated how population related dynamical phenomena,
such as information-carrying modulations of neural coherence, phase coding, etc.
play a decisive role in the encoding and processing of information [28, 29]. A re-
markable instance of population coding, whose study was awarded with the Nobel
prize in 2014, is the encoding of the rat’s position in the environment represented
by O phase precession in hippocampal neuronal populations [28, 30, 31]. This and
other evidences suggest that information is encoded in the population response,
and therefore neuronal networks should be organized in a configuration that allow
them to perform such encoding tasks. In this context connectivity between neu-
rons plays a crucial role: A network set-up in which all neurons are connected to all
the others (globally coupled) generates an extremely poor computation substrate
to encode any type of input. In models of all-to-all pulse-coupled neural networks,
the input encoding is trivialized as the response of the network converges to very
regular (non-chaotic) states. For example, in the case of an homogeneous globally
coupled neural network with excitatory feedback connections, the network syn-
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chronizes completely for synapses with instantaneous rise time [32]or, in the case
finite rise time synapses it may lead either to a partially synchronized regime or
the so-called splay state [25]. Also, homogeneous globally coupled inhibitory neu-
ral networks are characterized by regular regimes: for very slow « synapses it has
been demonstrated that inhibition produces synchronous firing [33], intermediate
values of the time decay produces partial synchronization in the form of perfectly
synchronized clusters of neurons [25, 27] and instantaneous rise time yields to splay
states [25]. Although introducing heterogeneity either in the connection strength
or neuron excitability may induce some irregularity (see for example [34, 35]), the
states elicited in globally coupled systems are not very useful in terms of popula-
tion coding, hence the need of topologies capable of realize more complex encoding
strategies. This leads to a further characteristic ubiquitous in almost any neural
circuit, and that is the sparse connection between neurons [36, 37]. From a biologi-
cal perspective, a sparse network is one in which the number of synapses per neuron
is much smaller than the total population. A sparsely connected network produces
a sufficient heterogeneity to enhance the computational capabilities for population
encoding. Sparseness and the role of connectivity in excitatory networks will be
critically examined in chapter 2. Sparse networks will be consistently used during
the discussion of the main chapters.

Sparse connectivity, however, is not a sufficient condition to generate non-
trivial patterns in the response spiking activity [38]. It is widely known that spike
trains recorded from cortical cells present a high variability in their spiking times
[39]. This variability has been explained in terms of the balanced contribution of
excitatory and inhibitory activity acting over a neuron [40, 41]. In few words,
the excitatory feedback provided by pyramidal excitatory neurons is, on average,
canceled out by the action of inhibitory interneurons. These two counteracting
forces yield the neuron to have an average value of the membrane potential just
below threshold. However, fluctuations of the balanced input persist and drive the
neuron to fire in a seemingly stochastic way. For this reason, this type of behavior
has been termed fluctuation driven regime, in opposition to the mean driven state
where the excitatory input current prevails over inhibition and the neuron fires
with low variability [21]. In chapter 3, the action of inhibitory synapses will be
discussed, and a detailed comparison between mean driven and fluctuation driven
networks will be carried out in terms of linear and non-linear stability analysis.
The results will be analyzed in the context of experimental evidence reported for
the rat’s barrel cortex [42].

All these characteristics converge to form neuronal circuits capable of perform-
ing complex tasks. One of the most outstanding examples of the joint combination
of these features is the encoding of cortico-thalamic input in the Basal Ganglia,
through its main substructure, the striatum. The role of basal ganglia as an im-
portant locus for controlling motor functions [43], timing tasks [44] and reward
based learning [45] has been widely studied both in behaving animals [46, 47] and
in-vitro set ups [48, 49]. The striatum, the principal input of the basal ganglia
conveying information from the cortex via excitatory cortico-striatal synapses, is
mainly composed (around 90%) by GABAergic Medium Spiny Neurons (MSNs)



[50, 51]. At a topological level, the MSN circuitry appears as a sparsely connected
network, in which the MSN form unidirectional collateral connections with a prob-
ability of connection between 10% - 25% [52, 53]. Studies in vitro have also shown
that the collateral connections between MSN are weak [54, 55], in comparison to
the Fast Spiking Neuron Synapses which also mediate the activity in the striatum
[56]. A simple model accounting for the dynamical evolution of the striatum will
be then introduced in chapter 4.

In searching for the answer to the relevance of simple network models in eluci-
dating relevant neuro-physiological experimental results, this dissertation employs
several disciplines: Through all the chapters, the results will be inspected from
a nonlinear dynamics point of view, paying special attention to linear/non-linear
stability analysis of the models that are presented. The aim is to present a me-
thodical discussion on the possible role of chaos in shaping the studied dynamics.
Furthermore, graph theory approaches will be applied, since the problems that
will be analyzed concern random networks [57]. Also, in chapter 4, state of the
art graph theory [58] will be used to deal with activity clusterization in neural
ensembles. Finally, methods of statistical physics will be also applied, specially
in chapter 2 through the reformulation of the deterministic dynamics of a sparse
network via a noisy ensemble of globally coupled neurons.

Specifically, the dissertation is organized as follows: In chapter 2, we will
consider pulse-coupled excitatory LIF neural networks with randomly distributed
synaptic couplings. This random dilution induces fluctuations in the evolution of
the macroscopic variables (corresponding to the local field potential measured by
the EEG) and deterministic chaos at the microscopic (single neuron) level. Our
main aim is to mimic the effect of the dilution as a noise source acting on the dy-
namics of a globally coupled non-chaotic system. Indeed, the evolution of a diluted
neural network can be well approximated as a fully pulse coupled stochastic net-
work, where each neuron is driven by a mean synaptic current plus additive noise.
These terms represent the average and the fluctuations of the local field potential
in the diluted system. The main microscopic and macroscopic dynamical features
can be retrieved via this stochastic formulation. Furthermore, the microscopic
stability of the diluted network can be also reproduced, as demonstrated from the
almost coincidence of the measured Lyapunov exponents in the deterministic and
stochastic cases for an ample range of system sizes. Our results strongly suggest
that the fluctuations in the synaptic currents are responsible for the emergence of
chaos in this class of pulse coupled networks.

A comparison in terms of stability analysis between excitatory and inhibitory
sparse networks will be carried out in chapter 3. More specifically, we study the
dynamical stability of pulse coupled networks of LIF neurons against infinitesi-
mal and finite perturbations. In particular, we compare mean versus fluctuation
driven networks, the former (latter) is realized by considering purely excitatory
(inhibitory) sparse neural circuits. In the excitatory case the instabilities of the
system can be completely captured by a standard linear stability (Lyapunov) anal-
ysis, whereas the inhibitory networks can display the coexistence of linear and
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nonlinear instabilities. The nonlinear effects are associated to finite amplitude
instabilities, which have been characterized in terms of suitable indicators. For in-
hibitory coupling one observes a transition from chaotic to non chaotic dynamics
by increasing the synaptic time scale. For sufficiently fast synapses the evolution
of the system remains erratic even though the system is linearly stable. This type
of behavior is attributed to the Stable Chaos mechanism, in which linearly stable
systems present seemingly chaotic behavior due to extremely long transients where
firing occurs irregularly [59]. Although the stationary state is a stable attractor,
the duration of such transients scales exponentially with the system size, there-
fore representing a quasi-stationary solution. In chapter 3, we demonstrate that
the trajectories of the transient dynamics are destabilized by finite size perturba-
tions, in agreement with a stable chaos picture of the underlying dynamics [60, 59].

In chapter 4, we propose a biologically inspired application of the the LIF net-
work model coupled with inhibitory synapses to simulate the dynamics of MSNs
in the striatum. Striatal projection neurons form a sparsely-connected inhibitory
network, and this arrangement may be essential for the appropriate temporal or-
ganization of behavior. In this chapter we show that a sparse inhibitory network
of artificial LIF neurons can reproduce key features of striatal population activ-
ity, as observed in brain slices [48]. In particular, we develop a new metric to
determine the conditions under which sparse inhibitory networks display anti-
correlated cell assembly dynamics, associated with highly variable firing rates of
the individual neurons. We find that under these conditions the network displays
an input-specific sequence of cell assembly switching, that effectively discriminates
similar inputs. Our results support the proposal [Ponzi and Wickens, PLoS Comp
Biol 9 (2013) e1002954] that GABAergic connections between striatal projection
neurons allow stimulus-selective, temporally-extended sequential activation of cell
assemblies. Furthermore, our results can help to show how altered intrastriatal
GABAergic signaling may produce aberrant network-level information processing
in disorders such as Parkinson’s and Huntington’s diseases.

The final chapter will be devoted to further discussion of the results and fu-
ture perspectives. Finally, in appendix A we briefly present the computational
approaches to integrate in an exact manner the evolution of our models, both in
parallel and serially.



Chapter 2

Stochastic mean field
formulation of the dynamics of
diluted neural networks

2.1 Introduction

In pioneering studies devoted to excitatory pulse-coupled networks of leaky integrate-
and-fire (LIF) neurons [61, 25], Abbott and van Vreeswiijk have shown that these
models in a globally coupled configuration can exhibit only two kinds of evolu-
tion, both regular. The first one, termed splay state, is associated to collective
asynchronous dynamics and the second one called partial synchronization (PS)
corresponds to coherent periodic activity in the network. The latter regime is
characterized by periodic oscillations in the neural activity and by quasi-periodic
motions of the single neuron membrane potentials [25]. PS dynamics resembles
the behaviour of developing brain networks, where synchronous population activity
emerges in the form of Giant Depolarizing Potentials (GDPs), due to the excita-
tory action of the GABA neurotransmitter [62, 63]. The introduction of random
dilution in a network with PS dynamics, achieved by considering an Erdés-Rényi
distribution for the conmnectivity degrees, induces chaoticity in the system and
fluctuations in the collective activity [64]. Fluctuations and chaos are due to the
non equivalence of the neurons in the network. However, for massively connected
networks, where the average in-degree is proportional to the system size [65], the
dynamics becomes regular in the thermodynamic limit, recovering the evolution
of the globally coupled system [64, 66]. On the other hand, for sparse networks,
where the in-degree value is constant independently of the network size [65], the
system remains chaotic even in the thermodynamic limit [67].

A fundamental question which we would like to address in this chapter is
whether the effect of the frozen network heterogeneity can be reproduced in terms
of a homogeneous model with additive noise. In particular, we are interested in
reproducing the chaotic behavior observed in the diluted system. As homogeneous
model we consider a fully coupled (FC) network displaying only regular motions
and we focus on the PS regime, where the macroscopic variables are periodic [25].
The addition of noise to the membrane potential evolution induces irregular oscil-
lations in the dynamics, observable both at the neuronal and at the macroscopic
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level. To reproduce the dynamics of a specific deterministic diluted (DD) net-
work, we employ as noise amplitudes in the stochastic model the ones measured
in the original system. As a result, the stochastic model is able to mimic the main
microscopic and macroscopic features of the original diluted system and even the
chaoticity properties of the deterministic system. Furthermore, we are able to
mimic the dynamics of networks composed by thousands of neurons by employing
a stochastic model with only one hundred elements.

Previous studies have been devoted to the dynamical equivalence among the
effect induced by noise on a system of identical excitable units and by quenched
disorder in the model parameters (diversity) [68, 69]. In our analysis the diversity
among neurons arises from the fact that each network element has a different
(randomly chosen) set of connections. In particular, our study finds placement in
the framework of the research works devoted to noise induced chaotic dynamics [70,
71, 72], however we are now dealing with a high dimensional system with a non
trivial collective behavior. Furthermore, our approach, despite being developed
for a simple network model, can be easily extended to a large class of complex
networks.

The chapter is organized as follows, Sect. 2.2.1 is devoted to the introduction
of the DD model as well as of dynamical indicators able to characterize microsco-
pic and macroscopic dynamics in this system. In the same Subsection, the results
concerning the dynamical evolution of deterministic FC and diluted networks are
briefly revisited. In Sect. 2.2.2 the stochastic model developed to mimic the
dynamics of the diluted system is introduced. Three methods to estimate the Lya-
punov spectrum in pulse-coupled neural networks are revised in Sect. 2.3. In the
same Section the three methods are compared by applying them to deterministic
systems. Furthermore, the generalization of two of such methods to stochastic
pulse-coupled networks with white and colored noise is also presented. Sect. 2.4.1
deals with the analysis of the reconstructions of the microscopic and macroscopic
features of the DD network via the stochastic approach. The Lyapunov analysis
for the stochastic models is reported in Sect. 2.4.2 and the results are compared
with the ones obtained for the corresponding DD systems. Finally, a summary
and a brief discussion of the obtained results is reported in Sect. 2.5 together with
a sketch of possible future developments.

2.2 Models and Methods

2.2.1 Diluted Deterministic network
The Model

We will focus our study on a diluted network of Np Leaky Integrate-and-Fire
neurons (LIF). The membrane potential v; of each neuron evolves according to the
following first order differential equation

0;(t) = a —v;i(t) + gEi(t) i=1,...,Np ; (2.1)

where a > 1 represents a supra-threshold DC current and ¢gF; the synaptic current,
with g > 0 being the excitatory synaptic coupling. Whenever the membrane
potential of the i-th neuron reaches a fixed threshold vy, = 1, the neuron emits
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a pulse p(t) transmitted, without any delay, to all the post-synaptic neurons and
its potential is reset to vg = 0. In particular, the field E;(¢) is given by the linear
superposition of the pulses p(t) received at the previous spike times {¢,} by the
i-th neuron from the pool of its pre-synaptic neurons. In this chapter, in analogy
with previous studies [61, 25, 73], we assume that the transmitted pulse is an
a-function, namely p(t) = a?texp (—at), where a~! is the width of the pulse. In
this case, the evolution of each field E;(¢) is ruled by the following second order
differential equation
2
Ei(t) + 20E;(t) + o2Ei(t) = % N bt —ta) (2.2)

nltn<t

where Cj; is a Np x Np random matrix whose entries are 1 if there is a synaptic
connection from neuron j to neuron i, and 0 otherwise and K is the number of
pre-synaptic connections of the i-th neuron. For a FC network K = N and all the
fields are identical, since each neuron receives exactly the same sequence of spikes.
By introducing the auxiliary variable P; = aF; + Fj, the second order differential
equation (2.2) can be rewritten as

2
. . e
Ej=P—ak,  P=-aP+ > Chad(t—tn) . (2.3)
nltn <t
Therefore, the network evolution is ruled by the 3Np Egs. (2.1) and (2.3)

which can be exactly integrated between spike events thus defining the following
event driven map [74, 64]:

Ei(n+1) = Ei(n)e™®™™ 4+ Py(n)7(n)e 7™ (2.4a)
2

Pi(n+1) = P(n)e™ ™" 4 Cpn i (2.4b)

vi(n+1) = v;(n)e™™™ + a(1 — e ™M) 4 gH;(n). (2.4¢)

The m-th neuron is the next firing neuron, which will reach the threshold at
time t,41, i.e. v,p(n 4+ 1) = 1. One should notice that the event driven map is
an exact rewriting of the continuous time evolution of the system evaluated in
correspondence of the spike emissions, therefore it can be considered as a Poincaré
section of the original flux in 3Np dimension. Indeed the event driven map is
3Np — 1 dimensional, since the membrane potential of the firing neuron is always
equal to one in correspondence of the firing event. Here, 7(n) = t,41 — t, is
the time between two consecutive spikes, which can be determined by solving the
implicit transcendental equation

) =l [a +ag;I:Z"(g)— 1] | 29

where the expression H;(n) appearing in equations (2.4c) and (2.5) has the form

e—T(n) _ e—aT(n) (n
i = T (2
_T(n)e*m(") ‘
e T pin). (2.6)

(a—1)
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In this chapter, we consider connectivity matrices C;; corresponding to ran-
dom graphs with directed links and a fixed in-degree K for each neuron [75]. This
amounts to have a d-distribution centered at K for the in-degrees, and a binomial
distribution with average K for the out-degrees. In particular, we examine mas-
sively connected networks, where the in-degree grows proportionally to the system
size, namely our choice has been K = 0.2 x Np. As we have verified, the main
results are not modified by considering Erdés-Rényi distributions with an average
in-degree equal to K. A few tests are also devoted to the dynamics of sparse net-
works, in particular this has been done by maintaining the in-degree constant to
K =100 and by increasing the system size Np up to 10,000.

Microscopic and Macroscopic Dynamical Indicators

In contrast to FC systems, the presence of dilution in the network induces fluc-
tuations among the instantaneous values of the fields {E;(t)} [64, 66]. These
fluctuations can be estimated by evaluating the instantaneous standard deviation
op(t) of the individual fields E;(t) with respect to their instantaneous average
value E(t), defined as follows

1
E(t) = Np Z Ei(t) (2.7)
1 Z:]\IID 1/2
op(t) = []VD > di(t)2] ; (2.8)
i=1

where d;(t) = E;(t) — E(t) denotes the instantaneous fluctuation of the i-th field
with respect to their average over the network. Similarly we can define P and op.
Obviously, for a FC network E; = E, P; = P and o = op = 0. In the following,
we will consider an unconstrained time average of the fluctuations (og), as well as
a conditional time average (o0 (F, P)) evaluated whenever the value of the average
fields falls within a box of dimension AE x AP centered at (E, P).

To measure the level of correlation present in the field fluctuations d;(t), we
measure the associated autocorrelation function

N5 L8 di(t + T)di(t))
((er(t)?)

where (-) indicates the average over time. The time interval over which the fluc-
tuations are correlated can be estimated by measuring the decorrelation time 74
from the the initial decay of Cg(7).

The collective activity in the network can be studied by examining the macro-
scopic attractor in the (E, P)-plane as well as the distributions of the average fields
F(E) and F(P). On the other hand, the microscopic dynamics has been charac-
terized by considering the distribution F'(IST) of the single neuron inter-spike

intervals (ISIs) as well as the associated first return map.

Cp(T) = < (2.9)

Diluted versus Fully Coupled Dynamics

As already mentioned in the Introduction, the dynamical regimes observable for
FC LIF networks, with post-synaptic potentials represented as a-function, have
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been analyzed in [61, 25]. These regimes are the so-called splay state and partial
synchronization. The splay state is characterized by a constant value for the field
E and by a perfectly periodic evolution of the single neurons, on the other hand
in the PS regime, the common field reveals a perfectly periodic evolution, while
the single neuron dynamics is quasi periodic [73]. In the present chapter we will
focus in the latter regime, where collective oscillations in the network activity are
present, in this case the macroscopic attractor corresponds to a closed curve in the
two dimensional (E, P)-plane. The introduction of random dilution in the system
induces fluctuations d; in the fields E; with respect to their network average E.
Therefore the collective attractor still resembles a closed orbit, but it has now a
finite width whose value depends on the values of (E, P) (see Fig. 2.1 (a)). As
shown in Fig. 2.1 (b), the fluctuations d; are approximately Gaussian distributed
for any point (E, P) along the curve. Therefore, the d; can be characterized in
terms of their standard deviation (o) averaged in time, this quantity, as previously
shown in [64, 66], vanishes in the thermodynamic limit for massively connected
networks. Indeed this is verified also in the present case as shown in Fig. 2.1
(c), thus indicating that for sufficiently large system sizes one recovers the regular
motion observed for FC systems. It should be recalled that for sparse networks
the fluctuations do not vanish, even for diverging system sizes [66]. Furthermore,
the field fluctuations present a decorrelation time 7. ~ 0.1, measured from the
decay of the autocorrelation function Cg(7) (see Fig. 2.1 (d)), which is essentially
independent from the system size, as we have verified.

Another relevant aspect of the diluted system dynamics is that the random di-
lution of the links renders the finite network chaotic. In particular, for a massively
connected network the system becomes regular in the thermodynamic limit, while
a sparse network remains chaotic even for Np — oo [73]. This result suggests that
the degree of chaoticity in the system is related to the amplitude of the fluctuations
d;(t) of the macroscopic fields.

2.2.2 Fully Coupled Stochastic Network

The question that we would like to address is whether the dynamics of the DD
network can be reproduced in terms of an equivalent FC network with additive
stochastic terms. As a first approximation, we assume that the erratic dynamics
of the DD system is essentially due to the field fluctuations d;(¢). Therefore, we
rewrote the dynamics of the diluted system as follows

E(t) = P(t) — aBE(t) (2.10a)
. a2

P(t) = —aP(t) + N n|tzn<t5(t —tn) (2.10D)
?:Ii(t) =a— Ui(t) + gE(t) + gfi(t) 1=1,...,Ng (2.100)

where each neuron is driven by the same mean field term E(t), generated by the
spikes emitted by all the neurons, plus an additive stochastic term &;(¢). Notice
also that we use a different number of neurons in the reduced model Ng < Np
since the asymptotic evolution of a FC system is fairly well retrieved already with
a relatively small number of neurons. We will consider both white noise as well as
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Figure 2.1: Characterization of the field fluctuations for a DD network. (a)
Macroscopic attractor reported in the (£, P)) plane (black dots), the colormap
(superimposed on the attractor) quantifies the time averaged values of the fluctu-
ations < og(E, P) >. These are estimated over a grid 100 x 100 with resolution
AFE = 0.06 and AP = 0.8 . (b) PDFs F(d;) of the deviation from the average
field d; estimated in three different points along the attractor. These points are
indicated in panel (a) with the same symbol and color code. (c) Fluctuations of
the fields < op > averaged both in time and all along the whole attractor as a
function of the system size Np (filled circles). The dashed line indicates a power
law fitting to the data, namely < op >x N 50'6. (d) Autocorrelation function
Cg(7) of the fluctuations of the fields d;. For all the reported data the parameters
are fixed to g = 0.5, « =9, a = 1.05 and K = 0.2Np. The system size is set to
Np = 500, apart in panel ¢). The reported quantities have been evaluated over
105 — 106 spikes, after discarding an initial transient of 10 spikes.
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colored one. In particular, for white Gaussian noise

(€, W)Ew, (V) = K26 ;6(t — 1) (2.11)

with a zero average value, namely (&,,) = 0. For colored noise, we considered
exponentially time correlated noise as follows

2
(€ou; (t)éou; () = %&,je"“"/fd (2.12)

where the average of the noise term is again zero. This is the so-called Ornstein-
Uhlenbeck (OU) noise, which can be obtained by integrating the following ordinary
differential equation

. 1 1
Sou, (1) = —deﬁom + deﬁwi (2.13)

where §,, is a Gaussian white noise, with the correlation defined in Eq. (2.11).

The main issue is to estimate the value of the noise amplitude x to insert in
Egs. (2.11) and (2.12) and of the correlation time of the OU process 74 to obtain
a good reconstruction of the original dynamics. The latter parameter can be
straightforwardly quantified from the autocorrelation function decay, in particular
we set 74 = 7. = 0.1. For the former quantity, as a first attempt, we set x
equal to the time averaged standard deviation of the fields (og). However, the
quality of the reconstruction was not particularly good and this can be explained
by the fact that the fluctuation amplitude is state dependent, as shown in Fig. 2.1
(b). Therefore, we evaluated (og(FE, P)) during simulations of DD systems and
we employed these quantities in the stochastic integration of the FC system. In
particular, we set k = (og(E, P)), where E and P are now the values of the fields
obtained during the simulation of the FC stochastic system.

