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Abstract

Questa Tesi di Laurea si colloca nell’ambito degli studi di sistemi complessi realizzati con

metodologie proprie della meccanica statistica e dei sistemi nonlineari. Il cervello ed i circuiti neu-

rali, rappresentano un esempio paradigmatico di sistemi complessi, caratterizzato da dinamiche

interagenti su scale diverse. In questo contesto abbiamo analizzato dei modelli di circuiti neurali

che controllano il movimento delle vibrisse nei ratti.

I sistemi complessi sono dei sistemi composti da molti elementi interagenti, il cui compor-

tamento collettivo non si può ridurre alla semplice somma dei comportamenti individuali. Una

tematica attuale di estremo interesse per la fisica teorica e la meccanica statistica, è rappre-

sentata dalla comprensione dei meccanismi che portano all’emergere di dinamiche collettive non

banali in reti composte da elementi la cui evoluzione è estremamente semplice, come ad esempio

degli oscillatori periodici. In questo ambito negli ultimi anni sono emerse tecniche che perme-

ttono di riscrivere in modo esatto nel limite termodinamico la dinamica macroscopica di una

rete composta da N oscillatori di fase in termini di poche variabili (due) [54]. Questa tecnica

innovativa è stata recentemente estesa a reti neurali ove i singoli neuroni sono rappresentati da

modelli semplificati, ma che catturano gli aspetti salienti della dinamica neurale, quali i modelli

Quadratic Integrate-and-Fire (QIF)[46]. In particolare, Montbriò, Pazò e Roxin sono stati capaci

di riscrivere la dinamica della rete in termini di variabili macroscopiche che hanno una rilevanza

biologica per il sistema: il valor medio del potenziale di membrana dei neuroni e la frequenza

media di emissione dei potenziali d’azione.

Applicheremo queste innovative tecniche di campo medio per sviluppare un modello real-

istico per spiegare la generazione di ritmi periodici delle vibrisse dei ratti. In particolare, ci

concentreremo sullo studio della dinamica del vIRt (vibrissae intermediate reticular formation)

nucleus, un circuito neurale composto prevalentemente da neuroni inibitori, che risulta fonda-

mentale per la generazione del ritmo di oscillazione delle vibrisse [17]. Più specificatamente il

circuito vIRT è controllato dal Pre-Bötzinger Complex (preBötC), un circuito neurale deputato

alla generazione dei movimenti di inalazione, che tende a sincronizzare i moti delle vibrisse a

quelli della respirazione inviando segnali inbitori al vIRt nucleus. A sua volta, il vIRt nucleus

innerva i motoneuroni del facial nucleus (FN) che regolano l’attività della muscolatura intrinseca

delle vibrisse. Seguendo un modello proposto recentemente da D. Golomb [31], in questa tesi

ci poniamo l’obiettivo di modellizzare due popolazioni neurali interne al vIRt. A questo scopo



consideriamo una rete neurale composta da due popolazioni di neuroni con accoppiamento in-

ibitorio e che presentano aspetti biologici rilevanti, quali sinapsi con tempo finito di trasmisisone

e adattabilità in frequenza dovuta all’affaticamento dei neuroni [28]. Per far ciò estendiamo

modelli di campo medio con adattabilità; sviluppati per una singola popolazione eccitatoria [28].

In una prima parte delle tesi abbiamo analizzato le dinamiche collettive emergenti in questa rete

modello del vIRT nucleus al variare dei caratteristici del sistema, mentre successivamente abbi-

amo tenuto conto dell’effetto di controllo del preBötC nel generare i ritmi delle vibrisse. L’analisi

delle dinamiche collettive mostrate da due rete neurali inibitorie con adattabilità e scale di tempo

sinaptiche oggetto della Tesi è originale e mai riportata in letteratura. I risultati salienti da noi

trovati sono i seguenti. Nonostante le due popolazioni neurali siano identiche abbiamo osser-

vato rotture di simmetrie nella evoluzione macroscopica delle reti in questione sia nel caso di

dinamiche asincrone che di oscillazioni collettive. Si osservano inoltre oscillazioni collettive in

anti-fase dovute alla adattabilità ove il picco di attivita di una delle due popolazioni corrisponde

al momento in cui l’altra popolazione è silente, questo in accordo con l’ipotesi che i due gruppi

neuronali presenti nel vIRt sarebbero deputati rispettivamente alla ritrazione e protrazione delle

vibrisse. Abbiamo inoltre identificato dei regimi dinamici in cui si manifesta il fenomeno del

Cross-Frequency Coupling fra ritmi neurali ed in particolare abbiamo messo in evidenza un ac-

coppiamento tra le frequenze θ − γ, osservato in molte parti del cervello e fondamentale per

funzioni neurali quali la percezione, la memoria e l’attenzione [7]. Questo lavoro di Tesi è parte

di un percorso finalizzato a descrivere un particolare fenomeno biologico, ma le tecniche utilizzate

e i modelli studiati sono di interesse generale per la modellizzazione fisica di sistemi complessi a

livello di campo medio.
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Introduction

The science of complexity represents a new and extremely interdisciplinary research field. Until

now, many definitions have been proposed, but none of them has been univocally accepted by the

researchers. However, one thing on which the scientists commonly agree is that complex systems

are systems made up by many interacting elements whose collective behaviour turns out to be

different from the sum of the individual behaviours [50]. At the beginning, the concept of com-

plex systems was associated to the time evolution of systems made up by elements with highly

non-linear dynamics. Typical examples of this are given by spatio-temporal chaos or pattern

formation in spatially extended systems [26]. In the last decade, the interest of researchers has

shifted towards an even more intriguing topic: the emergence of non-trivial collective dynamics

in networks composed by elements whose evolution is extremely simple, such as periodic oscilla-

tors. Indeed the interaction of these oscillators can give rise to non trivial macroscopic dynamics

ranging from periodic, to quasi-periodic and even chaotic ones [52, 53, 44, 49]. A relevant goal

for applied mathematics, nonlinear dynamics and statistical mechanics is the understanding of

the mechanisms that lead to the emergence of these collective behaviors in complex networks

made up of simple units. An interesting example from a physical point of view is represented by

networks of phase oscillators, since these models have been used in many biological frameworks

in order to explain synchronization processes [66]. In particular, we are interested in exploring

the synchronization between neuronal rhythms emerging in several areas of the brain. It goes

without saying that network organization of the brain is complex at almost every scale, from

small neuronal circuits to large scale networks, where the single neurons represent the fundamen-

tal units. In this thesis we will focus on the dynamics of complex neuronal networks, where each

individual neuron is modelled as a phase oscillator. In particular we will focus on the so-called

Quadratic Integrate-and-Fire (QIF) model, which is widely used in neuroscience due to its sim-

plicity, but at the same time it is able to capture the essential elements of neuronal dynamics
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[23]. In particular, networks of QIF neurons have been employed to study working memory

and collective coupled oscillations emerging in the auditory cortex [20, 40, 67]. Until now, the

analysis of complex neural network has been mainly addressed through numerical simulations,

with limitations imposed by computing resources on the maximum number of neurons in the

network. As an alternate solution, effective mean field theories for the neuronal dynamics at

the level of populations have been proposed: the so-called neural mass models [16]. The neural

mass models which reproduce the mean dynamics in terms of macroscopic variables, such as the

average activity of the population (the so-called average firing rate) or the average value of neu-

ronal membrane potentials, and the equations that bind these quantities are generally derived

in a phenomenological way [73, 72]. Various models based on these principles have been used to

find a mathematical description of visual hallucinations, motor perception and even mechanisms

for short-term memory [14], and in particular for studying neural oscillations and EEG rhythms

[68]. The models that we consider in this thesis belongs to a new generation of neural mass mod-

els, where the mean field equations are derived exactly starting from the microscopic evolution

equation for the neural population made up by QIF neurons with instantaneous synapses [42].

This innovative approach is based on recent results of statistical physics, which have shown the

possibility of deriving exact macroscopic models for coupled phase oscillator networks [54, 55, 63].

These exact reduction techniques are based on the so-called Ott-Antonsen ansatz, published in

2008, which was the starting point for hundreds of new studies of collective dynamics in complex

networks [54]. The exact reduction procedure allows us to reproduce the collective evolution of

a single population of QIF neurons in terms of two collective variables, which can represent the

synchronization level in the population (its phase and amplitude) or, alternatively, the firing rate

and the mean membrane potential of the neural population. In this thesis we extend the results

obtained until now for QIF neural networks, to more realistic synaptic transmission and phys-

iological effects. We therefore include two new synaptic time scales, which are related to finite

time post-synaptic transmission (specifically, we assumed exponentially decaying post-synaptic

potentials) and frequency adaptation, a phenomenon due to the neuronal fatigue [40]. We study

in detail the collective dynamics which emerge from the coupling of two inhibitory neuronal

populations with adaptation and exponentially decaying synapses, with the specific purpose to

find a model that could explain the generation of the rhythms that drives the whisking activity

in rodents. The idea of studying this system to investigate the whisking rhythmogenesis was

given by the seminar theory and modeling of whisking rhythm generation proposed by Prof. D.

Golomb [31]. We have extendend his findings by using the QIF model for the microscopic evo-
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lution of single neurons, which allows us to perform the exact reduction in the thermodynamic

limit, through the Ott-Antonsen ansatz.

Moreover, we discovered that adaptation with two interacting populations is a mechanism

by which Cross-Frequency Coupling (CFC) can occur. CFCs are defined as the phenomenon of

interaction between oscillations at different frequency bands, and it is particularly significant in

neuroscience [10, 69] because it has been widely observed in human and animal brain (especially

in cortical regions) in various tasks such as perception, memory and attention [7]. A link between

adaptation and CFC has not been discussed in literature as of now.

In more detail, the thesis has the following structure. The first chapter is devoted to a short

introduction to basic concepts on neurophysiology. In particular we give a schematic description

of the neuron, of synapses and of the cell membrane structure. Afterwards, we discuss the

phenomenology of neural dynamics, characterized by the production of action potentials (also

known as pulses or spikes), in terms of the ionic currents passing through the cell membrane

of neurons. Further, we will introduce the concept of Spike-Frequency Adaptation (SFA), a

common physiological process that we include in our model, and we give a brief overview on the

rat Whisker-mediated touch system, together with a circuit model at the end of the chapter.

The second chapter is focused on the description of the QIF model, which, despite its formal

simplicity, is able to capture all the main elements of neuronal dynamics. The QIF model is the

single neuron model employed for this thesis because it allows for fast numerical integrations and

it is amenable of an exact mean-field description, thus being particularly useful for large scale

simulations. We report details on the QIF neuron dynamics (with and without adaptation) and

we characterize the single neuron transition from quiescent state to tonic emission of spike trains.

Furthermore, we show how we can move from a microscopic description of QIF population with

instantaneous synapses, corresponding to a system with N degrees of freedom, to an exact neural

mass model having only two degrees of freedom by using the Ott-Antonsen ansatz [54]. After

this, we will generalize the approach reported in [46] to QIF neural network with exponentially

decaying synapses and adaptation.

In the third chapter we report results previously presented in literature. We study in detail

the collective dynamics of single population network in the case of instantaneous synapses, expo-

nentially decaying synapses and, finally, both exponentially decaying synapses and adaptation.

We use bifurcation theory to define the parameters’ range in which the system exhibits inter-

esting behaviour such as collective oscillations, therefore indicating that stable collectively firing

regimes are possible and we check whether the adaptation effects are biologically reasonable or
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not.

In chapter four and five we present our original results. In chapter four we focus on a system

made up by two identical population of inhibitory neurons with exponentially decaying synapses.

We extensively study the dynamics of the system with numerical methods (MATCONT and

symmetry analysis), discovering peculiar dynamical regimes in which the two populations have a

distinct evolution despite being formally identical. Furthermore, we confirm that inhibitory self

and cross coupling do not cease collective oscillating behaviours. Afterwards we introduce the

effects of the pre-Bötzinger complex [1] through an external inhibitory oscillating forcing. We

therefore study the phase locking between the two populations, in order to evaluate the forcing

influence on both neuronal populations.

Finally, in the fifth chapter, we move to a network of two identical inhibitory populations

with exponentially decaying synapses and adaptation. We see that this system show antiphase

oscillations, which could represent a physical situation in which two subpopulations collectively

fire in an alternating pattern. We also find various bistability regions, where two different

oscillating dynamics can coexist. Finally we show how a model built up in this way is capable of

exhibiting θ − γ Cross-Frequency Coupling, an important phenomenon in neuroscience [10, 69].

In the conclusion we will shortly summarize the main results that we obtained during the thesis

and we will present ideas for subsequent projects and possible future perspectives. In appendix

A we will give a short introduction to bifurcation theory, describing the main bifurcations that

we met during the analysis of our system. Appendix B will be devoted to a concise explanation

of the ideas underlying transverse and longitudinal symmetry breaking in a system with two

identical neuron populations [58]. Finally, in appendix C, we will shortly describe the numerical

methods used in order to compute the power spectra and an alternative procedure to compute

the phase-locking for a narrow-banded signal, by using the Hilbert transform.
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Chapter 1

Neurophysiology

Neurons are highly specialized cells that underlie the function of the Nervous System and are

capable of quickly propagating electrical signals over long distances. Pulses generated from

neurons upon external stimuli travel along long output poles (called axons) and allow for the

transmission of information towards other neurons. In this chapter we introduce some basic

concepts related to the neurophysiology of these peculiar cells, starting from their morphology.

Noteworthy components of the neuron are the dendrites, which receive input signals coming

from other neurons, and the axon, whose function is the transmission of the output signal to

other cells. While the branched out structure of dendrites allows a single cell to receive signals

from many other neurons through synaptic connections, the axon can reach distant regions

of the brain or even send a signal across the entire spinal column. The signal travels over

long distances through an action potential that represents the fundamental element of exchange

between neurons. Thanks to the myelinic sheets surrounding the axons, the signal can travel

without significant attenuation.

In the next paragraphs we will give a short description of neuron structure and synapses

and we will present some details on the cell membrane both at rest and in active conditions,

with specific focus on its electrical properties. We will also present an overview on physiological

aspects of the neuron and we will study the process that leads to the emission of action potentials,

focusing on the dynamics of ionic currents crossing the cell membrane.
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1.1. Neurons

Brain information coding occurs through the exchange of electric signals caused by potential

differences associated with ionic electric currents that cross the neuronal cell membrane (the

most relevant ions are Na+, K+, Ca+ and Cl−). The number of neurons is extremely high and

the connectivity network can bring forth complex topologies, as we can see in Fig. 1.1.1. As an

example, in mammals’ cerebral cortex one can find densities as high as 104 neurons/mm3. Even

though a wide variety of neuronal cells exists (Fig. 1.1.1), we can identify three morphologically

and functionally distinct regions: the cellular body or soma, dendrites and axons. The cellular

body is a compact structure with an approximately spherical shape (its diameter is around 70

µm) whose role is to process information. Dendrites are extensions of the cellular body. They

exhibit a strongly branched out structure that can extend for up to one millimeter. Their function

is to collect signals coming from other neurons and sending them to the soma afterwards. Axons

are long, slender projections of the nerve cells and they can reach over one meter in length (for

neuromotors in some kind of animals). They transmit the signal generated in the central region

of the cell to the dendrites of another cell. Borrowing the terminology of electronic circuits

one can say that dendrites represent the input device, the axons the output device and the

soma the center of information processing. The particular morphology of a neuron as well as its

location can give us some insight on the specific function executed. As an example, the amount

of branching of dendritic structure can tell us how many connections a neuron can establish with

other cells.
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Figure 1.1.1: On the left: neurons from mammals’ brain cortex as seen through a microscope. One can

see that cell bodies can have triangular and circular shape. The cell labeled as ”b” is a

classical example of pyramidal cell with triangular body[8]. On the right: various neuron

shapes and sizes[36].

1.2. Neuronal signals and the Action Potential

We define as ”membrane potential” the potential difference measured across two electrodes,

respectively located inside the neuronal cell and in the surrounding extracellular fluid. When

talking about neuronal signal we refer to variations in time and space of the membrane potential.

We say that a neuron is at rest when it isn’t excited by some external input. In such conditions

the membrane potential takes a constant value named resting potential, typically around −65mV.

This means that the inside of the cell has a lower potential with respect to the outside.

Action potentials are pulses of large voltage variation generated during the neuronal dynamics.

Their shape is stereotyped and they do not suffer from signal attenuation or distortion along the

axon. In Fig. 1.2.1 we show the typical form of an action potential in time.
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Figure 1.2.1: On the left: typical shape of an Action potential [30]. On the right. First measurement of

an action potential across a squid giant axon, made by Hodking and Huxley in 1939 [33].

We highlight the following features:

• The voltage pulse lasts around 1 − 2 ms and its amplitude, as measured between the

maximum and the minimum potential values ∆V during this short period of time, are

around 100− 120 mV

• At the beginning of the pulse we see a phase of rapidly increasing membrane potential that

we call depolarization, when it reaches a positive value.

• During the decay of the pulse, before reaching its rest value, the membrane potential goes

through a phase called hyperpolarization significatively slower than depolarization (around

10 ms). In this period the membrane potential is slightly lower than the resting potential.

Once it has been generated inside the neuronal cell, the action potential travels along the axons

and the signal is transmitted to other neurons. Information is conveyed through a temporal

sequence of action potentials to which we refer to as spike− train.

1.3. Synapses

The synapse represents the junction between two neurons, that is the structure through which

information is transferred from a brain cell to another. According to such picture, we define

as presynaptic neuron the cell that transmits the action potential and postsynaptic neuron

the one that receives the aforementioned signal. We can therefore identify the synapses with the
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regions where the axon of the presynaptic neuron interacts with the dendrites of the postsynaptic

neuron. Moreover, we introduce the postsynaptic potential (PSP ), which is the voltage response

of the postsynaptic neuron after the arrival of the action potential coming from the presynaptic

neuron.

There exist two different kinds of synapses: Chemical synapses and electrical synapses. Chem-

ical synapses (schematically represented in Fig. 1.3.1), which account for the majority of verte-

brates’ synapses, work as follows: After reaching the far end of the axon, the action potential

generated by the presynaptic neuron locally depolarizes the cell membrane inducing release of

peculiar chemical substances called neurotransmitters. These molecules get released by spe-

cific biological structures called synaptic vesicles into the space located between the presynap-

tic and the postsynaptic cell, known as the synaptic cleft. Once it reaches the postsynaptic

dendrites, the neurotransmitter binds to the postsynaptic cell thanks to specialized molecules

(Chemoreceptors) located on the postsynaptic membrane. These are responsible for opening

specific channels through which ionic currents flows from the extracellular fluid to the inside of

the cell. The presence of these ions causes a variation of the postsynaptic membrane potential

that can be processed by the cell body of the postsynaptic neuron.

Figure 1.3.1: Typical example of chemical synapse: neurotransmitters are released by the presynaptic

axonal terminal as a response to depolarization [51].

Therefore in chemical synapses the electrical signal generates a chemical signal on the presy-

naptic membrane. This is in turn converted into an electrical signal afterwards. Instead, in

electrical synapses the coupling between two neurons occurs through highly specialized ionic
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channels (known as gap − junctions) which connect pre- and postsynaptic membranes. Hence,

electrical synapses allow for a direct current flow between neighbouring neurons. This results in

a faster signal transmission.

1.4. Neural dynamics

As we pointed out before, after the action potential, emitted by the presynaptic neuron, reaches

the location of the interaction between the two cells, the postsynaptic membrane potential varies.

Two distinct behaviours are observable according to the effect of the incoming pulse: the rest

potential of the postsynaptic neuron can increase or decrease. We refer to these two possibilities

respectively as excitatory postsynaptic potential (EPSP) and inhibitory postsynaptic potential

(IPSP). Analogously we make a distinction between excitatory and inhibitory synapses and be-

tween depolarizing and hyperpolarizing stimuli. The amount of synaptic connections is strictly

connected to the specific function of the neuron. For instance, cortical neurons are linked to

thousands of other neurons from the cortex (from 3 · 103 up to 104). Most of the cells are excita-

tory (85 % ) while the rest are inhibitory. As an example, in Fig. 1.4.1 various EPSP amplitudes

are depicted, with a mean voltage difference of 0.5 mV.

Figure 1.4.1: A) Recording of 478 EPSP from pyramidal cells’ soma of rat visual cortex, in presence of

spontaneous neuronal activity. B) Peak height histogram of EPSP [62].

In Fig. 1.4.2 we see a schematic representation of the neuronal response dynamics due to the

arrival of pulses from presynaptic neurons.
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Figure 1.4.2: Schematic representation of neuronal dynamics [29].

(i) A postsynaptic neuron i receives pulses from two distinct presynaptic neurons j = 1, 2;ui(t)

and urest represent the membrane potential and the rest potential of neuron i respectively.

We define εi,j(t− t(f)
j ) as the postsynaptic potential measured at t = t

(f)
j , when the signal

coming from neuron j reaches neuron i.
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(ii) A pulse arriving from the other presynaptic neuron j = 2 at t = t
(f)
2 within an adequately

short amount of time, induces a second postsynaptic potential which adds up to the first.

In these conditions the postsynaptic neuron has a linear response to incoming inputs.

(iii) When ui(t) exceeds a typical value θ, known as Activation threshold, the neuron’s be-

haviour becomes highly non-linear. The resulting action potential has a stereotyped shape

with no specific dependence on the pulses it was caused by. For the entire duration of the

action potential, the neuron goes through a refractory period during which stimuli coming

from other neurons do not cause a significant response.

There is a distinction between Absolute and Relative refractoriness. The first one is a short

period of time (of around 2 ms) corresponding to the rise of the action potential during which a

new action potential cannot be generated. The latter is the subsequent stage of hyperpolarization

of the neuron during which there is a chance for the neuron to be once again excited, even though

it may prove quite hard to do so. Therefore the refractory period gives us an inferior bound on

the minimum time period between two distinct spikes.

1.5. Neuronal cell membrane

The cell membrane of a neuron (Fig. 1.5.1) is made up by specific biomolecules, mainly lipids and

proteins. The inside of the cell is separated by extracellular fluid through a lipid bilayer which

is around 6 nm thick. Some particular proteic molecules are embedded in this lipidic structure

and they usually cross the entire thickness of the membrane, thus connecting the inside with the

outside of the cell. These molecules have a wide variety of names such as membrane channels

or ionic channels.
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Figure 1.5.1: a) Neuron cell membrane structure; b) Ionic channel structure [51].

The cell membrane can be crossed by substances in both directions through different mech-

anisms. Some kind of biomolecules (alcohol and glycerol) cross the membrane by dissolving in

the lipid bilayer and re-emerging from the other side. In such situations the penetration can be

less or more difficult according to their level of solubility in lipids. As we said before, inorganic

ions (sodium, potassium, calcium and chlorine) make up the ionic currents responsible for the

neuronal electric activity. These ions move through the membrane by hooking up to specific

molecules, called transport molecules, capable of driving them through the proteic channels.

