
Introduction to neural dynamics
Alessandro Torcini

alessandro.torcini@cyu.fr

CYU 19/04/22 – p. 1



Summary

Decision Making

Perceptual Decision Making in Monkeys

Competition through Common Inhibition

Associative Memory

Memory Recall

Neuronal Assemblies

The Hebbian Paradigm

The Hopfield Model

CYU 19/04/22 – p. 2



Decision Making

A subject should decide based on a short flash of three vertical black bars on a gray

background if :

Is the middle bar shifted to the left or to the right compared to a symmetric

arrangement of the three bars where it is exactly in the center?

The subject who holds a button in each hand, indicates his decision (left or right)

by pressing the corresponding button.

If the shift is very small, or if the bars are presented with low contrast on a noisy screen,

the question is difficult to answer. The subject reports his perception as a decision
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Perception of Motion

Neurons in the middle temporal visual area

(MT) are activated by stimuli in motion

Different neurons in MT respond to different

directions of motion, but just as in other parts

of visual cortex, area MT has a columnar

structure so that neighboring neurons have a

similar preferred direction of motion

At the beginning of a typical recording session with an extracellular electrode in

MT, the preferred direction of motion of a single neuron or cluster of neighboring

neurons is determined by varying the movement angle of the random dot stimulus.

Once the receptive properties of the local MT neurons have been determined, only

two different classes of stimuli are used, i.e., dots moving coherently in the

preferred direction of the recorded neuron, and dots moving coherently in the

opposite direction
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Saccade

Wikipedia

A saccade is a quick, simultaneous movement of both eyes between two or more

phases of fixation in the same direction.

When scanning immediate surroundings or reading, human eyes make saccadic

movements and stop several times, moving very quickly between each stop. The

speed of movement during each saccade cannot be controlled; the eyes move as

fast as they are able.

One reason for the saccadic movement of the human eye is that the central part of

the retina, which provides the high-resolution portion of vision is very small in

humans, only about 1–2 degrees of vision, but it plays a critical role in resolving

objects.

It is more efficient to move the eye so that small parts of a scene can be sensed

with greater resolution, than by turning the head

FILM
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Perceptual Decision Making in Monkeys

The stimulus consists of a random pattern of moving dots, where most, but not

necessarily all, of the dots move coherently in the same direction

Two different directions of motion are used, e.g., upward or downward, in the

preferred (opposite) direction of the recorded neurons

The monkey has been trained to indicate the perceived motion direction by

saccadic eye movements to one of two targets

In the first phase of each trial, the monkey

fixates on the star while a moving random dot

stimulus is presented inside the receptive field

(dashed circle) of a neuron.

After visual stimulation is switched off, the

monkey indicates by eye movements to one of

the two targets (filled black circles, marked P

and N) whether the perceived motion is in the

direction ‘P’ or ‘N’.
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Perceptual Decision Making in Monkeys

The behavioral performance can be assessed with

the psychometric function which represents the

percentage of saccades to the target P as a

function of coherence

Coherence is the fraction of coherently moving dots

Coherence = 1 : all points move in the P

direction

Coherence = 0.66 : 1/3 of the points move in a

random direction

Coherence = -1 : all points in the ‘N’ direction

An electrode in MT cannot only be used to record neural activity, but also to

stimulate a cluster of neurons in the neighborhood of the electrode.

Since neighboring neurons have similar preferred directions of motion, current

injection into the electrode can bias the perception of the monkey in favor of the

neurons’ preferred direction, even if the random dot pattern has no or only a small

amount of coherence

This indicates that the perceptual decision of the monkey relies on the motion

information represented in the activity of MT neurons
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Perceptual Decision Making in Monkeys

The monkey’s perceptual decision is influenced by the stimulation of MT neurons, this

result does not imply that the decision itself is made in MT. It is likely to be made at a

later stage, in an area that uses the information of MT neurons

The experiment by Roitman & Shadlen

The measurements are now done in the Lateral Intra-parietal Area (LIP) during

experiments of perceptual decision making with moving random dot stimuli

Area LIP is located in the visual processing stream between primary visual cortex

and the Frontal Eye Field region involved in the control of saccadic eye movements

Neurons in area LIP respond during the preparation of saccadic eye movements

Different neurons in LIP have different receptive field field corresponding to a

target region of eye movements.