The integration of the SDEs (2.10) for the white and OU noise is performed
as follows: The integration of the ODEs for the fields £ and P can be performed
without any approximation analogously to what done for the event driven map
(2.4a) and (2.4b), since their evolution is completely deterministic. The integration
of the equation for the membrane potential (2.10) is instead performed in two steps,
first the deterministic part is integrated from time ¢ to t + h as

Fi(w)=vi(t)e " +a(l —e ™) +gH(h) . (2.14)

Then the stochastic part is considered, for the white noise case, due to the linearity
of the SDE the stochastic process can be integrated exactly [76], and the solution
reads as

wlt+B) = Fiv) + 51— e )e(e) (2.15)

Here, the stochastic variable n;(t) is a spatio-temporal uncorrelated random num-
ber, normally distributed with zero average and unitary variance.

For the colored noise, instead, the integration of the SDE with accuracy O[h?]
leads to the following set of equations [77]

ou;(0) = 7=mi(0)

£OUZ- (t + h) = §OU1' (t)e*h/ﬂi + H\/@m(ﬂ (216)
vi(t+h) = Fi(v) + héou,(t)
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The integration is performed with a constant time step h ~ 107 — 1076, In
particular, we integrate exactly the equations for the field variables E and P for a
time interval i, while the membrane potential is evaluated employing the stochastic
propagators reported in Eqgs. (2.15) or (2.16), depending whether we consider
white or OU noise. Whenever the membrane potential of one neuron overcomes
threshold, we evaluate the crossing time t* and the values of all the membrane
potentials at t* via a linear interpolation. We then restart the integration with
the values of the field variables and of the membrane potentials evaluated at t*,
after resetting the potential of the neuron which has just fired.

We have performed the stochastic integration by employing extremely small
time steps. Such a choice is not due requirements related to the the precision
of the integration scheme (in particular in the white noise case the integration is
exact), but to the fact that for the evolution of our system is crucial to detect
the spike emissions with extremely accuracy. Therefore, instead of recurring to
more elaborate integration schemes [76], we decided to use small integration time
steps h in order to accurately determine the threshold crossing of the membrane
potentials even in presence of noise.

2.3 Linear Stability Analysis

We are not only interested in the reconstruction of the macroscopic and microscopic
dynamical features of the DD system via the stochastic approach, but also in the
reproduction of the linear stability properties of the original model. The latter
can be quantified in terms of the Lyapunov Spectrum {\;}, which can be related
to the average growth rates of infinitesimal volumes in the tangent space. The
Lyapunov spectrum has been estimated by considering the linearized evolution of
the original system and by applying the usual procedure developed by Benettin et
al. [78]. Therefore, let us start from the formulation of the linearized evolution of
the DD case by differentiating (2.1) and (2.3), this reads as:

0F; = 0F; — adP; (2.17a)
6P, = —adP; (2.17b)
0 = —0v; + gO B i=1,...,Np ; (2.17C)

where {0E;,0F;, dv;} is a 3 x Np vector in the tangent space. In the following we
will limit our analysis to the maximal non zero Lyapunov exponent A;.

It should be noted that two discontinuous events are present in the evolution
of the original orbit: namely, the spike emission, which affects the field variables
{P;}, and the reset mechanism acting on the membrane potentials {v;}. How-
ever, these discontinuities are not explicitly present in the Ordinary Differential
Equations (ODEs) representing the tangent space evolution (2.17). In the next
sub-sections we will report three different approaches on how to deal with these
discontinuities in deterministic systems, and the possible extension to Stochastic
Differential Equations (SDEs) for two of them. The first approach requires the
formulation of the dynamics in terms of an exact event driven map so we do not
see the possibility to extend it to stochastic systems. Instead, the other two meth-
ods concern the integration of ODEs with discontinuities and they can be easily
extended to SDEs.
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2.3.1 Linearization of the Event Driven Map (LEDM)

This approach can be applied whenever it is possible to write the evolution between
two successive events in an exact manner, and the expression (even implicit) of
the time interval 7(n) between two events is known. Here, we will focus on the
method introduced in [74] for networks of pulse coupled LIF neurons. In this
case it is possible to write explicitly the linearization of the event driven map by
differentiating Eqs. (2.4), (2.5) and (2.6).

The linearized map reads as:

0E;(n+1) = " [§Ei(n) + 7(n)SP;(n)]
- e*m@) [aE;(n) + (ar(n) — 1)P;(n)] 67(n), (2.18a)
6Pi(n+1) = e "M [§Pi(n) — aP;(n)d7(n)] (2.18b)

)
Svi(n+ 1) = e 7" [5v;(n) + (a — vi(n)
i=1,...,Np ; dvp(n+1)=0. (2.18¢)
where m is the index of the neuron firing at time t¢,41, while the condition
dvm(n + 1) = 0 is a consequence of the Poincaré section we are performing to
derive the event driven map.
The evolution of the LEDM is completed by the expression for d7(n):

01(n) = 170vm(n) + TEOEm (n) + Tp0 Pr(n) | (2.19)
where
or or or
Ty *= % y, TE = oE,, y TP = ﬁ (220)

Further details regarding this method can be found in [64] for a DD system.

2.3.2 Miiller-Dellago-Posch-Hoover (MDPH) Method

A well known method used for the calculation of Lyapunov exponents for discon-
tinuous flows has been introduced in [79, 80] and it has been recently extended to
integrate and fire neural models with refractory periods in [81] and to piece-wise
linear models of spiking neurons [82]. Here we will present an application of this
method to our DD neuronal model. The approach consists of integrating in par-
allel the linearized evolution (2.17) and the ODEs describing the evolution of the
orbit, namely (2.1) and (2.3), until one of the neurons reaches threshold. At this
point the tangent vector value should be updated, due to a discontinuous event,
as explained below.

By following the notation used in [79], let us consider a dynamical system de-
scribed by a flow equation x = f;(x) with a discontinuity defined by some implicit
equation in terms of the state variables I(x) = 0. The evolution at the disconti-
nuity is defined in terms of a function g(x) mapping the state of the system from
the time immediately previous to the discontinuity to the one immediately after,
i.e x4 = g(x_). Finally, let us assume that the dynamics after the discontinuity
is ruled by a different flow equation, namely x = fa(x).
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In this way the evolution in the real space is perfectly defined, while the cor-
rection to the tangent space vector dx, due to the discontinuity, can be expressed
as follows

0xy =G(z_)ox— + [G(x=) f1(x=) — fa2(x4)] 0t, (2.21)

where, provided that specific solvability conditions are met [79]

L(x_)éx_
L@ ) i)
The notation x_ (x4 ) indicates the state of the system right in the moment ¢t* of
reaching the discontinuity (just after ¢*). Moreover,

L(x) = ag(;c) G(x) = 8ga(xx) .

It is easy to show that for our DD system the flux is given by
fi(x) = f2(x) = [B,P,V] |

St = (2.22)

and the map at the discontinuity reads as

g(X) = [E1+,E2+,...,P1+,P2+,...,U1+,’U2+,...,Um+,...]
042 a2
=B, By, ..., P_+ fcm,bPQ_ + ?Cm,Qa e

’L)1+,’U2_,...,0,...], (223)

where m indicates the neuron firing at time t*. Furthermore, the firing condition
can be expressed as the scalar function

I(x) =v, —1.

Therefore, a straightforward calculation gives us the corrections to perform in
the tangent space to take into account the firing event at time ¢*:

2

§E;, = 0E;_ — Cm,i%at, (2.24a)
C¥3
6P;, = 0P;_ + Crny 26t (2.24D)
SOm, = —bm, Ot | (2.24c)
with 5

'Um,
5t =— 2.25
o (2.25)

Here, 6t is the (linear) correction to apply to the spike time of the reference orbit to
obtain the firing time of the perturbed trajectory. This quantity can be evaluated
from the linearization of the threshold condition v, = 1, and this leads to the
following expression

1 Ovp, vy,

where all the quantities entering in the rhs of the above equation are evaluated
exactly at the spiking time.
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2.3.3 Olmi-Politi-Torcini (OPT) Method

Recently, another approach has been proposed to deal with the discontinuities
occurring in the context of pulse-coupled neural networks [83]. In this context the
dynamical evolution in the tangent space between two spike events is ruled by the
3 x Np ODEs reported in (2.17). Whenever a spike is emitted in the network the
tangent space vector components should be updated as follows:

(SEZ‘Jr =0, + Eifét, (2.27&)
8P, = 40P, + P,_dt, (2.27b)
(5vi+ = (51}2'_ + @i_ 5t, (2.27C)

where the expression for §t is reported in Eq. (2.25) and the corrective terms
appearing in (2.27) account for the difference in the spiking times of the perturbed
and unperturbed orbit. It is clear that in this case, just after the firing event, the
component of the tangent vector corresponding to the membrane potential of the
firing neuron is exactly zero, i.e. dv,,, = 0. In this approach, the evolution in
tangent space is still performed by taking into account the constraint due to the
Poincaré section associated to the event driven map, meaning that this method is
completely analogous to the LEDM.

2.3.4 Comparison of the Different Methods

In order to verify the agreement among the different approaches introduced above,
we perform numerical estimation of the maximal non zero Lyapunov exponent by
employing such methods for a FC deterministic network. In this case the system
is never chaotic and in particular we consider two situations where the micros-
copic neuronal dynamics is either periodic or quasi-periodic. The first regime
corresponds to the so-called splay state (observable for o« = 3 for the chosen pa-
rameters) and the latter one to the PS regime (observable for @ = 9). In both
cases, it has been shown that the whole branch of the Lyapunov spectrum cor-
responding to the membrane potentials vanishes as 1/N? in the thermodynamic
limit [64]. In order to test for the accuracy of the employed methods, we decided to
consider finite size networks, with Np = 50 — 200, where the Lyapunov exponents
are extremely small.

It is important to remember that the definition of the LEDM and OPT methods
require a Poincaré section. Therefore, one degree of freedom, associated with the
motion along the reference orbit, is removed from the dynamical evolution and also
the corresponding zero Lyapunov exponent from the Lyapunov spectrum. Con-
versely, the MDPH method is not based on a Poincaré section. This means that,
for a periodic motion the largest Lyapunov exponent, evaluated with LEDM and
OPT methods, corresponds to the second Lyapunov exponent estimated with the
MDPH. Similarly, when the neurons evolve quasi-periodically in time, the max-
imal non-zero Lyapunov exponent obtained with LEDM and OPT is the second
one, while being the third one with the MDPH method. In summary, to test the
accuracy of the algorithms we compare in the periodic (quasi-periodic) case, the
second (third) Lyapunov exponent as obtained by the MDPH method with the first
(second) one obtained with the other two methods. We measured these exponents
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a=3,9g=04,a=13 K=Np a=9,9=04,a=13 K=Np
Np LEDM OPT MDPH Max. Abs. Error LEDM OPT MDPH Max. Abs. Error
50 -1.70x107%  -1.67x10~*  -1.70x10~* 2.00x10~6 -1.83x107%  -1.75x1073  -1.76x1073 5.17x107°
100 || -4.25x107°  -4.30x107°  -4.38x107° 7.43x1077 -4.73x107%  -4.60x10*  -4.66x10~* 6.87x1076
200 || -1.07x107°  -1.14x107°  -9.10x10~¢ 1.29%x1076 -1.19x1074 -1.18x107*  -1.28x107* 5.87x107¢
a=3,9g=05,a=1.05 K =02Np a=9,¢9g=05a=1.05 K=02Np
Np LEDM OPT MDPH Max. Abs. Error LEDM OPT MDPH Max. Abs. Error
200 || 9.4676x1073  9.4676x1073  9.4608x1073 4.50x1076 2.9515x107"  2.9515x10~"  2.9514x107! 6.67x1076
Table 2.1: Comparison of the maximal (non zero) Lyapunov exponents ob-

tained with the three methods introduced in Sec. 2.3, namely Linearization of
the Event Driven Map (LEDM), Olmi-Politi-Torcini (OPT) and Miiller-Dellago-
Posch-Hoover (MDPH) methods. Upper panel: For a deterministic FC network in
the periodic splay state regime (left set of parameters), and in the quasi periodic
PS regime (right set of parameters). Lower panel: For a chaotic DD network in
the asynchronous regime (left set of parameters) and in the PS regime (right set
of parameters). In all cases, the system is first relaxed through a transient of
10% spikes, after which the Lyapunov exponents are obtained by averaging over a
period corresponding to ~ 107 spike events. The reported errors are calculated
as the maximal (absolute) difference between the average of the values obtained
with the three methods and each single value. The MDPH and OPT estimates are
obtained in the upper panel by integrating the system (2.4) with a fixed time step
h =5 x 1079, while in the lower panel by employing an event driven integration
scheme, where the time step is variable and given by (2.5).

for different system sizes, namely Np = 50, 100 and 200. For all the considered
parameter values and system sizes the agreement among the three methods is very
good, the discrepancies among the different estimations are always of the order of
107® — 1075, as reported in Table 2.1.

We also tested the three algorithms for a diluted deterministic system where
the maximal Lyapunov exponent is definitely positive and its value is 2-3 orders of
magnitude larger than the absolute values of the Lyapunov exponents measured in
the non chaotic situations. In this case to improve the precision of the integration
scheme, we employed an event driven technique, where the integration time step
is variable and given by the solution of Eq. (2.5). This implementation allows
to avoid the interpolations required to find the firing times when the integration
schemes with a fixed time step are used. Also for the DD systems the discrepancies
among the three methods are of order 107® — 1079 (as shown in Table 2.1), thus
suggesting that these differences are most probably due to the slow convergence
of the Lyapunov exponents to their asymptotic value rather than to the precision
of the numerical integration. Nonetheless, these results confirm that the three
approaches are essentially equivalent for the analysis of deterministic systems.

2.3.5 Implementation for SDEs

Let us explain in detail how we implement the evolution in the tangent space
associated to the SDEs Egs. (2.10). For SDEs the estimation of the maximal
Lyapunov exponent has been performed by employing the MDPH and the OPT
methods, since the LEDM cannot be used in the case of a stochastic evolution,
because it requires an exact knowledge of the next firing time. For white additive
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noise, the linearized equations for both methods have exactly the same form and
they coincide with the expression in absence of noise reported in (2.17). Notice
that in this case we have a common field, therefore there are only two equations
for the evolution of the infinitesimal perturbations (6E,0P) of the field. The
stochastic nature of the process is reflected only in the evolution of the reference
orbit around which the linearization is performed. The only approzimation we
have done in this case is the same adopted during the integration of the real space.
Namely, at each firing time the values of the membrane potentials (entering in the
tangent space evolution) are simply evaluated as a linear interpolation between
the values taken at the time step before and after the firing event and not by
employing some accurate stochastic propagator taking in account the presence of
absorbing boundaries [76].

In the case of OU noise the situation is more delicate, in particular the equa-
tions for the evolution of the common field correspond to Egs. (2.17a) and (2.17b).
On the other hand the linearized equations for the membrane potentials and the
OU noise terms now read as

00; = —0v; + g0 E + gdéou, (2.28a)
. 1
0éou, = ——dou;, i=1,....,Np . (2.28b)
Td

It is easy to verify via (2.21) and (2.22) that the evolution of the Ornstein-
Uhlenbeck process does not require extra corrections in correspondence of the
firing events when the MDPH method is used, i.e 0§ou,, = 6ou,_-

Instead, with the OPT approach each noise term 6{oy, should be updated
whenever a neuron spikes as follows

0fou,, = 0fou, + ou, Ot (2.29)
and 0t is now defined as
OV _
ot = — Eo (2.30)
-1 Oovp, ovp, v,
— | == EF_+ — P_
O < oE | "t ap | 0T T G _5’50%)

2.4 Results

In this Section we examine the quality of the reconstruction of the macroscopic
and microscopic features and of the stability properties of the DD system in terms
of SDEs representing a FC system subject to additive noise. In particular, we
consider a massively connected DD network with K = 0.2Np for various system
sizes. namely 500 < Np < 10,000. We reconstruct the dynamics of these systems
by employing a small FC stochastic system of size Ng = 100, as we have verified
that finite size effects are of limited relevance for FC systems. For each size of
the DD system, we employ as noise amplitude in the stochastic FC system the
standard deviation of the fluctuations of the corresponding DD fields. In partic-
ular, for the chosen set-up (massively connected) as the system size of the DD
increases the amplitude of the fluctuations of the fields decreases, vanishing in the
thermodynamic limit (as shown in Fig.2.1 (¢)).
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2.4.1 Macroscopic and Microscopic Dynamics

In order to test for the quality of the reconstruction of the macroscopic dynamics,
we proceed to calculate the PDFs of the common field variables £ and P in the
FC set up, and compare them with the histograms of the average fields E and P
as obtained in the DD case. These are reported in Fig. 2.2 (a-d) for two system
sizes of the diluted system, namely Np = 500 and Np = 5,000. The agreement
between the original PDFs and the reconstructed ones improve by passing from
white to colored noise. In particular, this is evident for the F(F), since in the
case of white noise these distributions presents oscillations which are absent in the
original ones. The origin of these oscillations can be ascribed to the fact that in
presence of white noise of equal amplitude along the whole macroscopic orbit the
field can be driven occasionally far from the original attractor.

When the colored noise is employed one observes a better overall reconstruction
of the macroscopic attractors with respect to white noise. This is evident from
Fig. 2.2 (e-f), the attractors obtained with OU noise show less deviations from
the DD attractor with respect to the white noise case, in particular around the
maximal P. This is confirmed by considering the evolution in time of the original
and reconstructed fields. The time traces of the fields are compared in Fig. 2.2
(g-h), by matching the time occurrence of the first maximum of each field. As
one can see from the figure the OU reconstructed field follows reasonably well
the original evolution, at least in the considered time window, while the field of
the system driven by white noise shows, already after few oscillations period, a
retard /advance with respect to the original one.

To render more quantitative this analysis, we have measured the average oscil-
lation period of the field (Tg) for various system sizes Np of the DD networks and
for the corresponding stochastic reconstructions with white and OU noise. The
results for all the considered system sizes are displayed in Fig. 2.2 (i). In the DD
case (Tg) increases for increasing Np and tends towards the corresponding deter-
ministic FC value (dot-dashed line in the figure), this value will be reached in the
thermodynamic limit, as expected [64]. Both the stochastic estimations slightly
underestimate the DD value, however while the periods obtained by employing
OU noise exhibit errors with respect to the DD values of the order ~ 0.4 — 0.9%,
the errors made with the white noise reconstruction are usually larger, namely
between 1.0 and 1.5%.

Let us now examine the microscopic dynamics of the DD system, this is quite
peculiar for the chosen parameters, corresponding to quasi-periodic evolution of
the membrane potentials of the single neurons. Indeed, the single neuron motion
become exactly quasi-periodic only in the thermodynamic limit, where the regular
FC dynamics is recovered. For DD systems, as the ones here examined, the neurons
evolve on an almost quasi-periodic orbit, apart small chaotic fluctuations. These
motions can be analyzed by considering the inter-spike-interval (ISI) of the single
cell, in particular we will estimate the associated PDF F(IST) as well as the first
return maps for the ISIs of the single neurons.

The distributions F'(ISI) are reported in Figs. 2.3(a) and 2.3(c) for the same
level of dilution and two different system sizes, namely Np = 500 and Np =
5,000. The F(IST) are defined over a finite range of values, corresponding to the
values taken by the ISIs during the neuron evolution. By increasing Np, which
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Figure 2.2: Reconstruction of the macroscopic dynamics of the DD system (black
filled circles) in terms of white (blue empty triangles) and colored noise (red empty
squares). (a-d) Histograms of the macroscopic fields F and P; (e-f) macroscopic
attractors; (g-h) time traces of the field E; (i) average period of the field (Tg) as a
function of the system size Np of the DD system. Panels (a),(b),(e), and (g) refer
to Np = 500, while panels (c), (d), (f), and (h) to Np = 5,000. In (g) and (h) the
time traces have been shifted in order to ensure for the coincidence of the time of
occurrence of the first maximum in each trace, also the colored (white) noise has
been identified with a dashed (dashed-dotted) line, for the sake of visualization in
(g), (h) and (i). The periods reported in (i) have been obtained by measuring the
time lapse between two consecutive maxima, the number of samples used for the
calculation of T is 5,000 data points, and the (green) dot-dashed line is the field
period in a corresponding FC deterministic network equal to 1.98. Reconstructed
dynamics have been obtained with Ng = 100 with an integration step h = 5x 1076.
Other parameters are as in Fig. 2.1.
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corresponds to have smaller fluctuations (o), the F'(ISI) exhibit a sharper peak
at large ISI and at the same time the return map appears to better approach a
closed line, as expected for quasi-periodic motions (see Figs. 2.3(b) and 2.3(d)).

As far as the corresponding SDEs are concerned, the stochastic reconstruction
is fairly good for the F(IST), despite the fact that the distributions are now cov-
ering a slightly wider range with respect to the original PDFs. The reconstructed
return maps are noisy closed curves following closely the DD ones. By increasing
Np the reconstruction improves both with white and colored noise (as shown in
Fig. 2.3(a~d)), however it is difficult to distinguish among the two approaches rely-
ing on these indicators. Therefore, we have measured the average ISI for different
Np in the DD case and for the corresponding stochastic dynamics. The results are
reported in Fig. 2.3(e). In the DD case, the (I.SI) increases with Np approaching
the FC deterministic limit (green dot dashed line in the figure). The reconstructed
(ISI) are slightly under-estimating the deterministic results, however they repro-
duce quite closely the deterministic values. From the figure it is clear that the
OU reconstruction represents a better approximation of the DD results for all the
considered Np, with errors ranging from 0.1 to 0.6%, with respect to the white
noise results exhibiting discrepancies between 0.6 — 0.8% with respect to the DD
values.

From the analysis of the macroscopic and microscopic features we can conclude
that the stochastic reconstruction improves by passing from white to Ornstein-
Uhlenbeck noise. This is particularly evident for the field E. The reason for
this can be understood by considering the evolution of the macroscopic field: E
displays a rapid rising phase of duration ~ 0.1 —0.2 followed by a relaxation period
~ 0.9 x Tg (as shown in Figs. 2.2(g) and 2.2(h)). Therefore, in order to properly
reproduce this fast rise induced by the firing of the most part of the neurons in the
network, the time correlation of the fluctuations (on a time scale 7, ~ 0.1) should
be taken into account.

We have also considered the so-called sparse limit, in particular we examined
the DD networks obtained by fixing K = 100 and by increasing the system size
from Np = 500 to 10,000. As it can be appreciated from Fig. 2.4, the quality of
the stochastic reconstruction obtained at the microscopic and macroscopic level
is comparable with the one obtained for the massively connected networks. Thus
suggesting that our approach holds also for extremely diluted systems.

On the other hand, we have verified that the proposed stochastic reconstruction
fails whenever the system does not support a collective dynamical evolution, in the
specific case this corresponds to partial synchronization. In fully coupled excitatory
systems partial synchronization emerges only in a certain range of parameters,
otherwise one observe asynchronous dynamics [25]. However, even within this
range of parameters, the diluted system cannot sustain the collective motion if the
average in-degree becomes too small [66, 67]. This is what happens also for the
present choice of parameters for K < 40, notice that this critical connectivity is
strongly dependent on the model parameters, but not on Np whenever the system
size becomes sufficiently large (for more details see Ref. [66]).
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Figure 2.3: Reconstruction of the microscopic dynamics of the DD system (black
filled circles) in terms of white (blue empty triangles) and colored noise (red empty
squares). (a) and (c) PDF F(ISI) of the ISIs, (b) and (d) ISIs return maps.
Panels (a) and (b) refer to Np = 500, while panels (c¢) and (d) to Np = 5,000. (e)
Average ISI as a function of the DD system size Np, the thick (green) dot-dashed
line refers to the asymptotic value of the average ISI in the corresponding FC
deterministic set up, equal to 1.96 time units. Also the colored (white) noise has
been identified with a dashed (dashed-dotted) line, for the sake of visualization in
(e). The reconstructed dynamics are obtained with Ng = 100 by employing an
integration step h = 5 x 1075, The other parameters are as in Fig. 2.1

2.4.2 Lyapunov Exponents

As already mentioned, the system is chaotic for the DD system and the largest
Lyapunov exponent vanishes in the thermodynamic limit following a power law
decay with Np [66]. In particular, in the considered case we observe a decay A\ys o
N~ with v ~ 0.25 (as shown in the inset of Fig. 2.5 (a)), which corresponds to a
divergence of the maximal Lyapunov exponent with the averaged field fluctuations
given by Ay o (0g)%43. On the other hand the FC deterministic counter-part
exhibits a perfectly regular dynamics for any system size. Our aim is to reproduce
the level of chaoticity present in the DD system by perturbing stochastically the FC
system with noise terms whose amplitude corresponds to that of the fluctuations
of the deterministic fields {E;}, thus demonstrating that these fluctuations are at
the origin of the chaotic behavior.