These channels are the main ionic transport system employed during the action potential gener-

ation, as the ion fluxes involved (around 106 ions/s) overcome the handling transport molecules.

One can identify the following elements inside of the structure of proteic channels:

• A central tunnel filled up with an aqueous solution.

• A region of this tunnel acting as a selective filter that handles the access of ions according

to their physical and chemical features.

• A gating system, which stochastically opens and closes, allowing the channel to oscillate

between “closed” and “open” states. Most gates are closed when the membrane potential

is at its resting value, but that’s not a general rule as some gates are actually needed for

maintaining the membrane potential at a constant value.
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1.6. Ionic channels and ionic currents

Ionic channels are said to be activated or deactivated respectively when the channel is in an open

or closed state. Since we are talking about a stochastic process, those two states correspond to

high or low probability of finding the gate open or closed instead of a continuous and constant

condition (see Fig. 1.6.1). There is a wide variety of activation (i.e. opening) mechanisms of a

channel. We define “voltage activated channels” those channels whose states can be adjusted

to a specific value of the membrane potential. For instance, voltage-dependant sodium channels

belong to this class and they have a key role on the membrane depolarization that leads to the

rise of action potentials.

Figure 1.6.1: Example of channel current. Such current is made up by a sequence of approximately

square pulses whose emission is related to the state of the channels [15].

As far as ionic selectivity is concerned, we make a distinction between Cationic and Anionic

channels whether they are permeable to positive or negative ions. Permeability to a ionic species

(denoted as p) is an instrinsic property of the membrane which tells us how easily the ions pass

through the membrane itself. We define it through the following empirical relation [39]:

J = −p∆[C], (1.6.0.1)

Where J is the molar flux (measured as mol/(cm2 · s) and ∆[C] represents the difference in

ionic concentration on both sides of the membrane (measured as mol/cm3). p has the physical

dimension of speed and it is usually given in cm/s. Membrane permeability therefore depends

only on the type of ionic channels and how many of them are there. The channels can, however,

be more or less specialized for a single ionic species. Chlorine channels amount for most of the

anionic channels and that’s not a surprise since Cl− is the most common anion that we can find

in biological solutions.
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Conductance gives us a measure of the ability of a membrane to transport electrical current

and is usually measured in Siemens, with 1S = 1Ω−1. Since current is transported by ions, con-

ductance of a membrane won’t depend only on the membrane’s properties (i.e. its permeability)

but on the concentration of the ionic species inside and outside as well (which represents the

number of free charge carriers). However it’s not easy to find a general mathematical relation

between permeability and conductance since such dependence changes according to how the ion

travels across the channel. In general the current passing through an ionic channel depends on

[51, 37]:

• The conductance of the channel

• The concentration gradient between inside and outside of the cell. This tends to produce

a flux of ions directed towards the region where the concentration is lower according to an

empirical law attributed to Fick [37]:

Jdiff = −Dd[C]

dx
, (1.6.0.2)

where Jdiff is the flux due to diffusion (measured in ions/(cm2 · s), D represents the

diffusion coefficient (measured in cm2/s) and [C] is the ionic concentration.

• The difference in electrical potential across the membrane.

1.7. Passive electrical properties of the membrane

From the point of view of electrical circuitry, one can build up a simple representation of a

section of the membrane at rest condition with a resistence (Rm), a capacity (Cm) and a voltage

source V with the same voltage as the rest potential. (see Fig. 1.7.1 and Fig. 1.7.2) This

is legitimate as the nerve membrane response to current changes in rest condition does not

significatively deviate from that of simple electronic components, whose behaviour is well known

both theoretically and empirically. A resistence needs to be included in this picture because of

the ionic channels that connect inside and outside of the cell. In order to describe this property

we usually define a specific membrane resistence rm, which is the resistence per unit of the

membrane surface area. (rm varies between 103 Ω · cm2 and 5 ·104 Ω · cm2). This depends on the

number of ionic channels on the membrane. In addition to that, charges can stack up on both

surfaces. This has the effect to generate the membrane resting potential, from which we define

a specific membrane capacitance cm, a capacitance per unit area, typically around 1µF/cm2.
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One can then easily exploit the general capacitance definition qm = cmV to find the charge per

unit area on the membrane, since we know both the rest potential (−65mV ) and the specific

membrane capacitance. We get that qm ≈ 6.51 · 10−8 C/cm2, which means that the mean value

of ions on a square centimeter of nerve fiber in rest conditions is around 4 · 1011. Despite these

useful results, we cannot apply this circuitry picture for non-linear or active neuron behaviour

(such as voltage-dependant conductance).

Figure 1.7.1: Electrical representation of a region of the neuron cell membrane. Eriposo is the resting

potential [39].
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Figure 1.7.2: Equivalent circuit of the entire cell membrane. Rm and Cm respectively stand for the

parallel equivalent of all the resistances and the capacitances. Eriposo is the rest potential

while Iin represents a generic external current [39].

1.8. Spike-Frequency adaptation

We have explained how an action potential is generated and how information is carried through

a sequence of repeated action potential known as spike train. We now want to introduce a

widespread phenomenon, exhibited by various kind of neurons both in vertebrates and invertre-

brates, called spike − frequency adaptation. This term covers a variety of physiological mech-

anisms by which the output frequency of spike trains in a neuron decreases upon a continuous

input stimulus (see Fig. 1.8.1 for an example). This means that the period between the emission

of two different action potentials does not depend only on the input stimulus itself, but on other

physiological processes as well.
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Figure 1.8.1: Simulation of an integrate-and-fire neuron with a simple spike-dependent adaptation mech-

anism. When stimulated with a square pulse (A), the neuron fires with a frequency that

reduces over time (B, E), due to a hyperpolarizing current (C). This can be quantified by

looking at the inter-spike interval (coloured lines in B) or frequency (D) as a function of

the spike number (D and E).[32]

Most mechanisms leading to Spike-frequency adaptation involve some form of slow negative

feedback affecting the excitability of the cell. For instance:

• Ionic channels responsible for action potential generation go through a period of inactivation

after which they need to recover, which may take some time. This has the effect that after

a spike, less ionic channels are available for generating a new action potential. This leads

to a longer period between two consecutive spikes (lower frequency).

• An action potential can be generated even below the spike threshold by specific currents

that are activated upon depolarization (e.g. potassium currents)

Spike-frequency adaptation can have noticeable effect on the spiking behaviour of the neuron,

having thus various dynamical and functional consequences. In Chapter 3 and Chapter 4 we

will explore the effects of this physiological process on the dynamics of systems made up by

interacting neurons.
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1.9. Rat physiology: The whisker-mediated touch system

In this section we explore the rodent whisker-mediated touch system as it will be the main

object of study and modeling of this thesis. The whisker-mediated touch system is a structurally

well-established and organized model system which gives rise to complex behaviours despite its

structural simplicity.

From a functional point of view, rodents rely on their whisker-mediated touch system to collect

information about their surrounding environment (localizing and tracking objects) through a

rhythmic orofacial motor activity known as whisking. In particular, whisking is a rhythmic

cyclic vibrissae sweeping action, consisting of repetitive forward (protraction) and backward

(retraction) movement.

Figure 1.9.1: On the left: black and white snapshot of rat whisking during exploration. (a): front

view, (b): vertical view. [Recorded in 2007 by the Active Touch Laboratory at Sheffield

(ATL@S)]. One the right: close-up picture of rat snouts and whiskers.

Rat vibrissae, or whiskers, form a grid layout on both sides of the rat snout on the mystacial

pad Fig. 1.9.1. The peculiar feature of the vibrissae is that they contain dense nerve terminals

and sensory receptors. Vibrissae have the role of mechanical transducers, thus they mediate the

transferring of the touch signal into the sensory receptors. In general, vibrissae are classified

according to their physical shape and according to the morphologies and distributions of nerve

terminals and receptors around the vibrissa shaft. Due to this physiological traits vibrissae can

have various different functional roles and different sensitivity to a variety of tactile stimuli,
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making them a behaviourally efficient system.

It’s important to underline that the receptors are sensible to various whisking dynamical

parameters such as amplitude, frequency and duration of vibrissae oscillating cycles and that all

these receptors exhibit adaptation processes at different levels.

Whisking cycles have an average frequency of around 8 Hz [70] and usually a synchronization

between whisking respiration and other orofacial movements is observed, suggesting some kind of

coordination between these muscle groups. We can see two different pattern of whisking, known

as exploratory whisking (with a frequency range of 1 to 5 Hz) which usually lasts for 1 to 10

seconds, and a small-amplitude high-frequency pattern (ranging from 15 to 25 Hz) for a period

of 0.5 to 1 second.

Movements of vibrissae and follicles are controlled by facial motor nerves. On the basis of

anatomical observations [21], it has been concluded that mystacial pad muscles move the whiskers

forward (protraction), whereas backward motion (retraction) is a result of both the elastic prop-

erties of the facial tissue and of an active muscular control [4].

Whisking is controlled by a neuronal oscillator located in the vibrissa-related region of interme-

diate reticular formation of the medulla (vIRt). This region includes facial premotor neurons

and another kind of neurons with a spiking activity which is either in phase or in anti-phase

with whisking protraction. After various anatomical experiments [17], it’s been suggested that

rhythmic whisking is driven by inhibitory neuronal processes. Furthermore, the rhythms of mus-

cles that protract individual whisker and move the mystacial pad are phase-locked during rapid

rhythmic breathing cycles known as sniffing. An important contribution to this rhythm for-

mation is given by pre-Bötzinger complex (pre-BötC), the inspiratory oscillator for respiration.

Pre-BötC has unidirectional inhibitory connections to the vIRt, thus suggesting its role in the

phase locking and in the mystacial pad control.
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Figure 1.9.2: Layout of the whisker sensory pathway. On the left side we see the follicle containing

nerve termination of the trigeminal ganglion, thus enabling high sensibility to whisking

movements. on the right we see the path from whiskers to the barrel cortex area, the

somatotopical representation area of the vibrissae in the somatosensory cortex [19]

Trigeminal ganglion (also called semilunar ganglion) shown in Fig. 1.9.2 consists of the cell

bodies of pseudo-unipolar neurons with their proximal axons innervating the ipsilateral brain-

stem trigeminal complex (BTC) and their distal axons which innervate the vibrissae follices.

As we said before, different trigeminal units have various tuning properties, being sensible to

amplitude, frequency, duration and direction of whisker motion. This is functionally relevant

as trigeminal ganglions have the fundamental role of transmitting information coming from the

outside (through vibrissae interaction with the environment) to other regions of the nervous sys-

tem.
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Figure 1.9.3: More detailed layout of the whisker pathway, from the mystacial pad to the cortical barrel

area, passing trough trigeminal ganglions and thalamic neuron nuclei [25]

The Brainstem trigeminal complex that we mentioned above is divided into the principal

sensory nucleus (PrV) and the spinal nucleus (SpV). The nuclei of trigeminal neurons receive

inputs from trigeminal ganglion cells and form aggregated neuron clusters called barrellettes,

which have the interesting feature to preserve the somatotopic organization of the whiskers on

the mystacial pad. Furthermore, we underline the fact that adaptation is a commonly observed

physiological effects among BTC units, with various time-scale for the adaptive process. Many

second order-neurons of brainstem trigeminal complex send information to thalamic units such as

the posterior thalamic nucleus (POm) or the intralaminar thalamic nuclei, as shown in Fig. 1.9.3,

where subsequent information processing occurs. A detailed description of the entire process of

information transmission from sensorial stimuli to neurons of the brain cortex and from neurons

to behaviour is out of the scope of this thesis. However, we have given a short overview of

important physiological and physical details of the whisking rhythm generation (in particular

information on inhibition, adaptation and interaction between different phase oscillators) which

will be our guiding light in subsequent modelling of this process.

1.10. Modeling of whisking rhythmogenesis

As we anticipated in the introduction, the goal of this thesis is to define the mechanism underlying

whisking rhythm generation and explain how the whisking rhythm is shaped by the breathing

rhythm.
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Figure 1.10.1: Circuit model of the whisking rhythmogenesis system. The two vIRt sub-populations re-

spectively are active during retraction (vIRtr) and during protraction (vIRtp). Pre-BötC

affects the vIRt sub-population associated with retraction with an inhibitory coupling

[17]. Jself represents the self-interaction of the vIRT sub-populations, while Jcross is the

mutual interaction between them. JPB is the strength of the inhibition of Pre-BötC on

vIRtr. η is a parameter which takes into account both the internal excitability of the

network and the average value of the external current and is identical for both popula-

tions. FN represent the Facial Nucleus neurons, which are the Motor neurons associated

with whisking.

As we seen before, there are evidences for the vIRT role in whisking rhythmogenesis.

1. Spiking of neurons in the vIRt is tightly locked to whisking (the vIRt neurons are pre motor

neurons, meaning that they are active during whisking). In addition to that, chemical or
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genetic lesions of the vIRt abolish whisking.

2. Furthermore, chemical activation of the vIRt induces whisking in anesthetized rats.

For these reasons, we can assume that the vIRt is necessary for rhythmogenesis and a regular

pattern can be obtained even without the Pre-BötC input. Therefore, we will focus on both

cases, with and without the forcing coming from the Pre-BötC.

There are also evidences [17] [47] [57] showing that:

• Pre-BötC regulation on vIRt is inhibitory

• There exist two sub-populations of neurons: vIRtr and vIRtp;

• vIRt neurons are mostly inhibitory (Hence the inhibitory self- and cross-coupling between

the two populations);

• Synaptic connections from vIRt to the Facial Nucleus are inhibitory

With these ideas in mind, we construct a model of the whisking rhythmogenesis circuit shown in

Fig. 1.10.1 and proposed by D.Golomb [31]. We use the QIF model for the single neuron dynam-

ics and we apply a recently developed macroscopic model [46] used to reduce the microscopic

dynamics to a simpler macroscopic description which could allow us to propose a mechanism for

rhythm generation in rats whisking.
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Chapter 2

QIF model and Firing Rate

equations

We have seen that neurons, of various types and morphologies, are connected in very complex

networks through chemical and electrical synapses. As with many other physical systems, the

complexity of the brain is such that one cannot simply study the brain or a portion of it with a

direct approach by taking into account every possible physical and biological variable affecting

the evolution of the system.

This is due to theoretical reasons as an extremely detailed description would increase the number

of parameters involved that need to be calibrated, thus making the state of the network very

sensible to small variations of the parameters (fine-tuning problem). Moreover, computational

problems may also show up because simulation of extremely complex networks becomes exces-

sively expensive in terms of calculations and machine power.

The practical consequence of such problem is that we need to find a description level that allows

us to capture the fundamental properties of a system while neglecting non-essential processes.

Since we are interested in studying collective phenomena of neural networks, it’s reasonable to

use a simplified model of the neuron at a microscopic level and then look for macroscopic effects

emerging from the interaction between a great number of simplified single neurons.

In neuroscience, formal spiking neuronal models are commonly used to perform theoretical anal-

ysis and computational simulations of large scale networks [43]. We will try to justify this

particular choice.

In formal spiking models we do not specifically want to reproduce the shape of the membrane
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potential in time. We assume that a neuron fires a pulse towards every neuron which it is con-

nected to when the membrane potential reaches a fixed value.

In this chapter we will introduce a specific formal spiking model known as the Quadratic

Integrate-and-fire (QIF ) model as it will be the main starting point for studying the neural pop-

ulations we are interested in. We will provide a detailed study of its dynamics and we will move

on to an exact neural mass macroscopic model which allows us to describe a complex infinite

network with a low number of differential equations.

2.1. Type I and II neurons

Even though we can find a wide variety of neurons with different dynamics, we can still classify

neurons into two general classes according to the response of the neuronal cells upon stimulation

by a constant current [34, 45]:

• Type I: Action potentials can be emitted with arbitrarily small frequency, based on the

intensity of the applied current.

• Type II: Action potential can only be emitted with a frequency above a certain value.

The resulting frequency weakly depends on the intensity of the applied current.

Experimental data comparing the two types of neurons are shown in Fig. 2.1.1. In the left column

of Fig. 2.1.1, we can see data related to a pyramidal neuron of layer 5 of the primary visual cortex

of the rat, which represents a type I neuron, while in the right column, as an example of type II

neurons, we find data related to a midbrain neuron of the rat. Usually, type I neurons fire with

a frequency that varies continuously, ranging from 2 Hz to 100 Hz, occasionally reaching even

higher values. In contrast, type II neurons’ frequency range is shorter and, more importantly, the

transition from quiescent state to the tonic state of periodic emission of action potential occurs

through a discontinuous jump.
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Figure 2.1.1: Comparison between a type I and a type II neurons belonging to a rat brain. Figure taken

from [45] and adapted.

These biological differences are at the basis of the main criteria by which we classify single-

neuron mathematical models. In general, for conductance-based models, as explained by Er-

mentrout and Rinzel [59], the transition from silent state to periodic oscillations typically occurs

through two different kinds of bifurcation corresponding to the two types of neurons (see appendix

for more information). For type II neurons, the transition occurs through a super-critical Hopf

bifurcation while for type I neurons it takes place through a Saddle−Node on invariant circle

bifurcation (known ad SNIC). In the following we focus on type I neurons, thus we now present

a short description of the SNIC bifurcation.

Given a dynamical system living in a phase space Γ and defined through d first-order differential

equations, a SNIC bifurcation can only take place in a space with two or more dimensions, as

shown in Fig. 2.1.2
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Figure 2.1.2: Illustration of the SNIC bifurcation. Figure taken from [45]

Before the bifurcation occurs, one can find three distinct equilibrium points: a stable node

(blue dot), an unstable saddle point (red dot), and an unstable focus (white dot). The unstable

manifold of the saddle point is formed by two heteroclinic trajectories emerging from the saddle

point which tend to reach the stable node after infinite time. These two trajectories form a

closed curve in the phase space that contains the unstable focus. The stable variety of the saddle

point represents the “threshold-manifold”. This means that given any initial condition on the

left of this point, the trajectory in the phase space will be attracted to this stable point, while

an initial condition to the right will be dragged around the entire loop before converging towards

the stable node.

Through this peculiar behaviour we are able to define the excitable state of the neuron. According

to this picture, the path followed by the trajectory around the repulsive focus corresponds to

the mechanism of action potential generation, while the short path can describe relaxation of

the neuron towards the resting state. It’s interesting to observe what happens at the exact

bifurcation value: the node and the saddle completely merge together so that the heteroclinic

orbit becomes a homoclinic orbit (i.e. an infinite loop). The dynamical behaviour of such system

is independent on the dimensionality of the system.

2.2. Quadratic Integrate-and-Fire model

In this section we will define the (QIF) model. It will be the single neuron model we are going to

use to study the dynamical behaviour of neural networks. The QIF model is a prototype of type

I neuron, since it reproduces its peculiar transition from quiescent state to periodic oscillations.
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Ermentrout and Kopell [23] have shown how to describe the behaviour of a system undergoing

a SNIC bifurcation via a single ordinary differential equation, when the bifurcation parameter is

close to its critical value:

θ̇(t) = [1− cos θ] + [1 + cos θ]I(t) (2.2.0.1)

This form is particularly useful because a SNIC bifurcation can occur in an arbitrarily high-

dimensional system; However, the dynamically relevant behaviour on an invariant cycle is uni-

dimensional thus making subsequent calculations much easier. Moreover, this equation is inde-

pendant from any other specific detail of the system.

Through Eq. (2.2.0.1) we define the so-called θ − model. θ is the main dynamical coordinate

which is related to membrane potential, while I(t) is a time varying parameter which stands for

a current being applied to the neuron. Both are non-dimensional real numbers.

In this representation neurons are seen as simple phase-oscillators described with an angular

coordinate. Since θ(t) only appears as a cosine argument, we can easily represent our system on

the (θ, θ̇) two-dimensional plane, with θ ∈ [0, 2π]. For simplicity, we take a constant and not

too large I. This allows us to consider three qualitatively distinct cases according to the sign

of I, as seen in Fig. 2.2.1. Since θ̇ = 0 corresponds to the fixed points of the system, for I > 0

we have an unstable equilibrium solution (θinst) near θ = 0 and a stable solution (θstab) near

θ = 2π. As discussed before, initial conditions such that θ0 > θinst will lead us across all the

circumference until we reach the stable equilibrium point. The rate of change of θ will have its

maximum at θ = π. Conversely, having θ0 < θinst will slowly bring the trajectory to the stable

solution moving on the opposite direction. Since θ represents a neuron’s membrane potential,

we can interpret θstab as the resting potential. θinst has the important role of fixing the thresh-

old value at which the action potential generation is triggered. In the formal spiking picture,

we assume that the neuron fires at a time t = tfire such that θ(tfire) = π. We stress that in

this model, firing is an entirely formal event which we arbitrarily define with the latter condition.
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Figure 2.2.1: SNIC of the θ−model. The three figures above show the curve in Eq. (2.2.0.1) for different

values of I and its intersections with the horizontal axis θ̇ = 0 Figure taken from [22] and

readjusted.

In Fig. 2.2.1 the three typical phases of the saddle node bifurcation are shown. For I < 0 we

see coexistence of stable and unstable equilibrium. These two distinct points merge when I = 0,

disappearing for any positive value of I.

When I > 0 the system keeps moving along the cycle, firing a train of periodic pulses. In order

to compute the frequency of such oscillating system, we can assume θ0 = 0 as initial condition.

Defining T as the time needed to move through the entire loop, one has that θ(T ) = 2π. T can

be expressed through the following integral relation:

T =

∫ 2π

0

dθ

cos θ(t) + [cos θ(t)]I(t)
(2.2.0.2)

Such integral can be exactly solved using the following transformation:

V = tan
θ

2
(2.2.0.3)

This transformation maps the angular variable θ ∈ [0, 2π] in V ∈ [−∞,+∞], thus changing

the integration boundaries accordingly. From this we obtain:

V̇ (t) = V 2(t) + I (2.2.0.4)
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Solving the integral leaves us with the following expression for the period:

T =
1√
I

[
arctan

V√
I

]
=

π√
I

(2.2.0.5)

Therefore in the Θ−model we observe an oscillating regime ∀I > 0 whose frequency increases

with the square root of the external current. It’s interesting to compare this simple analytical

expression with an empirical frequency-current relation for type I neurons. As shown in Fig. 2.1.1,

the experimental behaviour is well reproduced, adding further value to the θ −model [45].

This model is often called QIF model because of the quadratic term which turns out after the

transformation made in Eq. (2.2.0.4). Expressed in this coordinate system, the QIF model

provides a natural interpretation in terms of membrane potential of the neuron. We will now

explain this in further details.