A LIP neuron responds just before a saccadic eye movement into its receptive field

occurs.
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The experiment by Roitman & Shadlen

Monkeys are trained to indicate the direction of a moving dot pattern by saccadic

eye movements to one of two visual targets

The first target is located in the receptive field (RF) of a LIP neuron. Therefore, the

recorded neuron is expected to respond whenever the monkey prepares a

movement to the first target. The second target is located in the opposite direction.

A random dot stimulus moving in direction of the first target implies that the

monkey should make an eye movement toward it; the response to a stimulus

moving in the opposite direction is a saccade to the second target

The LIP neuron response is enhanced

(suppressed) just before the saccade, if the

saccadic movement is into (away from) its RF ( left

right )

Responses were faster for stimuli with larger

coherence (top 51.2%) than smaller coherence

(bottom 6.4%),

Filled triangles indicate onset of motion stimulus.
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The experiment by Roitman & Shadlen

Firing rate response of LIP neurons (averaged over

54 neurons) aligned to stimulus onset (left) or

saccade onset (right).

The stronger the coherence (solid lines: coherence

51.2%, 12.8% and 3.2%) of a random dot motion

stimulus initiating a saccade ’into’ the RF the faster

the rise of the response of LIP neurons (left)

Whatever the coherence, the LIP neurons always reach the same firing rate, at the

moment when a saccade into the RF starts (right).

The neurons activity are suppressed, if the monkey chooses the opposite saccadic

target ’away RF’ (dashed lines)

Conclusions

The decision to perform a saccade is taken when the firing rate of LIP neurons reaches a

threshold value

For stimuli with higher coherence, the firing increases more rapidly, the threshold is

reached earlier, and reaction times are shorter than for stimuli with lower coherence.
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Competition through common inhibition

The essential features of the experiments of Roitman & Shadlen can be described by a

simple model of decision making where neuronal populations compete with each other

through shared inhibition
A network of spiking neurons made of 2 excitatory

populations interacting via a common pool of

inhibitory neurons

The neurons are randomly connected with synaptic

coupling wEE within the excitatory populations and

with coupling wIE (wEI ) to (from) the inhibitory

population

The parameters are chosen such that in absence of stimulation all neurons exhibit

spontaneous activity at low firing rates: asynchronous irregular firing

Stimulation corresponds to a positive mean input into one or both excitatory

populaions

Input into population 1 (2) indicates coherent motion of the random dot pattern to

the left (right)

Since the stimulus in the experiments has a random component, the input into

each population is described as a mean plus some noise
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Competition through common inhibition

If the pattern has a high degree of coherence and moves to the left, the mean

input to population 1 is high. This induces a high activity AE,1 which in turn excites

the inhibitory population which transmits inhibition to both excitatory pools.

Only the stimulated pool can overcome the inhibition so that the activity of the

other excitatory population is suppressed

At most one of the two populations can be active at the same time: the two

populations are said to compete with each other.

The competition is induced by the shared inhibition. If the external stimulus favors

one of the two populations, the population receiving the stronger stimulus wins the

competition.
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Competition through common inhibition

To highlight the dynamics of competition, let us now focus on a strong, but

unbiased stimulus : after stimulus onset, both excitatory populations receive an

input of the same mean, but with a different noise realization

Immediately after the onset of stimulation, both excitatory populations increase

their firing rates.

Soon afterward, however, one of the activities grows further at the expense of the

other one, which is suppressed

The population which develops a high activity is called the winner of the

competition
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Associative memory and attractor dynamics

Memory works with associations. If

you hear the voice of an old friend on

the phone, you may spontaneously

recall stories that you had not thought

of for years.

If you are hungry and see a picture of

a banana, you might vividly recall the

taste and smell of a banana . . . and

thereby realize that you are indeed

hungry.