The maximal Lyapunov exponents in the DD case have been estimated by
employing the LEDM method, while for the stochastic reconstructions we have
used the MDPH and OPT methods with white and OU noise. As it is evident
from Fig. 2.5 (a), the MDPH largely fails in reproducing the DD data, both for
white and colored noise, apart for the smallest system size here considered (namely,
Np = 500) and white noise. On the other hand, the OPT approach works quite
well both with white and OU noise over all the examined range of network sizes.
The values obtained from the reconstructed dynamics are always larger than the
DD values, but while in the OU case the error in the estimation increases with
Np and ranges from 2% at Np = 500 to 13% at Np = 10,000, for the SDEs
with white noise the error is of the order of ~ 5 — 9% and it seems not to depend
on the considered system size. Furthermore, the OPT estimation of the maximal
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Lyapunov exponent is able to recover the correct power law scaling with Np, in
particular in the white (OU) noise case we have found an exponent vy ~ 0.25
(v ~ 0.22). The exponent found for the white noise reconstruction coincides with
the deterministic value.

Furthermore, we have verified that for sparse networks all the considered sto-
chastic reconstructions show that the maximal Lyapunov exponent saturates to a
constant value in the thermodynamic limit (see Fig. 2.5 (b)). As expected due to
the fact that the fluctuations of the fields remain essentially constant by increasing
Np, since (o) o< K~1/2 [73]. However, as it can be appreciated from Fig. 2.5 (b),
the OPT estimation with OU noise provides in this case the best reconstruction of
Ay obtained for the DD system, with a maximal discrepancy of ~ 7 % by fixing
K =100 and by varying 500 < Np < 10, 000.

A possible explanation for the worse performances of the MDPH method with
respect to the OPT one for the estimation of A\j; for a stochastic process with
discontinuities relies on the definition and implementation of the method. As
shown in Eq. (2.24¢) and Eq. (2.25) the corrections to be applied at each firing event
depends only on the value of the derivative of the membrane potential of the firing
neuron estimate just before (7,,_) and after (vp,,) the event. These quantities
depend on the actual value of the membrane potential at threshold and reset, as a
matter of fact we have assumed that these values are not affected by noise. Maybe
this assumption is too restrictive, however no better results have been obtained by
the inclusion of stochastic terms. Instead, for the OPT approach the occurrence of
a spike is taken into account by modifying the values of the linearized variables in
the tangent space on the basis of the time derivatives of the corresponding variables
(in the real space) evaluated just before the spike emission (see Eq. (2.27)). These
time derivatives have been estimated as a linear interpolation between the values
taken at the integration step immediately before and after the spike, therefore in
their evaluation the stochastic evolution is somehow taken in account.

2.5 Final Summary

We have shown that the effect of the randomness in the distribution of the con-
nections among neurons can be reproduced in terms of a perfectly regular (FC)
network, where an additive noise term is introduced in the evolution equations for
the membrane potentials. This suggests that either noise or dilution can lead to
similar effects on the network dynamics (at least) in systems exhibiting collective
oscillations. These results open new interesting directions for the study of the
macroscopic activity of large sparse (neural) networks, which can be mimicked
in terms of few collective noisy variables. Furthermore, our analysis has revealed
that the stochastic approach is extremely convenient from a computational point of
view, since it allows to mimic the dynamics of a deterministic system with 3 x Np
variables by employing Ng + 2 variables, where Ng = 100, irrespectively of the
size of the original network. We have also employed larger Ng, namely Ng = 400,
without observing any substantial improvement with respect to the smaller size.
We have also discussed and critically re-examined the existing methods to
evaluate Lyapunov exponents for deterministic dynamical models with discontinu-
ities, and specifically for pulse-coupled systems. In particular, we have introduced
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a novel method to estimate stochastic Lyapunov exponents for dynamical systems
with discontinuities. Furthermore, we have applied this novel approach in order to
give a convincing evidence that the fluctuations of the macroscopic variables act-
ing on the membrane potentials are indeed responsible for the presence of chaotic
activity in diluted networks of LIF excitatory neurons exhibiting collective oscilla-
tions. This is not obvious for any kind of LIF circuits, recent works [84, 85, 86, 87]
have shown the existence of linearly stable dynamics in sparse inhibitory networks
where the fluctuations of the currents are responsible for the irregular activity of
the system, in absence of chaotic motion.

The approach presented here appears to work reasonably well in presence of
collective oscillations in the macroscopic field (i.e. partial synchronization in the
network), while we have verified that, when the global activity is asynchronous
the reconstructions do not perform equally good. The origin of this discrepancy
can be traced back to the fact that the fluctuations of the fields are, in the asyn-
chronous situation, almost periodic with decorrelation times ©(102). Such slow
decorrelation demands for more refined treatment of the noise term, like e.g. by
considering harmonic noise terms [88]. Furthermore, a higher fidelity is needed in
the tangent space reconstruction since the maximal Lyapunov exponent is, in this
case, two orders of magnitude smaller than for the PS dynamics.

Our approach can be considered a sort of stochastic mean field version of the
original system, in this regard it should be mentioned that in recent works, the
reconstruction of the dynamics of a diluted neural model quite similar to the one
analyzed here, has been successfully attempted by employing a deterministic het-
erogeneous mean field (HMF) approach [89]. The HMF amounts to introduce
mean field variables associated to equivalence classes of neurons with the same
in-degree, but it still maintains the heterogeneous character of the diluted system,
thus not allowing to clearly single out the source of the chaotic activity.

The results presented in this chapter have been published in reference [90].
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Figure 2.4: Reconstruction of the microscopic and macroscopic dynamics for a
representative size of the DD system in the limit of large dilution. From left to
right, reconstruction of the distributions of the instantaneous fields £, P and of
the single-neuron ISIs. The considered DD network (black filled circles) has a
size Np = 10,000 and an in-degree K = 100, while the reconstructed dynamics,
both for the white noise (blue empty triangles) and the colored noise (red empty
squares) are obtained with Ng = 100, integrated with a step h = 5 x 107%. Other
parameters as in Fig. 2.1.
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Figure 2.5: Maximal Lyapunov exponent Ajs as a function of the system size Np
for the DD case (black filled circles and solid line) and the corresponding stochastic
reconstructions evaluated with the MDPH method (red squares) and the OPT
approach (blue triangles). The stochastic results are reported for white (empty
symbols and dotted lines) and Ornstein-Uhlenbeck (filled symbols and dashed
lines) noise. In panel (a) we report the results for massively connected networks,
where K = 0.2 x Np and in (b) for sparse networks where K = 100 independent
from the value of Np. The inset of panel (a) shows in double logarithmic scale
Ay versus Np for the massively connected networks. Reconstructed dynamics
obtained with Ng = 100 and an integration step of h = 5 x 1076, In all cases, the
system is relaxed during a transient of 10% spikes and the Lyapunov exponents are
calculated by integrating the tangent space for a period corresponding to 107 — 10%
spikes. Other parameters as in Fig. 2.1.



Chapter 3

Stable chaos in fluctuation
driven neural circuits

3.1 Introduction

It is known that cortical neurons in vivo present a high discharge variability, even
if stimulated by current injection, in comparison with neurons in vitro [91, 92]. In
particular, these differences are peculiar of pyramidal neurons, while inter-neurons
reveal a high neuronal firing variability in both settings [93]. This variability is
usually measured in terms of the coefficient of variation C'V" of the single neuron
inter-spike interval (ISI), defined as the normalized standard deviation of the ISI
[94]. For cortical pyramidal neurons CV =~ 1.0 in vivo [91] and CV < 0.3 in
vitro [92], while for cortical inter-neurons C'V ~ 1.0—1.2 [93] in both settings. The
variability of the spike emissions in vivo resembles a stochastic (Poissonian) process
(where CV = 1), however the neural dynamics features cannot be accounted by
simple stochastic models [91]. These phenomena can be instead modelized by
considering a deterministically balanced network, where inhibitory and excitatory
activity on average compensate one another [61, 40, 41, 95]. Despite the many
papers devoted in the last two decades to this subject, it is still unclear which is
the dynamical phenomenon responsible for the observed irregular dynamics [96,
20, 97, 19].

A few authors pointed out the possibility that Stable Chaos [59] could be
intimately related to the dynamical behavior of balanced states [84, 85, 60, 98,
35, 86]. Stable chaos is a dynamical regime characterized by linear stability (i.e.
the maximal Lyapunov exponent is negative), yet displaying an erratic behavior
over time scales diverging exponentially with the system size. Stable chaos has
been discovered in arrays of diffusively coupled discontinuous maps [99] and later
observed also in inhibitory neural networks [84]. This phenomenon is due to the
prevalence of nonlinear instabilities over the linear (stable) evolution of the system.
This leads in diffusively coupled systems to propagation of information (driven by
nonlinear effects) and in diluted inhibitory networks to abrupt changes in the firing
order of the neurons [59].

Clear evidences of stable chaos have been reported in inhibitory d—coupled
networks by considering conductance based models [84] as well as current based
models with time delay [85, 60, 98, 35]. In particular, these analyses focused on
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the characterization of the time needed for the transient irregular dynamics to
relax to the final stable state, the authors convincingly show that these transients
diverge exponentially with the system size, a key feature of stable chaos. Further-
more, in [60, 98] it has been shown that, considering time extended post-synaptic
pulses, a transition from stable to regular chaos is present, where fluctuation driven
dynamics is apparently maintained [98].

In this chapter, we would like to compare the dynamics of a balanced net-
work, whose dynamics is driven by fluctuations in the synaptic inputs, with neural
networks composed of tonically firing neurons. Similar comparisons have been
performed in some previous studies [100, 21], however here we would like to fo-
cus on the role of nonlinear instabilities and in particular on indicators capable
of measuring finite amplitude instabilities in such networks. The effect of finite
perturbations is relevant from the view point of neuroscience, where the analy-
sis is usually performed at the level of spike trains, and a minimal perturbation
corresponds to the removal or addition of a spike. This kind of perturbations
can produce a detectable modification of the firing rate in vivo in the rat barrel
cortex [42]. This has been reported as the first experimental demonstration of
the sensitivity of an intact network to perturbations in vivo, or equivalently of an
erratic behavior in neural circuits. However, it is unclear whether this sensitivity
should be associated to linear or nonlinear effects. In particular the authors in [42]
considered a network composed of excitatory and inhibitory neurons, where an
extra spike in the excitatory network is soon compensated by an extra spike in
the inhibitory network, indicating a sort of balance in the activity of the studied
neural circuit. The ability of a perturbed balanced network to restore rapidly the
steady firing rate has been also discussed in [86] for a minimal model. Further-
more, Zillmer et al. [60] have shown that a finite perturbation in a stable regime
can cause a divergence of the trajectories.

These latter numerical studies, together with the fact that the addition of
an extra spike is clearly a finite perturbation from the point of view of dynamical
systems, strongly demand for further experimental investigations to clarify whether
the erratic behavior reported in [42] is due to infinitesimal or finite amplitude
instabilities.

Even though all these findings are congruent with the nature of stable chaos
[59], it must be noted that a careful characterization of this regime in neural net-
works in terms of finite amplitude indicators is still lacking. The only previous
study examining this aspect in some detail concerns a purely inhibitory recurrent
Leaky Integrate-and-Fire (LIF) neural network with an external excitatory drive,
which can sustain balanced activity [86]. Starting from this analysis, which was
limited to d-pulses, we have considered an extension of the model to finite width
pulses. Furthermore, we have characterized the linearized evolution via usual Lya-
punov exponents and the nonlinear effects in terms of the response of the system
to finite perturbations. This analysis has been performed by employing previously
introduced indicators such as Finite Size Lyapunov Exponents (FSLEs) [101] or
the probability that a finite perturbation can be (exponentially) expanded [86],
and new indicators capable of capturing nonlinear instabilities.
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3.2 Model and methods

In this chapter we will again consider a network of N Leaky Integrate-and-Fire
(LIF) neurons, here rewritten for simplicity: The membrane potential v; of the
i-th neuron evolves as

’l')i(t) :a—vi(t)—i—gEl-(t) i=1,---,N (3.1)

where @ > 1 is the supra-threshold neuronal excitability, and gFE; represents
the synaptic current due to the pre-synaptic neurons projecting on the neuron
i. Whenever a cell reaches the threshold value vy, = 1 a pulse is emitted instanta-
neously towards all the post-synaptic neurons, and its potential is reset to v, = 0.
The synaptic current gF; is the superposition of the pre-synaptic pulses p(t) re-
ceived by the neuron ¢ with synaptic strength g, therefore the expression of the
field E; reads as

Ei(t) Z > Ciy®t —ta)plt —tn) (3.2)
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Here the sum extends to all the spikes emitted in the past in the network, ©(t—t,)
is the Heaviside function and the parameter « controls the scaling of the normal-
ization factor with the number K of pre-synaptic neurons. Proper normalization
ensures homeostatic synaptic inputs [102, 103]. The elements of the N x N con-
nectivity matrix Cj; are one (zero) in presence (absence) of a connection from the
pre-synaptic j-th neuron to the post-synaptic i-th one. In this chapter we limit our
analysis to random sparse networks, where each neuron receives exactly K pre-
synaptic connections and this number remains fixed for any system size N. The
model appearing in Egs. (3.1) and (3.2) is adimensional, and the transformation
to physical units is discussed in chapter 4

Following [61], we assume that the pulses are a-functions, p(t) = ot exp(—at),
in this case the dynamical evolution of the fields E;(t) is ruled by the following
second order differential equation (ODE):

El(t) + QOéEZ‘(t) + ain(t) = fci Z Z Cz‘j(g(t - tn) s (33)

i nlta<t

which can be conveniently rewritten as two first order ODEs, as

E; = P, — aF;, P, = —aP, +7Z Z Cijo(t (3.4)

J#i nltn<t

by introducing the auxiliary field P, = E; — oE;.

The equations (3.1) and (3.4) can be exactly integrated from the time ¢t = t,,,
just after the deliver of the n-th pulse, to time ¢ = t,41 corresponding to the
emission of the (n + 1)-th spike, with the event driven map introduced in (2.4):

Ei(n+1) = Ej(n)e "™ + Pi(n)7(n)e=*"™ (3.5a)

012

K
vi(n+1) = v;(n)e ™™ 4+ a(1 — e ™M) 4 gH;(n), (3.5¢)

Pi(n+1) = Pi(n)e™ ™™ 4 ¢, — (3.5b)
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where 7(n) = tp41 — t,, is the inter-spike interval associated with two suc-
cessive neuronal firing in the network, which can be determined by solving the
transcendental equation

w-ultg]

here m identifies the neuron which will fire at time ¢,,+1 by reaching the threshold
value v, (n+1) = 1.

The explicit expression for H;(n) appearing in equations (3.5¢) and (3.6) is

e—T(n) _ e—aT(n) (n (n e—CYT(TZ)
i = S (B4 20 - T R )

The model is now rewritten as a discrete-time map with 3N — 1 degrees of
freedom, since one degree of freedom v,,(n+1) = 1, is lost due to the event driven
procedure, which corresponds to perform a Poincaré section at any time a neuron
fires.

Our analysis will be devoted to the study of sparse networks, this is, we will
consider a constant number K of afferent synapses for each neuron, namely K =
20. Therefore, the normalization factor K7 appearing in the definition of the
pulse amplitude is somehow irrelevant, since here we limit the study to a specific
value of the in-degree connectivity, without varying K. However, to compare
with previous studies, we set v = 1 for purely excitatory neurons, where g > 0,
similarly to what done in [66, 67], and v = 1/2 for purely inhibitory networks,
where g < 0, following the normalization employed in [85, 98, 104, 86]. The
reasons for these different scalings rely on the fact that in the excitatory case, the
dynamics of the system are mean driven (i.e. all neurons are tonically firing even
in the absence of coupling, being supra-threshold), therefore the synaptic input
should be normalized with the number of afferent neurons to maintain an average
homeostatic synaptic input [102, 103]. The situation is different in presence of
inhibitory coupling, here the supra-threshold excitability of the single neuron can
be balanced by the inhibitory synaptic currents, which maintains the neurons in
the proximity of the firing threshold. In this case, the network dynamics are
fluctuation driven, because the fluctuations in the synaptic inputs are responsible
of the neuronal firing. In order to keep the amplitude of the fluctuations of the
synaptic current constant, the normalization is now assumed proportional to the
square root of the number of the synaptic inputs [97]. In the present analysis we
have tuned the model parameters in order to be in a fluctuation driven regime
whenever the inhibitory coupling is considered. In particular, we will study not
only the dependence of the dynamics on the pulse shape, but also on the system
size, while maintaining a constant number of incoming connections K. However,
we will not assume that the excitatory external drive (in our case represented by
the neuronal excitability a) will diverge proportionally to v/ K, as done in [105, 86],
since we are not interested in the emergence of a self-tuned balanced state in the
limit K — oo, for 1 < K < N [105, 86].
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3.2.1 Linear Stability Analysis

To perform the linear stability analysis of the system, we follow the evolution of
an infinitesimal perturbation in the tangent space, through the set of equations
derived in (2.18)

n) +7(n)oP;(n)

SEi(n+1)=e "M [§E; ]
Ei(n) + (at(n) — 1)P;(n)] d7(n) (3.8a)
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SPi(n+1) =e "M [5P;(n) — aP;(n)ér(n)] , (3.8b)

dvi(n +1) = e~ 7" [sv;(n) + (a — v:(n))67(n)] + g5 Hi(n)
i=1,...,N ; dvnp(n+1)=0. (3.8¢)

The boundary condition dv,,(n + 1) = 0 is a consequence of the event driven
evolution. The expression of §7(n) can be computed by differentiating (3.6) and
(3.7)

01(n) = 170V, (n) + TEOE, (n) + TPOPyr(n) (3.9)
where
or or or
Ty 1= Ju TR 1= 9E. Tp = ab. (3.10)

In this chapter, we will limit to measure the maximal Lyapunov exponent Aps
to characterize the linear stability of the studied models. This is defined as the
the average growth rate of the infinitesimal perturbation

o= ((51)1 . ..5’[)]\]7 (5E1 ‘e .(5EN, 5P1 . .5PN),

through the equation 60 |
1 t

Ay = lim Slog 55 =
where &g is the initial perturbation at time zero. The evolution of the perturbation
d(t) has been followed by performing at regular time intervals the rescaling of its
amplitude to avoid numerical artifacts, as detailed in [78]. Furthermore, since
our system is time continuous one would expect to have always a zero Lyapunov
exponent, which in fact is the maximal Lyapunov if the system is not chaotic.
However, this does not apply to the event driven map because the evolution is
based on a discrete time dynamics, where the motion along the orbit between two
successive spikes is no more present due to the performed Poincaré section.

(3.11)

3.2.2 Finite Size Stability Analysis

Besides the characterization of the stability of infinitesimal perturbations, we are
also interested in analyzing how a perturbation grows according to its amplitude.
To perform this task several indicators have been introduced in the last years,
ranging from Finite Size Lyapunov Ezponents (FSLE) [101, 106, 107, 108] to the
propagation velocity of finite perturbations [109]. FSLEs have been mainly em-
ployed to charaterize stable chaos in spatially extended systems [59] and Collective
Chaos in globally coupled systems [110, 111, 24].
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We have performed several tests using the usual FSLE definition [108]. In par-
ticular FSLE can be defined considering an unperturbed trajectory @ = (vy...vn, E1... En, P ... Py)
and a perturbed trajectory @’ = (v} ... v, Ej...E}\, P ... Py), obtained by ran-
domly perturbing all the coordinates (both the fields F and P as well as the
membrane potentials) of the generic configuration x. In order to ensure that
the dynamics of the trajectory =’ will also occur on the attractor associated
to the studied dynamics, we have considered extremely small initial perturba-
tions Ag = A(0) =~ 1078 — 10710 of the reference orbit. Furthermore, we have
discarded an initial transient to allow x’ to relax on the attactor. Then we
follow the evolution of the two trajectories in time and measure their distance
A(t) =|| =(t) — 2’(t) ||, by employing the absolute value norm, at fixed sampling
time intervals dt = 0.2. Whenever A(ty) crosses (for the first time) a series of
exponentially spaced thresholds 6y, where 6, = rf;_1, the crossing times t; are
registered. After averaging the time separation between consecutive crossings over
different pairs of trajectories, one obtains the FSLE [108, 101]

r

Ar(A(tg)) = Tty where A(tg) = 6 . (3.12)

For small enough thresholds, one recovers the usual maximal Lyapunov exponent,
while for large amplitudes, FSLE saturates to zero, since a perturbation cannot be
larger than the size of the accessible phase-space. In the intermediate range, Ap
tells us how the growth of a perturbation is affected by nonlinearities. However, as
a general remark, we have noticed that it is extremely difficult to get reliable results
from the FSLE analysis. The reason is most likely due to the fact that the definition
of A\r relies on averaging different passage times through a threshold 6. Each
passage time estimation is, in turn, based on single trajectory realization, where
the distance A(t) presents huge fluctuations. These fluctuations can induce, within
a single sampling time interval dt, the crossing of several thresholds. In order
to overcome this problem, each single realization of the distance A(t) has been
smoothed before estimating the corresponding passage time from one threshold
to the next. Unfortunately, we realized that the results strongly depend on the
smoothing procedure (mainly, on the chosen time window) and that the effect is
particularly evident in the fluctuation driven case.

In light of the aforementioned issues, we decided to adopt different indicators
rather than the FSLE, in order to investigate the growth rate of finite amplitude
perturbations. In particular, an estimation of finite size stability can be measured
defining the following indicator

d(log A(t))

D(A(H) = SERDL

(3.13)
where, analogously to the FSLE, the average (-) is performed over many different
pairs of trajectories with initial distances Ay = A(0) ~ 1078 — 1071%. In the
limit A(¢) — 0 we expect to recover the maximal Lyapunov exponent Ays. As we
will show, after a transient needed for the perturbed trajectory x’ to relax to the
attractor, D(A) measures effectively the maximal Lyapunov exponent. However,
if nonlinear mechanisms are present D(A) can become larger than A\js for finite
amplitude perturbations. Analogously to the FSLE, for perturbations of the size
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of the attractor the indicator D(A) decays towards zero due to the trajectory
folding. In contrast to the FSLE, the indicator (3.13) has shown to be less affected
by fluctuations, most likely because its definition is based on the averaged profile
of the disturbance.

The studied models present discontinuities of O(1) in the membrane potentials
v;, due to the reset mechanisms, and of O(a?/K?) in the fields P;, due to the
pulse arrival. In order to reveal, without any ambiguity, the presence of nonlinear
instabilities at finite amplitudes, for the estimation of the FSLE and of the indica-
tor D we mainly limit our analysis to the continuous fields {E;}. In particular, to
characterize the finite amplitude instabilities, we consider the following distance
between the perturbed and unperturbed orbits

N
AP () = S IB() ~ B (3.1
i=1

In some cases we have also analyzed the distance AFP) between all the variables
associated to the unperturbed and perturbed state with a clear meaning of the
adopted symbol.