Some solutions of Eq. (2.2.0.4) reach an infinite value in a finite time. From a mathematical

point of view, this is a geometric consequence of the coordinate transformation as seen through a

local point of view. Despite this, the equation is equivalent to Eq. (2.2.0.1), thus describing the

behaviour of a generic dynamical system near a SNIC bifurcation. To capture the essence of the

formal spiking picture, which occurs when the SNIC bifurcation takes place on an invariant cycle,

we include a peculiar boundary condition in the form of a reset rule: whenever the membrane

potential V reaches a threshold value Vth, the potential is reset to a specific Vreset value such

that Vreset < Vth. In the following we set Vth = +∞ and Vreset = −∞, so that the θ −model

and QIF −model are equivalent.

In the following section we will analytically compute the explicit solutions for V (t) at different

values of the external current. Due to the presence of the SNIC bifurcation, the three different

dynamical behaviours need to be treated separately as they will result in different solutions.

2.3. Analytical solutions of a QIF neuron

The system we are going to study is defined by the following equation:

V̇ (t) = V 2(t) + η. (2.3.0.1)

Note that we have renamed I with η for later convenience and we will stick to this notation from

now on. The behaviour of V̇ at different V for fixed I is shown in the phase plane (V, V̇ ) in

Fig. 2.3.1.
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Figure 2.3.1: Phase plan (V, V̇ ) of the QIF model. On the left η > 0, on the right η < 0. Figure taken

from [45].

2.3.1. Tonic neuron: η > 0

When η > 0 we have that V̇ > 0,∀t. Thus, given an initial condition (t0, V (t0)) we can obtain a

solution for t > t0 by solving the following integral:

∫ t

t0

V̇

V 2(t) + η
dt =

∫ t

t0

dt (2.3.1.1)

This leaves us with the following solution:

V (t) =
√
η tan

(
√
η(t− t0) + arctan

V (t0)
√
η

)
(2.3.1.2)

A plot of this solution is shown in Fig. 2.3.2.
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Figure 2.3.2: Dynamics of a tonic neuron. In red, the vertical asymptotes represent the firing times tfire

in which the neuron emits an action potential. Function graph of Eq. (2.3.1.2)

This expression makes sense as long as the argument of the tangent is less than π
2 since the

function is not continuous for such value. By making use of the reset rule we can analitically

extend the solution of Eq. (2.3.0.1) up to the time tfire such that the argument of the tangent

is exactly π
2 . tfire is given by:

tfire = t0 +
1
√
η

(
π

2
+ arctan

V (t0)
√
η

)
(2.3.1.3)

We assume that the neuron spikes at this precise moment, after which the value of its mem-

brane potential is instantly reset to Vreset:

• V(t−fire) = + ∞ −→ Emission of the action potential;

• V(t+fire) = - ∞ −→ Reset of membrane potential.

According to this rule, the subsequent dynamical behaviour will be determined by the following

initial condition: t0 = t+fire. We can now repeat the same procedure as before and integrate for

a time interval equal to π√
η until a new singularity is encountered, thus marking the emission of
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a new action potential. We can conclude that a QIF neuron with η > 0 periodically fires a pulse

at times tfires expressed as:

tfire =
1
√
η

(
π

2
+ arctan

V (t0)
√
η

)
± k π
√
η

k ∈ Z (2.3.1.4)

Once again, the frequency ν is proportional to the square root of the injected current:

ν =

√
η

π
(2.3.1.5)

2.3.2. Excitable neuron: η ≤ 0

When η ≤ 0 we proceed by separation of variables obtaining once again Eq. (2.3.1.1). However,

with a negative current there exist specific times at which V (t) = Vstab or V (t) = Vinstab because

the time derivative of the membrane potential vanishes. Therefore, we choose our initial condition

and integral boundaries such that the interval (t0, t1) does not include such constant solutions.

With this, we can proceed to study two distinct cases.

Sub-threshold dynamics: |V (t0)| ≤ √η.

In this case V (t0) is such that V̇ is negative, so the solution V (t) will be strictly monotonically

decreasing and will tend asymptotically towards the resting membrane potential value Vreset.

Solving the integral and keeping in mind that V (t0) > V (t), we obtain:

V (t) = −
√
|η| tanh

(√
|η|(t− t0) + arctanh

V (t0)√
|η|

)
(2.3.2.1)

The solution is plotted in Fig. 2.3.3
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Figure 2.3.3: Dynamics of an excitable neuron, sub-threshold dynamics. Trend of V (t) in Eq. (2.3.2.1).

In green, the value of the resting membrane potential Vrest = −√η.

We interpret this solution as a neuron that won’t emit any action potential.

Supra-threshold dynamics: |V (t0)| > √η:

We assume that |V (t0)| > √η, V (t0) lies in the right half of the positive values of the parabola

shown in Fig. 2.3.1. Starting once again from the integral, one can show that there exists a finite

time tf such that V (tf ) = +∞ expressed as:

tf = t0 +
1
√
η

arctanh

√
η

V (t0)
(2.3.2.2)

This means that, given the chosen initial conditions, the neuron will emit a single action potential

and then the membrane potential will be reset to −∞. Since this value is obviously lower than√
|η|, an isolated neuron won’t be able to emit a second action potential. The analytical solution

in this case, shown in Fig. 2.3.4, is:

V (t) = −
√
|η| cotanh

(√
|η|(t− t0)− arctanh

V (t0)√
|η|

)
(2.3.2.3)
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Figure 2.3.4: Dynamics of a supra-threshold neuron. In red, the vertical asymptotes represent the

firing time tfire in which the neuron emits a single action potential before the membrane

potential tends to Vrest. Function graph of Eq. (2.3.2.3)

2.4. QIF neuron with adaptability

We have seen that the QIF model is capable of reproducing the properties of a type I neuron with

an appropriate reset rule and an initial condition. However there are many other physiological

processes which affect the resulting neuronal dynamics. As we discussed in previous paragraphs,

Section 1.10, we want to include the effects of adaptation by introducing a new variable through

the addition of a second equation that, together with Eq. (2.3.0.1), describes the dynamics of

a type I neuron with adaptation. Such system can be defined through the following system of

36



differential equations:

V̇ = V 2 + η −A

Ȧ =
α− V
τ(V )

(2.4.0.1)

Along with the reset rule, which takes the following form:

V (t+fire) = Vreset if V (t−fire) = Vth

A(t+fire) = k′A(t−fire) + k′′ if V (t−fire) = Vth

(2.4.0.2)

The first equation is similar to Eq. (2.3.0.1) with a new additive term which tends to reduce

the derivative of the membrane potential, thus increasing the time needed to reach Vth. We

have introduced a new parameter α which defines the strength of the adaptation coupling to

the membrane potential. Furthermore, adaptation is described by a variable characteristic time

τ(V ) which depends on the voltage value V (t). In the following we assume τ(V ) = τ/V as it is

found to be a good approximation to the observed behaviour: for large value of the membrane

potential, the integration time of adaptation is progressively shorter and viceversa.

We then obtain:

Ȧ =
V (α− V )

τ
(2.4.0.3)

From a dynamical point of view, after the neuron fires according to our formal spiking picture,

the membrane potential is immediately reset to Vrest while the adaptability A is multiplied by a

constant k′ and increased by an amount k′′, thus allowing for cumulative adaptive effects in case

of a spike train. A time evolution simulation is shown in Fig. 2.4.1 in a regular spiking regime.
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Figure 2.4.1: Time evolution of the membrane potential (A) and the adaptive variable (B) in a regular

spiking regime. Chosen parameters are: η = 2, τ = 15, α = 1, Vrest = 1, Vth = 8 Figure

taken from [74] and adapted

2.5. Population model of fully-coupled QIF neurons

In this section we will discuss the fully coupled network model of QIF neurons with instantaneous

synapses. This means a physical system made up by N neurons where each component interacts

instantaneously and with all the other neurons. In order to define a neural network we need to

describe the coupling between single QIF neurons. We report a recently developed macroscopic

model [54] [46] used for reducing, under certain hypotheses, the detailed microscopic dynam-

ics described by a huge number of differential equations to a few equations for a macroscopic

description of the system.

A neural network is a graph whose nodes are made up of neurons and whose connections

are represented by synaptic processes of interaction between them. The coupling is described

through synaptic weights [39], which can be fixed or can change over time (this phenomenon is

known as synaptic plasticity and it depends on past conditions of both interacting neurons [38].

In the following, we will assume that the synaptic weights remains unchanged over time.)

The evolution equation for each node (neuron) in a neural network of N QIF neurons has the

following form:

V̇i(t) = V 2
i (t) + ηi + JS(t) + Ie(t), i = 1, ..., N. (2.5.0.1)
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We can interpret the terms of Eq. (2.5.0.1) as follows:

• The excitability ηi of the i-th QIF neuron is a constant parameter which takes into ac-

count everything that characterizes a specific neuron, including both internal and external

physiological features such as surface properties, gating processes, electrical activity of

surrounding neurons, chemical composition of extracellular liquid near the neuron, etc.

• The parameter J represents the synapticweight, which we assume identical for all synapses

of the network. According to the sign of J we define excitatory (J > 0) or inhibitory (J < 0)

We can define a completely excitatory or inhibitory network pulses if J is a global variable.

• S(t) is a variable that expresses the mean synaptic activation, i.e. a global function taking

into account the effective coupling between all the neurons in the network at a certain time

t. This field must be related to the past firing activity of the neurons. Considering that

t1, t2, ..., tM are the past instants of time when a neuron within the network emitted a

pulse, we can define a differential equation for the average synaptic field as follows:

τdṠ(t) + S(t) =
1

N

M∑
k=1

δ(t− tk), (2.5.0.2)

τd is the decay time of the synaptic field. Positive values of such constant mean an expo-

nential decay, while τd = 0 stands for an instantaneous decay (impulsive synapse).

According to this picture, every time a neuron emits a pulse, all the neurons in the net-

work immediately receive it. Moreover, this model includes self stimulation, meaning that

a neuron is influenced by its own pulses.

• Ie(t) is a time dependant function which stands for a possible external current applied

simultaneously to all neurons of the network. In the following section of the thesis we will

include the effect of the external current into the excitability term.

The dynamics of the network model with N nodes is then described by N + 1 initial conditions

[V1(t0), ..., VN (t0), S(t0)] along with the following N + 1 differential equations:

V̇i(t) = V 2
i (t) + ηi + JS(t) + Ie(t), i = 1, ..., N.

τdṠ(t) + S(t) =
1

N

M∑
k=1

δ(t− tk),
(2.5.0.3)

Together with the reset rule Vi(t
−
k ) = +∞ =⇒ Vi(t

+
k ) = −∞ ∀k = 1, ...,M and ∀i = 1, ..., N .

{tk} are implicitly defined by Vj(t
−
k ) = +∞ for some j ∈ 1, ..., N .
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For practical purposes, we are interested in having multiple distinct interacting populations. Each

population is made up by formally identical QIF neurons evolving according to Eq. (2.5.0.3). We

now denote with A and B two populations with, respectively, NA and NB single QIF neurons.

This system is described by NA +NB + 2 differential equations along with the same number of

initial conditions:

V̇ Ai (t) = V 2
i (t)A + ηi + JAAS

A(t) + JBAS
B(t) + IAe (t), i = 1, ..., NA.

τAd Ṡ
A(t) + SA(t) =

1

NA

M∑
k=1

δ(t− tAk ),

V̇ Bi (t) = V 2
i (t)B + ηBi + JBBS

B(t) + JABS
B(t) + IBe (t), i = 1, ..., NB .

τBd Ṡ
B(t) + SB(t) =

1

NB

M∑
k=1

δ(t− tBk ),

(2.5.0.4)

In this system we have introduce JBA and JAB which define, respectively, how strong is the

synaptic influence of network B on network A and viceversa. JAA and JBB represent the weight

of internal connections (thus defining a self interaction).

Since we are studying a system made up by a great number of components, we are interested

in finding some distinctive physical quantity which could represent the overall spiking activity

of the neural network. We can proceed as follows: We divide the time interval [t0, t] in which

we observe the evolution of the network in L equispaced subintervals I1, ..., IL, each one of these

having length W = t−t0
L . For each of these subintervals IL we count the number Kl of spikes

emitted by any neuron belonging to the network in that specific time interval. We can thus

define the following quantity:

Rl =
1

N

Kl

W
(2.5.0.5)

Here, Rl represents the average activity of a single neuron (since we divided by N) of the network.

For L −→ +∞, we measure the number of spikes over increasingly shorter time intervals W −→ 0

and therefore we can express Eq. (2.5.0.5) as a linear superposition of delta functions centered

on specific firing times t1, ..., tM ∈ [t0, t].

r(t) =
1

N

M∑
k=1

δ(t− tk) (2.5.0.6)

We call this quantity instantaneous population rate or population firing rate i.e. the average

instantaneous rate of pulse emission by neurons in the network. This definition allows us to
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rewrite the expression for the synaptic field in Eq. (2.5.0.2):

τdṡ(t) + s(t) = r(t) (2.5.0.7)

Notice that we renamed S(t) as s(t) to stress the fact that s(t) is now a macroscopic variable.

We can introduce another macroscopic quantity related to our network, which is the average

membrane potential, defined as:

v(t) =
1

N

N∑
j=1

Vj(t), (2.5.0.8)

i.e. the simple arithmetic average of the membrane potential of each neuron in the network.

2.6. Exact macroscopic reduced model for a fully coupled

network

In this section we show how to reduce exactly, in the termodynamic limit N −→∞ the infinite

system expressed in Eq. (2.5.0.3) to a system defined by a few differential equations which express

the evolution of fundamental average macroscopic quantities that describe the network activity:

the instantaneous firing rate r(t) Eq. (2.5.0.6), the mean membrane potential v(t) Eq. (2.5.0.8)

and the synaptic activation field s(t) Eq. (2.5.0.2).

The results shown in this section are taken from a paper by Montbriò-Pazò-Roxin [46], where

previously derived results for a phase oscillator network are extended to a network of QIF neurons

[54]. In the limit of an infinite number of neurons, we can study the network as a continuum,

known as neuralmass, described through a probability density function ρ(V |η, t) according to

the following interpretation: the finite number of parameters ηi become a continuous random

variable distributed according to a constant probability density function g(η). ρ(V |η, t), if nor-

malized, represents the fraction of neurons having a given excitability η and a membrane potential

V ∈ [V, V + dV ] at a certain time t. Therefore we have that
∫ +∞
−∞ ρ(V |η, t)dV = g(η) represents

the fraction of neurons having any value of the membrane potential and a given excitability η.

Let

[a, b] = V ∈ R : V = V (t, V0) for V0 ∈ [a0, b0] (2.6.0.1)

be the set of points (membrane potentials) reached at the instant t by the paths that originate

from initial conditions belonging to the interval [a0, b0] at the initial time t0. We know that each

trajectory corresponds to the time evolution of a neuron membrane potential, thus we can exploit

the fact that the number of neurons is conserved:
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∫ b0

a0

ρ(V0, t0)dV0 =

∫ b

a

ρ(V, t)dV (2.6.0.2)

Through a change of variable V = V (t, V0) in the r.h.s. integral we obtain:

∫ b0

a0

ρ(V0, t0)dV0 =

∫ b0

a0

ρ(V (t, V0))
∂V

∂V0
dV0 (2.6.0.3)

Since this equality must hold for an arbitrary choice of a0, b0, we get the following expression:

ρ(V0, t0) = ρ(V (t, V0), t)
∂V

∂V0
(2.6.0.4)

The first term is constant, thus we can derive with respect to t, by explicitly expressing the

velocity field V̇ = V 2 + η + JS + Ie (as described in Eq. (2.5.0.1)). This leads to a continuity

equation for the probability density function:

∂

∂t
ρ+

∂

∂V

[
ρ(V 2 + η + JS + Ie)

]
= 0 (2.6.0.5)

The continuity equation and the synaptic field equation Eq. (2.5.0.2) describe the continuous

formulation of the neuronal network in the thermodynamic limit.

We now want to explore what kind of probability density functions satisfy Eq. (2.6.0.5). In

particular, such equations admits a trivial stationary solution in the case of a constant external

current. In fact, being ∂
∂tρ = 0, we need that ∂

∂V

[
ρ(V 2 + η + JS + Ie)

]
= 0. This is trivially

true for density functions having the following form:

ρ0(V |η) ∝ 1

V 2 + η + JS + Ie
(2.6.0.6)

This corresponds to a Lorentzian distribution with respect to the membrane potential. This

means that for neurons characterized by a given η, their membrane potential will be distributed

on the V axis with a density inversely proportional to their speed V̇ according to Eq. (2.5.0.1).

We now assume that even in non-stationary cases, regardless of the initial conditions, the mem-

brane potential are distributed according to a Lorentzian expression. This is expressed by the

Lorentzian ansatz:
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Regardless of the initial form of the distribution ρ(V |η, 0), the solution of Eq. (2.6.0.5) con-

verge to a Lorentzian density function with respect to the membrane potential:

ρ(V |η, t) =
1

π

x(η, t)

[V − y(η, t)]2 + x(η, t)2
(2.6.0.7)

where x(η, t) ≥ 0 is the half width at half maximum (HWHM) and y(η, t) is the median

The Lorentzian ansatz (LA) consists of an assumption on the form of the attractor of the

system. This attractor is a sub-variety of all possible density functions. Assuming this hypothesis

is valid, we can therefore study the evolution of x(η, t) and y(η, t) in order to describe ρ(V, t).

Applying the LA, we can express r(t) and v(t) as follows. Since the Lorentzian distribution of

the membrane potentials is symmetric and centered on y(η, t), for each fixed η and t, then the

following equation holds:

v(η, t) = y(η, t) = P.V.

∫ +∞

−∞
ρ(V |η, t)V dV (2.6.0.8)

here, P.V. stands for the Cauchy principal value of the integral. Thus leaving us with the

following expression:

v(t) =

∫ +∞

−∞
y(η, t)g(η)dη (2.6.0.9)

We have seen that a QIF neuron spikes when its membrane potential reaches infinite value.

We can therefore obtain the firing rate at a given value η and at a certain time t as the neural

mass flux when V tends to infinity.

r(η, t) = ρ(V → +∞|η, t)V̇ (V → +∞|η, t) (2.6.0.10)

This can be written as:

r(η, t) = lim
V→+∞

[
1

π

x(η, t)

[V − y(η, t)]2 + x(η, t)2
(V 2 + η + JS + Ie)

]
(2.6.0.11)

Due to the compensation of the quadratic term of the membrane potential, we finally get:

r(η, t) =
x(η, t)

π
(2.6.0.12)

The instantaneous firing rate then becomes:
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r(t) =
1

π

∫ +∞

−∞
x(η, t)g(η)dη. (2.6.0.13)

Now that we have given physical meaning to the main parameters, we can replace the LA

relationship expressed in Eq. (2.6.0.7) in the continuity equation, which we can thus rewrite as:

− ∂

∂
ρ =

∂

∂V

[
ρ(V 2 + Λ)

]
(2.6.0.14)

where Λ = η + JS + Ie, does not depend on V . Given a Lorentzian probability density

function we can explicitly derive with respect to time and membrane potential, thus obtaining,

after a few calculations:

− ẋ[(V − y)2 + x2] + 2x[xẋ− ẏ(V − y)] =

= −2(V − y)x(V 2 + Λ) + 2V x[(V − y)2 + x2]
(2.6.0.15)

This useful relations must be satisfied ∀V ∈]−∞,+∞[.

By comparing the second order terms of the membrane potential we get;

ẋ = 2xy (2.6.0.16)

We can use this relation for the equation we obtain by comparing the first order terms of

Eq. (2.6.0.15), thus assuming x 6= 0

ẏ = y2 − x2 + Λ (2.6.0.17)

No new information is obtained by studying the zero-order term and the cubic term. Intro-

ducing a complex variable w = x + iy we can write in a more compact form Eq. (2.6.0.17) and

Eq. (2.6.0.16).

ẇ = i(λ− w2) (2.6.0.18)

Summarizing, we have seen that our continuous network system can be described by Eq. (2.6.0.5)

and Eq. (2.5.0.7). In addition to that, if we assume that the membrane potential of each neuron

is distributed according to a Lorentzian distribution as in Eq. (2.6.0.7), then the macroscopic

system can be exactly defined by the following reduced system:

∂

∂t
w(η, t) = i[η + Js(t) + Ie(t)− w(η, t)2],

τd
∂

∂t
s(t) + s(t) =

1

π

∫ +∞

−∞
x(η, t)g(η)dη.

(2.6.0.19)
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The system is thus described by the average macroscopic quantities w(η, t) = x(η, t)+ iy(η, t)

and s(t).

We note that, for a correct derivation of the macroscopic model, we need to assume that x(η, t) 6=

0 ∀ η ∈ R, t > 0. To ensure that w(η, 0) really represents a physical solution to our problem at

any time t > 0, we must impose that Re(w(η, t)) ≥ 0 ∀ t > 0, as it defines the distribution width

through the firing rate. It can be shown that, if the real functions x(η, 0), y(η, 0) depending on

the real variable η, satisfy the following relations:

(i) x(η, 0) 6= 0 ∀η ∈ R;

(ii) x(η, 0) and y(η, 0) are analitically continued from η ∈ R to η ∈ I− = z ∈ C : Im(z) ≤ 0

without singularities and these extensions satisfy

lim
Im(η−→−∞)

x(η, 0) = lim
Im(η−→−∞)

y(η, 0) = 0 (2.6.0.20)

then w(η, t), evolving through Eq. (2.6.0.19) satisfies both conditions at all times t > 0. This

evolution law prevents w from crossing the imaginary axis and thus it ensures to remain confined

in Re(w) ≥ 0. We can therefore precisely define the shape of the LA attractor as

M =

[
ρ(V |η, 0) =

1

π

x(η, 0)

[V − y(η, 0)]2 + x(η, 0)2
: w = x+ iy satisfy (I), (II)

]
(2.6.0.21)

As a further step, we assume that η is a random parameter distributed according to a Lorentzian

density

g(η) =
1

π

∆

(η −H)2 + ∆2
. (2.6.0.22)

Here H is the position of the peak on the η axis while ∆ ≥ 0 is the amplitude parameter.

This assumption is not correlated with the aforementioned LA. However, it allows us to explicitly

obtain an analytical expression for r(t) and v(t).

We extend the real variable η to a complex variable η = ηr + iηi and we extend analytically

w(η, t) and g(η) from η ∈ R to the complex half-plane with negative imaginary part, ηI−. The

function g(η) : I− −→ C admits a single pole of order 1 in η = H − i∆

g(η) =
1

π

∆

[η − (H + i∆)][η − (H − i∆)]
. (2.6.0.23)
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We can proceed by calculating the two integrals Eq. (2.6.0.13) and Eq. (2.6.0.9) through the

residue theorem, from which it follows that:

w(H − i∆, t) = πr(t) + iv(t), (2.6.0.24)

and therefore the firing rate and the average membrane potential v(t) depend only on the value

of w on the pole of g(η) located in the lower half-plane. To obtain an explicit time-dependant

solution we evaluate Eq. (2.6.0.19) in η = H − i∆

∂

∂t
[πr(t) + iv(t)] = iH − i∆ + Js(t) + Ie(t)− [π2r2(t)− v2(t)] + i2πr(t)v(t),

τd
∂

∂t
s(t) + s(t) =

1

π

∫ +∞

−∞
x(η, t)g(η)dη.