Unfortunately, we cannot employ the previously given procedure to measure
the indicator D(A) as well as the FSLE in the case of stable chaos, because when
A is negative, small perturbations are quickly damped. In this case, one is forced
to employ larger perturbation to observe nonlinear instabilities, and to perform
measurement over (short) finite times, to avoid folding effects. Therefore, there is
no guarantee that the evolution of the perturbed orbit will sample the phase space
accordingly to the natural invariant measure. In particular, we will use indicators
that are quite similar to the ones introduced in [106, 112] to study stable chaos
coupled map lattices. Specifically, we proceed as follow: we consider two orbits at
an initial distance Ay and we follow them for a time interval T', then we measure
the amplitude of the perturbation at the final time, namely A(T). We rescale one
of the two orbits to a distance Ag from the other one, keeping the direction of
the perturbation unchanged, and we repeat the procedure several times and for
several values of Ag. Then, we estimate the finite amplitude growth rate, as

RT(A()) = % <10g ’?A(Z‘)‘ > 5 (3.15)

where the angular brackets denote the average over a sufficiently large number of
repetitions. To allow the perturbed orbit to relax on the attractor, we initially
perform ~ 103 rescalings, which are not included in the final average. However,
also this procedure does not guarantee that the attractor is always reached, in
particular for very large perturbations. Furthermore, the perturbed dynamics is no
more constrained to evolve along the tangent space associated to the event driven
map. As a matter of fact, whenever \y; < 0 the indicator Rp(4A() converges
to zero and not to the Lyapunov exponent associated to the discrete time map
evolution.

Finally, following the analysis reported in [86], we consider the probability
Py(Ap) that a perturbation of amplitude A induces an exponential separation
between the reference and perturbed trajectory. In particular, we perturb the
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Figure 3.1: Comparison between mean driven (upper panels) and fluctuation
driven (lower panels) activity. (a) Raster plots for a pool of 60 neurons. (b)
Membrane potential traces v;(t) (black solid line) and the corresponding effective
current W; (red dashed line) for a typical neuron. The blue dotted line indicates
the firing threshold. For the mean driven case, a = 1.3, ¢ = 0.2, a =9 and v =1,
corresponding to the situation studied in [67]; for the fluctuation driven network
the parameters are the same, apart ¢ = —0.8, « = 5 and v = 1/2. For both
networks, K = 20 and N = 400 and the results for both systems are reported for
the same rescaled time intervals ¢/ < ISI >= 10, after discarding a transient of
10* spikes.

reference orbit with an initial perturbation Ay and we follow the evolution of the
trajectories for a time span 7. Whenever A(T) is larger than a certain threshold
01, this trial contributes to the number of expanding initial perturbations Ny(Ay),
otherwise is not counted. We repeat this procedure Nt times for each perturbation
of amplitude Ay, then Py(Ag) = Ny(Ag)/Nr. For the two latter indicators, namely
Ry and Py, we have always employed the total distance A®F-P) to confront our
findings with the results reported in [86].

3.3 Results

As already mentioned, we will compare a mean driven excitatory network and
a fluctuation driven inhibitory network. In particular, the excitatory network is
studied in a regime where it presents a collective non trivial partial synchronization
[25, 67]. This state is characterized by quasi-synchronous firing events, as revealed
by the raster plot reported in the upper panel of Fig. 3.1(a), and almost periodic
oscillations of the effective current W;(t) = a+gE;(t) (see Fig. 3.1(b), upper panel).
In this particular case W; > 1 therefore the neurons are always supra-threshold.
In this situation the measure of the C'V gives quite low values, namely for the
studied case (with a = 1.3, g = 0.2 and o« = 9) CV =~ 0.17, similar to pyramidal
neurons in vitro. Despite this low level of variability in the neuronal dynamics, the
sparseness in the matrix connectivity induces chaotic dynamics in the network,
which persists even in the thermodynamic limit [67]. At variance with diluted
networks, where the average connectivity scales proportionally to the system size
(K o« N*, with 1 > z > 0). In this latter case, in the limit N — oo the system
will recover a regular evolution, similarly to fully coupled networks [64, 66].
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Figure 3.2: Dependence of the coefficient of variation C'V' (a) and of the inter-spike
time interval IST (b) on the pulse width for the fluctuation driven case. The data
refer to N = 400 (black circles) and N = 1600 (red squares). The data have been
averaged over 10% spikes, once a transient of 107 spikes has been discarder. The
other parameters are as in the caption of Fig. 3.1

For the inhibitory network, we observe radically different dynamics, this be-
cause now W;(t) oscillates around one, therefore the neurons fire in a quite irregular
manner, driven by the fluctuations of the fields F;(t), as shown in the lower panels
of Figs. 3.1 (a) and (b). In this case we have examined the dynamics of the model
for a = 1.3, g = —0.8 and different pulse-widths 1/a. For a € [1 : 5] the neu-
ronal dynamics are always quite erratic, being characterized by CV ~ 0.7 — 1 (see
Fig. 3.2(a)). Narrower pulses (larger o values) are associated to somehow more
regular dynamics and smaller ISI, moreover we have verified that the ISI and CV
saturates to some finite value in the thermodynamic limit (as shown in Fig. 3.3
(a) and (b)). This suggests that fluctuations will not vanish for N — oo and
that the system will remain fluctuation driven even in such a limit. Furthermore,
the two a-values examined in Figs. 3.3(a) and 3.3(b) correspond to two different
dynamical regimes, further discussed in Section 3.3.1, namely, a chaotic (o = 3)
and a non-chaotic (« = 5) state.
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Figure 3.3: Dependence of the coefficient of variation C'V' (a) and of the inter-spike
time interval ISI (b) on the size of the network for fluctuation driven networks in
two representative situations corresponding to the chaotic (o = 3, black circles)
and the stable chaos (a = 5, red squares) regimes. The reported data have been
averaged over 10® spikes, once a transient of 107 spikes has been discarded. The
other parameters are as in the caption of Fig. 3.1.
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3.3.1 Lyapunov analysis

As previously shown, the fluctuation driven regime is observable for the inhibitory
network for all the considered pulse widths. In this Subsection we would like to
investigate whether such variability is related to a linear instability of infinitesi-
mal perturbations (measured by the maximal Lyapunov exponent Ays) or to other
(nonlinear) instabilities present in the system. Let us start examining the Lya-
punov exponent for such systems, as a first result we observe a strong dependence
of Ay on the pulse-width (see Fig. 3.4(a)): the system is chaotic for wide pulses
and becomes stable for sufficiently narrow ones. These results are in agreement
with previously reported results in [60, 98] for an inhibitory network of LIF neurons
with delayed synapses. In these papers the authors show that chaos can arise only
for sufficiently broad pulses, conversely for J-pulses the system is always stable. It
is worth to notice that the critical a-value at which occurs the transition to chaos
becomes larger as the system size increases, pointing to the question whether the
stable regime still exists for finite pulses in the thermodynamic limit or if it is
merely a finite size property [98]. Extensive simulations for sizes of the network
up to N = 15,000 have shown that the stable regime is present even for such a
large size (see Fig.3.4(b)). Furthermore, we have found an empirical scaling law
describing the increase of Ay with N, i.e.

A (N) = Ao — N7 (3.16)

where A\, denotes the asymptotic value in the thermodynamic limit and 7 is
the scaling exponent. For the two representative cases here studied, the exponents
were quite similar, namely n ~ 0.24 (n ~ 0.21) for « = 3 (a = 5), however 7 de-
pends definitely on the chosen parameters, indeed for e = 9 the scaling exponent
was 1 ~ 0.28 (see inset). Furthermore, these exponents are different from the one
measured for the mean driven case, in such situation for sparse connectivity Az
converged to its asymptotic value as 1/N [67]. An exponent = 1 has been pre-
viously measured for diffusively coupled map lattices exhibiting spatio-temporal
chaos and theoretically justified in the framework of the Kardar-Parisi-Zhang equa-
tion [113]. The scalings we are reporting in this chapter are associated to random
networks, therefore they demand for a new theoretical analysis. Furthermore,
the asymptotic values Aog = 0.335(1) (Ao = —0.034(1)) indicate that a critical
threshold separating stable from chaotic dynamics persists in the thermodynamic
limit.

3.3.2 Finite size perturbation analysis

Stable chaos in spatially extended systems is due to the propagation of finite am-
plitude perturbations, while infinitesimal ones are damped. In inhibitory neural
networks, the origin of stable chaos has been ascribed to abrupt changes in the
firing order of neurons induced by a discontinuity in the dynamical law, while in-
finitesimal perturbations leave the order unchanged [84, 59, 98]. In particular, by
examining a conductance based model, in [59] it has been shown that a spike was
able to induce a finite perturbation in the evolution of two (not-symmetrically)
connected neurons, given that the inhibitory effect of a spike was related to the
actual value of the membrane potential of the receiving neuron. Therefore two
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Figure 3.4: Linear stability analysis of the fluctuation driven state. (a) Maximal
Lyapunov exponent Ap; as a function of pulse-width «, for two representative
system sizes: N = 400 (black circles) and N = 1600 (red squares); thin dashed
lines are drawn for eye guide only. (b) Ao — Aps(IN) as a function of the system
size N in a double logarithmic scale for two representative pulse widths: « = 3
(black circles) and o = 5 (red squares). Thick dashed lines correspond to the
nonlinear fitting (3.16), which predicts the asymptotic values Ao (see text). The
fitting parameters entering in Eq. (3.16) are ¢ = 1.07 (¢ = 0.75) and n ~ 0.24
(n >~ 0.21) for o = 3 (av = 5). The inset illustrates that the law persists for even
narrower pulses: for @ = 9, Ao = —0.3456(3) and n = 0.28. In both figures, Aps
is calculated by integrating the evolution in the tangent space together with the
unperturbed orbit dynamics during a time interval equivalent to 10® spikes, after
discarding a transient of 107 spikes. Remaining parameters as in Fig. 3.1.

ingredients are needed to observe stable chaos in neural models, a non symmetric
coupling among neurons, together with the fact that the amplitude of the trans-
mitted pulses should depend on the neuron state. These requirements are fulfilled
also in the present model, since the effect of a spike received by neuron i (e.g.
on delaying its next firing time) depends on its actual state (v;, F, P;) as shown
in Egs. (3.5) and (3.6). However, the problem is to quantify this effect in terms
of some indicator, similarly to what done for spatially extended systems, where
stable chaos has been characterized in terms of the FSLE and of the velocity of
propagation of information [109, 112].

As a first indicator we consider the FSLE, associated with the norm A®),
the corresponding results are reported in Fig. 3.5 for the mean and fluctuation
driven cases. In the former case the FSLE is never larger than the usual Lyapunov
exponent Az, with which it coincides over a wide range of perturbation ampli-
tudes. In particular, Ap(A®)) < Ap for small amplitudes, due to the fact that
initially the perturbation needs a finite time to align along the maximal expanding
direction. Furthermore, due to the folding mechanism, the perturbation is con-
tracted also for large perturbations of the order of the attractor system size. In
summary, for mean driven dynamics only the instability associated to infinitesimal
perturbations is present, as reported also in [24]. In the fluctuation driven case
the situation is quite different as shown in Fig. 3.5, the FSLE essentially coincides
with Ay for small A, but it becomes definitely larger than s for finite per-
turbations, revealing a peak around A¥) ~ O(1/N). These are clear indications
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Figure 3.5: FSLE indicator Ap for the fluctuation driven (black circles) and mean
driven (red squares) chaotic set-ups. An initial perturbation of 1072 (10~7) is ap-
plied to the excitatory (inhibitory) network. The distance between the perturbed
and unperturbed trajectory A®) is sampled during 300 time units, at fixed time
intervals dt = 0.2. The sampled curve is smoothed over a sliding window of 20
time units and the resulting curve is used to obtain the times t; at which the sys-
tem crosses the corresponding thresholds 6y, with = 1 (see the definition (3.12)).
This procedure is averaged in the mean (fluctuation) driven case over 5000 (15000)
realizations. Thick dashed lines indicate the value of Aj; for each one of the two
cases. The mean and fluctuation driven cases have been examined for the same
parameter values reported in Fig. 3.1, apart that for the inhibitory case the inverse
of the pulse width is set to a = 3.

that finite amplitude instabilities coexist with infinitesimal ones and they could
be in principle even more relevant.

The estimation of the FSLE, as already mentioned, suffers of several numer-
ical problems in these systems. Therefore we decided to consider the indicator
D(A®E)(t)), for simplicity denoted as D) which is less affected by the single or-
bit fluctuations, since its estimation is based on the time derivative of the averaged
distance (log A(t)). In Fig. 3.6 we report (log A(E)(t)> and DP) as a function of
time for a mean driven and a fluctuation driven case, in both situations after an
initial transient, the indicator D®) coincides with Ap;. However, in the mean
driven case it coincides with Aps for a very long time before decreasing due to the
folding of the trajectories, while in the fluctuation driven situation it becomes soon
larger than the maximal Lyapunov exponent and it shows a clear peak at finite
amplitudes, before the folding effect sets in. The same results are reported in the
upper panel of Fig. 3.7 as a function of <log AE) (t)>, the peak in the fluctuations
driven case is located around 4 x 10~% thus at a smaller amplitude with respect
to the FSLE, despite the system size and parameters are the same in both cases.
Furthermore, in the lower panel in Fig. 3.7 we report the indicator D(AYF:P(t))
(D@WEP) from now on) estimated for the total distance among the perturbed and
unperturbed orbit. As expected, the discontinuities present in the evolution of the
membrane potentials and of the auxiliary field P due to pulse emission and pulse
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Figure 3.6: Lower panel: Evolution of the average distance < log A®) > as a
function of time, for the mean (red square) and the fluctuation (black circle) driven
cases. The curves are obtained by averaging the distances between the perturbed
and unperturbed trajectories over 5000 (15000) realizations, after applying an
initial perturbation of @(10~8). Upper panel: Indicator D(¥) as a function of time
for the same cases, calculated as the time derivative of < log A(®) >. For small
perturbations, D) is close to Ay (thick dashed lines), while observing a finite
size effect in the fluctuation driven case. The mean and fluctuation driven cases
have been examined for the same parameter values reported in Fig. 3.5.

arrival, induce a small increase on D) with respect to the infinitesimal value
Ay at finite amplitudes even in the mean driven case. However, in this case the
peak of D@WE:P) i definitely smaller with respect to the one observed in the fluctu-
ation driven case and it is located at larger perturbations O(1). Similar effects are
observable also by considering the FSLE associated to A®#F) data not shown.
Nevertheless, in order to keep ourselves in a consistent framework, in what follows
we will consider the distance between the perturbed and unperturbed continuous
fields A(®). By choosing this norm, we will avoid the presence of (trivial) peaks
due to discontinuities as in the mean driven system, but instead, the presence of
these peaks will be a genuine indication of nonlinear instabilities, as those present
in a fluctuation driven regime.

The indicator D(®) is reported in Fig. 3.8 for various system sizes, ranging from
N =400 to N = 1600 for the mean and fluctuation driven cases. We observe that
in the mean driven case D) always gives a value around the corresponding Az
at all scales, apart the final saturation effect (see Fig. 3.8(a)). Notice that Ay, for
these system sizes, strongly depends on N (as shown in [67]), the saturation at the
asymptotic value is expected to occur for N > 5000. For the fluctuation driven
set-up, a peak (larger than Ay/) is always present in D®E) at finite amplitudes (see
Fig. 3.8(b)). The peak broadens for increasing N extending to larger amplitudes
and also its height increases. The presence of more neurons in the network renders
stronger the finite amplitude effects, while nonlinear instabilities are present at
larger and larger perturbation amplitudes.

So far we have considered only chaotic regimes, both in the fluctuation driven
and in the mean driven case. However, even in linearly stable cases the dynamics
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Figure 3.7: Indicator D(A) versus the complete distance A®F-P) (lower panel) and

versus the distance A®) (upper panel) for the mean (red squares) and fluctuation
(black circles) driven cases. The curves are obtained with the same procedure
described in the caption of Fig. 3.6. In both panels, thick dashed lines illustrate
the corresponding value of A\j;. The mean and fluctuation driven cases have been
examined for the same parameter values reported in Fig. 3.5.

can be erratic, as shown in Fig. 3.1 for the fluctuation driven case corresponding
to a = 5 for which the maximal Lyapunov is negative at any system size (see
Fig. 3.4 (b)). This kind of erratic behavior, known as stable chaos [59], is one the
most striking examples of dynamics driven by nonlinear effects, since the linear
instabilities are asymptotically damped. In this situation neither the FSLE nor the
indicator D(A) can be measured. The reason is that, in order to ensure that the
dynamics will take place on the associated attractor, finite amplitude perturbations
are reached only by starting from very small initial perturbations, which in this
case are damped. Therefore, we should employ different indicators, namely the
finite amplitude growth rate Rr(Ag) and the probability Py(Ay).

As shown in Fig. 3.9(a), for the linearly stable fluctuation driven case corre-
sponding to a = 5, Rp(Ag) — 0 for sufficiently small perturbations, as expected.
However Rp(Ag) becomes soon positive for finite amplitude perturbation and it
reveals a large peak Ré\fl located at an amplitude Ag/f . For increasing system size
N, as shown in Fig. 3.10(a) a linear decrease of A} with N is clearly observable,
while Ré\r/l reveals a logarithmic increase with N. Thus suggesting that this indi-
cator will diverge to infinity in the thermodynamic limit, similarly to the results
previously reported in [105, 86]. However, at variance with these latter studies, in
the present context the connectivity remains finite even in the limit N — oo.

The analysis of Py(Ap), reported in Fig. 3.9(b), reveals that the curve can be
well fitted as

PQ(A()) =1- exp(—Ao/ﬂ)“ ) (317)

analogously to what done in [86]. The parameter [ can be considered as a critical
amplitude, setting the scale over which nonlinear instabilities take place. At vari-
ance with the results reported by Monteforte & Wolf in [86], we observe a linear
decrease with N of the critical amplitude 3 (see Fig. 3.10(b)) and an exponent
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Figure 3.8: Finite amplitude perturbation analysis for several sizes of the network
using the procedure described in Fig. 3.7 for the distance A for the mean (a)
and fluctuation (b) driven setups. In both cases the studied sizes correspond to
N =400 (black circles), N = 600 (green up-triangles), N = 800 (red squares) and
N = 1600 (blue down-triangles), averaged through 7500 realizations. Remaining
parameters as in Fig. 3.5.

uw =~ 2.3 — 2.5, depending on the employed system size. Instead, Monteforte &
Wolf reported a scaling f o« 1/ V'N and an exponent p = 1. Furthermore, we
have verified for various continuous « pulses, with a € [4;7], that the measured
exponent p does not particularly depend on «. The model here studied differs
for the shape of the post-synaptic currents from the one examined in [86], where
d-pulses have been considered.

In our opinion, these two latter indicators, Ry and Py bear essentially the same
information: they measure the propensity of a perturbation Ay to be amplified
on a short time scale T. This is confirmed by the fact that (as shown in Fig.
3.10) the values of Aé\/l and (3, which set the relevant amplitude scales for the
two indicators, both decrease with the same scaling law (namely, 1/N) with the
system size. A possible explanation for this scaling could be found by assuming
that the main source of nonlinear amplification is associated to a spike removal
(addition) in the perturbed orbit. A missing (extra) spike will perturb, to the
leading order, the distance A®EP) by an amount x o?vVK /N, since the lost
(added) post-synaptic pulses are K each of amplitude o?/v/K. This argument
explains as well the logarithmic increase of Ré\! with the system size and the
dependence of A} with varying o as discussed in Fig. 3.11(b). Furthermore,
the decrease of A} and 8 with N seems to indicate that in the thermodynamic
limit any perturbation, even infinitesimal, will be amplified. This is apparently
in contradiction with the fact that the system is linearly stable and it appears to
remain stable by increasing N (as shown in Fig. 3.4(b)). In systems exhibiting
stable chaos, it has been reported many times the fact that the thermodynamic
limit and the infinite time limit do not commute [99]. For finite system size, at
sufficiently large times (diverging exponentially with N) a stable state is always
recovered, while if the thermodynamic limit is taken before the infinite time one,
the system will remain erratic at any time [59]. In the present case, it seems that
a different non commutativity between the thermodynamic limit and the limit of
vanishingly small perturbations is present, similar conclusions have been inferred
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Figure 3.9: Characterization of the stable chaos regime: finite amplitude
initial

bilities for different network sizes. (a) Rr indicator as a function of the
perturbation Ag. (b) Probability Py to observe an exponential increase of the
distance between a perturbed and an unperturbed orbit versus the initial pertur-
bation Ag. Thick dashed lines refer to the fit to the data with the expression
Py =1—¢e (2/B)"  The studied sizes are N = 100 (blue down-triangle), N = 200
(green up-triangles), N = 400 (black circles), N = 800 (red squares), N = 1600
(magenta diamonds) and N = 3200 (orange right-triangles). For each perturbation
Ag, Ry and Py are calculated after T' = 5 time units, threshold defining expand-
ing trajectories f;, = —2 and averaging over Ny = 5000 realizations. Remaining

parameters as reported in Fig. 3.1.

also in [86]. Therefore, we can apparently conclude that a fluctuation driven
system, which is linearly stable, but presents nonlinear instabilities, will become
unstable at any amplitude and time scales in the thermodynamic limit. However,
one should be extremely careful in deriving any conclusion from these indicators,
since they are not dynamical invariant and their values depend not only on the
considered variables, but also on the employed norm. This is due to the fact
that growth rates associated to finite amplitude perturbations can be defined only
over finite time lapses, due to the folding processes taking place on the attractor.
Furthermore, in the present context there is an additional problem related to the
meaningful definition of the norm in an infinite space, as that achieved in the

thermodynamic limit.

To understand the differences between the indicator Rr and D
estimated Ry also in the chaotic fluctuation driven case, namely for o« = 3. Also
in this case we observe that Aé\/f will vanish for diverging system size, but with
a different scaling law, namely Ag/[ ~ N796_ Furthermore, RIM increases with
N, but this time it appears to saturate in the thermodynamic limit as R% =
3.09 — 5.60N ~%27 as shown in the inset of Fig. 3.10(a). Unlike the stable regime,
in the chaotic one we cannot justify with the simple spike addition (removal)
argument the scaling with N neither for Ag/[ nor for Ré\fl . It is highly probable
that in this regime the interactions of the linear and nonlinear instabilities lead
to more complicated mechanisms. The evolution of the indicator R suggests
that for increasing IV its peak will move down to smaller and smaller amplitude
scale. However, this result is in contradiction with the behavior of D) reported
in Fig. 3.8(b), for this latter indicator the position of the peak is not particularly

(E), we have
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Figure 3.10: a) Peak position A}! as a function of N in a log-log scale for o = 3
(black circles) and o« = 5 (red squares). The continuous line are the power law
fittings A} o« N=® | with exponents ® = —0.59 (® = —1.05) for a = 3 (a =
5). Inset, maximum value of Ry as a function of the number of neurons in the
network N in a log-lin scale. The solid lines refer to fittings of the data, namely
RM = 3.09 — 5.60N 927 for a = 3; RM = 0.23 + 0.281og(N) for « = 5. Ry
calculated after a time span T'=1 (T' = 5) for a« = 3 (a = 5). b) Amplitude scale
B associated to the indicator Py as a function of 1/N. In the inset, 3 is reported
as a function of « for parameter values associated to non chaotic dynamics. In the
same range the exponent p ~ 2.32 (not shown). The model parameters refer to
the fluctuation driven case studied in Fig. 3.1. Inset is obtained with N = 100

affected by N. In particular, finite amplitude instabilities affect larger and larger
scales, contrary to what seen for Rp (see Fig. 3.9(a)). The same behavior is
observable for D(®#:F) data not shown. These contradictory results are probably
due to the fact that while the indicator D) is based on a sampling of the phase
space performed accordingly to the natural measure, the indicators Ry and Py
can well be inconsistent with such measure. This is an unavoidable point when
employing indicators based on short times and large perturbations.

Finally, in order to study the effect of the pulse shape on the finite amplitude
behavior as measured by Ry, we proceeded to calculate this indicator for various
a-values. As shown in Fig. 3.11, for increasing a (corresponding to narrower
peaks) the position of the maximum Ag/[ moves towards larger amplitudes. This
effect can be explained by the fact that the maximal Lyapunov exponent decreases
with « (as shown in Fig. 3.4(a)) and therefore perturbations of bigger and bigger
amplitudes are required to destabilize the system for vanishingly pulse width.
Consistently also the parameter § associated to Py increases for increasing a-
values, as shown in the inset of Fig. 3.10 (b). Remarkably, the growth of the peak
position for N = 100 obeys a quadratic power law (see Fig. 3.11 (b)), as expected
from the previously reported argument concerning the spike addition (removal)
that also explained the scaling of 8 and A}! with the system size. Unfortunately,
for N = 400 where the states are chaotic for almost all the considered a-values, we
cannot employ such argument, as previously explained, and indeed the scaling of of
Aé” with « is now slower than quadratic, namely Aé\/f x a7, Furthermore, from
Fig. 3.11(a) it is also evident that the maximum of the indicator RY grows with
a. A possible explanation can be related to the fact that A}’ can be considered
as the initial perturbation needed to reach the size of the attractor, indeed for
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Figure 3.11: Finite size instabilities for fluctuation driven dynamics, for different
pulse widths. (a) Rr as a function of the initial perturbation Ag, for a = 2 (black
circle), « = 3 (red square), « = 4 (blue down-triangle), & = 5 (green up-triangle).
The system size is fixed to N = 400. Inset, effective size of the attractor St as
a function of a. (b) Peak location A}l as a function of «, for two sizes of the
network: N = 100 (black circles) and N = 400 (red squares). The dashed lines
correspond to the power law fitting A} oc a®, with exponents ® = 2 (¢ = 1.67),
for N =100 (N = 400). Ry is calculated as described in the caption of Fig. 3.9.
Remaining parameters as in Fig. 3.1.

A > A) the corresponding value of the indicator Ry decreases due to folding
effects. Furthermore, as shown in the inset in Fig. 3.11(a), the size of the attractor,
measured as Stot = Y | Timaz — Tmin |, where z = {E;, P;,v;}, increases with .
Therefore, the increase in R¥ can be, to some extent, related to the enlargement
of the attractor size with .

3.4 Final Summary

We have investigated the dynamics and stability of mean and fluctuation driven
neural networks, the former (latter) have been realized as a purely excitatory
(inhibitory) pulse coupled network of leaky integrate-and-fire (LIF) neurons with a
sparse architecture. In particular, we considered random networks with a constant
in-degree K = 20 for any examined size.

The excitatory network, despite being chaotic, reveals a low spiking variability.
On the other hand, in the fluctuation driven case the variability is high for any
considered pulse width and system size (CV ~ 0.7 — 1.0). However, a different
picture arises when studying the stability of infinitesimal perturbations: the system
is chaotic for slow synapses and it becomes stable for sufficiently fast synaptic times
(< 4 ms). Furthermore, a chaotic state for the inhibitory network is observable
already at small connectivity K ~ O(10!) contradicting what reported in [60],
where the authors affirmed that a large connectivity is a prerequisite to observe
chaotic motion in these models.

The maximal Lyapunov exponent Ajs tends towards an asymptotic value for
increasing system sizes with a power-law scaling. The exponent 7 associated to
this scaling is different in the two studied regimes, in particular n ~ 1 for the
mean driven set up [67], while, in the fluctuation driven case 7 present different
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values according to the set of parameters chosen. The origin of the observed
scaling demands for new theoretical analysis, similar to the one developed for
spatio-temporal chaotic systems [113].

Remarkably, even in the linearly stable regime an erratic evolution of the net-
work is observable. A similar phenomenon has been already observed in several
systems ranging from diffusively coupled chaotic maps to neural networks, and it
has been identified as stable chaos [59]. In this context, finite amplitude perturba-
tions are responsible for the erratic behavior observed in the system. In diffusively
coupled systems these nonlinear instabilities have been characterized in terms of
the propagation velocity of the information and of suitable Finite Size Lyapunov
Exponents (FSLEs) [109, 112]. FSLEs have been previously employed in the con-
text of fully coupled neural networks, where they revealed that the origin of the
chaotic motion observed in two symmetrical coupled neural populations was due
to collective chaos in the mean-field variables driving the single LIF neurons [64].
In the context of randomly coupled systems the concept of propagation velocity on
a lattice looses its sense, while FSLEs reveal serious problems in their numerical
implementation.

However, FSLEs clearly show also in our case that in the mean driven case the
observed instabilities have a purely linear origin, while in the fluctuation driven
situation nonlinear mechanisms are present even when the system is chaotic. This
analysis is confirmed by a novel indicator we have introduced, namely the local
derivative D(A) of the averaged logarithmic distance < log A > between the ref-
erence and the perturbed trajectory. This quantity suffers less than the FSLE the
trial to trial fluctuations, since it is based on an averaged profile. For the fluc-
tuation driven case this indicator is larger than the maximal Lyapunov exponent
at finite amplitudes and this effect is present for all the examined system sizes.
The position of the peak in D(A) seems not to be particularly influenced by the
system size, while the peak itself broadens towards larger amplitudes for increasing
N. Unfortunately, all these indications cannot tell us if the nonlinear mechanisms
are prevailing on the linear ones, but just that the nonlinear effects are present. To
measure the influence of linear versus nonlinear effects on the system dynamics,
novel indicators are required, similar to linear and nonlinear information velocities
for diffusively coupled systems [59].

As a final point we have studied nonlinear instabilities in linearly stable sys-
tems emerging in fluctuation driven inhibitory networks for sufficiently narrow
postsynaptic currents. For the characterization of these instabilities we have em-
ployed the average finite amplitude growth rate Rp(Ap), measured after a finite
time interval T', analogously to what what done in [106, 112], and the probabil-
ity Pyp(Ao) that an initial perturbation induces an exponential separation between
the perturbed and the reference orbits, previously introduced in [86]. Both these
indicators reveal the existence of instabilities associated to finite perturbations, in
particular the characteristic amplitude scales associated to these indicators vanish
in the thermodynamic limit as 1/N. Thus suggesting that instabilities in these
systems can occur even for infinitesimal perturbations in apparent contradiction
with the fact that these systems are linearly stable at any system size, as revealed
by the Lyapunov analysis. This contradiction has lead Monteforte & Wolf to con-
jecture in [86] that the thermodynamic limit and the limit of vanishingly small
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perturbations do not commute in these models. Furthermore, we measure a loga-
rithmic divergence with the system size of the peak height of Rp(Ag), suggesting
that in the thermodynamic limit the value of these indicator will become infinite,
similarly to what found in the high connectivity limit for a binary neuronal model
in the balanced state [105] and for LIF with d-pulses in [86]. However, in our
study the connectivity remains finite and small in the limit N — oo.

Our opinion, based on the comparison of the indicators D(A) and Rr(Ay)
performed in a fluctuation driven chaotic situation, is that the above results can
be due to the fact that the dynamics considered for the estimation of Rp(Ag) and
Py(Ap) do not take place on the attractor of the system. This because the indi-
cators are estimated at short times, without allowing the perturbed dynamics to
relax onto the attractor. The development of new indicators is required to analyze
more in depth the phenomenon of stable chaos in randomly connected networks.

The results presented in this chapter have been published in reference [87].



Chapter 4

Cell assembly dynamics of
sparsely-connected inhibitory
networks: a simple model for
the collective activity of striatal
projection neurons

4.1 Introduction

The basal ganglia are critical brain structures for behavioral control, whose or-
ganization has been highly conserved during vertebrate evolution [114]. Altered
activity of the basal ganglia underlies a wide range of human neurological and
psychiatric disorders, but the specific computations normally performed by these
circuits remain elusive. The largest component of the basal ganglia is the striatum,
which appears to have a key role in adaptive decision-making based on reinforce-
ment history [115], and in behavioral timing on scales from tenths of seconds to
tens of seconds [116].

The great majority (> 90%) of striatal neurons are GABAergic medium spiny
neurons (MSNs), which project to other basal ganglia structures but also make
local collateral connections within striatum [50, 51]. These local connections were
proposed in early theories to achieve action selection through strong winner-take-
all lateral inhibition [117, 118], but this idea fell out of favor once it became
clear that MSN connections are actually sparse (nearby connection probabilities
~ 10 — 25% [52, 53]), unidirectional and relatively weak [54, 55]. Nonetheless,
striatal networks are intrinsically capable of generating sequential patterns of
cell activation, even in brain slice preparations without time-varying external in-
puts [48, 119]. Following previous experimental evidence that collateral inhibition
can help organize MSN firing [120], an important recent set of modeling studies
argued that the sparse connections between MSNs, though individually weak, can
collectively mediate sequential switching between cell assemblies [121, 122]. It was
further hypothesized that these connections may even be optimally configured for
this purpose [123]. This proposal is of high potential significance, since sequential
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dynamics may be central to the striatum’s functional role in the organization and
timing of behavioral output [124, 49].

In their work [121, 122, 123], Ponzi and Wickens used conductance-based model
neurons (with persistent Na™ and K currents [16]), in proximity to a bifurcation
from a stable fixed point to a tonic firing regime. We show here that networks based
on simpler leaky integrate-and-fire (LIF) neurons can also exhibit sequences of cell
assembly activation. This simpler model, together with a novel measure of struc-
tured bursting, allows us to more clearly identify the critical parameters needed
to observe dynamics resembling that of the striatal MSN network. Among other
results, we show that the duration of GABAergic post-synaptic currents is crucial
for the network’s ability to discriminate different input patterns. A reduction of
the post-synaptic time scale, analogous to that observed for IPSCs of MSNs in
mouse models of Huntington’s disease (HD) [125], leads in our model to alteration
of single neuron and population dynamics typical of striatal dynamics in symp-
tomatic HD mice [46]. Finally, we qualitatively replicate the observed response
of striatal networks in brain slices to altered excitatory drive and to reduction of
GABAergic transmission between axon collaterals of striatal neurons [48]. The
latter effect can be induced by dopamine loss [126], therefore our results may help
generate new insights into the aberrant activity patterns observed in Parkinson’s
disease (PD).

4.2 Models and Methods

4.2.1 The model

In this chapter we will consider a network of N LIF inhibitory neurons coupled
via « pulses, described by the following set of equations

oi(t) = a; — v(t) — gEi(t) (4.1a)

Ei(t) = Pi(t) — aBy(t) i=1,...,N (4.1b)

Pi(t) = —aP(t) + ‘;{2 D Cigd(t—tn). (4.1¢)
nltn <t

The difference between the model used here and the ones introduced in chapters
2 and 3 is that the membrane potential of neuron ¢ evolves according to different
input currents a;, selected from an uniform distribution. The evolution can be
exactly integrated between time t = t,, just after the deliver of the n-th pulse, to
time t = t,41 corresponding to the emission of the (n + 1)-th spike, through the
event driven map introduced in Eqgs. (2.4), (2.5) taking into account the specific
value of external input for each cell i:

a; — Um(n)
a; + gHp(n) — 1

T(n) = In , (4.2)
where H,, has been derived in (2.6).

In this chapter we want to focus on a biologically inspired application, which
lead us to rewrite the evolution equations in terms of dimensional variables. The
membrane potential (4.1a) can be re-expressed as
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T Vi(t) = I = V;(t) — T GE;(t) i=1,---,N ; (4.3)
where we have chosen 7,,, = 10 ms as the membrane time constant in agreement
with the values reported in literature for MSNs in the up state in mice [127, 128,
129], I; represents the neural excitability and the external stimulations, which
takes in account the cortico-thalamic inputs received by the striatal network. Fur-
thermore, t = t - 7,,, the field Ei = E;/7 has the dimensionality of a frequency
and G of a voltage. The currents {I;} have also the dimensionality of a voltage,
since they include the membrane resistance.

For the other parameters/variables the transformation to physical units is sim-
ply given by

Vi = Vit (Vi —V)V; (4.4)
L = Vi4+(Vip—V)ay (4.5)
G = (Vin—Vi)g

where V. = —60 mV, V;;, = —50 mV. The isolated ¢-th LIF neuron is supra-

threshold whenever I; > V}j, however due to the inhibitory coupling the effective
input is W; = I, — 7,,GE;. Therefore, the neuron is able to deliver a spike if
(W) > Vi, (in what follows, the symbol (-) denotes the time average), in this case
the firing of the neuron can be considered as mean-driven. However, even if (WW;) <
Vi, the neuron can be lead to fire from fluctuations in the effective input and the
firing is in this case fluctuation-driven. It is clear that the fluctuations o(W;)
are directly proportional to the strength of the inhibitory coupling for constant
external currents I;.

For what concerns the PSPs the associated time constant is 7, = 7,,/c, and
the peak amplitude is given by

Apsp = %Ge_l =gx92 uV (4.7)
where the last equality allows for a direct transformation from adimensional units
to dimensional ones, for the connectivity considered in this chapter, namely K =
20, and for o = 0.5, which is the value mainly employed in our analysis. The
experimentally measured peak amplitudes of the inhibitory PSPs for spiny pro-
jection neurons ranges from ~ 0.16 — 0.32 mV [52] to ~ 1 — 2 mV [130]. These
values depend strongly on the measurements conditions, a renormalization of all
the reported measurements nearby the firing threshold gives for the PSP peak
~ 0.17 — 0.34 mV [54]. Therefore from Eq. (4.7) one can see that realistic val-
ues for Apgp can be obtained in the range g € [2 : 10]. For a = 0.5 one gets
To = 20 ms, which is consistent with the PSPs duration and decay values reported
in literature for inhibitory transmission among spiny neurons [52, 131]

Our model does not take in account the depolarizing effects of inhibitory PSPs
for V< E [130]. The GABA neurotransmitter has a depolarizing effect in mature
projection spiny neurons, however this depolarization does not lead to a direct
excitation of the spiny neurons. Therefore our model can be considered as an
effective model encompassing only the polarizing effects of the PSPs for V > E,.
This is the reason why we have assumed that the membrane potential varies in the
range [—60 : —50] mV, since E, ~ —60 mV and the threshold is ~ —50 mV [130].



52 Cell assembly dynamics of sparsely-connected inhibitory networks

In the chapter we have always employed dimensional variables (for simplicity
we neglect the tilde on the time variable), apart for the amplitude of the synaptic
coupling, where we have found more convenient to use the adimensional quantity

g.

4.2.2 Characterization of the firing activity

We define a neuron as active if it emits more than Sg spikes within the system
evolution, which we typically take as the time taken for the network to evolve
through to 107 spikes. The fraction of active neurons is denoted by the symbol
n* and is the ratio between N, the number of acitve neurons, and N the total
number of neurons.

The characterization of the dynamics of the active neurons is performed via the
coefficient of variation C'V, the local coefficient of variation C'V2 and the zero lag
cross-correlation matrix of the firing rates C(v;,v;). The coefficient of variation
associated to the i-th neuron is then defined as the ratio:

o(ISIW)
(ISTO)

where o(-) denotes the standard deviation. The distribution of the coefficient of
variation F'(CV') reported in the chapter refer to the values of the C'V associated
to all the active cells in the network.

Another useful measure of the spike statistics is the local coefficient of variation.
For each neuron ¢ and each spike emitted at time tgf ) from the considered cell the
local coefficient of variation is measured as

v =

st — 1819 |

v (n) : n—
? 1S19 + 1519
where the n-th inter-spike interval is defined as [ SL(li) = tg) — 755:),1' The above

quantity clearly ranges between zero and one: a zero value corresponds to a per-
fectly periodic firing, while the value one is attained in the limit I.S LSZ) JISI 1(21 —0

(or I S1Y /1 511(21 — 00). The probability distribution function F(CV2) is then

computed by employing the values of the C’VZ(Z) (n) for all the active cells of the
network estimated at each firing event.

The level of correlated activity between firing rates is measured via the cross-
correlation matrix C(v;, ;). The firing rate v;(t) of each neuron i is calculated at
regular intervals AT = 50 ms by counting the number of spikes emitted in a time
window of 10AT = 500 ms, starting from the considered time ¢t. For each couple of
neuron ¢ and j the corresponding element of the N x N symmetric cross-correlation
matrix C(4, j) is simply the Pearson correlation coefficient measured as follows

cov(v;, v;)
o) (vy)
where cov(v;, v;) is the covariance between signals v;(t) and v;(t), which has been
calculated for statistical consistency by employing always spike trains containing

107 events. This corresponds to time intervals T ranging from 50 s to 350 s (from
90 s to 390 s) for AV =5mV (AV =1 mV) and g € [0.1,12].

)
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4.2.3 Linear Stability Analysis

To compute the Maximal Lyapunov Exponent (MLE) we make use of the lineariza-
tion of (4.1), which describes the evolution of infinitesimal perturbations in the
reference orbits, this reads as:

0Ei(n+1)= ") [6E;(n) + 7(n)dPy(n)]
( 7(

—e " [aBi(n) + (ar(n) — 1) Pi(n)]67(n) (4.8a)
5Pi(n+1) = e "M [§Pi(n) — aPi(n)d7(n)] , (4.8b)
dvi(n +1) = ¢ [§;(n) + (a; — v;(n))dr(n)] + g5 Hi(n)

i=1,...,N ; dvu(n+1)=0. (4.8¢)

The expression of d7(n) is calculated by differentiating (4.2) and (2.6).
The MLE Aj; is defined as the the average exponential growth rate of the
infinitesimal perturbation

0= (51}1...611]\[, 5E1...5EN, 5P15PN)

measured through the equation

)\M—hmll [00) | ,
| 6o |

where J is the initial perturbation. The evolution of the perturbation §(t) at the
following times can be obtained by integrating Eqgs. (4.8) in the tangent space in
parallel with the evolution in the real space and by performing at regular time
intervals the rescaling of its amplitude to avoid numerical artifacts, as detailed in
[78]. A positive Ays denotes a chaotic dynamics, Ay = 0 is associated to a periodic
(or quasiperiodic) orbit, and a negative one to a stable fixed point. It is important
to stress that, since we are dealing with an event driven map formulation of the
dynamics, the zero Lyapunov exponent which is always present for continuous time
evolution and associated to the growth rate of a perturbation along the orbit, is
automatically discarded. This implies that, if the evolution is stable, either a fixed
point or a periodic solution, we measure in both cases a MLE smaller than zero.

(4.9)

4.2.4 State Transition Matrix (STM) and measure of dissimilarity

The STM is constructed by calculating the firing rates v;(¢) of the N neurons
at regular time intervals AT = 50 ms. At each time t the rates are measured
by counting the the number of spikes emitted in a window 2AT, starting at the
considered time. Notice that the time resolution here used is higher with respect
to that employed for the cross-correlation matrix, since we are interested in the
response of the network to a stimulus presentation evaluated on a limited time
window. The firing rates can be represented as a state vector R(t) = {v;(t)} with
i =1,...,N. For an experiment of duration T, we have S = |T./AT]| state
vectors R(t) representing the network evolution (|-| denotes the integer part). In
order to measure the similarity of two states at different times ¢,, = m x AT and
t, = n x AT, we have calculated the normalized scalar product

x(m,n) _ R(tm) ) R(tn)

[R(tm)[1R(t)] (4.10)
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for all possible pairs m,n = 1,...,5 during the time experiment T,. This gives
rise to a S x S matrix called the state transition matrix [132].

In the case of the two input experiment reported in the results section, the
obtained STM has a periodic structure of period Ty, with high correlated blocks
followed by low correlated ones. A useful assoacited matrix is the coarse grained
version of the entire STM obtained by taking a 47%,, x 47T, block from the STM,
where the time origin corresponds to the onset of one of the two stimuli. The
block is then averaged over r subsequent windows of duration 47T;,, whose origin is
shifted each time by 2T,,. More precisely the averaged STM (x(m,n)) is obtained
as follows:

(x(m,n)) = %2 Z x(4i+m,4j +n) (4.11a)
ij=1

Vm,n < LTsw/ATJ

In a similar manner we can define a dissimilarity measure to distinguish between
the response of the network to two different inputs. We define a control input
I¢ ={If} € [Vin, Vi + AV], and we register the network state vectors R°(t) at S
regular time intervals for a time span T.. We repeat the numerical experiment by
considering the same network realization and the same initial conditions, but with
anew input I/) = {Ii(f )}. The external inputs Ii(f ) coincide with the control ones,
apart from a fraction f which is randomly taken from the interval [Vip,, Vip + AV].
For the modified input we register another sequence R (t) of state vectors on the
same time interval, with the same resolution. The instantaneous dissimilarity d7 (t)
between the response to the control and perturbed stimuli is defined as:

RE(tm) - R/ (tm)

f —1_
F ) =L R TR ()]

(4.12)

its average in time is simply given by (d)/ = % ;gzl dr (t;).

4.2.5 Distinguishability measure (),

Following [123] a metric of the ability of the network to distinguish between two
different inputs AM, can be defined in terms of the STM. In particular, let us
consider the STM obtained for two inputs I} to I?), each presented for a time lag
Tsy. In order to define AMj the authors in [123] have considered the correlations
of the state vector R taken at a generic time ¢,,, with all the other configurations,
with reference to Eq. (4.10) this amounts to examine the elements x(mg, n) of the
STM Vt,. By defining M; (M) as the average of x(mg,n) over all the times ¢,
associated to the presentation of the stimulus I(") (I?)), a distinguishablity metric
between the two inputs can be finally defined as

AMy = |My — M| . (4.13)

In order to take in account the single neuron variability and the number of
active neurons involved in the network dynamics we have modified AMy by mul-
tiplying this quantity by the fraction of active neurons and the average coefficient
of variation, as follows

Qd = AMd x n* x WN . (4.14)
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In the equation above and in what follows, the symbol CV y, denotes the
average over the ensemble of N elements, of the quantity under the bar.

4.2.6 Principal Components Analysis (PCA)

The Principal Component Analysis (PCA) can be performed by collecting S state
vectors R(t), measured at regular intervals AT for a time interval T¢, then by
estimating the covariance matrix cov(v;,v;) associated to this state vectors. The
principal components are the eigenvectors of this matrix, ordered from the largest
to the smallest eigenvalue. Fach eigenvalue represents the variance of the original
data along the corresponding eigendirection. A reconstruction of the original data
set can be obtained by projecting the state vectors along a limited number of
principal eigenvectors, obviously by employing the first eigenvectors will allow to
have a more faithful reconstruction.