(2.6.0.25)

At this point, according to which assumptions we make on the synaptic dynamics and other

physiological phenomena (such as adaptation) we get different reduced models for the popula-

tions of QIF neurons.

Instantaneous synapses. τd = 0:

We assume that the interaction between two neurons is a completely impulsive, instantaneous

event. In this case we immediately get s(t) = r(t). Thus breaking down equations Eq. (2.6.0.25)

into real and imaginary part we obtain the following real two-dimensional system

τ ṙ =
∆

τπ
+ 2rv

τ v̇ = v2 + η − (πτr)2 − Jrτ + Ie

(2.6.0.26)

This nonlinear system describes exactly, from a macroscopic point of view, a population of QIF

neurons within the limit of an infinite number of neurons. It’s interesting to observe that the

nonlinear term π2r2, acting as a negative correction to v̇, prevents an uncontrolled growth of

v(t) by decreasing the membrane potential when the firing rate increases.

Exponentially decaying synapses. τd > 0:

We now assume that the interaction between neurons is an impulsive event with an expo-

nential decay, i.e. τd > 0. In the thermodynamic limit of infinite QIF neurons we obtain the

following system of ordinary differential equations:
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τ ṙ =
∆

τπ
+ 2rv

τ v̇ = v2 + η − (πτr)2 − Jsτ + Ie

τdṡ = −s+ r

(2.6.0.27)

The coordinate s(t) defines the average dynamics of synapses, which, in this case, results in

an exponential decay with decay constant τd, driven by the positive action of the firing rate r.

Furthermore, the synaptic field affects the average membrane potential according to the specific

type of synapses. We note, however, that the fixed points are the same in both systems, as for

stationary solution we get once again that s(t) = r(t). Despite this, as we will se in subsequent

sections, exponentially decaying synapses can change stability and bifurcation processes.

Decaying synapses and adaptability

τ ṙ =
∆

τπ
+ 2rv

τ v̇ = v2 + η − (πτr)2 + Jrτ + Ie

τdṡ = −s+ r

τAȦ = −A+ ατr

(2.6.0.28)

Here we have an additional equation for the time evolution of the new coordinate A which

represents the adaptation dynamics, which has inhibitory effect on the membrane potential

through a negative additive term. We assume τA to be the time scale for adaptation processes

while α describes the strength of the perturbative effects of the firing rate on the evolution of A.

In the following section we will study in detail the dynamics of this system.
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Chapter 3

Single population models

In this chapter we explore in further detail the neural mass models in a single population con-

figuration that we presented at the end of Chapter 2.

3.1. Instantaneous synapses

τ ṙ =
∆

τπ
+ 2rv (3.1.0.1)

τ v̇ = v2 + η − (πτr)2 − Jrτ + Ie (3.1.0.2)

As previously stated, this nonlinear system describes exactly a population of QIF neurons in the

limit of infinite neurons.

We proceed by studying the fixed points of the system, which are those solutions with firing rate

and the membrane potential constant in time (i.e. ṙ = v̇ = 0). We immediately see that, if

v = 0, then Eq. (3.1.0.1) becomes ṙ = ∆
τ2π thus meaning that we cannot have a fixed point with

v = 0. With this assumption we look for solutions with ṙ = 0 and we obtain:

r = − ∆

2τπv
(3.1.0.3)

Since τ v̇ = v2 + η + Jrτ − (πrτ)2 + Ie(t), then v̇ can be equal to zero (when r is constant) only

if Ie(t) is constant as well.

By replacing r in Eq. (3.1.0.2) with the expression we found in Eq. (3.1.0.3) and assuming

v̇ = 0, we get:
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v2 + η − ∆J

2π
· 1

v
+ Ie −

∆2

4
· 1

v2
= 0. (3.1.0.4)

The roots of this equation will give us the projections on the membrane potential coordinate

for fixed points of our system.

We want to study qualitatively Eq. (3.1.0.4) in order to gain more insights about the stability of

our system. We begin by rearranging Eq. (3.1.0.2) with the aid of Eq. (3.1.0.3), thus obtaining:

v̇ =
∆2

4
[Aα(v)−Bβ(v)], (3.1.0.5)

where Aα(v) = 4
∆ [v2 + α] and Bβ(v) = 1

v2 + 2
πβ

1
v , with α = η + Ie and β = J

∆ . These two

parameters will prove themselves qualitatively relevant in defining the dynamical behaviour of

the system. α represents an effective excitability taking into account both the mean excitability

η and the external current (which we assume to be constant for now).

By overlapping the two functions Aα(v) and Bβ(v) in the same plane we can easily study

the fixed points as v̇ = 0 ⇐⇒ Aα(v) = Bβ(v). In addition to that, we note that sgn(v̇) =

sgn(Aα(v)−Bβ(v)).

Due to the symmetry Bβ(−v) = B−β(v) we only need to study the excitatory case (i.e. J > 0).

In order to draw a qualitative plot of Bβ(v) we can study the boundary limits of the function,

thus obtaining (vmin, Bβ(vmin)) = (−−πβ ,−
β2

π2 ) as shown in Fig. 3.1.1 through a dashed line.

This implies that as β increases, the minimum point of the function moves down and approaches

the x = 0 axis according to a behaviour described by h(v) = − 1
v2 . Aα(v) has the shape of a

parabola; increasing α has the effect of translating the function upwards.
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Figure 3.1.1: In red the function Aα(v) with α = −2.5 and ∆ = 1. In black, blue and purple the function

Bβ(v) with, respectively β = 5, 10, 15. The dashed line represents the minima of Bβ(v)

with respect to v for different β values.

At most, we can have four distinct intersections between the two functions, that is four distinct

equilibrium points, arranged according to their projection on the v axis as v1 ≤ v2 ≤ v3 < 0 < v4.

The stability of these solutions is given by the relative position of the two functions and can thus

be determined graphically. We obtain that v4 is always unstable, while for those solutions such

that v < 0 we see that v1 and v3 are stable and v2 is unstable.

We need to highlight the fact that only solutions with v < 0 have physical sense, since we require

that the firing rate is positive. The firing rate is in fact an average quantity of the pulses emitted

by the neurons in the network and it cannot be negative. Luckily, we see that for any choice of

the parameters α and β there always exists at least a stable fixed point with v < 0 and r > 0.

Distinct equilibrium points related to negative membrane potential values might merge according

to the values of α and β (which directly determine how the intersection between the two functions

occurs). This gives rise to bifurcation phenomena, which are drastic changes in the dynamical

behaviour of a system due to variation of one or more of its parameters (see Appendix A for
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more details). We are able to express analytically the parametric curves in the (α, β) plane where

these bifurcations occur through the geometric intersection condition A′α = B′β . We thus obtain

the following system:

Aα(v) = Bβ(v)

A′α(v) = B′β(v)
(3.1.0.6)

We can express α and β as functions of v and ∆ and we plot the smooth curve in Fig. 3.1.2

(a). Since those tangency points can be locally approximated as a straight line (Aα) intersecting

a second-order curve (Bβ), then the bifurcations occurring can be classified as a saddle− node.

In a particular case we can also observe a pitchfork bifurcation (see appendix ).

The dynamical behaviour by varying J,∆, η is shown in Fig. 3.1.2 (a). In the excitatory

case, according to the parameters values, we can have a single stable equilibrium solution or a

coexistence between two stable points (bistability) and an unstable point.

Figure 3.1.2: The two diagrams are obtained with a vanishing external current Ie = 0. On the left:

in white we see the parameter plane region where the system trajectory is attracted by a

stable node, in gray the region where the system is attracted by a stable focus. In turquoise

the region of the parameter plane where bistability exists. On the right: representation of

the dynamics of the system in the renormalized phase plane (r/
√

∆, v/
√

∆,) for a specific

point of phase plane on the left denoted by the triangle. Figure taken from [46]

In Fig. 3.1.2 (a), crossing the smooth curve (leaving the turquoise region) corresponds to a

saddle-node bifurcation where the equilibrium points v1 and v2 or v2 and v3 merge and then dis-
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appear. Instead, crossing the dashed curve represents the transformation of the single attractive

equilibrium point from node to focus or viceversa.

Fixed points linear stabilty analysis

The linear stability of fixed points can be studied by looking at the eigenvalues of the system’s

Jacobian matrix calculated at the equilibrium point (r0, v0) which, according to Eq. (3.1.0.2), is

given by:

JF (r0, v0) =

 2v0 2r0

J − 2π2r0 2v0

 (3.1.0.7)

The matrix shown in Eq. (3.1.0.7) represents the linearized system around the equilibrium point.

The eigenvalues are obtained as the roots of the characteristic polynomial:

p(λ) = det

 2v0 − λ 2r0

J − 2π2r0 2v0 − λ

 = λ2 − 4v0λ+ (4v2
0 + 4π2r2

0 − 2r0J). (3.1.0.8)

This means that the eigenvalues are:

λ± = 2v0 ±
√
D

2
, (3.1.0.9)

where D = 8r0J − (4πr0)2. In particular, the synaptic weight J plays a fundamental role in the

fixed point stability. Referring only to the fixed points with physical meaning (i.e. r0 > 0), we

get the following picture:

• J < 2π2r0 −→ (r0, v0) stable focus.

This condition is equal to D < 0, thus the eigenvalues always have non-zero imaginary part

(focus). Furthermore, Re(λ±) = v0 are always negative (stability condition).

• 2π2r0 < J < 2π2r0 + 2v2
0/r0 −→ (r0, v0) stable node.

The first condition implies that D > 0, thus both eigenvalues are purely real. The second

condition tells us that λ+ = 2v0 +
√
D
2 < 0, thus both fixed points are stable as well.

• J > 2π2r0 + 2v2
0/r0 −→ (r0, v0) unstable saddle-node.

In such cases we have λ+ > 0 thus the fixed point is unstable, while the other eigenvalue

λ− = 2v0 −
√
D
2 is negative, thus giving birth to an unstable saddle-node.

When passing from D > 0 to D < 0 the fixed point eigenvalues get closer, moving along the real

negative semi-axis, until they merge for D = 0. For furtherly decreasing D values, they separate

into a couple of complex conjugate eigenvalues. When this happens the stable node turns into

a stable focus. In order to obtain analitically the curve in the (α, β) where this phenomenon
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occurs, we can just set D = 0, that is J = 2π2r0. From this and from Eq. (3.1.0.3), we get v0 as

a function of J , which, replaced into Eq. (3.1.0.4) gives us an equation in the coefficients α and

β thus allowing us to obtain the expression for the dashed line in Fig. 3.1.2 (a).

Looking at Eq. (3.1.0.9) we see that the real part of the eigenvalues can’t be equal to zero. This

means that Hopf bifurcations are not allowed, thus self-sustained oscillations cannot be generated

for this kind of system.

Inhibitory case:

In the inhibitory case we have J < 0 and thus β < 0. Plots for Aα and Bβ are obtained from

those in Fig. 3.1.1 through a reflection with respect to the ordinate axis. Therefore there always

exists a single stable equilibrium solution with physical significance. What we discussed previ-

ously on the stability of this solution can be applied in the inhibitory case as well.

3.2. Exponentially decaying synapses

In this section we study the reduced QIF model assuming that the interaction between two

neurons is a completely impulsive event that decays exponentially. As discussed before, this

assumption translates into making τd > 0 in the synaptic field equation. From this choice we get

the following system:

τ ṙ =
∆

τπ
+ 2rv

τ v̇ = v2 + η − (πτr)2 + Jsτ + Ie

τdṡ = −s+ r

(3.2.0.1)

The s coordinate is an average of the synaptic activity, which in this case has the shape of

an exponential decay, with τd decay constant, (driven) by the positive action of the firing rate r.

Furthermore, the s field affects the mean membrane potential of the network by acting positively

or negatively according to the type of synapses, respectively excitatory (J > 0) or inhibitory

(J < 0).

The fixed points of the system are exactly the same as for the case of instantaneous synapses; in

fact, from ṡ = 0 it follows that s = r and thus we find once again the same algebric equations

(Eq. (3.1.0.4) and Eq. (3.1.0.3)) of the previously studied system.
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This means that introducing exponentially decaying synapses does not change the value of fixed

points but, as we will see, it changes their stability and bring forth new bifurcation processes. In

particular, the attractive focus can lose stability through a Hopf bifurcation, which gives raise

to self-sustained oscillations (in the form of a limit cycle).

Given a fixed point with physical meaning:

r0 > 0

v0 < 0

s0 > 0,

(3.2.0.2)

we study its stability through the explicit calculation of the linearized system in that phase space

point.

The characteristic polynomial is given by:

det


2v0 − λ 2r0 0

−2π2r0 2v0 − λ J

− 1
τd

0 − 1
τd
− λ

 = − 1

τd
(1 + λτd)[(2πr0)2 − (2v0 − λ)2] + 2r0J. (3.2.0.3)

Thus we need to find the roots of the following polynomial:

p(λ) = τdλ
3 +Aλ2 + (τdB + 4v0)λ+ (B + 2r0J), (3.2.0.4)

where A = (1− 4v0τd) and B = (2πr0)2 − (2v0)2. Such polynomial, as opposed to the one with

instantaneous synapses, can have imaginary roots with vanishing real part. By imposing λ = iΩ

(with Ω ∈ R/0), after some calculations we find that p(iΩ) = 0 if and only if Ω satisfies:

Re(p(iΩ)) = 0 AΩ2 + (B + 2r0J) = 0;

Im(p(iΩ)) = 0 τdΩ
2 + (4v0 + τdB) = 0.

(3.2.0.5)

Assuming that B+2r0J < 0 and 4v0+τdB < 0 both equations in Eq. (3.2.0.5) have real solutions

given by:

ΩRe,± = ±
√
−A(B + 2r0J)

A
(3.2.0.6)

ΩIm,± = ±
√
−τd(4v0 + τdB)

τd
(3.2.0.7)
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Now we want to find an equation for the system parameters such that the two equations in

Eq. (3.2.0.5) have the same solutions, i.e. ΩRe,± = ΩIm,±. An explicit expression of J as a

function of τd, r0, v0 can thus be found as follows:

JH =
2v0

r0τd
[(1− 2v0τd)

2 + (2πr0τd)
2]. (3.2.0.8)

JH , as derived, is negative. This implies that the equilibrium state which goes through the

bifurcation is a stable focus, as we expected. JH represents the critical value for the synaptic

weight at which the focus (r0, v0) loses stability through a Hopf bifurcation, giving raise to a

stable limit cycle. Moreover, substituting JH in Eq. (3.2.0.6) provides us with the oscillations’

frequency ΩH as a function of τd, r0, v0.

From Eq. (3.2.0.8) and Eq. (3.2.0.2) it follows that the Hopf bifurcation occurs only for negative

values of the synaptic weight JH < 0, that is for inhibitory networks. Due to this evidence,

in order to counterbalance the inhibitory effects of the pulses, neurons have to be distributed

around a positive average excitability value. Thus, from now on, we assume for simplicity that

Ie = 0 and that η = 1. The algebric equations of fixed points will be:

v0 = − ∆

2τπr0

v2
0 + η + Jr0 − π2r2

0 = 0

(3.2.0.9)

We now look for a set of parameters J,∆, τd that allows the system to oscillate. Replacing

the expression for JH in Eq. (3.2.0.9), we obtain an expression for τd as a function of the fixed

point coordinates. We get two distinct solutions:

τ±d,H =
1

16v0(π2r2
0 + v2

0)

[
π2r2

0 − 1 + 7v2
0 ±

√
(π2r2

0 − 1)2 − (14 + 50π2r2
0)v2

0 − 15v4
0

]
.

(3.2.0.10)

Clearly, thanks to Eq. (3.2.0.9) we can express τ±d,H = τ±d,H(r0; ∆) as a function of the coordinate

r0 and of the parameter ∆. In Fig. 3.2.1 the two functions τ+
d,H and τ−d,H of the variable r0 are

shown for a few different values of ∆. These two functions are joint at their respective ends thus

defining a closed curve which encloses the region where the system oscillates. As we can see in

Fig. 3.2.1, the oscillations region gets smaller and smaller as ∆ (the heterogeneity) increases, until

it collapses to a point and disappears. In order to find the exact ∆ value at which the oscillations

disappear we proceed as follows: First of all we see that the two functions in Eq. (3.2.0.10) join

when the radicand vanishes. By imposing this condition we find the following solution:

∆H(r0) =
2πr0

15

√
−7− 25π2r2

0 + 8
√

1 + 5π2r2
0 + 10π4r4

0, (3.2.0.11)
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which is shown in Fig. 3.2.1 on the right.

Figure 3.2.1: Plot of τ±d,H as functions of r0 from Eq. (3.2.0.10), at three different ∆ values. The red

points denote where the two curves have a common point. These values are given from

the function ∆H(r0) in Eq. (3.2.0.11) which is shown in the inset as a red curve. The

horizontal dashed lines correspond to the chosen ∆ for the three plots.

Thus the aforementioned critical value where the oscillations vanish can be calculated as the

maximum value of the function in Eq. (3.2.0.11). The firing rate value for which we have a

maximum is r0 = 1

π
√

2
√

5
≈ 0.1505 to which the following critical value corresponds:

∆c =
1

5

√
5− 2

√
5 ≈ 0.1453 (3.2.0.12)

In a network with a heterogeneity value greater than ∆c, the reduced system does not oscillate.

Finally, we show the region in the parameter plane (J, τd) where oscillations occur for some values

of ∆ (see Fig. 3.2.2). Such curves can be expressed analitically as functions of r0 and ∆ with

the following form:

(J, τd)
±
H =

(
v2

0

r0
+

1

r0
− π2r0, τd

±
H(r0; ∆)

)
=

(
∆2

4π2r3
0

+
1

r0
− π2r0, τ

±
d,H(r0; ∆)

)
. (3.2.0.13)
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Figure 3.2.2: Plot of the curves defined in Eq. (3.2.0.13) for three different values of ∆. The region

inside such curves defines the parameter set where oscillations occur.

As an example of the dynamical behaviour that our system can express, in Fig. 3.2.3 we

observe the oscillating regime of a reduced network of QIF neurons with exponentially decaying

synapses, i.e. the time evolution of the coordinates for the limit cycle.

Figure 3.2.3: Dynamical simulation inside the oscillating region. Time evolution of Eq. (3.2.0.1) with

J = −15, ∆ = 0.05, η = 1, τ = 1ms, τa = 2ms.

57



In conclusion, we have seen that for a certain range of τd the system can express oscillating

behaviour. However, this phenomenon is shut down for extremely low τd, when the system

becomes very similar to the one with impulsive synapses, and for τd values that are much larger

than the time constant of membrane potential evolution.

Single population neural mass models usually do not express self-sustained oscillations with-

out the effect of another interacting population or a time-dependant external current; the ex-

ponentially decaying synapses coupled with an inhibitory self-interaction is an exception (not

the only one, though) to this rule. This is due to the fact that in order to observe collective

oscillations we need the interaction between two physical processes with two different time scales,

which in this specific case are τ and τd.

In the following, we will see that introducing the effect of neuron adaptation will allow the system

to retain this behaviour under certain conditions.

3.3. Adaptation and exponentially decaying synapses

In this section we study the behaviour of a network of QIF neurons with exponentially decaying

synapses and adaptation. As we introduced in the previous chapter the system is described by

the following system of ordinary differential equations:

τ ṙ =
∆

τπ
+ 2rv

τ v̇ = v2 + η − (πτr)2 + Jsτ + Ie −A

τdṡ = −s+ r

τAȦ = −A+ ατr

(3.3.0.1)

The new variable A represents the effect of the short-term spike-frequency adaptation (SFA)

mechanism we want to introduce in our system. SFA is a homeostatic mechanism that acts via

spike-triggered balancing currents [3]. In our system, the evolution of A is given by an exponen-

tially decaying process with time constant τa affected by the firing rate through an additive term

ατr. τ is the membrane’s time constant and α denotes the strength of the perturbation effect.

The adaptive variable A affects the evolution of the network through a negative additive term

in the evolution of the membrane potential. Since we require A to be positive for having a

physically reasonable solution, this implies that the adaptation has an overall inhibitory effect.
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Furthermore, we focus only on inhibitory self-interactions J < 0 as the biological processes to

which we want to apply this network only involve inhibitory neuron populations. For these two

reasons we decide to focus only on positive neuronal excitability η > 0 (i.e. we consider a network

of tonic neurons), as having only inhibitory effects on the network evolution could shut down

any interesting bursting activity.

Our aim is to investigate whether a stable collective bursting behaviour can arise even though

the adaptation has an inhibitory effect on the membrane potential. In order to do that, we start

by studying a generic fixed point. We immediately see that for (ṡ = Ȧ = ṙ = v̇ = 0) we have

s = r and A = ατr. This implies that the algebric equations for fixed points are given by:

v0 = − ∆

2πr0

v2
0 + η + Jr0 − π2r2

0 − αr0 = 0

(3.3.0.2)

This equation system looks very similar to the one defined in Eq. (3.2.0.9). However, due to the

effect of the new additive term, the coordinates for the fixed points now change as opposed to

the previously studied system without adaptation. For low values of the α parameter this effect

might be negligible as r is usually lower than the other additive terms.

In order to study the linear stability of a fixed point, we can extract the eigenvalues as the roots

of the characteristic polynomial:

det


2v0 − λ 2r0 0 0

−2π2r0 2v0 − λ J − 1
τ

1
τd

0 − 1
τd
− λ 0

τα
τd

0 0 − 1
τa
− λ

 (3.3.0.3)

Since an analytical discussion of this system might prove quite demanding, we decide to

use the software MATCONT [18]. MATCONT is a well known Matlab package which allows

numerical continuation of stable equilibrium points and linear stability analysis of such solutions.

Moreover, MATCONT identifies the kind of bifurcations which give birth to new dynamical

solutions.

The starting point is choosing a set of parameters for which we expect to have a fixed point. We

choose:

α = 5; η = 1; J = −8; ∆ = 0.12; τ = 10ms; τd = 20ms; τa = 100ms. (3.3.0.4)

The values for J,∆, η and τd have been chosen as they were close to the Hopf bifurcation in the
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previous system. According to biological reasons the decay time constant of adaptation should

be greater than both the membrane time and the synaptic decay time [28], thus we chose an

explorative value of τa = 100ms. τ = 10ms is a biologically reasonable membrane time constant.

By exploring the various parameter planes, we see that once again there exists a Hopf bifurcation,

so we can have self sustained oscillations (i.e. a constant firing regime).

To explore the effect of the adaptation on the limit cycle, we follow the stability of the hopf

bifurcation in the (α, J) plane, as shown in Fig. 3.3.1.