4.2.7 Synchronized Event Transition Matrix (SETM)

In order to obtain a Synchronized Event Transition Matrix (SETM), we first coarse
grain the raster plot of the network. This is done by considering a series of win-
dows of duration T3 = 50 ms covering the entire raster plot. A bursting event is
identified whenever a neuron ¢ fires 3 or more spikes within the considered win-
dow. To signal the burst occurrence a dot is drawn at the beginning of the window.
From this coarse grained raster plot we obtain the Network Bursting Rate (NBR)
by measuring the fraction of neurons that are bursting within the considered win-
dow. When this fraction is larger or equal to the average NBR plus two standard
deviation, a synchronized event is identified. Each synchronized event is encoded
in the the synchronous event vector Wy(t), a N dimensional binary vector where
the i-th entry is 1 if the i-th neuron participated in the synchronized event and
zero otherwise. To measure the similarity between two synchronous events, we
make use of the normalized scalar product between all the pairs of vectors Wj
obtained at the different times ¢; and ¢; in which a synchronized event occurred.
This represents the element ¢, j of the SETM.

4.2.8 Clustering algorithm

The k-means algorithm is a widespread mining technique in which N data points
of dimension M are organized in clusters as follows. As a first step a number k of
clusters is defined a-priori, then from a sub-set of the data k samples are chosen
randomly. From each sub-set a centroid is defined in the M-dimensional space. at
a second step, the remaining data are assigned to the closest centroid according
to a distance measure. After the process is completed, a new set of k centroids
can be defined by employing the data assigned to each cluster. The procedure is
repeated until the position of the centroids converge to their asymptotic value.

An unbiased way to define a partition of the data can be obtained by finding
the optimal cluster division [58]. The optimal number of clusters can be found by
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maximizing the following cost function, termed modularity:

M =157 Ay — Nig) (e ), (4.15)

Atot ..
v

where, A = {A;;} is the matrix to be clusterized, the normalization factor is
Aot = Zij Aij Mj accounts for the matrix element associated to the null model;
¢; denotes the cluster to which the i-th element of the matrix belongs to, and
0(i,7) is the Kronecker delta. In other terms, the sum appearing in Eq. (4.15) is
restricted to elements belonging to the same cluster. In our specific study, A is the
similarity matriz corresponding to the SETM previously introduced. Furthermore,
the elements of the matrix N are given by N;j = I';I';/Asor, where I'; = > j Aij,
these correspond to the expected value of the similarity for two randomly chosen
elements [133, 134]. If two elements are similar than expected by chance, this
implies that A;; > Nj;, and more similar they are larger is their contribution to
the modularity M. Hence they are likely to belong to the same cluster. The
problem of modularity optimization is NP-hard [135], nevertheless some heuristic
algorithms have been developed for finding local solutions based on greedy algo-
rithms [136, 137, 138, 139]. In particular, we make use of the algorithm introduced
for connectivity matrices in [140, 133], which can be straightforwardly extended
to similarity matrices by considering the similarity between two elements, as the
weight of the link between them [141]. The optimal partition technique is used
in subsection Response of the network to an increased level of excitability, where

it is applied to the similarity matrix S;; = 1 — &;; where the distance matrix
P_ P
Eij = % Here 27 is the vector defining the it" synchronized event projected

in the first p principal components, which accounts for the 80% of the variance.

4.3 Results

4.3.1 Measuring cell assembly dynamics

The model is composed of N leaky integrate-and-fire (LIF) inhibitory neurons [17,
18], with each neuron receiving inputs from a randomly selected 5% of the other
neurons (i.e. a directed Erdos-Renyi graph with constant in-degree K = pN, where
p = 5%) [19]. The inhibitory post-synaptic potentials (PSPs) are schematized as
a-functions characterized by a decay time 7, and a peak amplitude Apgp. In
addition, each neuron ¢ is subject to an excitatory input current mimicking the
cortical and thalamic inputs received by the striatal network. In order to obtain
firing periods of any duration the excitatory drives are tuned to drive the neurons
in proximity of the supercritical bifurcation between the quiescent and the firing
state, similarly to [121]. Furthermore, our model is integrated exactly between
a spike emission and the successive one by rewriting the time evolution of the
network as an event-driven map [74] (for more details see Methods).

Since we will compare most of our findings with the results reported in a pre-
vious series of papers by Ponzi and Wickens (PW) [121, 122, 123] it is important
to stress the similarities and differences between the two models. The model em-
ployed by PW is a two dimensional conductance-based model with a potassium
and a sodium channel [16], our model is simply a current based LIF model. The
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Figure 4.1: Cell activity characterization. a) Firing rates v; of 6 selected neu-
rons belonging to two anti-correlated assemblies, the color identifies the assembly
and the colors correspond to the one used in b) for the different clusters; b) raster
plot activity, the firing times are colored according to the assembly the neurons
belong to; c) cross-correlation matrix C'(v;,v;) of the firing rates. The neurons
in panel b) and c¢) are clustered according to the correlation of their firing rates
by employing the k-means algorithm; the clusters are ordered in terms of their
average correlation (inside each cluster) from the highest to the lowest one (for
more details see Methods). The firing rates are calculated over overlapping time
windows of duration 1 s, the origins of successive windows are shifted by 50 ms.
The system is evolved during 107 spikes, after discarding an initial transient of 10°
spike events. Other parameters used in the simulation: g = 8, K = 20, N = 400,
kmean = Nact/15, AV =5 mV and 7, = 20 ms. The number of active neurons is
370, corresponding to n* ~ 93 %.

parameters of the PW model are chosen so that the cell is in proximity of a saddle-
node on invariant circle (SNIC) bifurcation to guarantee a smooth increase of the
firing period when passing from the quiescent to the supra-threshold regime, with-
out a sudden jump in the firing rate. Similarly, in our simulations the parameters
of the LIF model are chosen in proximity of the bifurcation from silent regime to
tonic firing. In the PW model the PSPs are assumed to be exponentially decaying,
in our case we considered a-functions.

In particular, we are interested in selecting model parameters for which uni-
formly distributed inputs I = {I;}, where I; € [Vi, Vi, + AV], produce cell
assembly-like sequential patterns in the network. The main aspects of the desired
activity can be summarized as follows: (i) single neurons should exhibit large vari-
ability in firing rates (C'V > 1); (ii) the dynamical evolution of neuronal assemblies
should reveal strong correlation within an assembly and anti-correlation with neu-
rons out of the assembly. As suggested by many authors [54, 130] the dynamics
of MSNs cannot be explained in terms of a winners take all (WTA) mechanism,
which would imply a small number of highly firing neurons, while the remaining
would be silenced. Therefore we will search, in addition to the requirements (i)
and (ii), for a regime where a substantial fraction of neurons are actively involved
in the network dynamics. This represents a third criterion (iii) to be fulfilled to
obtain a striatum-like dynamical evolution.

Fig. 4.1 shows an example of such dynamics for the LIF model, with three
pertinent similarities to previously observed dynamics of real MSN networks [48].
Firstly, cells are organized into correlated groups, and these groups are mutually
anticorrelated (as evident from the cross-correlation matrix of the firing rates re-
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ported in Fig. 4.1 (c¢)). Secondly, individual cells within groups show irregular
firing as shown in Fig. 4.1 (a). This aspect is reflected in a coefficient of varia-
tion (C'V) of the inter-spike-intervals (ISIs) definitely greater than one (see the
black curve in Fig. 4.5 (b)) as observed experimentally for the dynamics of rat
striatum in-vitro [52, 54]. Thirdly, the raster plot reported in Fig. 4.1 (b) reveals
that a large fraction of neurons (namely,~ 93 %) is actively involved in the neural
dynamics.

4.3.2 A novel measure for the structured cell assembly activity

The properties (i),(ii), and (iii), characterizing MSN activity, can be quantified in
terms of a single scalar metric g, as follows:

QO = WN X U(C(Vi,l/j)) x n* ) (416)

We expect that good parameter values for our model can be selected by maximizing
Qo-

Our metric is inspired by a metric introduced to identify the level of cluster
synchronization and organization for a detailed striatal microcircuit model [142].
However, that metric is based on the similarity among the point-process spike
trains emitted by the various neurons, whereas (g uses correlations between firing
rate time-courses. Furthermore, )y takes also in account the variability of the
firing rates, by including the average C'V in Eq. (4.16), an aspect of the MSN
dynamics omitted by the metric employed in [142]. Within biologically meaningful
ranges, we find values of the parameters controlling lateral inhibition (namely, the
synaptic strength g and the the post-synaptic potential duration 7,) that maximize
Qo- As we show below, the chosen parameters not only produce MSN-like network
dynamics but also optimize the network’s computational capabilities, in the sense
of producing a consistent, temporally-structured response, to a given pattern of
inputs while discriminating between inputs which differ only for a few elements.

4.3.3 The role of lateral inhibition

In this sub-section we examine how network dynamics is affected by the strength of
inhibitory connections. When these lateral connections are very weak (parameter
g close to zero), the dominant input to each neuron is the constant excitation. As a
result, most individual neurons are active (fraction of active neurons, n*, is close to
1 as depicted in Fig 4.2 (a,e)) As lateral inhibition is made stronger, some neurons
begin to slow down or even stop firing, and n* declines towards a minimum fraction
of ~ 50% (at g = gmin). As noted by Ponzi and Wickens [123], this is due to a
winner-take-all (WTA) mechanism: faster-firing neurons depress or even silence
the neurons to which they are connected. The activity for g < gmin (blue triangled
symbols in Fig 4.2) is characterized by a distribution of the average interspike
intervals F'((ISI)) which is peaked at low firing periods (see blue triangled line in
Fig 4.2(b) and (f)), and from the distribution of the C'V exhibiting a single large
peak at CV ~ 0 (very regular firing) as shown in Figs. 4.2 and (c) and (g) with
the same symbols.

As soon as g > gmin (black circled symbols in Fig 4.2), the neuronal activity
is no longer due only to the winners, but also the losers begin to play a role.
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Figure 4.2: Network statistics vs lateral inhibition. a,e) Fraction of active
neurons n* vs the synaptic strength, for several thresholds Sp. Three values of g
are chosen for a detailed analysis indicated by the symbols along the z-axis. b,f)
Neuronal distributions of the average (ISI) for the three values selected in the
panel above (inset corresponds to the smallest g). c,g) Distributions of the C'V for
the same three cases. d,h) Distribution of the average synaptic input (W); for the
two largest values of g; vertical line indicates the threshold; inset: Distribution of
the average fluctuation in time for the same two values. Panels a-d) correspond
to AV =1 mV and the chosen values of synaptic strength are g = {0.4,1,4};
e-h) correspond to AV =5 mV and g = {1,4,10}. For calculating the statistics,
the system is evolved during 107 spikes, after discarding 10° spike events. Other
parameters used in the simulation: K = 20, N = 400 and 7, = 20 ms.
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The winners are characterized by an effective input W; which is on average supra-
threshold, and their firing activity is driven by the mean current: winners are
mean-driven [21]. On the other hand, losers are on average below-threshold, and
their firing is due to current fluctuations: losers are fluctuation-driven [21], (see
Figs. 4.2 (d) and (g)). This is reflected in the corresponding distribution F((1SI))
(Fig. 4.2(b) and (f)). The winners have very short (ISI)s (i.e. high firing rates),
while the losers are responsible for the long tail of the distribution extending
up to (ISI) ~ 10® s. In the distribution of the coefficients of variation (Fig.
4.2(c) and (g)) the winners generate a peak of very low C'V (i.e. highly-regular
firing), suggesting that they are not strongly influenced by the other neurons in
the network and therefore have an effective input on average supra-threshold. By
contrast the losers are associated with a smaller peak at CV ~ 1, confirming that
their firing is due to large fluctuations in the currents.

Counterintuitively however, further increases in lateral inhibition strength re-
sult in increased neuronal participation, with n* progressively returning towards
~ 1. The same effect was previously reported by Ponzi and Wickens [123] for
a different, more complex, model. When the number of active neurons returns
almost to 100%, i.e. for sufficiently large coupling g >> g, (red circled symbols
in Fig 4.2), most of the neurons appear to be below threshold, as revealed by the
distribution of the effective inputs W; reported in Figs. 4.2(d) and (g). Therefore
in this case the network firing is essentially fluctuation-driven, as a matter of fact
the F'((ISI)) distribution is now characterized by a broader distribution and by
the absence of the peak at short (ISI) (as shown in Fig. 4.2(b) and (f)). Further-
more the single neuron dynamics is definitely bursting, as shown by the fact that
the C'V distribution is now centered around C'V ~ 2 (Figs. 4.2(c) and (g)).

The transition between the two dynamical regimes, occurring at g = gmin, iS
due to a passage from a state where some winner neurons were mean-driven and
were able to depress all the other neurons, to a state at g >> g, where almost all
neurons are fluctuation-driven and contribute to the network activity. The transi-
tion occurs because at g < gmin the fluctuations in the effective input currents W;
are small and insufficient to drive the losers towards the firing threshold (as shown
in the insets of Fig. 4.2(d) and (g)). At g ~ gmin the amplitude of the fluctuations
becomes sufficient for some losers to cross the firing threshold and contribute to
the number of active neurons. This will also reduce the winners activity. For
g >> gmin the fluctuations of W; are sufficient to lead almost all losers to fire and
no clear distinction between losers and winners remains. The transition is due to
the fact that not only the average inhibitory action is proportional to the synaptic
strength, but also the amplitude of the current fluctuations increases linearly with
g, at least for g > gmin (see Fig 4.3).

The reported results explain why the variability o(C) of the cross-correlation
matrix has a non monotonic behaviour with g (as shown in the middle panel
in Fig. 4.4(a)). At low coupling ¢(C) is almost zero, since the single neuron
dynamics are essentially independent one from another, while the increase of the
coupling leads to an abrupt rise of o(C). This growth is clearly associated with
the inhibitory action which splits the neurons into correlated and anti-correlated
groups. The variability of the cross-correlation matrix achieves a maximum value
for coupling slightly larger than g¢,.;,, where fluctuations in the effective currents
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Figure 4.3: Effective input currents and fluctuations. Effective input cur-
rents (W) (black filled squares) and the corresponding standard deviation o (W)
(red filled circles) averaged over all the neurons in the network for AV =1 mV (a)
and AV =5 mV (b). The effective currents are shifted by V;;: negative (positive)
values correspond to neurons on average below (above) threshold. The dashed
vertical lines indicated the position of gni,. The system is evolved during 107
spikes, after discarding 10° spike events. Other parameters used in the simulation:
K =20, N =400 and 7, = 20ms.

begin to play a relevant role in the network dynamics. At larger coupling o(C')
begins to decay towards a finite non zero value. These results confirm that the
most interesting region to examine is the one with coupling g > gmin, as already
suggested in [123].

The observed behaviour of C'V, n* and o(C) suggests that we should expect
a maximum in )y at some intermediate coupling g > gmin, as indeed we have
found for both studied cases, as shown in Fig. 4.4 (b) and (c). The initial increase
in Qg is due to the increase in C'V and n*, while the final decrease, following
the occurrence of the maximum, is essentially driven by the decrease of o(C).
For larger AV the neurons tend to fire regularly in a wider range of coupling at
small g (see Fig. 4.4 (c)), indicating that due to their higher firing rates a larger
synaptic inhibition is required to influence their dynamics. On the other hand,
their bursting activity observable at large ¢ is more irregular (see the upper panel
in Fig. 4.4 (a); dashed line and empty symbols).

To assess whether parameters that maximize )y also allow discrimination be-
tween different inputs, we alternated the network back and forth between two
distinct input patterns, each presented for a period Ty,. During this stimulation
protocol, we evaluated the state transition matrix (STM) and the associated quan-
tity AMy. The STM measures the similarity among the firing rates of the neurons
in the network taken at two different times. The metric AMy, based on the STM,
has been introduced in [123] to quantify the ability of the network to distinguish
between two inputs. To verify whether the ability of the network to distinguish
different stimuli is directly related to the presence of dynamically correlated and
anti-correlated cell assemblies, we generated the new metric, (J4. This metric is
defined in the same way as @, except that in in Eq. (4.16) the standard devia-
tion of the correlation matrix is replaced by AM,. As it can be appreciated from
Figs. 4.4(b) and 4.4(c) the metrics Q4 and Qo behave similarly, indicating that
indeed Qg becomes maximal in the parameter range in which the network is most
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Figure 4.4: Metrics of structured activity vs lateral inhibition strength.
a) Metrics entering in the definition of Qo versus the synaptic strength g. From top
to bottom: Averaged coefficient of variation C'V y, standard deviation of the cross-
correlation matrix o(C'), and the fraction of active neurons n* with a threshold
Se = 2. The solid (dashed) line refers to the case AV =1 mV (AV =5mV). The
minimum number of active neurons is achieved at g = gmin, this corresponds to a
peak amplitude of the PSP Apgp = 0.064 mV (Apsp = 0.184 mV) for AV =1
mV (AV =5 mV). b) Qo and Q, as defined in Egs. (4.16) and (4.14), versus g
for AV =1 mV. c¢) Same as b) for AV =5 mV. Other parameters as in Fig. 4.1

effectively distinguishing different stimuli. We speculate that the emergence of
correlated and anti-correlated assemblies contributes to this discriminative ability.

We note that we observed maximal values of Qg for realistic lateral inhibition
strengths, as measured from the post-synaptic amplitudes Apgp. Specifically,
Qo reaches the maximum at ¢ = 4 (g = 8) for AV = 1 mV (AV = 5 mV)
corresponding to Apgp = 0.368 mV (Apgp = 0.736 mV ), comparable to previously
reported experimental results [52, 130, 54]

4.3.4 The role of the post-synaptic time scale

In brain slice experiments IPSCs/IPSPs between MSNs last 5-20 ms and are mainly
mediated by the GABA,-receptor [52, 131]. In this sub-section, we will examine
the effect of the the post-synaptic time constant 7. As 7, is increased from 2 to
50 ms, the values of of both metrics Qp and @4 progressively increase (Fig. 4.5(a)),
with the largest variation having already occurred by 7, = 20 ms. To gain more
insights on the role of the PSP in shaping the structured dynamical regime, we
show for the same network the distribution of the single cell C'V, for 7, = {2,9,20}
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Figure 4.5: Metrics of structured activity vs post-synaptic time duration.
a) Metrics Qo (in solid line) and @ (dashed) as a function of the pulse time scale
for the parameter values {AV, g} = {5 mV, 8} corresponding to the maximum Qg
value in Fig. 4.4(d). Probability distribution functions F(CV) (F(CV2)) for the
coefficient of variation C'V (local coefficient of variation C'V3) are shown in b) (in
¢)) for three representative 7, = {2,9,20} ms, displayed by employing the same
symbols and colors as indicated in a). For these three cases the average firing
rate in the network is (v) = {8.81,7.65,7.35} Hz ordered for increasing 7,-values.
Other parameters as in Fig. 4.1

ms (Fig. 4.5(b)). Narrow pulses (7, =~ 2 ms) are associated with a distribution of
CV values ranging from 0.5 to 1, with a predominant peak at one. By increasing
T, One observes that the C'V distributions shift to larger and larger C'V' values.
Therefore, one can conclude that at small 7, the activity is mainly Poissonian,
while increasing the duration of the PSPs leads to bursting behaviours, as in
experimental measurements of the MSN activity [46]. In particular in [46], the
authors showed that bursting activity of MSNs with a distribution F'(C'V') centered
around CV ~ 2 is typical of awake wild-type mice. To confirm this analysis we
have estimated also the distribution of the CVa: A C'V; distribution with a peak
around zero denotes a very regular firing, while a peak around one indicates the
presence of long silent periods followed by rapid firing events (i.e. a bursting
activity). Finally a flat distribution denotes Poissonian distributed spiking. It
is clear from Fig. 4.5(c) that by increasing 7, from 2 to 20 ms this leads the
system from an almost Poissonian behaviour to bursting dynamics, where almost
regular firing inside the burst (intra-burst) is followed by a long quiescent period
(inter-burst) before starting again.

The distinct natures of the distributions of C'V for short and long-tailed pulses
raises the question of what mechanism underlies such differences. To answer this
question we analyzed the distribution of the ISI of a single cell in the network
for two cases: in a cell assembly bursting regime (corresponding to 7, = 20 ms)
and for Poissonian unstructured behavior (corresponding to 7, = 2 ms). We
expect that even the single neurons should have completely different dynamics
in these two regimes, since the distributions F(CV) at 7, = 2 ms and 20 ms
are essentially not overlapping, as shown in Fig. 4.5(b). In order to focus the
analysis on the effects due to the synaptic inhibition, we have chosen, in both
cases, neurons receiving exactly the same external excitatory drive I;. Therefore,
in absence of any synapses, these two neurons will fire with the same period ISIy =
Tm log[(Is — V;)/(Is — Vip,)] = 12 ms, corresponding to a firing rate of 8.33 Hz not
far from the average firing rate of the networks (namely, 7 ~ 7 — 8 Hz). Thus
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these neurons can be considered as displaying a typical activity in both regimes.
As expected, the dynamics of the two neurons is quite different, as evident from
the F(ISI) presented in Fig. 4.6(a) and (b). In both cases one observes a long
tailed exponential decay of F'(ISI) corresponding to a Poissonian like behaviour.
However the decay rate vp is slower for 7, = 20 ms with respect to 7, = 2 ms,
namely vp ~ 2.74 Hz versus vp ~ 20.67 Hz. Interestingly, the main macroscopic
differences between the two distributions arises at short time intervals. For 7, = 2
ms, (see Fig. 4.6(b)) an isolated and extremely narrow peak appears at ISIy. This
first peak corresponds to the supra-threshold tonic-firing of the isolated neuron, as
reported above. After this first peak, a gap is clearly visible in the F'(IST) followed
by an exponential tail. The origin of the gap resides in the fact that ISIy >> 7,,
because if the neuron is firing tonically with its period ISIy and receives a single
PSP, the membrane potential has time to decay almost to the reset value V. before
the next spike emission. Thus a single PSP will delay the next firing event by a
fixed amount corresponding to the gap in Fig. 4.6(b). Indeed one can estimate
analytically this delay due to the arrival of a single a-pulse, in the present case
this gives ISI; = 15.45 ms, in very good agreement with the results in Fig. 4.6(b).
No further gaps are discernible in the distribution, because it is highly improbable
that the neuron will receive two (or more) PSPs exactly at the same moment at
reset, as required to observe further gaps. The reception of more PSPs during the
ramp up phase will give rise to the exponential tail in the F'(IST). In this case
the contribution to the C'V comes essentially from this exponential tail, while the
isolated peak at ISIy has a negligible contribution.

On the other hand, if 7, > ISIy, as in the case reported in Fig. 4.6(a), F'(ISI)
does not show anymore a gap, but instead a continuous distribution of values.
This because now the inhibitory effects of the received PSPs sum up leading to a
continuous range of delayed firing times of the neuron. The presence of this peak
of finite width at short I.ST in the F(IST) plus the exponentially decaying tail are
at the origin of the observed C'V > 1. In Fig. 4.6 (e) and 4.6 (f) the distributions

of the coefficient CVQ(i) are also displayed for the considered neurons as black lines
with symbols. These distributions clearly confirm that the dynamics are bursting
for the longer synaptic time scale and essentially Poissonian for the shorter one.

We would like to understand whether it is possible to reproduce similar distri-
butions of the ISIs by considering an isolated cell receiving Poissonian distributed
inhibitory inputs. In order to verify this, we simulate a single cell receiving K
uncorrelated spike trains at a rate Ty, or equivalently, a single Poissonian spike
train with rate KUy. Here, Uy is the average firing rate of a single neuron in
the original network. The corresponding F'(ISI) are plotted in Fig. 4.6 (¢) and
4.6 (d), for 7, = 20 ms and 2 ms, respectively. There is a remarkable similarity
between the reconstructed ISI distributions and the real ones (shown in Fig. 4.6(a)

and (b)) , in particular at short ISIs. Also the distributions of the CVQ(Z) for the
reconstructed dynamics are similar to the original ones, as shown in Fig. 4.6 (e)
and 4.6 (f). Altogether, these results demonstrate that the bursting activity of
inhibitory coupled cells is not a consequence of complex correlations among the
incoming spike trains, but rather a characteristic related to intrinsic properties of
the single neuron: namely, its tonic firing period, the synaptic strength, and the
post-synaptic time decay. The fundamental role played by long synaptic time in
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Figure 4.6: Single neuron statistics. First row : distributions F'(ISI) for one
representative cell in the network are shown in black. Second row: the correspond-
ing Poissonian reconstruction of the F(IST) are reported in red. In all plots the
main figure displays the distributions at short ISIs, while the inset is a zoom out of
the whole distribution. Third row: single neuron distribution of the CVQ(Z) for the
considered neuron (black solid lines with circles) and its Poissonian distribution
(red dashed line with squares). The left (right) column corresponds to 7, = 20
(2 ms). The network parameters are AV =5 mV and g = 8, and the others as
in Fig. 4.1, both the examined neurons have Iy = —45.64 mV. For the Poissonian
reconstruction the frequencies of the incoming uncorrelated spike trains are set to
Un ~ 74 Hz (Uy =~ 8.3 Hz) for 7, = 20ms (7, = 2ms), as measured from the
corresponding network dynamics. The distributions are obtained by considering a
sequence of 107 spikes in the original network, and 107 events for the Poissonian

reconstruction.
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Figure 4.7: Metrics of the structured activity vs synaptic time decay.
a) Metrics entering in the definition of Q¢ and their dependence from 7,. From
top to bottom: Averaged coefficient of variation CV y, standard deviation of the
cross-correlation matrix o(C'), and the fraction of active neurons n*. b) AM, as
a function of 7,. The system is left to evolve during 107 spikes, after discarding
10° transient spike events. Parameters here used AV =5 mV, g = 8, K = 20,
N = 400.

inducing bursting activity has been reported also in a study of a single LIF neuron
below threshold subject to Poissonian trains of exponentially decaying PSPs [143].

Obviously this analysis cannot explain collective effects, like the non trivial
dependence of the number of active cells n* on the synaptic strength, discussed
in the previous sub-section, or the emergence of correlations and anti-correlations
among neural assemblies (measured by o(C')) due to the covarying of the firing
rates in the network, as seen in the striatum slices and shown in Fig. 4.1 (c) for our
model. To better investigate the influence of 7, on the collective properties of the
network we report in Fig. 4.7(a) and (b) the averaged CV, o(C), n* and AMj for
Ta € [2,50] ms. As already noticed, the network performs better in mimicking the
MSN dynamics and in discriminating between different inputs at larger 7, (e.g.
at 20 ms). However, what is the minimal value of 7, for which the network still
reveals cell assembly dynamics and discriminative capabilities 7 From the data
shown in Fig. 4.7(a) one can observe that o(C') and AMj attain their maximal
values in the range 10 ms < 7, < 20 ms. This indicates that clear cell assembly
dynamics with associated good discriminative skills can be observed in this range.
However, the bursting activity is not particularly pronounced at 7, = 10 ms, where
(CV)N ~ 1. Therefore only the choice 7, = 20 ms fulfills all the requirements.

Interestingly, genetic mouse models of Huntington’s disease (HD) revealed that
spontaneuous IPSCs in MSNs has a reduced decay time and half-amplitude dura-
tion compared to wild-types [125]. Our analysis clearly indicate that a reduction
of 7, results in more stochastic single-neuron dynamics, as indicated by CV y ~ 1,
as well as in a less pronounced structured assembly dynamics as shown in 4.7 (a).
This resembles what observed for the striatum dynamics of freely behaving mice
with symptomatic HD [46]. In particular, the authors have shown in [46] that at
the single unit level HD mice reveals a C'V ~ 1 in contrast to C'V =~ 2 for wild-type
mice, furthermore the correlated firing was definitely reduced in HD mice.
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Figure 4.8: Linear stability analysis: a) Maximal Lyapunov exponent Ay at a
fixed 7, = 20, as a function of connectivity strength for AV =1 mV (continuous
line, filled circles) and AV = 5 mV (dashed line, empty squares). b) Maximal
Lyapunov exponent Aj; as a function of the pulse duration 7, for the param-
eters {AV,g} = {1 mV,4} (continuous line with filled circles) and {5 mV,8}
(dashed line with empty squares). In both panels, the blue filled square in-
dicates the triad {AV,g,7.} = {5 mV,8,20 ms}, and the red filled circle to
{AV,g, 7.} = {1 mV,4,20 ms}; these values are associated to the maximum
values of @y obtained for excitability distributions with fixed width AV. The
tangent space Eq. (4.8) is evolved during a period corresponding to 107 spikes,
after discarding a transient of 10° spikes. Other parameters used in the simulation:
K =20, N =400.

4.3.5 Linear stability analysis

One of the questions that we would like to address is whether the existence of a
bursting correlated activity is related to linear stability properties of the network
or not. To characterize these properties, we calculate the MLE for the parameters
examined in the text.

For a fixed pulse duration 7, = 20 ms, the behaviour of Aj; as a function of
the coupling g, for different excitability spreading AV, is definitely different. As
shown in Fig. 4.8 (a), for AV = 1 mV the MLE (as expected) is zero for very
weakly coupled systems, then it first increases with ¢ and reaches a maximum
around g = 2 and then it decreases monotonically becoming negative for g > 5.
For AV =5 mV, the MLE is always positive and increases with g saturating at an
almost constant value A\y; ~ 3.4 Hz for ¢ > 6. We are specifically interested in the
conditions for which the measure @)y is maximized, these points are indicated in
Fig. 4.8 (a), as one can notice they correspond for both considered AV to positive
AM-

Additionally we have analyzed the behaviour of Aj; as a function of 7, by
fixing g to the value that maximizes (g in the previous analysis. In this case it
appears that \ys increases with 7, and becomes definitely negative for sufficiently
small 7, (as shown in Fig. 4.8 (b)), in agreement with the results reported in
[98, 87]. The cell assembly dynamics of our network resembles that of MSNs for
large 7,, the point where @y is maximal are indicated also in Fig. 4.8 (b). These
evidences seem to suggest that the striatally relevant dynamics correspond to a
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chaotic regime, but located in proximity of the transition between chaotic and
non-chaotic evolution [122].

However, all this analysis and the one reported in [122] consider only infinites-
imal perturbations, while it has been clearly demonstrated that for inhibitory
networks finite perturbations play a fundamental role as shown in [84, 98, 86, 87].
In particular our model, even for Ap; < 0, can display erratic evolution almost in-
distinguishable from chaos due to the so-called Stable Chaos mechanism [59, 87].
This leads us to conclude that the usual Lyapunov exponent is unable to cap-
ture the degree of erratic motion present in these systems, due to the possible
amplification of finite amplitude perturbations.

4.3.6 Structural origin of the cell assemblies

A question that we have not addressed so far is: how do cell assemblies arise 7 Since
the network is purely inhibitory it is reasonable to guess that correlation (anti-
correlation) among groups of neurons will be related to the absence (presence) of
synaptic connections between the considered groups. In order to analyze the link
between the correlation and the network connectivity we compare the clustered
cross-correlation matrix of the firing rates C(v4, ;) (shown in Fig 4.9 (a)) with the
associated connectivity matrix C;; (reported in Fig- 4.9 (b)). The cross-correlation
matrix is organized in £k = 15 clusters via the k-means algorithm, therefore we
obtain a matrix organized in a k x k block structure, where each block (m,!)
contains all the cross-correlation values of the elements in cluster m with the
elements in cluster [. The connectivity matrix is arranged in exactly the same way,
however it should be noticed that while C(v;,v;) is symmetric, the matrix C;; is
not symmetric due to the unidirectional nature of the synaptic connections. From
a visual comparison of the two figures it is clear that the most correlated blocks are
along the diagonal and that the number of connections present in these diagonal
blocks is definitely low, with respect to the expected value from the whole matrix.
An exception is represented by the largest diagonal block which reveals, however,
an almost zero level of correlation among its members. We have highlighted in
blue some blocks with high level of anti-correlations among the elements, the same
blocks in the connectivity matrix reveal a high number of links. A similar analysis,
leading to the same conclusions was previously reported in [121].

However, we would like to make more quantitative this comparison. Therefore
we have estimated for each block the average cross-correlation, denoted as C,,;,
and the average probability p,,; of unidirectional connections from the cluster [
to the cluster m. These quantities are shown in Fig. 4.9 (c) for all the possible
blocks, it is evident that the correlation C,,; decreases with the probability p,.;, a
linear fit to the data is reported in the figure as a solid black line. However, there
are blocks that are outliers with respect to this fit, in particular the black squares
refer to the diagonal blocks and these are all associated to high correlation values
Cnm and low probabilities p,n,m, definitely smaller than the average probability
p = 0.05, shown as a dashed vertical red line in Fig. 4.9 (c). An exception is
represented by a single black square located exactly on the linear fit in proximity
of p = 0.05, this is the large block with almost zero level of correlation among
its elements previously identified. Furthermore, the blocks with higher anticor-
relation, denoted as blue triangles in the figure, have probabilities p,,; definitely
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larger than 5 %. Also in this case there are 2 exceptions, 2 triangles lie exactly
on the vertical dashed line corresponding to 5 %. This is due to the fact that
the p,,; are not symmetric, and it is sufficient to have a large probability to have
connections in only one of the two possible directions between blocks m and [ to
observe anti-correlated activities between the two assemblies. To summarize we
have clearly shown that the origin of the assemblies dynamically identified from
the correlations of the firing rates is directly related to structural properties of the
networks, as visualized by the connectivity matrix.

4.3.7 Discriminative and computation capability

In this sub-section we examine the ability of the network to perform different tasks:
namely, to respond in a reproducible manner to equal stimuli and to discriminate
between similar inputs via distinct dynamical evolution. For this analysis we have
always compared the responses of the network obtained for a set of parameters
corresponding to the maximum g value shown in Fig. 4.4(d), where 7, = 20 ms,
and for the same parameters but with a shorter PSP decay time, namely 7, = 2
ms.

To check for the capability of the network to respond to cortical inputs with a
reproducible sequences of states of the network, we perform a simple experiment
where two different inputs I and I are presented sequentially to the system.
Each input persists for a time duration Ty, and then the stimulus is switched to
the other one and this process is repeated for the whole simulation time. The raster
plot measured during such an experiment is shown in Fig. 4.10 (a) for 7, = 20
ms. Whenever one of the stimuli is presented, a specific sequence of pattern acti-
vations can be observed. Furthermore, the sequence of emerging activity patterns
is reproducible when the same stimulus is again presented to the system, as can
be appreciated by observing the patterns encircled with black lines in Fig. 4.10
(a). Recall that the clustering algorithm here employed to identify the different
groups is applied only during the presentation of the first stimulus, therefore the
sequential dynamics is most evident for that particular stimuli.

Furthermore, we can quantitatively calculate how similar is the firing activity in
the network at different times by estimating the STM. The similarity is quantified
by computing the normalized scalar product of the instantaneous firing rates of the
N neurons measured at time ¢; and t;. We observe that the similarity of the activity
at a given time ¢y and at a successive time tg+2mTy,, is high (with values between
0.5 and 0.75), thus suggesting that the response to the same stimulus is similar,
while it is essentially uncorrelated with the response at times corresponding to the
presentation of a different stimulus, i.e. at ¢y + (2m — 1)T, (since the similarity
is always smaller than 0.4) (here, m = 1,2,3...). This results in a STM with a
periodic structure of period T, with alternating high correlated blocks followed
by low correlated blocks (see Fig. 4.10(b)). The averaged version of the STM
calculated over a sequence of 5 presentations of I(!) and I is shown in Fig. 4.10
(c). These results show not only the capability of the network to distinguish
between the stimuli, but also the reproducible nature of the system response. In
particular, from Fig. 4.10 (c) it is evident how the patterns associated with the
response to the stimulus I or I are clearly different and easily identifiable.
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Figure 4.9: Cell assemblies and connectivity. a) Cross-correlation matrix
C(v4,v;) of the firing rates organized according to the clusters generated via the
k-means algorithm with k& = 15, the clusters are ordered as in Fig. 4.1(c) from the
highest to the lowest correlated one. b) Connectivity matrix C;; with the indices
ordered as in panel a). Here, a black (copper) dot denotes a 1 (0) in C;j, i.e. the
presence of a synaptic connection from j to i. c) Average cross-correlation Cni
among the elements of the matrix block (m,1) , versus the probability p,, to have
synaptic connections from neurons in the cluster [ to neurons in the cluster m.
Black squares indicate the blocks along the diagonal delimited by black borders
in panel a) and b) , i.e. they correspond to the pairs {Cum, Pmm }; blue triangles
denote the ten blocks with the lowest C,,,; values, which are also delimited by blue
edges in a) and b). The vertical red dashed line indicates the average probability
to have a connection p = 5%. The black solid line is the linear regression to the
data (C,,; ~ 0.15 — 3.02p,,;, correlation coefficient R = —0.72). Other parameters
as in Fig. 4.1.
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Figure 4.10: Sequential switching. For 7, = 20 ms: a) Raster plot associated
to the two input protocols I() and I®). The circles denote the clusters of active
neurons appearing repetitively after the presentation of the stimulus [/ M), Verti-
cal lines denote the switching times between stimuli. b) State Transition Matrix
Xx(m,n) calculated over a time span of 20 seconds. c) Averaged State Transition
Matrix (x), obtained by considering a 4T, x 4T, sub-matrix averaged over r = 5
subsequent time windows of duration 47T,,. d-f) same as a-c) for 7, = 2 ms. In
both cases, the inputs IV and I® are different realization of the same random
process, they are obtained by selecting N current values I; from the flat interval
[Vih, Vi, + AV]. The input stimuli are switched every Ty, = 2 s. Number of
clusters £ = 35 in a). Other parameters as in Fig. 4.1.
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To test for the presence of memory effects influencing the network response, we
performed a further test where the system dynamics was completely reset after
each stimulation and before the presentation of the next stimulus. We do not
observe any relevant change in the network response, so we can conclude that our
results are robust.

Next, we examined the influence of the PSP time scale on the observed results.
In particular, we considered the case 7, = 2 ms, for this value the network does
not reveal a large variability in the response showing a reduced number of patterns
of activity. In particular, as shown in Fig. 4.10(d) it responds in a quite uniform
manner during the presentation of each stimulus. Furthermore, the corresponding
STM and the averaged version reported in Figs. 4.10(e) and (f) show highly cor-
related blocks alternating to low correlated ones, but these blocks do not reveal
any internal structure typical of cell assembly encoding.

We proceeded to check the ability of the network to discriminate among similar
inputs and how this ability depends on the temporal scale of the synaptic response.
In particular, we tried to answer to the following question: if we present two
inputs that differ only for a fraction f of the stimulation currents, which is the
minimal difference between the inputs that the network can discriminate 7 In
particular, we considered a control stimulation I © =17 € [Vin, Vin + AV] and
a perturbed stimulation I®®), where the stimulation currents differ only over a
fraction f of currents I; (which are randomly chosen from the same distribution
as the control stimuli). We measure the differences of the responses to the control
and to the perturbed stimulations by measuring, over an observation window T¢,
the dissimilarity metric d/(¢), this can be seen in Figs. 4.11(a) and (b) fro two
values of T,. In each figure we report the dissimilarity metric for two different
values of PSP duration, namely 7, = 20 ms (black circled line) and 7, = 2 ms (red
squared line).

The time averaged dissimilarity metric (d)f is reported as a function of f in
Fig. 4.11(c) for the two different values 7,. It is clear that for any f-value the
network with longer synaptic response always discriminates better between the
two different stimuli than the one with shorter PSP decay.

In order to better characterize the computational capability of the network and
the influence due to the different duration of the PSPs, we measure the complexity
of the output signals as recently suggested in [144]. In particular, we have examined
the response of the network to a sequence of three stimuli, each being a constant
vector of randomly chosen currents. The three different stimuli are consecutively
presented to the network for a time period Ty,, and the stimulation sequence
is repeated for the whole experiment duration Tgx. The output of the network
can be represented by the instantaneous firing rates of the IV neurons measured
over a time window AT = 100 ms, this is a high dimensional signal, where each
dimension is represented by the activity of a single neuron. The complexity of the
output signals can be estimated by measuring how many dimensions are explored
in the phase space, more stationary are the firing rates less variables are required
to reconstruct the whole output signal [144].

A principal component analysis (PCA) performed over T /AT observations of
the N firing rates reveals that for 7, = 2 ms the 80% of the variance is recovered
already with a projection over a two dimensional sub-space (red bars in Fig. 4.12
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Figure 4.11: Pattern separation. Dissimilarity measure in time with an obser-
vation window of length a) T, = 2 and b) T, = 10, for the values of 7, = 20ms
(black circles) and 7, = 2ms (red squares) and at a fixed value of f = 0.2. ¢)
Average dissimilarity as a function of the fraction f of inputs differing from the
control input, for the two studied values of 7, with an observation window T, = 2
s . Other parameters used: AT = 50ms, AV = 5 mV. Remaining parameters as
in Fig. 4.1.

(a)). On the other hand, for 7, = 20 ms a higher number of principal components
is required to reconstruct the dynamical evolution (black bars in Fig. 4.12 (a)), thus
suggesting higher computational capability of the system with longer PSPs [144].

These results are confirmed by analyzing the projections of the firing rates in
the subspace spanned by the first three principal components (C1,C2,C3) shown
in Fig. 4.12 (b) and (c) for 7, = 20 ms and 7, = 2 ms, respectively. The responses
to the three different stimuli can be effectively discriminated by both networks,
since they lie in different parts of the phase space. However, the response to
the three stimuli correspond essentially to three fixed points for 7, = 2 ms, while
trajectories evolving in a higher dimension are associated to each constant stimulus
for 7, = 20 ms.

These analyses confirm that the network parameters selected by employing the
maximal ()¢ criterion also result in a reproducible response to different stimuli, as
well as in an effective discrimination between different inputs.

4.3.8 Physiological relevance for biological networks under differ-
ent experimental conditions

The analysis here reported has been inspired by the experiment performed by
Carrillo et al. [48]. In that experiment the authors considered a striatal network in
vitro, which displays sporadic and asynchronous activity under control conditions.
To induce spatio-temporal patterned activity they perfused the slice preparation
with N-methyl-D-aspartate (NMDA). Since it is known that NMDA administration
brings about an excitatory tonic drive with recurrent bursting activity [145, 146].
The crucial role of the synaptic inhibition in shaping the patterned activity in
striatal dynamics is also demonstrated in [48], by applying the GABA, receptor
antagonist bicuculline to effectively decrease the inhibitory synaptic effect.

In our simple model, ionic channels and NMDA-receptors are not modeled;
nevertheless it is possible to partly recreate the effect of NMDA administration
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Figure 4.12: Computational capability of the network. Characterization of
the firing activity of the network, obtained as response to three consecutive inputs
presented in succession. a) Percentage of the variance of the neuronal firing activity
reproduced by each of the first 10 principal components. The inset displays the
corresponding cumulative percentage as a function of the considered component.
Filled black and shaded red (bar or symbols) correspond to 7, = 20 ms and 7,
= 2 ms, respectively. Projection of the neuronal response along the first three
principal components for b) 7, = 20 ms and c¢) 7, = 2 ms. Each point in the
graph correspond to a different time of observation. The three colors denote the
response to the three different inputs, which are quenched stimulation currents
randomly taken as () e [Vin, Vin + AV] for j = 1,2, 3, the experiment is then
performed as explained in the text.

by increasing the excitability of the cells in the network, and the effect of the
bicuculline as an effective decrease in the synaptic strength. We then verify at
posteriori whether these assumptions lead to results similar to those reported in
[48].

In our model the single cell excitability is controlled by the parameter I;. The
computational experiment consists in setting the system in a low firing regime
corresponding to the control conditions with I(¢) = {Ii(c) } € [-53, —49.5] mV and
in enhancing, after 20 seconds, the system excitability to the range of values I(¢) =
{Ii(e)} € [-60, —45] mv, for another 20 seconds. This latter stage of the numerical
experiment corresponds to the NMDA bath in the brain slice experiment. The
process is repeated several times and the resulting raster plot is coarse grained as
explained in Methods (sub-section Synchronized Event Transition Matriz).

From the coarse grained version of the raster plot, we calculate the Network
Bursting Rate (NBR) as the fraction of neurons participating in a burst event in a
certain time window. Whenever the instantaneous NBR is larger than the average
NBR plus two standard deviations, this is identified as a synchronized bursting
event (as shown in Fig. 4.13(a) and (f)). In Fig. 4.13(b) we plot all the neurons
participating in a series of S; = 20 synchronized bursting events. Here the switch-
ing times between control conditions and the regimes of increased excitability are
marked by vertical dashed lines. Due to the choice of the parameters, the synchro-
nized events occur only in the time intervals during which the network is in the
enhanced excitability regime. Each synchronized event is encoded in a binary N
dimensional vector W(t) with 1 (0) entries indicating that the corresponding neu-
ron was active (inactive) during such event. We then measure the similarity among
all the events in terms of the Synchronized Event Transition Matriz (SETM) shown
in Fig. 4.13(c). Furthermore, using the SETM we divide the synchronized events



4.3 Results 75

into clusters according to an optimal clustering algorithm [58]. In the present case
we have identified 3 distinct states (clusters), if we project the vectors Wy, char-
acterizing each single synchronized event, on the two dimensional space spanned
by the first two principal components (C1, C2), we observe a clear division among
the 3 states (see Fig. 4.13(d)). It is now important to understand whether the
cells firing during the events classified as a state are the same or not. We observe
that the groups of neurons recruited for each synchronized event, corresponding
to a certain state, largely overlap, while the number of neurons participating to
different states is limited. As shown in Fig. 4.13(e), the number of neurons partic-
ipating to the events associated to a certain state is of the order of 40-50, while the
coactive neurons (those participating in more than one state) ranges from 12 to
25. Furthermore, we have a core of 9 neurons which are firing in all states. Thus
we can safely identify a distinct assembly of neurons active for each state.

As shown in Fig. 4.13(c), we observe, in analogy to [48], that the system
alternates its activity among the previously identified cell assemblies. In particular,
we have estimated the transition probabilities from one state to any of the three
identified states. We observe that the probability to remain in state 2 or to arrive
to this state from state 1 or 3 is quite high, ranging between 38 and 50 %, therefore
this is the most visited state. The probability that two successive events are states
of type 1 or 2 is also reasonably high ranging from ~ 29 — 38% as well as the
probability that from state 1 one goes to 2 or viceversa (~ 38 — 43%). Therefore
the synchronized events are mostly of type 1 and 2, while the state 3 is the less
attractive, since the probability of arrving to this state from the other ones or to
remain on it once reached, are between 25 - 29 %. If we repeat the same experiment
after a long simulation interval £ ~ 200 s we find that the dynamics can be always
described in terms of small number of states (3-4), however the cells contributing
to these states are different from the ones previously identified. This is due to
the fact that the dynamics is in our case chaotic, as we have verified in subsection
(Linear Stability Analysis). Therefore even small differences in the initial state of
the network, can have macroscopic effects on sufficiently long time scales.