Figure 3.3.1: Phase plane (α, J). We see that for large values of α the oscillation region gets smaller and

eventually disappears. Other parameters are η = 1; ∆ = 0.12; τ = 10ms; τd = 20ms; τa =

100ms

We see that for high value of α (thus with high adaptive effects) the oscillation region disap-

pears. With the aim of understanding this effect, we observe the parameter plane (J , τd), shown

in Fig. 3.3.2
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Figure 3.3.2: Hopf bifurcation curve in the parameter plane (J, τd). We see that for increasing values

of α the closed curve tends to shrink until eventually it disappeard for a high enough α.

Other parameters are η = 1; ∆ = 0.12; τ = 10ms; τa = 100ms

Here it’s evident that having high adaptation tends to reduce the extension of the oscillating

region. This is similar to the effect of increasing ∆ for the Hopf bifurcation as seen in Fig. 3.2.2.

Therefore, given a fixed value τd, for which the system without adaptation expresses oscillations,

there exists a positive α0 such that for α > α0, self sustained oscillations are shut down. As an

example, for τd = 20ms, we get that α0 ≈ 11.7, as can bee seen in Fig. 3.3.1.

It’s interesting to investigate whether the time constant τd has a decisive influence on the Hopf

bifurcation. By following the bifurcation stability on the (J, τa) plane we see that for increasing

decaying adaptation times, the synaptic weight at which the bifurcation occurs does not vary

significatively unless τ ≈ τa. Since we assumed that for biologically relevant situation τa > τ ,

we are not interested in that region of the phase plane.
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Figure 3.3.3: Hopf bifurcation stability in the plane (J, τa). The curve defines two distinct regions where

oscillations can or cannot occur. Chosen parameters are η = 1; ∆ = 0.12; τ = 10ms; τd =

20ms;

In Fig. 3.3.4 we see some examples of the dynamical behaviour of the system inside the Hopf

region. It’s interesting to make a comparison between the dynamics with or without adaptation;

we see that the frequency of oscillations slightly decreases due to adaptation effects (ν ≈ 17Hz

for α = 0 and ν ≈ 16Hz for α = 10.) This means, as expected, that adaptation increases the time

needed to fire an action potential. In fact, the overall inhibition effect of adaptation can be seen

in the slightly different shape of the firing rate and membrane potential peaks. Furthermore, we

see that the coordinate A oscillates with the same frequency as the firing rate, exhibiting however

a constant delay equal to ∆T ≈ 14ms for our set of parameters. This is due to the effect of the

exponential decay adaptive effect that we took into account according to Eq. (3.3.0.1).
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Figure 3.3.4: Simulations of the dynamics for a neural mass QIF model with adaptation. Chosen pa-

rameters are η = 1; ∆ = 0.12; τ = 10ms; τa = 100ms. (a) A(t) for α = 0; (b) A(t) for

α = 10; (c) r(t) for α = 0; (d) r(t) for α = 10

In short, we have found that a moderate adaptation effects does not inhibit self-sustained

oscillations in a neural mass model of QIF neurons and that, as expected, the adaptation process

increases the period between two subsequent spikes.
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Chapter 4

Two coupled Populations with

exponentially decaying synapses

In this chapter we use the approach explained in the previous sections to study a dynamical

system made up by two inhibitory populations of QIF neurons with exponentially decaying

synapses. In Section 4.1 we briefly present the model we are going to study, while in Section 4.2

we specifically focus our attention on the network circuit shown Fig. 4.2.1, which describes two

vIRT sub-populations, vIRTp and vIRTr, firing respectively in occurrence of vibrissae protraction

and retraction. We report the results we have obtained by showing the main dynamical features

of the system.

Finally, in Section 4.3 we apply a sinusoidal forcing to one of the two populations in order

to explore the induced effect on both populations. The forcing represents the unidirectional

inhibitory connection of the Pre-Botzinger Complex (as shown in Fig. 4.3.1) applied only to the

vIRTr sub-population.

4.1. Two populations reduced model

We denote with 1 and 2 two populations made up by, respectively, N1 and N2 QIF neurons.

Population 1 is therefore described by the single neurons’ membrane potentials V
(1)
i and by the

mean synaptic activation field S1 while analogously population 2 is described the membrane

potentials V
(2)
j and by the mean synaptic activation field S2. Being t

(1)
1 , ..., t

M
(1)
1

and t
(2)
1 , ..., t

(2)
M1

the times at which any neuron of population 1 or population 2 fires a pulse, then we can describe
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the evolution of two QIF networks, coupled with exponentially decaying synapses, with the

following system of N1 +N2 + 2 differential equations.

V̇
(1)
i (t) = [V

(1)
i (t)]2 + η

(1)
i + J11S1(t) + J21S2(t), i = 1, ..., N1;

τ
(1)
d Ṡ1(t) + S1(t) =

1

N1

M1∑
k=1

δ(t− t(1)
k );

V̇
(2)
j (t) = [V

(1)
j (t)]2 + η

(2)
j + J22S2(t) + J12S1(t), j = 1, ..., N2;

τ
(2)
d Ṡ2(t) + S2(t) =

1

N2

M2∑
k=1

δ(t− t(2)
k );

(4.1.0.1)

Along with the usual reset rule, ∀ i ∈ 1, ...Nj if at a fixed time tf we have that V ji (t−f ) = +∞,

then V
(l)
i,j (t+f ) = −∞, l ∈ 1, 2, i, j ∈ 1, ..., N(l)

Following the procedure for the model reduction reported in Chapter 2, we can obtain the re-

duced model in the thermodynamic limit. Assuming the excitability parameters to be distributed

according to the following Lorentzian distributions

g1(η) =
1

π

∆1

(η − η̄1)2 −∆2
1

, g2(η) =
1

π

∆2

(η − η̄2)2 −∆2
2

(4.1.0.2)

where η̄1, η̄2 and ∆1, ∆2 are, respectively, the median excitability parameters and the hetero-

geneity parameters of population 1 and 2.

This dynamical system can be exactly described at a macroscopic level in the limit of infinite

neurons with the six following ordinary differential equations:

τ1ṙ1 =
∆1

τ1π
+ 2r1v1

τ1v̇1 = v2
1 + η1 − (πτ1r1)2 + J11s1τ1 + J21s2τ1

τd1 ṡ1 = −s1 + r1

τ2ṙ2 =
∆2

τ2π
+ 2r2v2

τ2v̇2 = v2
2 + η2 − (πτ2r2)2 + J22s2τ2 + J12s1τ2

τd2 ṡ2 = −s2 + r2

(4.1.0.3)

We observe that the coupling between the two populations is entirely represented by the additive

terms J12s1 and J21s2 so that it directly affects the time evolution of the membrane potential.

However, since the membrane potentials appear in the firing rate evolution, all the coordinates

of both populations are affected.
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In conditions of regular firing regime, since the coupling term depends on the synaptic activa-

tion field, the inhibitory or excitatory regulation gets stronger when the influencing population

has a higher activity (with a delay induced by the exponentially decaying synapses).

Since there is good agreement between the time evolution of the system described in Eq. (4.1.0.1)

and the reduced model defined in Eq. (4.1.0.3) [11], we can proceed with our subsequent study by

focusing on the reduced system, which is easier to approach from a computational and analytical

point of view.

We start with a general analysis of fixed points for our system.

Fixed points

We know that for a fixed point ṡ1 = ṡ2 = ṙ1 = ṙ2 = 0. This immediately leaves us with:

s1 = r1 = − ∆1

2πv1

s2 = r2 = − ∆2

2πv2
,

(4.1.0.4)

which, substituted into Eq. (4.1.0.3), provide us with the following non-linear system in the

variable v1, v2:

v2
1 + η̄1 −

∆1J11

2π

1

v1
− ∆2

1

4

1

v2
1

− ∆2J21

2π

1

v2
= 0, (4.1.0.5)

v2
2 + η̄2 −

∆2J22

2π

1

v2
− ∆2

2

4

1

v2
2

− ∆1J12

2π

1

v1
= 0. (4.1.0.6)

The solutions of this algebraic system are the projections of fixed points on the space defined

by v1 and v2. Having these two coordinates allows us to obtain the values of the firing rate and

of the synaptic activation field through Eq. (4.1.0.4). We should now study the linear stability

of fixed points P*=(r∗1 , v
∗
1 , s
∗
1, r
∗
2 , v
∗
2 , s
∗
2) by explicit calculation of the linearized spectrum of

the system around the fixed point. The characteristic polynomial obtained from the linearized

system, however, is too complicated to be treated analytically. Therefore, as we already did for

the single population network with adaptability, we proceed by exploring the system dynamics

and features through MATCONT and through numerical simulations. Before doing so, however,

we introduce some additional conditions on the system parameters, in agreement with biological

features of the neuron populations we wish to study in this thesis.
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4.2. Identical interacting inhibitory populations

As we introduced in Section 1.10, our goal is to investigate the mechanism underlying whisking

rhythm generation and to explain how the whisking rhythm is shaped by the breathing rhythm,

according to the full circuit model represented in Fig. 1.10.1. As a first step towards this goal, we

study a network made up by two identical populations of inhibitory neurons, which represents the

two interacting sub-populations of the vIRt synaptic architecture, responsible for the premotor

whisking activity.

The circuit we analyze is shown on Fig. 4.2.1. In Section 4.3 we introduce an external

forcing representing the PreBöt input on the vIRt [17] while in Chapter 5 we include adaptation

processes on the vIRt subpopulations as well. Having two identical populations means that

η = η̄1 = η̄2, ∆ = ∆1 = ∆2, Jself = J11 = J22, τ = τ1 = τ2 τd = τ1
d = τ2

d . It also implies that

both populations influence each other with the same inhibitory synaptic weight Jcross. These

assumptions make our analysis easier as there are fewer parameters that we have to vary which

could induce bifurcation phenomena. Both populations have inhibitory feedback as well, thus

Jself < 0.

With these assumptions the system now becomes

τ ṙ1 =
∆

τπ
+ 2r1v1

τ v̇1 = v2
1 + η − (πτr1)2 + Jselfs1 + Jcrosss2

τdṡ1 = −s1 + r1

τ ṙ2 =
∆

τπ
+ 2r2v2

τ v̇2 = v2
2 + η − (πτr2)2 + Jselfs2 + Jcrosss1

τdṡ2 = −s2 + r2

(4.2.0.1)
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Figure 4.2.1: Circuit model of the system described in Eq. (4.2.0.1). The two vIRt sub-populations will

be represented by two identical interacting and inhibitory networks of QIF neurons. vIRTr

and vIRTp respectively spike in correspondence of vibrissae retraction and protraction.

Jself represents the self-interaction of both populations, Jcross is the mutual interaction

between the two populations and η is a parameter which takes into account both the

internal excitability of the network and the average value of the external current.

In this configuration our system of differential equations has six distinct parameters. An

exhaustive study of all the possible dynamical behaviours is beyond the scope of this thesis, thus

we keep some of our parameters constant at biologically reasonable values and we vary the other

ones. In particular, we assume that

∆ = 0.5 τ = 10ms τd = 20ms (4.2.0.2)

and we analyze the macroscopic network evolution in the planes (Jcross, Jself ), (η, Jself ) and

(η, Jcross).

Since our goal is to discover which dynamical behaviour the system can express, we are

interested in discovering which bifurcation processes the system can go through. We will use two

different approaches:

• The first one is an explorative procedure through MATCONT. We can start by simulat-

ing the time evolution of the system for a chosen set of parameters which guarantees a

fixed point evolution. Then, given this stable fixed point, we vary a single parameter and

we calculate the eigenvalues, checking if some of the bifurcations conditions are met. A
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bifurcation found in this way is known as codim 1 bifurcation. Then, starting from the

bifurcation value, MATCONT allows us to calculate how this bifurcation point changes

while simultaneously varying two parameters. This process can lead us to find a codim 2

bifurcations, i.e. a qualitative change of the dynamical behaviour which occurs through

variation of two distinct parameters.

• The second approach is suggested by [58]. We observe that the macroscopic system defined

in Eq. (4.2.0.1) possesses permutational symmetry: it is invariant under the change of

variables (r1, v1, r2 v2) −→ (r2, v2, r1, v1). This symmetry admits the existence of the

symmetric solutions (r1, v1) = (r2, v2). As explained in detail in Appendix B, we can

analyze the stability of such solutions by numerically computing the eigenvalues related

to transverse symmetry and longitudinal symmetry. Transverse symmetry is present when

both populations are synchronized. When transverse symmetry is broken (i.e. the stability

is lost) the two populations express different dynamical behaviour. Instead, longitudinal

symmetry is present when the solution is a fixed point, and it is broken when the fixed point

solution loses stability (i.e. oscillatory behaviour). We will see that the two procedures will

lead us to the same results as far as the dynamical behaviour of the system is concerned.

In general, our system exhibits a notable range of different dynamics, even though we are studying

the inhibitory case. In each of the three planes there is at least one region with a regular oscillation

regime outlined by a Hopf bifurcation. We will also find codim 2 bifurcations thus leading to

interesting phenomena such as symmetry breaking and hysteresis.
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4.2.1. Phase plane (η, Jcross)

Figure 4.2.2: Parameter plane (η, Jcross) for the system described in Eq. (4.2.0.1). Red curve: Hopf bi-

furcation/longitudinal symmetry broken. Blue curve: Limit point curve/transverse sym-

metry broken. Green dashed line: adiabatic path followed in Fig. 4.2.4. Orange cross:

Zero-hopf point as the intersection between the two bifurcation curves. Jself = 21 is held

constant throughout this analysis.

In Fig. 4.2.2 we see the parameters’ plane (η, Jcross). As discussed before, in order to study

the behaviour of the system we studied the transverse and the longitudinal stability of fixed

points and we found two different codim 1 bifurcations: a Hopf bifurcation and a limit point

bifurcation. We followed the stability of these two bifurcations, thus obtaining the red and

the blue curve represented in the plot. These two curves have a very important dynamical

meaning as they divide the parameter plane according to the dynamical behaviour: The Hopf

bifurcation separates oscillating solutions from non-oscillating ones (which implies a breaking of
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the longitudinal symmetry). In practice, when we cross the red curve while increasing η, we pass

from a fixed point solution (identical for both populations) to a synchronous, identical oscillating

regime. We see an example of this in Fig. 4.2.3 (a) and (c).

Figure 4.2.3: Simulation of the system presented in Eq. (4.2.0.1). Blue line and red line respectively

represent the dynamical behaviour of populations 1 and 2. (a) symmetric fixed point,

Jcross = 25, η = 5, Jself = 20. (b) asymmetric fixed point, Jcross = 33, η = 7, Jself = 20.

(c) symmetric collective oscillations, Jcross = 25, η = 10, Jself = 20. (d) asymmetric

collective oscillations, Jcross = 33, η = 10, Jself = 20.

The limit point curve, instead, represents the boundary of the region inside which the two

populations have a different time evolution. This behaviour is quite remarkable as we observe that

two identical interacting systems can have different regime solutions despite the permutational

symmetry. Furthermore, this phenomenon happens even with identical initial conditions, after a

transient period of time. In our system we observe two different ways in which this may happen.

When we are inside the limit point curve but we are outside of the oscillating Hopf region (i.e.
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we haven’t crossed the red line) the dynamics is characterized by an asymmetric fixed point.

This means that both populations converge to constant values of their coordinates, however

(r1, v1, s1) 6= (r2, v2, s2). This is shown in Fig. 4.2.3 (b).

From a mathematical point of view, the Hopf bifurcation curve marks the point in which the

real part of two eigenvalues change sign simultaneously. When this happens and the real parts

are positive, then the solution is no longer stable and the system starts oscillating. At the same

time, one of the three eigenvalues related to longitudinal stability crosses the imaginary axis,

this means that the real part of one of the eigenvalues changes sign. The limit point curve has

an analogous meaning, but it is related to the transverse symmetry, which is broken when the

line is crossed.

In this specific plane we observe yet another interesting behaviour. For high enough values of

η and Jcross, we find that the time evolution is both oscillating and asymmetrical. In particular,

we find that both populations oscillate in phase but the amplitudes, the shapes and the mean

values are different. A time trace of this behaviour is shown in Fig. 4.2.3 (d).

The bifurcations we have found effectively represent dynamical transitions. We want to

investigate whether these transitions can exhibit hysteretic behaviour.

In general, hysteresis is the dependence of the state of a system on its history (e.g. dependance

on initial conditions). In our case, since the transition sets apart two distinct dynamical regimes,

having hysteresis would imply the existence of a bistability region near the bifurcation curve.

We have two ways to look into this phenomenon. As explained in Appendix A a Hopf

bifurcation can be sub-critical (or super-critical) if it expresses (or if it does not) hysteresis. Given

a certain Hopf bifurcation point, MATCONT is capable of detecting this feature by computing

the so-called first Lyapunov coefficient. Should this parameter be positive (negative), then the

bifurcation would be sub-critical (super-critical). This implies the existence of an unstable limit

cycle before the bifurcation occurs, thus giving raise to hysteretical dynamical transition.

However, in the range of parameters that we have explored, the first Lyapunov coefficient is

negative at every point on the Hopf bifurcation reported in Fig. 4.2.2. This suggests that we

have no hope of finding hysteretic behaviour in this case.

As a further proof of this we can directly study the time evolution of the system near the

transition. Starting from a certain point of the parameter plane not too close to the bifurcation

with a certain set of initial condition, we simulate the time evolution of the system for a certain

time period (which includes a transient time for the system convergence to an equilibrium state

plus an observation time period). Afterwards, we slightly increase the bifurcation parameter
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λ by a small amount dλ such that λnew = λold + dλ. We start a new simulation setting the

final values of the previous simulation as the initial conditions. Then, for each value of the

parameter, we compute the maxima and the minima of the coordinates so that we can clearly

understand where the dynamical transition occur, since each dynamical behaviours exhibits its

own amplitude (defined as difference between the maxima and the minima of the dynamics).

As an example, for a fixed point, maximum and minimum is the same for a fixed parameter

value, while for an oscillating behaviour we observe maximum 6= minimum. After crossing the

transition, we repeat this process along the opposite direction (by decreasing the bifurcation

parameter) to see wether or not there is a hysteretic region near the transition, i.e. a region in

which two distinct dynamical behaviours can be obtained by means of different initial conditions.

An example of this process can be seen in Fig. 4.2.4

Figure 4.2.4: Quasi-adiabatic path obtained for Jcross = 25, Jself = 21. For each value of η (abscissa) we

explicitly report the maxima and the minima of the time trace of the firing rate (ordinate).

The path is then followed on both directions (increasing η and decreasing η) to investigate

the hysteretic processes.

In figure Fig. 4.2.4 we see the plot of the maxima and the minima of the firing rate as

measured for different values of η. The path followed is shown in Fig. 4.2.2 as a dashed line. For

η . 5.5 we see that max(r) and min(r) are identical and equal for both population. By increasing
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η we cross the limit point curve, thus triggering the asymmetric fixed point. Here, max(r) and

min(r) are the same but they differ for the two populations. For η & 7, passing through the Hopf

bifurcation implies that the symmetric fixed point loses its stability and each population starts

oscillating. In this case there are no evident signs of hysteresis, thus confirming the negative

value of the first Lyapunov coefficient of the Hopf bifurcation.

4.2.2. Phase plane (Jself , Jcross)

Figure 4.2.5: Parameters plane (Jcross, Jself ) for the system described in Eq. (4.2.0.1). Red curve:

Hopf bifurcation/longitudinal symmetry broken. Blue curve: Limit point curve/transverse

symmetry broken. Black dashed line: adiabatic path followed in Fig. 4.2.6. Purple curve:

overlapping of Hopf bifurcation and transverse symmetry broken. Orange cross: Zero-

hopf point as the intersection between the two bifurcation curves. Green star: Generalized

Hopf point separating hysteretical and non-hysteretical transition between asymmetric

fixed point and collective oscillations. η = 5.87 is held constant throughout this analysis.
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In this parameter plane we have slightly different phenomena from the previously studied cases.

Once again we find a region inside which the system symmetrically oscillates (with a time-trace

similar to Fig. 4.2.3 (c)), however such region is contoured by two different Hopf bifurcations

instead of just one. Both of them are super-critical, meaning that no hysteresis is observed.

Outside of this region, on the upper and on the lower side of the plane we have a single stable

fixed point. Moving to higher Jcross on the right we see a transverse symmetry breaking curve,

which limits the area where the two populations have a different time evolution. The peculiar

feature lies at the boundary between the oscillating region and the asymmetric fixed point region,

where we observe a hopf bifurcation overlapped with a limit point curve.

Along the Hopf curve we also find a new codim 2 bifurcation point, known as GeneralizedHopf

point. This point occurs when the first Lyapunov coefficient related to the Hopf bifurcation

changes sign. In our specific case, this means that for lower values of Jself the transition is

hysteretical. In order to prove this, we follow the dynamics along the quasi-adiabatic path

shown in Fig. 4.2.5: The results are reported in Fig. 4.2.6.

Figure 4.2.6: Quasi-adiabatic path obtained for Jcross = 12.5, η = 5.87. For each value of Jself (ab-

scissa) we explicitly report the maxima and the minima of the time trace of the firing

rate (ordinate) for population 1 (a) and population 2 (b). The path is followed on both

directions (increasing Jself and decreasing Jself ) to investigate hysteretic processes.
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In Fig. 4.2.6 we see that there exists a bistability region where, with proper initial conditions,

the system can exhibit two different dynamical behaviours.

In addition to that, the two populations “exchange” the fixed point to which they evolve to,

according to the direction of the path. Since the permutational symmetry still holds, we can

conclude that this happens due to the different initial conditions which may result in a different,

yet equivalent, fixed point configuration.

4.2.3. Phase plane (η, Jself)

Figure 4.2.7: Parameters plane (η, Jcross) for the system described in Eq. (4.2.0.1). Red curve: Hopf

bifurcation/longitudinal symmetry broken. Blue curve: Limit point curve/transverse sym-

metry broken. Purple cross: Zero-Hopf point as the intersection between the two bifurca-

tion curves. Jcross = 21 is held constant throughout this plane analysis.

In the (η, Jself ) plane we find once again a Hopf bifurcation which defines the boundaries of

the region where the system oscillates and a limit point curve inside which the fixed point splits
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for the two populations. The time evolution for the various regimes is similar to those shown

in Fig. 4.2.3, but we see an interesting difference; the Hopf bifurcation ends abruptly in the

Zero-Hopf point. Actually, through MATCONT we are able to extend the curve even inside the

region with broken transverse symmetry, however in this case we are following a symmetric fixed

point which is no longer stable, thus we have no way of explicitly observing oscillating dynamics.

It is important to remark that all asymmetric behaviours we have observed so far have been

obtained with Jcross > Jself . This means that, when considering a real biological system, such as

the two vIRt sub-populations, the cross-interaction (i.e. the effect of one population on the other

one) needs to be greater than the self-interaction (i.e. the effect of one population on itself). This

is not a commonly encountered situation that could be easily justified. This particular condition

could occur due to some secondary effects which should be explored in deeper detail.

In conclusion, we have seen that a system with two identical interacting inhibitory popula-

tions can show various different dynamical regimes. Despite the fact that both populations are

inhibitory, the assumption of tonic neurons still allows the system to show collective oscillations.

Furthermore, we stress that even though we are dealing with two identical populations, we

have found asymmetric solutions, as shown in Fig. 4.2.3(b) and (d). However we also note that,

although the two populations can have two different spiking regimes, they are still synchronous,

such that both populations emit pulses at the same time.

In the next section we will see that, by introducing an asymmetric element (in the form of

a forcing inhibitory coupling) the two populations will behave differently, while maintaining a

strong interdependence.

4.3. Effects of external current

In this last section we analyze the role played by pre-Bötzinger complex (pre-BötC) on the dy-

namics of our system of two identical interacting inhibitory neuron populations. As discussed

in Section 1.10 we aim to investigate the role of the pre-BötC inhibitory input on the whisking

rhythm generation. Therefore, with this idea in mind, we study the circuit model represented in

Fig. 4.3.1
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Figure 4.3.1: Circuit model of the system described in Eq. (4.3.0.2). The two vIRt sub-populations

will be represented by two identical interacting and inhibitory networks of QIF neurons.

Pre-BötC effects on the population related to whiskers retraction are included through

a sinusoidal If (t). Jself represents the self-interaction of both populations, Jcross is the

mutual interaction between the two populations and JPB is the strength of the inhibition of

Pre-BötC on vIRTr. η is a parameter which takes into account both the internal excitability

of the network and the average value of the external current and is identical for both

populations.

The Pre-BötC is known to have an inhibitory effect on the vIRT [1]. We assume that it

acts on the membrane potential time evolution through an additive negative term given by the

following time-dependant sinusoidal function

If (t) = JPB(1 + sinωt) (4.3.0.1)

This specific form has the advantage of being quite a simple function and yet it is a good

approximation of a coupling term with another inhibitory neuronal population with a constant

spiking frequency ω and a coupling strength JPB .

In the following, we study the two inhibitory populations response to this forcing by varying
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JPB and ω. However, in order to have a biologically reasonable set of parameters, we must

choose the range of variability in an appropriate way. Since the main Pre-BötC activities we

are interested into are breathing cycle during basal respiration (characterized by a frequency <

4 Hz) and during sniffing associated with whisking (frequency > 4 Hz until ≈ 12Hz), we take

ω ∈ [1Hz, 12Hz]. JPB will have approximately the same magnitude of Jcross and Jself .

With the introduction of forcing terms the system now becomes

τ ṙ1 =
∆

τπ
+ 2r1v1

τ v̇1 = v2
1 + η − (πτr1)2 + Jselfs1τ + Jcrosss2τ + If (t)

τdṡ1 = −s1 + r1

τ ṙ2 =
∆

τπ
+ 2r2v2

τ v̇2 = v2
2 + η − (πτr2)2 + Jselfs2τ + Jcrosss1τ

τdṡ2 = −s2 + r2

(4.3.0.2)

Thus breaking the permutational symmetry of the system.

Due to this relatively high amplitude oscillating term, we expect to find that the forced

population will be entrained by the external forcing, producing dynamics with the same external

frequency ω, at least in some cases.

Furthermore, we are interested in the forcing effects on the vIRT sub-population which is not

directly subject to the forcing itself. In order to do this, we can compare the firing activity of

the two populations, looking for situations in which one population of neurons is synchronized

to the other one in a specific way (for example, when there is a fixed ratio between the average

firing frequency of the two populations). We refer to this phenomenon as phase− locking.

In general terms, phase-locking between two (or more) dynamical system components occurs

when there is a fixed statistical phase difference distribution between the components of the

aforementioned system. In neuroscience, Phase locking usually refers to the tendency of a neuron

(or a population of neurons) to fire action potentials at particular phases of another ongoing

signal. In our case, we will explore both the phase locking between the two population and the

phase locking between one of the populations and the forcing current.

As a first example of forced dynamics and phase-locking, a time simulation for a set of

parameters such that the unforced dynamics is collectively oscillating is shown in Fig. 4.3.2.
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Figure 4.3.2: Simulation of the system presented in Eq. (4.2.0.1). The parameters are η = 5.87, Jcross =

10, Jself = 10, JPB = 4.5ω = 7.5Hz. Red line: forced population. Blue line: unforced

population

We see that the two populations have a significantly different behaviour, resulting from the

interaction of the “natural” oscillation frequency and amplitude with the forcing parameters JPB

and ω. Since we have a wide range of reasonable JPB and ω values, we want to develop a general

method that allows us to describe the relative activity of the two sub-populations over a large

range of parameters (that is, if there is some fixed relation between the spiking frequency of the

two populations).

As a practical example, in the time trace previously presented (Fig. 4.3.2), we see that the

evolution of the two populations is periodic, and in particular the period is the same for both

populations. However, we observe that for a single period the forced population fires twice while

non-forced one fires five times. Since this relation does not change in time, we say that the

phase− locking between the two population is 5 : 2

As a way to detect the phase locking for a given state, we will proceed as follows: first of all,

we note that the natural frequency of our system is always greater than the range of frequency

of the forcing current. Furthermore, except in the case of asymmetric collective oscillations, the

trajectories of both populations have the same period T of the forcing current. Knowing this we
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explicitly count the number of maxima of the time trace for both populations over a long period

of time ∆t and then we divide these two number by the total number of periods elapsed ∆t/T .

If ∆t is long enough and if the two populations are actually phase locked, we should obtain the

phase locking ratio that we are looking for.

In the case of Fig. 4.3.2, for example, this procedure confirms that the phase locking is 5 : 2.

We stress once again that this means that, for every full oscillation of the forcing current, the

forced population fires twice and the non-forced population fires five times.

An equivalent way of doing this is computing the Hilbert Transform of the two signals sup-

posed to be phase locked (see Appendix B for more details.)

Since we previously identified four distinct dynamical behaviour (Fig. 4.2.3) for the unforced

system, we proceed by examining how the dynamics change under the forcing term for each one

of those regimes. We start by looking explicitly at the time evolution of the coordinates for some

values of JPB and ω.

Symmetric fixed point:

The dynamics of a forced fixed point is shown in Fig. 4.3.3

This is the most simple dynamics we can observe: the forced populations oscillates with the

same frequency of the forcing current and fires only once per period, thus it is almost entirely

driven by If (t). However, it’s interesting to observe the induced effects on the other population;

despite having the same full period of the forcing current, it fires a higher number of times for

each forcing oscillations, depending mostly on the forcing frequency ω.
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Figure 4.3.3: Phase-locking between forced and non forced population in the parameter plane (JPB,ω).

Other parameters are: η = 5.87, Jcross = 25, Jself = 21. The white region represent higher

or inaccurate values of the phase locking. The four panels are examples of the dynamics

in various phase locking regions
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in Fig. 4.3.3 we see the parameter plane (ω, JPB) where we represented the phase locking

region using the procedure explained before. This plot confirms that the forced population fires

only once per forcing oscillation, while the other population has a faster oscillating regime. This

is quite remarkable as it means that this population is not directly forced and yet due to the

interaction with the forced population it has global spiking events more frequently than the

other one. This can be understood in light of the fact that the forcing is inhibitory, thus one

can expect that the forced population will tend to be less active than the other one. Moreover,

we note that for low JPB values we only observe 1 : 1 locking, while for high JPB we can obtain

various different lockings such as 2:1 and 3:1. The locking tends to be higher for increasingly

lower frequency ω, as we can see in the four panels in Fig. 4.3.3.

Asymmetric fixed point:

When the dynamics is such that the two populations tend to the asymmetric fixed points, we see

that the forced population is always the one with lower values of the coordinate. This implies

that the effect of the forced population on the other one are smaller than those we have seen

in Fig. 4.3.3. In particular, while the frequency of the nested oscillations has the same order of

magnitude, their amplitude is far lower, as we can see in Fig. 4.3.4.
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Figure 4.3.4: Simulations of the system presented in Eq. (4.2.0.1). Red line: forced population. Blue

line: unforced population. (a) η = 5.87, Jcross = 20, Jself = 10, JPB = 8ω = 6Hz. (b)

zoom on the unforced population dynamics shown on panel (a). (c) η = 5.87, Jcross =

20, Jself = 10, JPB = 4.5ω = 4.5Hz. (d) zoom on the non-forced population dynamics

shown on panel.

Upon closer inspection, in fact, we see that there are very low-amplitude global activity

phenomena induced in the non forced populations. However, these are not always easily detected

as local maxima, thus making our analysis more inaccurate than the previously studied regime.

However, except in extreme cases, we get a reasonably clear idea of the locking between the two

populations, as shown in Fig. 4.3.5.
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Figure 4.3.5: Phase-locking between forced and non forced population in the parameter plane (JPB,ω).

Other parameters are: η = 5.87, Jcross = 20, Jself = 10. The white region represents

higher or inaccurate values of the phase locking.

Symmetric collective oscillations:

In the case of symmetric collective oscillation, the phase locking obtained is shown in Fig. 4.3.6
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Figure 4.3.6: Phase-locking between forced and non forced population in the parameter plane (JPB , ω).

Other parameters are: η = 5.87, Jcross = 10, Jself = 10. The white region represent higher

values of the phase locking. In the legend, the first and the second number, respectively

corresponding to the non forced and to the forced population, refer to how many maxima

are detected for an entire period of the forcing. The three panels are examples of the

dynamics in various regions 86



In the previous cases, we have always seen that the forced population is fully entrained with

the forcing, thus globally spiking at its same frequency. This might be because in absence of

forcing, the dynamics is entirely stable. In this case however, we see that the forced population

can fire multiple times for every cycle of the forcing current. This provides us with a regime

where the output of the forced population is phase locked with the forcing current itself with

a ratio different from 1:1, which could be useful in describing multiple whisking for a single

breathing (or even sighing) cycle [17]

Asymmetric collective oscillations:

Figure 4.3.7: Simulation of the system presented in Eq. (4.2.0.1). Red line: forced population. Blue

line: non-forced population. Parameters are Jcross =, η =, Jself =. (a) JPB = 2, ω = 3.5.

(b) JPB = 5, ω = 4.5. (c) JPB = 9.5, ω = 8.5. (d) JPB = 11, ω = 11.5.

87



When the unforced dynamics is given by asymmetric collective oscillations, the effect of the

forcing is quite weak on the non-forced population, in which it induces just an amplitude mod-

ulation but has no effect on the frequency at all.

The forced population however shows two different behaviours: For low forcing frequencies and

coupling, the spiking frequency is the same as the non-forced dynamics (Fig. 4.2.3(d) ), while

for high coupling (Fig. 4.3.7) some of the nested spikes fail to effectively become local maxima,

thus making it impossible for our algorithm to detect them.

In conclusion, we see that the determination of the phase locking has the advantage of giving

us an idea about the relation between the global spiking activity of the two populations for a wide

range of the parameters JPB and ω. Moreover, being the signals not noisy at all, the maxima

detection algorithm works well in most cases. However, the boundaries between two phase lock-

ing regions are usually not well defined and there are occasionally some points (JPB , ω) where

the computed phase locking is a bit off. As a consequence we have a coarsely-grained parameter

plane, especially for low frequencies. This is mostly due to bulges in the time trace of the two

populations that cannot be detected as maximum points.
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Chapter 5

Two coupled populations with

exponentially decaying synapses

and adaptation

5.1. System description

In this last chapter we will study a dynamical system made up by two interacting inhibitory

populations with exponentially decaying synapses and adaptation.

According to the one population model shown in Chapter 3 and to the prescription for

describing interacting neural mass networks already applied in Chapter 4, the system is defined
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as follows

τ ṙ1 =
∆

τπ
+ 2r1v1

τ v̇1 = v2
1 + η − (πτr1)2 + Jselfs1τ + Jcrosss2τ −A1

τdṡ1 = −s1 + r1

τaȦ1 = −A1 + ατr1

τ ṙ2 =
∆

τπ
+ 2r2v2

τ v̇2 = v2
2 + η − (πτr2)2 + Jselfs2τ + Jcrosss1τ −A2

τdṡ2 = −s2 + r2

τaȦ2 = −A2 + ατr2

(5.1.0.1)

Overall, the system is described by eight first-order differential equations describing the evo-

lution of the eight coordinates of the system. We have four variables for each sub-population,

representing the firing rate ri, the mean membrane potential vi, the synaptic activation field si

and adaptation Ai, with (i = 1, 2).

The two populations are formally identical, thus having the same parameters. Being the

two populations inhibitory, we will assume Jself < 0 and Jcross < 0 (for simplicity, in plots

and parameter planes we will use the absolute value of these quantities) while the parameter η,

which takes into account both the mean excitability and the mean external current, is positive,

meaning that the neurons are tonic.

Overall, with the assumption of identical populations, there are eight distinct parameters. We

are going to keep the three time scales and the heterogeneity parameter ∆ fixed to the following

values

∆ = 0.5; τ = 10 ms; τd = 20 ms; τa = 100 ms (5.1.0.2)

as we have already seen that these are biologically reasonable values. In this way we will see how

three different physical processes with three distinct time scales interact.

We will vary the other parameters (α, Jcross, Jself , η) to investigate how the dynamical be-

haviours, that we explored in Chapter 4, change due to the effect of the adaptation.

When considering the macroscopic model for one population (e.g. Section 3.3) we have seen

that the main dynamical effect of the adaptation is to reduce the region in the parameter space

where collective oscillations appear and increase the time period between two subsequent global
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spikes in a constant firing regime. With two populations, adaptive effects will bring forth new

stable dynamical regimes.

We are going to explore the system dynamics through MATCONT and, due to the permuta-

tional symmetry of the two populations, we can once again study the longitudinal and transverse

stability of the identical solutions, as we did in Chapter 4.

We first study the parameter planes (Jcross, Jself ) and (Jcross, η), keeping fixed α = 5, in

order to see the main differences between the two systems. Afterwards, we analyze the dynamics

by varying α. In both cases, we will look for the occurring bifurcations in order to clearly define

the dynamical transitions that our system undergoes.
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5.2. Constant α

5.2.1. Case i: (Jcross, Jself ) plane

Figure 5.2.1: Phase diagram for the parameter plane (Jcross, Jself ). Light-green curve: T.S. break. Red

curve: Hopf bifurcations marking the passage from asymmetric fixed point to asynchronous

oscillations. Blue curve: Hopf bifurcation overlapped with a T.S. break curve. Crossing of

this curve means passing from symmetric fixed point (where both population have identical

evolution and neither of them oscillates) to antiphase oscillations. The observed dynamical

regimes are (I): Symmetric fixed point; (II): Antiphase oscillations; (III): Asymmetric Fixed

point. Time trace examples are shown in Fig. 5.2.2. Other parameters are η = 5.87, α = 5.

We immediately see some differences with respect to the system without adaptation (Fig. 4.2.5):

• The two Hopf bifurcations have disappeared for the specific value of η = 5.87 for which

we are studying the parameter plane. This makes sense as adaptation reduces the overall
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current passing through the neurons, therefore we need a higher excitability η to com-

pensate the newly introduced inhibition. Natural collective oscillations, however, are not

completely shut down, as we will soon discover by varying η.

• We observe the emergence of different bifurcations. For high enough Jcross we see a similar

situation as in the case with no adaptation, i.e. a transverse symmetry break which sepa-

rates the region with a stable symmetric fixed point from the one with a stable asymmetric

fixed point. Following the stability of the T.S. curve until we reach a critical Jcross we see

that a Bogdanov Takens codim 2 bifurcation occurs. This is a peculiar bifurcation which,

in this case, marks the parameter plane point where the T.S. breaking curve splits into

two distinct Hopf bifurcation curves. Outside of these two curves, the behaviour previ-

ously discussed (stable fixed points) holds, while inside the fixed points become unstable,

giving birth to a stable limit cycle where the two populations exhibit antiphase oscillations

(i.e. one population’s maxima are synchronized with the other population’s minima). An

example of this dynamics is shown in Fig. 5.2.2 (a).

The introduction of the adaptation, characterized by a timescale τa � τ , allows us to find

asymmetric dynamical solutions, despite the symmetry of the initial system, composed by two

identical populations. The asymmetric solution is characterized by antiphase oscillations of the

two populations. This antiphase state can be interpreted by saying that when one population is

at its peak activity, the other one tends to be silent and viceversa.

Furthermore, we stress once again that the former behaviour only occurs for Jcross > Jself .

This means that, according to what we have seen until now, the only observable dynamical

regimes for the system presented in Eq. (5.1.0.1), with the additional condition Jself > Jcross,

are symmetric collective oscillations and symmetric fixed point.
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Figure 5.2.2: Time simulation of the system described in Eq. (5.1.0.1). Panel (a) and (b) respec-

tively referred to region (II, asynchronous oscillations) and (III, asymmetric fixed point)

in Fig. 5.2.1. Panel (a) parameters: Jcross = 15, Jself = 5. Panel (b) parameters:

J20 = 15, Jself = 10

Through MATCONT we have determined that the first Lyapunov coefficient is negative along

the two Hopf curves in Fig. 5.2.1. On a side note, we have found a Generalized Hopf point for

low positive Jself values, suggesting that, even for weakly excitatory populations, this transition

might be hysteretical. Since we are interested in inhibitory populations, the consequence of such

bifurcation which occurs for Jself > 0 is that we are on the non-hysteretic side of the Hopf

bifurcations.

To furtherly confirm what we have found with MATCONT, we have studied the dynamics

along a quasi-adiabatic path crossing the three previously described regions. The results are

shown in Fig. 5.2.3
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Figure 5.2.3: Plot of max(r), min(r) versus Jself along the path shown in Fig. 5.2.1. In red: population

1 data, in blue: population 2 data. Starting from low Jself we observe asymmetric fixed

point (III), asynchronous oscillations (II) and symmetric fixed point (I). Time simulation

examples are shown in Fig. 5.2.2. Other parameters are α = 5, η = 5.87, Jcross = 15.

We note that inside the antiphase oscillations region, maxima and minima are identical for

both populations, thus the only difference between the two populations in this regime is the

relative phase which, however, is constant. The asymmetric fixed point and the symmetric fixed

point show the usual behaviour as shown in Fig. 4.2.3
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5.2.2. Case ii: (Jcross, η) plane

Figure 5.2.4: Phase diagram in the Parameter plane Jcross, η. Red curve: Hopf bifurcation related to

the emergence of fast oscillations. Blue curve: Hopf bifurcation overlapped with a T.S.

break curve. Violet curve: Hopf bifurcation related to slow asynchronous oscillations.

Light blue: T.S. break. Green dashed lines: quasi-adiabatic paths studied in Fig. 5.2.5

and Fig. 5.2.6. Orange star: Bogdanov-Takens marking the split of the T.S. break into two

hopf. Observed stable regimes are: (I) symmetric collective oscillations; (II) symmetric

fixed point; (III) asymmetric fixed point; (IV) symmetric collective oscillations; (V) Slow

oscillations with fast nested oscillations; (VI) Asynchronous oscillations; Relevant time

simulations are shown in Fig. 5.2.7. Other parameters are Jself = 20, α = 5.

In this parameter plane, by varying the neuron excitability η, we can confirm what we previously

stated about collective oscillations: stronger adaptation effects require higher η values for the

emergence of symmetric collective oscillations. As a consequence, the Hopf bifurcation (red curve)
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can be found for slightly higher Jcross values than in the previous case with no adaptation, shown

in Fig. 4.2.2. In addition to this, we once again observe the occurence of a Bogdanov-Takens

bifurcation along the T.S. break curve. This brings to the emergence of two Hopf bifurcation

curves such as those described in Fig. 5.2.1.

Below the horizontal Hopf bifurcation, the two new Hopf curves define the region where both

the longitudinal and the transverse symmetry are broken, thus giving rise to a limit cycle along

which the two populations are ynchronously globally active. (Fig. 5.2.7 (c)). Defining as ηH the

excitability η value at which the Hopf bifurcation (red curve) occurs, we observe that, for η > ηH ,

where the system shows collective oscillations (reported in panel (b) and (d) of Fig. 5.2.7), the

two Hopf enclose a region with a peculiar behaviour where high frequency oscillations are nested

into a low frequency oscillation. An example of this regime is shown in panel (a) of Fig. 5.2.7.

In order to better investigate which scenarios arise when undergoing these new bifurcations,

we study the dynamics along the two quasi-adiabatic paths shown in Fig. 5.2.4.
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Figure 5.2.5: Plot of max(r), min(r) versus Jcross along the horizontal path shown in Fig. 5.2.4. red cir-

cled line: population 1 data, blue line: population 2 data. From left to right: symmetrical

collective oscillations, nested oscillations, asymmetric collective oscillations. Time simula-

tion examples are shown in Fig. 5.2.7. Other parameters are η = 10, α = 5, Jself = 20.

Starting from low Jcross, in Fig. 5.2.5 we observe a regime of symmetric oscillations (iden-

tical evolution for both populations). After crossing the Hopf+T.S. break shown in Fig. 5.2.4

we see that the dynamics of both population is described by asynchronous slow oscillations

(freq ≈ 1Hz) with significantly faster nested oscillations (freq ≈ 30Hz). Note that the overall

amplitude (i.e. difference between maximum and minimum) is greater for this dynamics than

for any other regime we have observed. For even greater Jcross we cross another Hopf bifur-

cation which shuts down the slow oscillations and we move towards the asymmetric collective

oscillations regime.
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Figure 5.2.6: Plot of max(r), min(r) versus η along the vertical path shown in Fig. 5.2.4. Panel (a):

population 1 data, panel (b): population 2 data. From left to right: symmetrical fixed

point, asynchronous oscillations , nested oscillations, asymmetric collective oscillations.

The difference between the results for increasing and decreasing η suggests a hysteretic

transition from nested oscillations to asymmetric collective oscillations. Time simulation

examples are shown in Fig. 5.2.7. Other parameters are Jcross = 32, α = 5, Jself = 20.

In Fig. 5.2.6 we reported the analysis results of the dynamics simulation along a quasi-

adiabatic path at fixed Jcross (shown as a vertical dashed line in Fig. 5.2.4). Starting at low η

values we observe a fixed point. After crossing η ≈ 7 we encounter a dynamical transition into an

oscillatory state (antiphase oscillations). After η ≈ 8 we observe another oscillatory state with a

higher amplitude, corresponding to nested oscillations. Afterwards, the two populations exhibit

another transition into an asymmetric collective oscillations state. By repeating the process for

decreasing η, we observe a hysteresis region for the entire range of the nested oscillations. By this

we can conclude that there is a small bistability region between asymmetric collective oscillations
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and nested oscillations. Examples of the dynamics at different regimes are shown in Fig. 5.2.7

Figure 5.2.7: Time simulation of the system described in Eq. (5.1.0.1). Dynamical regimes observed

in Fig. 5.2.4.(a) region (V). (b) region (IV). (c) region (VI). (d) region (I). Panel (a)

parameters: Jcross = 32 η = 10. Panel (b) parameters: Jcross = 35 η = 10. Panel (c)

parameters: Jcross = 32 η = 7.5. Panel (d) parameters: Jcross = 27 η = 10.