To check for the effect of bicuculline, the same experiment is performed again
with a much smaller synaptic coupling, namely g = 1, the results are shown in
Fig. 4.13(f-j). The first important difference can be identified in higher NBR val-
ues with respect to the previous analyzed case (g = 8) Fig. 4.13(f). This is due
to the decreased inhibitory effect, which allows most of the neurons to fire almost
tonically, and therefore a higher number of neurons participate in the bursting
events. In Fig. 4.13(g) it is clearly visible a highly repetitive pattern of synchro-
nized activity (identified as state 2, blue symbols), this state emerges immediately
after the excitability is enhanced. After this event we observe a series of bursting
events, involving a large number of neurons (namely, 149), which have been identi-
fied as an unique cluster (state 1, red symbols). The system, analogously to what
shown in [48], is now locked in an unique state which is recurrently visited until
the return to control conditions. Interestingly, synchronized events corresponding
to state 1 and state 2 are highly correlated when compared with the g = 8 case, as
seen by the SETM in Fig. 4.13(h). Despite this, it is still possible to identify both
states when projected on the two dimensional space spanned by the first two prin-
cipal components (see Fig. 4.13(i)). This high correlation can be easily explained
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by the fact that the neurons participating in state 2 are a subset of the neurons
participating in state 1, as shown in Fig. 4.13(j). Furthermore, the analysis of the
transition probabilities between states 1 and 2 reveals that starting from state 2
the system never remains in state 2, but always jumps to state 1. The probability
of remaining in state 1 is really high ~ 64%. Thus we can affirm that in this case
the dynamics is really dominated by the state 1.

To determine the statistical relevance of the results presented so far, we re-
peated the same experiment for ten different random realizations of the network,
We found that, while the number of identified states may vary from one realiza-
tion to another, the persisting characteristics that distinguish the NMDA perfused
scenario and the decreased inhibition one, are the variability in the SETM and the
fraction of coactive cells. More precisely, on one hand the average value of the
elements of the SETM is smaller for g = 8 with respect to the g = 1 case, namely
0.54 versus 0.84, on the other hand their standard deviation is larger, namely 0.15
versus 0.07. Thus indicating that the states observed with ¢ = 1 are much more
correlated among them with respect to the states observable for ¢ = 8, which show
a larger variability. The analysis of the neurons participating to the different states
revealed that the percentage of neurons coactive in the different states passes from
51 % at g = 8 to 91 % at g = 1. Once more the reduction of inhibition leads to
the emergence of states which are composed by almost the same group of active
neurons, representing a dominant state. These results confirm that inhibition is
fundamental to cell assembly dynamics.

Altered intrastriatal signaling has been implicated in several human disorders,
and in particular there is evidence for reduced GABAergic transmission following
dopamine depletion [147], as occurs in Parkinson’s disease. Our simulations thus
provide a possible explanation for observations of excessive entrainment into a
dominant network state in this disorder [148, 126].

4.4 Final Summary

In summary, we have shown that lateral inhibition is fundamental for shifting the
network dynamics from a situation where a few neurons, tonically firing at a high
rate, depress a large part of the network, to a situation where all neurons are
active and fire with similar slow rates. In particular, if inhibition is too low, or too
transient, winner takes all mechanism is at work and the activity of the network is
mainly mean-driven. By contrast, if inhibition has realistic strength and duration,
almost all the neurons are on average sub-threshold and the dynamical activity is
fluctuation-driven [21].

Therefore we can reaffirm that the MSN network is likely capable of producing
slow, selective, and reproducible activity sequences as a result of lateral inhibi-
tion. The mechanism at work is akin to the winerless competition reported to
explain the functioning of olfactory networks in order to discriminate different
odors [149]. Winnerless competition refers to a dynamical mechanism, initially
revealed in asymmetrically coupled inhibitory rate models [150], displaying a tran-
sient slow switching evolution along a series of metastable saddles (for a recent
review on the subject see [151]). In our case, the sequence of metastable states
can be represented by the firing activity of the cell assembly, switching over time.
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Figure 4.13: Response of the network to an increase in the excitabil-
ity. a,f) Network Bursting Rate, and the threshold defined for considering a
synchronized event. b,g) Neurons involved in the synchronized events, vertical
lines denoted the switching times between the excited I(©) and control I(®) inputs.
Colors in the raster indicates the group assigned to the synchronous event using
an optimal community partition algorithm. c,h) Synchronized Event Transition
Matrix, calculated with a window Ty = 50 ms and number of events Ss = 20. d,i)
Projection of the synchronized events in the 2D space spanned by the first two
principal components associated to the covariance matrix of the vectors Ws. e.j)
Number of coactive cells in each state. The diagonal elements of the bar graph
represents the total number of neurons contributing to one state. Panels (a-e)
correspond to g = 8, while panels (f-j) depict the case g = 1. In both cases the
system is recorded during the time span required to identify S; = 20. Remaining
parameters as in Fig. 4.1.
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In particular, as in our analysis, slow synapses have been recognized as a fun-
damental ingredient, besides asymmetric inhibitory connections, to observe the
emergence of winnerless competition in realistic neuronal models [152, 153].

We have introduced a new metric to encompass in a single indicator key as-
pects of this patterned sequential firing, and with the help of this metric we have
identified the values of the parameters entering in the model to best obtain these
dynamics. Furthermore, for the same choice of parameters the network is able
to respond in a reproducible manner to the same stimulus, presented at differ-
ent times, while presenting complex computational capability by responding to
constant stimuli with an evolution in a high dimensional space [144].

Our analysis has revelealed that the IPSP/IPSC duration is crucial in order
to observe bursting dynamics at the single cell level as well as structured as-
sembly dynamics at the population level. A reduction of the synaptic time has
been observed in symptomatic HD mice [125], in our model this reduction leads
single neurons towards a Poissonian behaviour and to a reduced level of corre-
lation/anticorrelation among neural assemblies, in agreement with experimental
results reported for mouse models of HD [46].

In summary, we have been able to reproduce general experimental features of
MSN networks in brain slices [48]. In particular, we have observed, as in the ex-
periment, a structured activity alternating among a small number of distinct cell
assemblies. Furthermore, we have reproduced the dynamical effects induced by
decreasing the inhibitory coupling: the drastic reduction of the inhibition leads to
the emergence of a dominant highly correlated neuronal assembly. This may help
account for the dynamics of Parkinsonian striatal microcircuits, where dopamine
deprivation impairs the inhibitory feedback transmission among MSNs [147, 126].

The results presented in this chapter have been published in Ref. [154].



Chapter 5

Conclusions

Throughout this dissertation we examined the a-pulse coupled Leaky Integrate
and Fire network as a relevant model accounting for biological observations in the
neuroscience’s field. In doing so, we studied in detail the role of the structural
properties (parameters) of the a-LIF model in shaping the dynamics in three ex-
perimentally inspired applications: i) Chapter 2 provided a theoretical substrate
to understand the role of sparse connectivity in generating non-trivial dynamics
in excitatory networks, akin to the Giant Depolarizing Potentials (GDP) in devel-
oping hyppocampal networks. ii) In chapter 3 it was analyzed the importance of
inhibition as the origin of irregular spiking and perturbation amplification of bal-
anced neural networks, which are prototypical of cortical dynamics. iii) In chapter
4, it was described how sparse connectivity, inhibition and synaptic dynamics can
provide the conditions of emergence of cell assembly dynamics, which are related
to the encoding mechanism observed in the striatum.

We started by considering the simplest case of an excitatory network of a-pulse
coupled LIF neurons displaying a partially synchronized (PS) regime (chapter 2).
It is known that this type of system is non-chaotic when it is globally coupled
[83]. Removing links between the neurons in the network induces fluctuations
in the synaptic drive and chaotic behavior emerges [66]. However, the question
whether these two observations had a causal relation remained elusive. We found
that the statistical properties of a deterministic neural network with broken links
can be exactly described in terms of an equivalent fully coupled circuit plus an
additive noise term mimicking the current fluctuations. This was demonstrated by
comparing the statistics of the fields appearing in the a-LIF model (macroscopic
variables) and the distribution of Insterspike Intervals (microscopic variables) of
the determinsitic and stochastic model. Also the stability properties, quantified
by the Maximal Lyapunov Exponent (MLE) were retrieved with the stochastic
formulation. Analyzing the fluctuations at deterministic level, we discovered that
in order to reproduce these fluctuations in a stochastic formulation we should in-
clude noise terms presenting time correlations as well as amplitudes depending
on the state of the system. This stochastic formulation reduced considerably the
dimensionality of the system and therefore the computation time of the MLE.
These results allowed us to conclude that indeed the fluctuations of the field are
responsible for the chaotic motion in this system. This kind of models might be
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useful to account for the presence of global oscillations at population level in de-
veloping brain networks, in the form of GDPs [62]. During this developing period,
GABAergic interneurons have a depolarizing role which leads the immature neural
circuits to a synchronized activity, similar to the ones observed in the PS regime.
However, it is important to remark that the topologies studied in this chapter are
random networks, while some evidences found in studies on GDP generation in
the CA3 region of the hippocampus have shown that the functional connectivity
of the developing neurons might not follow random distributions [63]. Whether
our results can be extended to a more complex connectivity such as scale-free or
small world networks remains an open problem.

We verified that the picture of well organized dynamics in purely excitatory
circuits changes dramatically when inhibition is considered. In chapter 3 we exam-
ined a sparsely connected neural network subjected to inhibitory feedback. This
system is of particular importance since it is one of the simplest cases of balanced
activity, in which external excitation is counteracted by feedback inhibition and
the activity of the neurons is driven by fluctuations. Models of balanced activity
have been used to simulate activity in the cortex, which presents large variability
in the spiking times with coefficient of variation (C'V') close to one [92]. Using the
a-pulse coupled network we discovered that, in contrast to the regular dynamics
emerging in a purely excitatory network, the inhibitory network is highly irregular
(CV =~ 1). We showed that for fast synapses the system is not chaotic while slow
ones produce a transition to a chaotic state, in any case the irregularity in the
spiking dynamics is preserved regardless the chaotic nature of the system. If irreg-
ularity cannot be ascribed to the presence of chaos, what are the mechanisms that
produces this type of behavior? Applying non-linear stability tools [101, 106], we
discovered that in the fluctuation driven regime, finite size perturbations are am-
plified faster than infinitesimal ones, in contrast to the excitatory system. These
results are supported by similar findings in the context of exponentially coupled
synapses [60]. As a consequence of these non-linear instabilities, even if the sys-
tem is linearly stable, an irregular evolution can arise [59]. The explanation for
this seemingly counter-intuitive observation of stable irregular dynamics, is that
of the Stable Chaos. Our non-linear stability analysis indeed supports this inter-
pretation, as it is known that for systems subject to stable chaos, the Finite Size
Lyapunov Exponent is larger than the MLE [59]. Similar interpretations have been
reported in the context of §-pulse coupled neurons where the same phenomenon
is described in terms of reservoirs of stability of variable size according to the net-
work scale, termed dynamic flux tubes [86]. One of the most interesting points of
discussion of this chapter is that we provided insights to a new interpretation to
the experimental results presented in [42]. There, the authors studied the activity
of the rat’s barrel cortex in-vivo subject to perturbations: Several measurements
of the network dynamics under the same experimental conditions led to the same
outcome (particularly the number of spikes emitted by the network). However, a
perturbation amounting to the removal of a single spike in one of the repetitions
produced an amplification of the initial perturbation, claiming the chaotic essence
of this system. Nonetheless, our theoretical analysis clearly reveals that a finite
perturbation (for example of the order of the single spike) can be amplified despite
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the non-chaotic nature of the system. It shall be noticed that the results reported
in chapter 3 were found by considering solely inhibitory feedback, in which the
excitatory effect is captured by the constant driving DC current. Unfortunately
this restricts the biological significance of the results since it is known that cortical
circuits are mainly composed (80%) by excitatory pyramidal neurons and only 20%
are GABAergic inhibitory interneurons [36]. This means that synaptic dynamics
of the excitatory component present in a real network might potentially have an
important role in the non-linear aspects of the network, which are not accounted
for in our analysis. We hope that this issues can be solved in further investigations.

In chapter 4, we focused our attention in the study of striatal dynamics. The
striatum, the main input to the basal ganglia, plays an important role in motor
control and reward based learning, and the disruption of information signaling at
striatal level is at the base of disorders such as Parkinson’s and Huntington’s dis-
eases (PD and HD respectively). The striatum is formed by a sparsely and weakly
connected circuit of GABAergic Medium Spiny Neurons (MSNs), and its dynamics
is organized in groups of neurons firing coherently within a family while firing in an
anti-correlated way with other groups of neurons. Although some detailed models
have been proposed to account for the striatum activity (see [142, 123, 122, 121]),
we showed that a minimal model of pulse coupled LIF neurons is able to reproduce
the most relevant aspects of striatal dynamics. By proposing a novel indicator, we
singled out the role of synaptic transmission parameters in shaping the striatal-like
dynamics and we demonstrated the direct relation between cell assembly forma-
tion and the underlying topology of the network. Interestingly, we discovered that
the range of parameters at which the network exhibits the desired behavior (in
particular connectivity values, lateral inhibition strength and post-synaptic cur-
rent duration), closely corresponds to experimental values reported for the MSN.
Also, the MSN-like activity emergence seems to be related to the presence of weak
chaos. We found that the inhibitory post-synaptic potential (IPSP) time scale is
fundamental for the emergence of bursting dynamics. Reducing the IPSP drives
the neurons to a Poisson like behavior and consequently to a reduction of the cell
assembly structure, as observed in HD symptomatic mice [46, 125]. Finally, we
were able to reproduce general experimental features of striatal dynamics in-vitro
reported in [48]. In this paper the authors describe the response of the striatum in
presence of NMDA as the alternating activity of a few number of cell assemblies,
as we observed in our model. In the same study, the effect of reduced inhibitory
coupling is characterized by the emergence of a dominant assembly, and this ef-
fect was also captured with our model. Reduced inhibitory coupling is related
to Parkinsonian striatum, where the disruption of dopamine (DA) release, dimin-
ishes the strength of lateral inhibition among MSNs [147, 126]. It is important
to remark that the striatal circuitry and its interaction with the basal ganglia is
a highly complex system. For instance, the different effects of DA depending on
the DA receptor in MSNs, the effect of fast spiking neurons, and the spike timing
dependent plasticity at the cortico-striatal projection synapses are some aspects
of the striatal dynamics not accounted by our model. Whether our results persist
in complex models with more detailed dynamics is an open question. Neverthe-
less, network models such as the one presented here may offer a path towards
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understanding how pathologies that affect single neurons lead to aberrant network
activity patterns, as seen in PD and HD, and this is an exciting direction for future
research.

Altogether we can conclude that the a-pulse coupled LIF model, despite its
simplicity, has allowed us to reveal and analyze new collective dynamical behaviors
which can be relevant in the context of developing hyppocampal networks, cortical,
and striatal dynamics. Such a model is a trade-off in which sub-threshold behav-
ior is simplified and action potential generation is completely disregarded, but it
is possible to maintain a particularly important feature of real neural systems:
the synaptic dynamics. In particular, we have verified that synaptic properties
such as strength and time scale are crucial to determine the emergence of spe-
cific evolutions related to experimental observations, which cannot be accounted
by networks with no synaptic dynamics. The stability analysis of the observed
collective dynamical evolutions shed light on how different manifestations of chaos
might generate useful dynamical regimes from a biological perspective, allowing
for information encoding at the population level.

The results presented here led to three publications: Refs. [90, 87] in collab-
oration with A. Torcini, and Ref. [154] in collaboration with J.D Berke and A.
Torcini.



Appendix A

Serial and parallel numerical
implementation of the Event
Driven Map

In this appendix an outline of the algorithm implementation to solve the Event
Driven Map of the LIF model coupled with a-pulses is presented. The analytic
form of the solution for the next firing time 7(n) of each cell is given by the implicit
function (2.5), (3.6) and (4.2) which needs to be solved numerically for each of the
N neurons. This is done by using standard zero finding algorithms of the function:

a — vm(n)

T)=7—1In Al

f(7) [a—i—gHm(n)—l] (A1)

The solution of such a large set of equations is computationally inefficient,

specially when dealing with large networks. Here we present a (serial) algorithm
to overcome such inefficiency inspired by the algorithm outlined in [155]:

S1 At each step of the algorithm, the membrane potentials are sorted in de-
scending order with an indexing routine [156].

S2 With a high probability, the next firing time solution will be found in a small
fraction of the closest-to-threshold membrane potential. Therefore, only a
subset (pool) consisting of the M << N closest-to-threshold neurons are
chosen to be solved their firing times.

S3 To avoid fictitious zeros and guaranteeing convergence to the minimal 7, in
the solution of the M equations, an outward bracketing routine is performed
to find only the first zero-crossing of the function f(7) in the domain [0 , zp],
by evaluating the function through Np equally spaced intervals of size Ap =
(xp — 0)/N, starting from 0 and checking for the first sign change in ;.
This will tell us that the real solution (the first one) is bracketed in the sub-
interval [x; — Ap ,2;]. A final bisection method is used in this small bracket
to find a solution with some selected accuracy.

S4 The system is evolved during the found 7,,, if all the neurons remained under
threshold, the solution is correct and the algorithm is repeated from step one,
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Figure A.1: a) Trained value of the pool size M'" for different sizes of the network,
growing sub-linearly with N. The value of M'" in this case is chosen to be the
average plus two standard deviations. b) Prototypical shape of equation A.1 for an
excitatory network: The solutions are bounded in a precise domain for any value
of g, in the plot g = 0.1 (black), g =1 (red), g = 5 (blue). ¢) Same as in b) for an
inhibitory network (negative values of g); inset: close-up of the functions near the
origin. Parameters used in a) a =5, g = =8, K =20, a = 1.5, b) and ¢) o = 2,
a=15 K =20, P=60, F =6, x,, = 0.9901

otherwise the previous state is recovered and the algorithm is repeated by
choosing a larger set M ~ O(N), with a larger bracketing boundary 5 x xp
divided in a larger number of sub-intervals 10 x N.

S5 The algorithm is repeated from step S1.

From the algorithm above, it is clear that the selection of the size of the pool
M, the bracketing limit zp and the number of bracketing intervals Np are some-
how arbitrary. The last of them is chosen intuitively as Ng = N, since we assume
that an increase of the number of neurons needs also a much more fine grained
zero-seeking intervals. On the other hand, M and zp can be “taught” to the
network during a slow training period, where a safe set of untrained parameters
M, zp are introduced in the evolution (those of step S4, for example). Allowing
a small number of spikes compared with the actual simulation time, we can check
on average what is the actual (trained) number M of neurons that the algorithm
needs to solve on average until finding the correct answer, as well as the maximal
2% that the algorithm calculated. These two trained values are then used for the
remaining simulation time.

As illustrated in figure A.1, the pool of neurons increases sub-linearly with the
system size. Our approach (from now on termed Algorithm 2 in contrast to the
original Algorithm 1 proposed in [155]), leads to an improvement from the view
point of the number of routine calls to the zero-finding algorithms. In Algorithm
1, the sub-pool is set to be proportional to N (more precisely M = N/10), which
is not an efficient selection of M, as discussed before. Such an inefficiency is,
however, counterweight by performing the sorting routine each I steps, since it is
assumed a more or less organized nature of firing in excitatory networks, which
allowed the author to update the network during I steps without changing sig-
nificantly the list of the closest-to-threshold neurons, and therefore assuring the
existence of the solution in the same pool of the previous iterations. Under that
assumption one would expect that the system evolves without failure for a fairly
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Zero find
N ‘ evo ‘ idx ‘ bisect zbrak | Col 4 + Col 5
500 99 | 8.3 45.8 33.6 80.2
1000 | 13.9 | 10.2 | 30.4 40.4 72.1
2000 | 8.2 | 85 23.0 55.9 79.8
4000 | 174 | 4.7 10.2 64.1 74.9
8000 | 10.6 | 2.7 6.0 77.1 83.6

Table A.1: Profiling information of the algorithm described at the beginning of
this appendix, with M = N/10 and zp = 1. The values in the table correspond
to the percentage of total time spent in each one of the routines in the algorithm
(evo = update of the network, idz = sorting of the potentials, bisect = bisection
of the bracketed solution, zbrak = bracketing of the solution).

smart choice of parameters. Unfortunately when dealing with inhibitory networks,
due to the high irregularity in the firing, and the fact that the inhibitory feedback
may push out the membrane potentials far from the threshold in a single iteration,
the assumption of the unchanged list is not always true and a reorganization of
the membrane potentials is required at each step.

Also in Algorithm 1, bracketing and bisection methods are simplified with a
Newton-Rapson (NR) routine, leading to better performances respect to those
obtained with the routines that we have chosen. It can be seen, indeed from
the profiling information in Table A.1 that most of the running time is spent
in the zero-finding routines (between 70% and 80%). However, the assumption
underlying the selection of a NR routine in Algorithm 1 relies on the fact that
for current driven networks (purely excitatory) the prototypical shape of function
f(7) is much simpler than the inhibitory counter-part, as depicted in Fig. A.1b).
As seen in this picture a single zero-cross of the function exists for a large range of
parameters, meaning that the real solution is guaranteed to be found at any time
in some (small) bounded region with no ambiguity. Conversely, for a fluctuation
driven network (inhibitory) the panorama changes drastically as seen in Fig. A.1
c¢). In such a case a whole different collection of scenarios may appear depending
on the values of the parameters: i) single solution at small 7 (black symbols),
ii) single solution at large 7 (blue symbols) iii) multiple solutions solutions close
to each other (red symbols). Each one these scenarios justifies the use of rather
different (and slower) zero-finding routines.

In figure A.2 a) we show the performance of Algorithm 1, compared with the
Algorithm 2, for a given set of parameters and different sizes of the network. All the
tests were performed on an AMD Opteron 6164HE server with 24 Cores running
at 1700 MHz.

Parallelization of the algorithm

A further improvement can be obtained by parallelizing the algorithm. The event
driven map for the case of a-pulse coupled system can be parallelized through T
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Figure A.2: Comparison of performance of Algorithm 1 (dashed line) and Algo-
rithm 2 (solid line) for several values of N; inset: speed up factor (s.u) calculated
as the running time of Algorithm 2 divided by the time of Algorithm 1. b) Perfor-
mance of the parallelized version of Algorithm 2 for several number of processors;
inset: the speed up is obtained by dividing the time taken by the serial code di-
vided by the time taken by the parallelized version. In both figures the system is
evolved for 10° spikes using the following parameters: K = 20, o = 9, g = 0.3,
a = 1.5. The times of simulation for the Algorithm 2 is considered after perform-
ing the training section, which is assumed to take much less time respect to the
actual simulation time.

tasks (processes or threads) by assigning to each task a subset n = N/T of neurons
to perform computations.

P1 Each task sorts n neurons in descending order.

P2 Each task seeks in a small pool M*" << n the shortest firing time solution
form its own subset.

P3 Each task communicates the partial solutions 7,/ and the corresponding neu-
ron m” to a master task Ty that chooses the minimum among the partial
results.

P4 Master task Ty sends the final 7,,, and the corresponding m to all the other
tasks.

P5 Each task is updated independently and returns a signal of success / fail to
the master task Tp and waits for a go (repeat) signal.

P6 Master task checks if any fail and communicates a repeat signal to the other
tasks, otherwise communicate a go signal.

P7 Each task checks if there is a repeat signal, if so all tasks retrieve the past
state and repeats the algorithm form step (1) with M ~ O(n), 5x zp divided
in a larger number of sub-intervals 10 x n.

P8 Each task repeats algorithm from step P1.
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The algorithm outlined above is general for any paralleling method. One could
choose to apply it on an OpenMP framework (shared memory paradigm, in which
case the tasks are threads) or with MPI libraries (distributed memory paradigm,
where each task is an indeed independent process) [157]. In figure A.2 b) it is
shown the performance of the parallel algorithm for several number of tasks.
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