As a last significant characterization of our system dynamics in this plane, we want to in-

vestigate the power spectrum of the solutions with multiple frequency components . This allows

us to inspect the various spectral components of our signal in order to better understand the

coupling between the two different oscillations that we observe in the time traces. Results are

shown in Fig. 5.2.8
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Figure 5.2.8: (a) Full power spectrum related to the signal given by the time evolution of the firing

rate for a nested oscillations regime. System parameters are: α = 5, Jself = 20, Jcross =

32, η = 10. (b) low frequency region; (c) high frequency region. Computed frequencies are

compatible with the periods observed in Fig. 5.2.7(a).

The power spectrum shows two major peaks at freq ≈ 30Hz and freq ≈ 1.5Hz. The low

frequency peak corresponds to the slow, high period oscillations while the high frequency peaks
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are the main spectral components of the nested, low period oscillations. The phenomenon of

interaction between oscillations at different frequency bands is particularly significant in neuro-

science [10] [69] because it has been widely observed in human and animal brain (especially in

cortical regions) in various tasks such as perception, memory and attention [7]. In our specific

case, phase coupling between breathing and whisking in rodents has been directly observed [17].

For these reasons, we will devote Section 5.4 to furtherly explore these solutions which exhibit

cross-frequency coupling.
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5.3. α− η parameter plane

Figure 5.3.1: (α, η) parameter plane. Observed stable regimes are: (I) symmetric fixed point; (II)

symmetric collective oscillations; (III) asymmetric fixed point; (IV) asymmetric collective

oscillations; (V) antiphase oscillations; (VI) nested oscillations; (VII.a) symmetric collec-

tive oscillations; (VII.b) bistability between symmetric COs and nested oscillations; (VIII)

bistability between symmetric COs and asymmetric COs. Time evolutions examples in

Fig. 5.2.7 and Fig. 5.4.1. Other parameters: Jcross = 33, Jself = 20.

Here we have chosen Jself = 20 and Jcross = 33 in order to obtain non-trivial, asymmetric

solutions, in accordance with previous findings.

There are various interesting things we can learn about our system by studying this parameter

plane.

• The red curve represents a supercritical (positive first Lyapunov coefficient) Hopf bifur-
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cation. In the upper side of the plane, it marks the boundary between region (I) and

region (II), where we respectively find a stable symmetric fixed point and stable collective

oscillations. It’s important to stress the fact that, even for extremely high adaptive effects

(α ≈ 60), the collective oscillations are not completely shut down. Specifically, this is

similar to what we have seen for the one-population system (Fig. 3.3.1), where increasing

α brought the collective oscillations region to shrink until it eventually disappears. How-

ever, in this case, we see that the inhibition due to the adaptation can be compensated by

increasing the neuron excitability η. The positive slope of the curve is consistent with this

interpretation.

• For low α values we see a transverse symmetry breaking curve, which defines the passage

from a symmetric fixed point (I) to an asymmetric fixed point (III). Starting from this

region and crossing the aforementioned Hopf bifurcation (red curve) will bring the asym-

metric fixed point to lose its longitudinal stability, thus giving rise to asymmetric collective

oscillations (IV). An example of this dynamical regime is shown in Fig. 5.2.7 (b). Further-

more, we note that taking α = 0 (vanishing adaptive effects after a transient time period)

and varying η would give us the exact response as in Fig. 4.2.4.

• At a critical α value (αc ≈ 4) the T.S. breaking curve splits into two Hopf bifurcations via

a Bogdanov-Takens (BT) codim 2 bifurcation, similarly to what we have seen in Fig. 5.2.4.

This bifurcation is one of the key effects of the adaptation on our system. With low enough

η (i.e. on the left of the Hopf bifurcation, region (V)) we see stable antiphase oscillations,

such as those shown in Fig. 5.2.2 (a). Crossing the Hopf bifurcation (red curve) towards

region (VI), the previously mentioned antiphase limit cycle becomes unstable, as confirmed

both by simulating the system evolution and by performing a Floquet multipliers analysis

via MATCONT (see Appendix A for details). In this region the system exhibits a cross-

frequency coupling between slow and fast oscillations (as shown in Fig. 5.2.7, (a)), which we

will furtherly analyze in Section 5.4. The two Hopf bifurcations, enclosing this region, form

a closed curve as they starts from a BT bifurcation and reunite at another BT bifurcation

for η ≈ 30. This will produce another T.S. breaking curve with a similar dynamical meaning

as the one discussed above. Moreover, this means that, for high enough α values, keeping

Jself and Jcross at constant values, the nested oscillations region vanishes, leaving room

only for symmetric collective oscillations.

• Along the upper Hopf bifurcation (Hopf + T.S. break curve), at η ≈ 28, we find a General-
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ized Hopf (GH) codim 2 bifurcation. According to what we have already seen in Chapter 4,

this allows us to make a distinction between a super-critical (higher values of η) and a sub-

critical transition (lower values of η). Unfortunately we had no way to confirm the presence

of an hysteretic region in the neighbourhood of the bifurcation through direct simulation.

This is because, while crossing the Hopf near the GH, the system dynamics always converge

to a collectively oscillating regime for any parameter value.

To furtherly investigate this, we looked for bistable regimes. Through MATCONT we

were able to study the stability of collective oscillations across the entire region of the

parameter plane bordered by the two Hopf bifurcations. Through the application of Floquet

multipliers we discovered that collective oscillations are stable through the entire extension

of regions (VII.a), (VII.b) and (VIII). This is confirmed by the Neimark-saker bifurcation

curve that we have found and shown in Fig. 5.3.1 in violet. This curve represents the

boundary of the stability region of collective oscillations, so that, on the left of the curve,

the COs are unstable. Now, in order to obtain proof of bistability, we need to check if the

other solutions are stable as well. We start in the region (VIII). Here both MATCONT

and explicit simulations show that the asymmetric collective oscillations are stable, thus

providing us with a large bistability region. We can see the extent of this phenomenon in

Fig. 5.3.2
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Figure 5.3.2: Plot of max(r), min(r) versus η along a horizontal path at α = 2 in Fig. 5.3.1. In red:

population 1, in blue: population 2. Low η values: asymmetric collective oscillations.

High η values: symmetric collective oscillations. central region: bistability between the

two behaviours. Other parameters are Jcross = 33, α = 2, Jself = 20.

Through a quasi adiabatic path at constant α and by varying η we see that the asymmetric

collective oscillations are stable until the T.S. breaking. At the same time symmetric

collective oscillations are stable on the right of the Neimark-saker bifurcation. Therefore

we conclude that, in region (VIII), we have bistability between the two aforementioned

regimes.

• Following the same course of action for region (VII) is not as easy because MATCONT

does not allow us to study in detail the stability of nested oscillations, thus we can only

rely on simulations of the system. Therefore, we start by studying the dynamics along

quasi-adiabatic paths at constant α. Some examples are shown in Fig. 5.3.3
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Figure 5.3.3: Plot of max(r), min(r) versus η along two horizontal paths at α = 10 (panel (a)) and

at α = 15 (panel (b)) in Fig. 5.3.1. In red: population 1, in blue: population 2. Low η

values: nested oscillations. High η values: symmetric collective oscillations. central region:

bistability between the two behaviours. As underlined in Fig. 5.2.5, nested oscillations tend

to have higher amplitude than collective oscillations for equal values of η. Other parameters

are Jcross = 33, Jself = 20.

First of all we observe that nested oscillations apparently lose their stability at some value

of η which depends on α. Specifically we see that, for higher α, the stability is lost

for increasingly lower values of η. Moreover, that collective oscillations turn out to be

stable everywhere on the right of the Neimark-Saker curve. By repeating this process for

various values of α, we can build up an approximate curve (brown dotted curve) which

defines the region where nested oscillations are stable, thus providing us with a reasonably

accurate description of the dynamics in that region (VII.a). Overall, this procedure suggests

that inside (VII.b) the only stable solution are collective oscillations, while in (VII.a)

we can observe both collective oscillations and nested oscillation, with appropriate initial

conditions. The precise meaning of the Generalized Hopf remains unclear as it does the

upper right boundary of the (VII) region. Further work will be done in the future to clarify

the behaviour of the system. For now, we note that the unclear region occurs for high

values of η and α and that we have already found a wide variety of interesting dynamics.
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5.4. Cross-frequency coupling and nested oscillations

While studying our system we have encountered a dynamical regime where, for both populations,

we observe an interaction between oscillations at different frequency levels. This particular

behaviour is known as Cross-frequency coupling (CFC) and it has been observed in several

species such as rats, monkeys, humans and in several brain regions like the hippocampus and

the cortex. We know that CFC has been associated with cognitive events, sensory perception

and working memory [9]. Furthermore, cross-frequency coupling has been proposed to coordinate

neural dynamics across spatial and temporal scales [2], which is connected to what we are looking

for. Due to this large interest in neuroscience and since we have a relatively large region in this

parameter plane where this dynamics occur, we can study in more detail the frequency range

of these oscillations. Besides, we notice a relevant detail: in order to attain the cross-frequency

coupling, we need to have sufficiently high α and η.

In order to see the effects of the adaptation on the frequencies, we observe the dynamics by

keeping a fixed value of η and increasing α. The results of this are shown in Fig. 5.4.1.
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Figure 5.4.1: Time simulation of the system described in Eq. (5.1.0.1) for various values of α. (a) α = 11;

(b) α = 16; (c) α = 19; (d) α = 22. Other parameters are Jself = 20, Jcross = 33, η = 12.

The time period of the slow oscillaton decreases, while the time period of nested oscillaitons

slightly becomes larger.

We note that the effect of increasing α is to decrease the overall amplitude and sligthly

reducing the frequency of the fast oscillations, while at the same time the frequency of the

slow oscillations increases. We can explicitly determine the frequencies by looking at the power

spectrum of the time trace of the coordinates evolutions. Results are shown in Fig. 5.4.2
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Figure 5.4.2: Power spectra of the firing rate time evolution in nested oscillations regime for three

different values of α. Purple curve: α = 22. Green curve: α = 19. Blue curve: α = 16.

Panel (a): low frequency region. Panel (b): high frequency region. Other parameters are:

η = 12, Jcross = 33, Jself = 20

The spectrum shown for α = 22 is particularly interesting because we see that the low

frequencies are in the θ-range (4 - 10 Hz) while the higher frequencies lie in the γ-range (25

- 140 Hz). We underline that hippocampal θ waves appear when a rat is engaged in active

motor behavior such as walking or exploratory sniffing [65]. This is relevant as we can find

these frequencies in our system both as the enveloping frequency for nested oscillations and

as the actual spiking frequency in antiphase oscillations, where the two populations fire in an

alternating pattern at θ frequencies, suggesting the possibility to obtain a stable regime in which

protraction and retraction follow one another.

Therefore, we can conclude that, with an adequate set of parameters (i.e. Jcross > Jself ),

a model made up by two identical inhibitory populations of tonic neurons with exponentially

decaying synapses and adaptation is capable of giving rise to θ-nested γ oscillations, which

are believed to represent a fundamental mechanism to transfer information across spatial and

temporal scales [60].

Finally, we explore the effects of increasing η while maintaining constant α. The power spectra

for three distinct examples are shown in Fig. 5.4.3
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Figure 5.4.3: Power spectra of the firing rate time evolution in the nested oscillation regime for three

different values of η. Purple curve: η = 13. Green curve: η = 17. Blue curve: η = 21.

Panel (a): low frequency region. Panel (b): high frequency region. Other parameters are:

α = 10, Jcross = 33, Jself = 20

Here we see that, as expected, increasing the mean excitability/external current of the net-

work increases the activity, thus resulting in a higher frequency of fast oscillations. Still, the

slow oscillations keep roughly the same frequency, thus suggesting that the emergence of such

oscillations is mostly connected to adaptation.
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Conclusions

The goal of the original research activity of this thesis was to find a model that could describe the

whisking rhythmogenesis in rats. The work has been inspired by the seminar theory and modeling

of whisking rhythm generation proposed by Prof. D. Golomb [31], who presented the circuit model

(Fig. 1.10.1) that we used as a starting point for our work. His model describes a circuit of a

neuronal network that could explain whisking rhythmogenesis in rodents. The main physical

object of study is the vibrissae intermediate reticular formation (vIRt) nucleus in the medulla,

which is necessary for whisking rhythm generation [17]. The vIRt innervates neurons in the

facial nucleus (FN) that project to intrinsic vibrissae muscles. Knowing this, Golomb assumed

a circuit composed by two hypotetical vIRt groups, vIRtr and vIRtp, respectively related to

vibrissae retraction and protraction. The two populations were made up by bursting inhibitory

neurons with spike-frequency adaptation currents and constant external inputs. In this thesis

we decided to adopt a Quadratic Integrate and Fire (QIF) model to describe the dynamics of

single neurons and we followed the analytical method proposed by E. Montbrió, D. Pazó, A.

Roxin [46] to derive an exact mean-field description of a neural network with N degrees of

freedom, through a system of few differential equations which define the macroscopic evolution

of the network. This was possibile since single QIF neurons can be seen as phase oscillators

with instantaneous impulsive coupling, allowing us to apply the approach developed by Ott

and Antonsen [54] for a heterogeneous network of phase oscillators. The original mean-field

model [46] was derived for a single QIF population with instantanenous synapses, in this thesis

we have extended such model by including important physiological aspects. In particular, we

have implemented in such model both synaptic transmission characterized by a finite time and

frequency adaptation due to neuronal fatigue. Furthermore, inspired by the model proposed

by D. Golomb we considered the evolution of two coupled inhibitory QIF networks with the

additional physiological aspects mentioned above. By doing this, we have characterized various
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dynamical regimes that spontaneously emerge in systems of two coupled inhibitory populations

of identical QIF neurons which, to our knowledge, have not been investigated before.

In particular, we have found that, in the case of inhibitory coupling with exponentially decaying

synapses, we can observe a spontaneous symmetry breaking in the dynamical evolution, despite

the permutational symmetry brought by the fact that the two populations are formally identical.

Moreover, collective oscillations are not shut down due to the inhibitory cross coupling, if the

neurons are tonic.

Subsequently, following Golomb’s model, we introduced the PreBötzinger Complex (PreBötC)

into our circuit model. PreBötC is a cluster of interneurons in the ventral respiratory group of

the medulla of the brainstem and it is the neural network responsible for inspiration during

respiratory activity [48]. Since we know that PreBötC has an important role in whisking rhyth-

mogenesis because it projects inputs to the vIRt nucleus, thus contributing to the synchronization

of vIRt neurons [1], we wanted to investigate how the inhibitory forcing affected the two vIRt

populations. We have discovered that phase locked states between the two populations (and

with the forcing oscillations as well) are possibile. In addition to that, we have found that there

are cases in which the forced population is not fully entrained with the external input.

Having found that the two vIRt sub-populations exhibit collective oscillations with and without

PreBötC coordination confirms the hypotesis according to which the PreBötC is not needed for

rhythmic whisking activity [31, 17].

After that, we have introduced adaptation on both populations of our system, through a new

variable for each population. This specific setup, which we have extensively studied, has not been

analyzed in the literature before. We confirmed that an additional inhibitory effect does not pre-

vent collective oscillations. Instead, adaptation leads to the emergence of antiphase oscillations,

a dynamical regime in which the two populations have an alternating activity pattern (i.e. when

one population is silent, the other one is at its peak activity and viceversa). This is quite peculiar

and it could be useful in explaining the whisking activity, since the two sub-populations vIRtr

and vIRtp are expected to have synchronous activity, respectively, in occurrence of vibrissae

retraction and protraction.

Finally, a dynamical regime in which Cross-Frequency Coupling (CFC) occurs has been observed.

In particular, we discovered a range of parameters where θ−γ nested oscillations, which are quite

important in neuroscience [10, 69] show up. These results, which have not been found until now,

might represent a first step in defining a new way in which these commonly observed oscillations

emerge as a collective behaviour.
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The results we have found represent a starting point for subsequent research activity. The

next step will be the introduction of the PreBötzinger Complex inhibitory effect on the vIRTr

subpopulation for the system in which we have included adaptation effects, in order to obtain

a more realistic model of the whisking rhythm generation system. Furthermore, as shown in

Fig. 1.10.1, a third neuron population, representing the Facial Nucleus, should be included in our

model. This would be a relevant point because the Facial Nucleus contains the motor neurons for

whisking [1], therefore it is directly connected to the muscular activity of the vibrissae retraction

and protraction. In addition to that, studying the full circuit model will make it easier to

compare the computational results with the extensive biological data available [17]. Aside from

the specific purpose of modeling the rat whisking system, further research should be made into the

phenomenon of Cross-Frequency Coupling due to adaptation, as θ−γ CFC, reported for Hodgkin-

Huxley networks in [71], is not commonly observed at the level of exact neural mass models [11].

These mixed oscillations with frequency modulation are thought to have a fundamental role in

perception and memory formation [35].
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Appendix A

Bifurcation theory

In this appendix we give a short description of bifurcation theory. We start in Appendix A.1

by introducing the fundamental definitions and the most common codim 1 bifurcations, while

in Appendix A.2 we give some extra details on the codim 2 bifurcations that we have found on

Chapter 4 and Chapter 5 and we discuss in general the stability of periodic trajectories in the

phase space.

A.1. Introduction and basic concepts

In dynamical system, a bifurcation occurs when a small smooth change made to the values of

some parameters (which take the name of bifurcation parameters) of a system causes a sudden

“qualitative” or topological change in its dynamical behaviour. Generally, at a bifurcation, the

local stability properties of equilibria, periodic orbits or other invariant sets change.

Moreover, in bifurcation theory, we say that a given dynamical transition is hysteretical when

it occurs at different critical parameter values, hence we have a clearer procedure to identify this

particular phenomenon.

Bifurcations can be classified in different ways:

• According to the dimension of the system, that is the number of dynamical variables

through which our system is defined. Some bifurcations occur only when the dimension of

the system is greater than a minimum critical value. Usually, one can study this kind of

bifurcations in the minimum dimension at which it occurs;
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• According to the codimension of the bifurcation, which is defined as the number of param-

eter whose variation leads to the bifurcation;

• Local and global bifurcations: in the first category stable fixed points disappear and change

stability or new ones appear. Global bifurcations instead often occur when larger invariant

sets of the system ’collide’ with each other, or with the equilibria of the system.

• sub-critical and super-critical bifurcations, which we now explore in further detail.

We will study the bifurcations that we have found during this thesis, characterizing them

according to this categories.

Under general conditions, the local behaviour of codim 1 bifurcation of a fixed point can be

reduced to few fundamental characteristics. More precisely, it can be shown that there exist

series expansions and variable changes such that, near a fixed point, the evolution of the system

is described by a low number of differential equations which depend on a single bifurcation

parameter µ [24]. After performing adequate variable transformations which take the fixed point

to the origin x = 0 and the bifurcation point to µ = 0, the dynamical equations take a particular

form known as the normal form with the following structure

ẋ = f(x, µ) (A.1.0.1)

where the function f(x, µ) respresents the system evolution in the phase space. Through

series expansion, f can be expressed as a polynomial in x with µ as a parameter.

A.1.1. Super-critical bifurcations

We now present the most common codim 1 bifurcation, up to the third order in the polynomial.

1. Fold or saddle-node bifurcation: ẋ = µ− x2

If µ < 0, the equation f(x, µ) has no real solutions, hence we do not find any fixed point.

If µ = 0, one solution exists at x = 0, which is unstable. At µ > 0, two solutions emerge.

One being a stable solution x =
√
µ and one being an unstable solution, x = −√µ, as

shown in Fig. A.1.1 (A).

2. Transcritical bifurcation: ẋ = µx− x2

In this case we have two fixed points x = (0, µ =, whose stability are exchanged when the

bifurcation parameter crosses the critical value µ = 0: Therefore, for µ < 0, we have that
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x = 0 is stable and x = µ is unstable. The stability is inverted when µ > 0. The bifurcation

scheme is represented in Fig. A.1.1 (B).

3. Pitchfork bifurcation: ẋ = µx− x3.

For µ < 0 we only have a stable fixed point in x = 0 which becomes unstable at µ = 0. At

the same time, two stable equilibria x = ±√µ appear as µ > 0 (see Fig. A.1.1 (C)).

4. Hopf bifurcation: ż = (µ+ iγ)z − z|z|2.

In this normal form z is a complex variable while γ is a constant unrelated to the bifurcation

process. As a consequence, this particular bifurcation cannot occur for one-dimension

systems. Furthermore, this normal form is equivalent to the pitchfork bifurcation with

complex variables. In order to find a solution, it is convenient to transform the complex

variable to two real cartesian coordinates. Through the substitution z = x+ iy the normal

form becomes:

ẋ = [µ− (x2 + y2)]x− γy

ẏ = γy + [µ− (x2 + y2)]y.
(A.1.1.1)

In addition to z = 0 (that is, x = y = 0) solution, there exist one more solution:

|z|2 = (x2 + y2) = µ (A.1.1.2)

which defines a circumference with radius equal to
√
µ in the (x, y) plane.

Therefore, if µ < 0 we have a single stable fixed point for x = y = 0, while for µ > 0 it

becomes unstable, but we see that a stable limit cycle appears (Fig. A.1.1(D)).
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Figure A.1.1: Bifurcation diagrams for super-critical bifurcations: (A) saddle-node; (B) Transcritical;

(C) Pitchfork; (D) Hopf. The continuous line stands for stable points while the dashed

lines represent unstable points. The arrows describe the direction of the of the force lines

related to the flux f(x, µ)[5].

A.1.2. Sub-critical bifurcations

The normal forms that we discussed until now, are usually referred to as super − critical (or

normal). With this definition we want to underline that the non-linear term in x2 and x3 have

an opposite effect to the instability brought by the lowest-order term. As an example, consider

the normal form ẋ = µx− x3. For low x values we can consider only the linear term. Therefore,

the solution that we obtain is x = expµt, which tends to diverge when µ is positive. However,

the actual solution to the equation does not exponentially diverge because the linear term is

counterbalanced by (−x3) which cannot be neglected. Evaluating the equation in the following

form:

ẋ = µx

[
1− x2

µ

]
(A.1.2.1)
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we clearly see that the non-linear term balances the effect of the linear instability when x2 = µ.

However, there exist cases in which the non-linear term has a destabilizing effect on the solution.

In these situations, the bifurcation is called sub− critical or inverse.

All the normal forms that we examined in the previous setion can be transformed into their

sub-critical counterpart simply by changing the sign of the non-linear term. Thus we get the

bifurcation diagrams shown in Fig. A.1.2

Figure A.1.2: Bifurcation diagrams for sub-critical bifurcations: (A) saddle-node; (B) Transcritical; (C)

Pitchfork; (D) Hopf. The continuous line stands for stable points while the dashed lines

represent unstable points. The arrows describe the direction of the of the force lines

related to the flux f(x, µ) [5].

A.2. Codim 2 bifurcations

This section is devoted to bifurcations of equilibria in generic two-parameter systems of differen-

tial equations. We will focus on the bifurcations that we have found while studying the network

119



of two inhibitory identical populations of QIF neurons. In order to study such phenomena, we

consider an autonomous system of ordinary differential equations

ẋ = f(x, α), x ∈ Rn (A.2.0.1)

depending on two parameters α = (α1, α2) ∈ R2, where f is continuously differentiable smooth

function f : Rn −→ Rn.

In addition to that, we define the set of linear stability eigenvalues (λ = (λ1, ...λn) ∈ Rn) at

a certain phase space point x0 as the eigenvalues of the jacobian matix associated to f at x0,

Jx0
(f). We say that a fixed point x0 is asymptotically stable (i.e. a stable fixed point) if and

only if for all eigenvalues λ of J , Re(λ) < 0 [41]. The eigenvalues can be computed as the roots

of the characteristic polynomial of the Jacobian associated to the smooth function f .

We assume that the variation of the two parameters α is responsibile for the codim 2 bi-

furcation occurrence. One way to classify these bifurcations is by studying the conditions on

the system’s linear stability (through its eigenvalues) under which it occurs. Therefore, we can

vary the two parameters (α1, α2) to track a codim1 bifurcation curve in the (α1, α2) parameter

plane. During this process, extra eigenvalues can approach the imaginary axis, thus triggering

additional bifurcation processes. Additionally, some of the genericity conditions for the codim 1

can be violated. When this happens, we can expect the appearance of new phase portraits (i.e.

new dynamics) for nearby parameter values, implying that a codim 2 bifurcation has occurred.

The new phase diagram will depend on the kind of transition taking place while varying the

parameters (as shown in the various examples for codim 1 bifurcations).

1. As a first step, let us follow a fold bifuration curve, which is a curve in the two parameters

plane where an equilibrium with a simple zero eigenvalue λ1 = 0 exists. While the curve is

being tracked, an additional real eigenvalue λ2 may approach the imaginary axis, so that

λ1,2 = 0. (A.2.0.2)

These are the conditions for the Bogdanov−Takens (or double-zero) bifurcation. To have

this bifurcation we need n ≥ 2.

2. Let us now follow a Hopf bifurcation curve. At a typical point in this curve, the system

has an equilibrium with a simple pair of purely imaginary eigenvalues λ1,2 = ±iω0 and

no other eigenvalues with Re(λ) = 0. Besides, at a non-degenerate Hopf point, the first

Lyapunov coefficient (which characterizes whether the Hopf bifurcation is subcritical l1 > 0
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or supercritical l1 < 0) is not equal to zero, l1 6= 0. For a definition of the Lyapunov

coefficient, the reader is referred to [64]. While moving along this curve, two extra complex

conjugate eigenvalues λ3,4 can approach the imaginary axis, so that

λ1,2 = ±iω0, λ3,4 = ±iω1. (A.2.0.3)

These conditions define the Hopf-Hopf or double-Hopf bifurcation.

3. In addition to that, along a Hopf curve the first Lyapunov coefficient l1 might vanish while

λ1,2 = ±iω0, therefore:

λ1,2 = ±iω0, l1 = 0. (A.2.0.4)

We call this event Generalized Hopf (or Bautin) bifurcation

We note that the Bogdanov-Takens can also be located along a Hopf bifurcation curve, as ω0

approaches zero. At this point, two purely imaginary eigenvalues collide and we have a double

zero eigenvalue.

A.2.1. Neimark-Sacker bifurcation and Floquet multipliers

In Chapter 5 we have used a Floquet multipliers analysis to study the stability of oscillatory

regimes over a given range of the system’s parameters. For mathematically based applications,

the stability of non-linear oscillatory behaviors is determined by the Floquet multipliers [61]. In

this section we will shortly present the basic ideas behind the computation of Floquet multipliers

and describe the occurence of the Neimark-Sacker bifurcation.

Suppose that our system can be described by a system of differential equations like those

that we previously considered:

ẋ = f(x, t, λ), x ∈ Rn (A.2.1.1)

where λ is a generic set of real parameters. A generic trajectory of this system can be defined

as x = φ(t, x0), where x0 = (x
(1)
0 , x

(2)
0 , ...x

(n)
0 ) are the initial conditions. If Eq. (A.2.1.1) allows

for periodic solutions (such as limit cycles) then, for those trajectories, there exist a time period

T ∈ R, T > 0 such that φ(t + T, x0) = φ(t, x0). The trajectory progresses to the regular orbit

x∗ = φ(t, x∗0). Now we consider a weak perturbation d0 to the initial condition set x∗0, producing

the orbit φ(t, x∗0 + d0). The distance between the perturbed trajectory and the periodic orbit is

d(t) = φ(t, x∗0 + d0)− φ(t, x∗0) (A.2.1.2)
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The distance after one full period T can be calculated as d(T ). The linear representation through

Taylor expansion becomes

d(T ) =
∂φ(T, x∗0)

∂x
d0. (A.2.1.3)

Figure A.2.1: A periodic trajectory of a system with initial condition z∗ and an example of stable and

unstable solutions for two different disturbances d0 and d1. T is the periodicity of the

stable orbit. [13]

Keeping in mind that this approximation is valid only for small disturbances (as shown in

Fig. A.2.1), we can extract the Monodromy matrix from the Taylor expansion as

M =
∂φ(T, x∗0)

∂x∗0
. (A.2.1.4)

The Monodromy matrix describes the growth or decay of the perturbation after one period, thus

it helps us to define the stability of periodic solutions. The characteristics of the Monodromy

matrix are directly related to the behavior of the specific periodic solution and determined by

its n eigenvalues, µ1(λ), ..., µn(λ). These eigenvalues are known as Floquet multipliers. The
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magnitude of one of them is always equal to unity, i.e. |µn = 1|. The other n − 1 eigenvalues

determine the (local) stability of the periodic trajectory x∗(t) according to the following rule:

• x∗(t) is stable if |µj | < 1 for j = 1, ..., n− 1.

• x∗(t) is unstable if |µj > 1 for some j.

In other words, for a stable periodic trajectory, the n− 1 multipliers should always be inside the

unit circle in the complex plane. It’s important to note that these eigenvalues are functions of the

system parameters, therefore the stability of a given trajectory can change upon the variation

of the parameters. The multiplier crossing the unit circle during a transition from stable to

unstable trajectory is referred to as the critical multiplier and a graphic representation of a

multiplier crossing the unit circle, while a parameter is varied, is shown in Fig. A.2.2.

Figure A.2.2: Multipliers (eigenvalues of the monodromy matrix) for three values of lambda. λ0 is the

critical parameter value at which the transition from stability to instability of a periodic

orbit occurs.

Depending on where the critical multiplier or pair of complex conjugate multipliers crosses

the unit circle, different types of bifurcation occur. One distinguishes three ways in which this

phenomenon may occur, with three associated types of bifurcation.
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Figure A.2.3: Three different ways multipliers can leave the unit circle. (a) µj(λ) = 1 for a j. (b)

µj(λ) = −1 for a j. (c) A pair of complex conjugate multipliers cross the unit circle.

In Chapter 5 we encountered the bifurcation related to panel (c) of Fig. A.2.3. This type

of stability losing is characterized by a pair of complex-conjugate multipliers crossing the unit

circle at

µ(λ0) = exp±iθ for θ 6= 0, θ 6= π (A.2.1.5)

This kind of bifurcation is often called Neimark-Sacker bifurcation (NS). By making use of

Poincarè maps, it can be shown [61] that this bifurcation is associated with periodic orbits losing

their stability to torus dynamics. This means that after the bifurcation occurs, the trajectory

spirals around a torus-like manifold. Because this scenario requires complex multipliers in ad-

dition to the eigenvalue that is always equal to unity, a NS bifurcation can take place only for

n ≥ 3.
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Figure A.2.4: Dynamics example on a 2-dimensional torus with two distinct frequencies ω1(λ), ω2(λ),

after a NS bifurcation. Ω is a Poincarè section and C is an invariant curve defined in Ω.

For λ tending to λ0, the diameter of the torus shrinks to zero and eventually reduces to

the periodic orbit (that is, at λ0 a bifurcation from a periodic orbit to a torus takes place)

[61]

After the bifurcation from periodic orbit occurs, (with frequency ω1(λ)), there are two fre-

quencies ω1(λ), ω2(λ). One frequency describes the component of motion along the axis within

the torus (longitudinal motion), the other frequency is measured along the cross section (lati-

tudinal motion) (see Fig. A.2.4). The related flow is called quasi-periodic if the ratio ω1/ω2 is

irrational. Furthermore, for some λ this ratio may be rational. In this specific case, we talk

about locked state, the trajectory on the torus is closed and it is also periodic.
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Appendix B

Symmetry breaking in two

identical populations of QIF

neurons

B.1. Transverse and Longitudinal symmetry

In this chapter we describe the method we used in order to study the longitudinal and transverse

symmetry in Chapter 4 and Chapter 5. We follow the procedure presented in [58]

In the following, we refer to the system made up by two identical populations with expo-

nentially decaying synapses and no adaptation. However, the same procedure can be easily

extendend to the case where adaptation effects are taken into account.

We start from the system of differential equations which defines our neural network model

τ ṙ1 =
∆

τπ
+ 2r1v1

τ v̇1 = v2
1 + η − (πτr1)2 + Jselfs1 + Jcrosss2

τdṡ1 = −s1 + r1

τ ṙ2 =
∆

τπ
+ 2r2v2

τ v̇2 = v2
2 + η − (πτr2)2 + Jselfs2 + Jcrosss1

τdṡ2 = −s2 + r2

(B.1.0.1)
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Being the two populations identical, these equations possess permutational symmetry: this

means they are invariant under the change of the variables (r2, v2, s2, r1, v1, s1) −→ (r1, v1, s1, r2, v2, s2).

This symmetry admits the existence of entirely symmetric solutions (r1, v1, s1) = (r2, v2, s2) In

order to analyze the stability of such solutions, we introduce new variables

Rt = (r2 − r1),

Vt = (v2 − v1),

St = (s2 − s1)

(B.1.0.2)

Rl = (r0 + r1),

Vl = (v0 + v1),

Sl = (s0 + s1)

(B.1.0.3)

We refer to (Rt, Vt, St) and (Rl, Vl, Sl) as the transverse and longitudinal coordinates, respec-

tively. In these new coordinates, the trajectories of the symmetric solutions are placed in the

invariant subspace (0, 0, 0, Rl, Vl, Sl), with the variables satistfying the following differential

equations

τṘl = 2
∆

τπ
+ 2RlVl

τ V̇l = V 2
1 + V 2

2 + 2η − (τπr1)2 − (τπr2)2 + (Jself + Jcross)Sl

τdṠl = Sl −Rl

(B.1.0.4)

These equations are identical to those that descrive the dynamics of a single population of QIF

neurons with a modified self-coupling strength J = Jcross + Jself . The solution of this kind of

system has been analytically explored in Chapter 3, where we have shown that a system like the

one described in Eq. (B.1.0.4) has two different types of asymptotically stable solutions: fixed

point and limit cycles. These stable solutions constitute longitudinally stable solutions of our

system Eq. (B.1.0.1) in the invariant subspace (0, 0, 0, Rl, Vl, Sl). In other words, this means

that when the longitudinal symmetry is broken, then fixed points are no longer stable for the

system with two identical populations.

The transverse stability of the symmetric solutions is defined by the variational equations of

the (Rt, Vt, St) variables. We now suppose a complete synchronization r1 = r2 = r, v1 = v2 =

v, s1 = s2 = s.
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
δṘt

δV̇t

δṠt

 = A


δRt

δVt

δSt

 (B.1.0.5)

with the matrix

A =


2
τ v

2
τ r 0

−2τπ2r 2
τ v Jself − Jcross

+ 1
τd

0 − 1
τd

 (B.1.0.6)

The eigenvalues of this matrix have an important meaning, because when the real part of

at least one of the eigenvalues cross the imaginary axis (thus becoming positive), the transverse

symmetry is broken. As a consequence, the time evolution of the two populations is different.

This gives raise to the various types of asymmetric behaviours that we have seen in Chapter 4

and Chapter 5, where we have used this criterion to define the Transverse symmetry breaking

curves.

In order to explicitly compute the eigenvalues of Eq. (B.1.0.6), we need the values of the fully

synchronized fixed point coordinates r and v. We can find these by solving the system shown

in Eq. (B.1.0.1), after setting the complete synchronization condition r1 = r2 = r, v1 = v2 =

v, s1 = s2 = s and the fixed point condition ṙ = 0, v̇ = 0, ṡ = 0. Doing this leaves us with the

following algebric system

v = − ∆

2π

1

r̃

r̃4π2 − (Jself + Jcross)r̃
3 − ηr̃2 −

(
∆

2π

)
= 0

(B.1.0.7)

where r̃ = τr. Furthermore, we need to take only the real positive solution of the fourth order

polynomial so that we are left with a physically valid solution.

If we include adaptation in our model, the fixed points change, even though the algebric system

is quite similar:

v = − ∆

2π

1

r̃

r̃4π2 − (Jself + Jcross − α)r̃3 − ηr̃2 −
(

∆

2π

)
= 0

(B.1.0.8)

It is important to underline that this analysis follows the stability of a symmetric fixed point.

Therefore, the analysis can produce inaccurate results inside the regions where the fixed point

has lost its stability. We can look at Fig. 4.2.5 for a practical example. In the region where
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the transverse symmetry is broken, the symmetric fixed point is unstable. Hence, a longitudi-

nal symmetry analysis cannot be considered reliable and, in fact, it would detect longitudinal

symmetry breaking regions even though we find no dynamical transition at all. Therefore, such

curves were not considered during this thesis.

Lastly, we report the matrices related to longitudinal and tranverse symmetry for a sys-

tem of identical inhibitory QIF neuron populations with exponentially decaying synapses, with

Chapter 5 and without adaptation Chapter 4.

Longitudinal symmetry, no adaptation (Eq. (B.1.0.1)):

A =


2
τ v

2
τ r 0

−2τπ2r 2
τ v Jself + Jcross

1
τd

0 − 1
τd

 (B.1.0.9)

Longitudinal symmetry, with adaptation Eq. (5.1.0.1):

A =


2
τ v

2
τ r 0 0

−2τπ2r 2
τ v Jself + Jcross − 1

τa

1
τd

0 − 1
τd

0

ατ
τa

0 0 − 1
τa

 (B.1.0.10)

Transverse symmetry, with adaptation Eq. (5.1.0.1):

A =


2
τ v

2
τ r 0 0

−2τπ2r 2
τ v Jself − Jcross − 1

τa

1
τd

0 − 1
τd

0

ατ
τa

0 0 − 1
τa

 (B.1.0.11)

The eigenvalues where computed numerically, by adapting numerical codes taken from [56].
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Appendix C

Numerical methods

C.1. Hilbert transform and instantaneous phase of a signal

In Section 4.3 we studied the effects of external forcing in our system made up by two identical

QIF neuron populations. We did so by computing the phase locking through explicit counting of

the maxima in the time traces of the firing rate. We now illustrate another method for computing

the phase locking between two different signals, which makes use of the Hilbert transform.

In general, The Hilbert transform H[f(t)] = f̃(t) is a tool to determine the amplitude and

instantaneous phase of a given signal f(t).

We define the analytic signal as

fa(t) = f(t) + jf̃(t). (C.1.0.1)

From this quantity we can derive the amplitude A and the instantaneous phase φ(t) as:

A =

√
[f(t)]2 + [f̃(t)]2,

φ(t) = arctan
f̃(t)

f(t)
.

(C.1.0.2)

From a mathematical point of view, the Hilbert transform of a signal is given by the following

integral operation

H[f(t)] = f̃(t) = f(t) ∗ hH(t) =
1

π
P.V.

∫ +∞

−∞

f(τ)

t− τ
dτ, τ ∈ (−1,+1), (C.1.0.3)
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where (∗) is the convolution operation Therefore the Hilbert transform is a linear operator which

is given by the convolution with the function hH(t) = 1
πt , known as the Cauchy Kernel. Since

1
t is not integrable across t = 0, the integral defining the convolution does not always converge.

Instead, the Hilbert transform is defined using the Cauchy principal value (denoted here by P.V.).

We can use the analytical signals derived from two different real signals to evaluate if there

is some kind of phase-locking between the two signals. In our particular case, we can compute

the Hilbert transform of the time traces of the firing rate of both populations for a given set of

system parameters, thus obtaining fa,1(t) and fa,2(t). The evolution of the phase in time is then

derived as φ(l)(t) = arg fa,l, l ∈ (1, 2). On average, the phase will increase by 1 (or 2π if we

express it in radians) for every oscillation of the system (i.e. for every synchronous activity of

the network). Therefore we can define a generalized phase difference of the n : m phase locked

mode as:

∆φnm(t) = nφ(1)(t)−mφ(2)(t), (C.1.0.4)

and the degree of synchronization in the phase locked regime can be quantified in terms of the

Kuramoto order parameter for the phase difference, given by:

ρ = |〈exp j∆φnm(t)〉| (C.1.0.5)

where | · | represents the magnitude and 〈·〉 the time average. If the two populations are actually

phase locked with a n : m ratio, then this parameter will get close to one [11].

This procedure is quite reliable when we do not have a lot of harmonic components in our

signal, i.e. when we do not have interaction between many different frequencies. Therefore we

can conclude that the Hilbert transform technique of using the analytic signal to find the instan-

taneous phase requires a signal composed of a narrow band of frequencies [6], which we could

obtain by filtering time traces through a specific band-pass filter. This problem is particularly

evident when we have a modulated signal, which is exactly our case. For this reason this method

has been explored but non specifically used for the results shown in the thesis. However, Hilbert

transforms and instantaneous phase value find extensive use in statistical and computational

neuroscience.

C.2. Power spectra with Fourier transform

In Chapter 5 we performed Fourier spectral analysis in order to observe the various spectral

components of the time traces of our system, with specific concern with the nested oscillations
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solution, where we have seen that different frequencies range interact, producing Cross-Frequecy

Coupling (CFC).

In this section we will explain in further details the spectral analysis and the procedure we

followed to compute the spectra.

In general, the power spectrum S[f ](ω) of a time series f(t) describes the distribution of power

into frequency components composing that signal. According to Fourier analysis, any physical

signal can be decomposed into a number of discrete frequencies, or a spectrum of frequencies

over a continuous range. The statistical average of a certain signal (including noise) as analyzed

in terms of its frequency content, is called its spectrum.

We suppose that our function is sampled at N different time instants over a given period of

time T = (N − 1)∆, producing the N values c0, c1, ..., cN . in our specific case, ∆ is the time step

of our simulation of the system evolution. Given these N values of the time trace we can use the

Fast Fourier Transform (FFT) to compute the discrete Fourier Transform

Ck =

N−1∑
j=0

cj exp 2πijk/N k = 0, ..., N − 1 (C.2.0.1)

where i is the imaginary unit. Then, the estimate of the power spectrum is defined at N/2 + 1

frequencies as

S(0) = S(f0) = |C0|2

S(fk) =
[
|Ck|2 + |CN−k|2

]
k = 1, 2, ..., (

N

2
− 1)

S(fc) = S(fN/2) = |CN/2|2

(C.2.0.2)

Since we are not interested in explicit integration of our spectra, we do not need to focus on

finding an adequate normalization constant, which would be a non-trivial problem.

According to the convention we are using, fk is defined only for the zero and positive fre-

quencies

fk =
k

N∆
= 2fc

k

N
k = 0, 1, ...,

N

2
(C.2.0.3)

fc is known as the Nyquist frequency.

The Nyquist Frequency fc is an important parameter of the sampling process, during which we

convert a continuous function or a signal into a discrete sequence. In units of cycles per second

(Hz), its value is one-half of the sampling rate (samples per second), thus fc = 1
2∆ . When the

highest frequency (bandwidth) of a signal is less than the Nyquist frequency of the sampler, the

resulting discrete-time sequence is said to be free of the distortion known as aliasing, and the
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corresponding sample-rate is said to be above the Nyquist rate for that particular signal[12]. In

practice, when we use a finite data length, our selected frequency bins have also a finite length

( [0, fc/2]) which is the same for every bin. As a result, practically due to this finite nature of

the frequency bins, the original frequency present in the signal might fall within two adjacent

bins. This leads to biased estimate of the frequency, and might also result in biased amplitude

estimate. Since we make use of the FFTW3 library to compute spectra [27], the size of the time

traces representing the time evolution of our system affects the sampling frequency. Specifically,

extremely long data sets would bring to a low sampling frequency, which can cause inaccuracies

and biases in the power spectrum due to the reduced bin size. Therefore, instead of producing a

single spectrum from a long time trace, we compute a high number (~500) of spectra. Afterwards,

we evaluate the average of these spectra by taking their sum for each frequency bin and dividing

by their total number, thus arriving at the final results shown in Chapter 5
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umev.1. Paris:Maloine,. url: http://www.bio%20diversitylibrary.org/bibliography/

48637.

[9] Ryan T Canolty and Robert T Knight. “The functional role of cross-frequency coupling”.

In: Trends in cognitive sciences 14.11 (2010), pp. 506–515.

[10] Ryan T Canolty et al. “High gamma power is phase-locked to theta oscillations in human

neocortex”. In: science 313.5793 (2006), pp. 1626–1628.

[11] Andrea Ceni et al. “Cross frequency coupling in next generation inhibitory neural mass

models”. In: Chaos: An Interdisciplinary Journal of Nonlinear Science 30.5 (2020), p. 053121.

134

http://www.bio%20diversitylibrary.org/bibliography/48637
http://www.bio%20diversitylibrary.org/bibliography/48637


[12] Maurice Charbit. Digital signal and image processing using MATLAB. Vol. 666. John Wiley

& Sons, 2010.

[13] Namki Choi, Hwanhee Cho, and Byongjun Lee. “Development of Floquet multiplier esti-

mator to determine nonlinear oscillatory behavior in power system data measurement”. In:

Energies 12.10 (2019), p. 1824.

[14] Stephen Coombes. “Neural fields”. In: Scholarpedia 1.6 (2006), p. 1373.

[15] SG Cull-Candy, R Miledi, and I Parker. “Single glutamate-activated channels recorded from

locust muscle fibres with perfused patch-clamp electrodes”. In: The Journal of physiology

321.1 (1981), pp. 195–210.

[16] Gustavo Deco et al. “The dynamic brain: from spiking neurons to neural masses and cortical

fields”. In: PLoS computational biology 4.8 (2008), e1000092.
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