A model of neural networks that describe the recall of previously stored items from

memory is the Hopfield Model
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Associations and memory

Memory recall works on association in the sense of completing partial information

Nearly all words are incomplete, but your brain is able to cope with this situation,

As you are able to follow a phone conversation over a noisy line, recognize a noisy

image of a handwritten character or associate the picture of an orange with its

taste so as retrieve your concept of an orange as a tasty fruit.

Memory Recall : An incomplete word is compared to a list of all possible words.

The most likely entry (i.e. the one which is most similar to the input) in the list is

given as the output of memory recall.
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Memory Recall

Noisy images of objects are recognized if

the brain finds, among the memorized items,

one which is highly similar

Let us imagine that in your memory there are many memory items pµ , where

µ = A.B.C, . . . T, . . . are the possible noise-free letters stored in your memory.

The memory items pµ can be seen as points in some space A

A noisy image (cue) x corresponds to another point in the same space A

How can I determine to which of the stored items pµis more similar x ?

CYU 19/04/22 – p. 16



Memory Recall

One should determine the distance of x from all the memory items : |x− pµ|

And determine the one at smallest distance

|x− pT | ≤ |x− pµ| ∀µ

The interactions of neurons in the Hopfield Model embedded in a large network

will find the item that corresponds best to the noisy cue without implementing any

algorithm
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Neuronal Assemblies

Neuronal assemblies are sub-networks of strongly connected neurons that

represent an abstract concept

For example, your mental concept of a ‘banana’ containing the mental image of its

form, color, taste and texture could be represented by one assembly of strongly

connected neurons, while another one might represent your concept of Sydney

with its famous opera house.

Neurons belonging to an assembly do not have to be neighbors but can be widely

distributed across one, or even several, brain areas
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The Quiroga et al. experiment (2005)

Response of a single neuron in human

hippocampus

The same neuron responds strongly to an

image of the Sydney opera house and the

words Sydney opera, but much more weakly to

images of other landmarks such as the Pisa

tower
Three aspects are worth emphasizing.

It is unlikely that the neuron responding to the Sydney opera house is the only one

to do so. Therefore, we should not think of a single neuron as representing a

concept or memory item, but rather a group of neurons

The same neuron participates in several assemblies. In the experiments with a

large collection of pictures of famous individuals and landmarks were used, each

neuron showed strong responses to about 3 % of the stimuli

Some, but not all, of the neurons showed prolonged responses that persisted after

the end of stimulus presentation. This could potentially indicate that a memory

item is retrieved and kept in the brain even after the stimulus has disappeared

R. Q. Quiroga et al. (2005) Nature 435, pp. 1102 CYU 19/04/22 – p. 19



The Quiroga et al. experiment (2005)

R. Q. Quiroga et al. (2005) Nature 435, pp. 1102
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The Hebbian Paradigm

In his 1949 book The Organization of Behavior, Donald Hebb predicted a form of

synaptic plasticity with the following property:

When an axon of cell A is near enough to excite a cell B and repeatedly or

persistently takes part in firing it, some growth process or metabolic change takes

place in one or both cells such that A’s efficiency, as one of the cells firing B, is

increased.

Hebbian plasticity

In 1979 the phenomenon of long-term potentiation (LTP) was discovered, where the

synapses conecting two neurons get potentiated whenever the two neuron fire together

repetively.

The EPSC/ EPSP amplitude get larger : the

synaptic weights Wij get stronger
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The Hopfield Model

This is a neural network model, where Hebbian plasticity is used to store memory items

A fully connected network of N binary neurons si

active si = +1

inactive si = −1

Neuron j send a action potential to neuron i with a synaptic weight Wij (Wii = 0)

The input postsynaptic potential stimulating neuron i is hi(t) =
∑N

j=1
Wijsj(t)

The simultaneous update rule for the dynamics of the N neurons is given by

si(t+∆t) = sgn (hi(t)) = sgn





N
∑

j=1

Wijsj(t)



 i = 1, . . . , N

A memory item to store in the network is represented by the value that the neurons

should take in the network a pattern :

ξµ = (+1,−1,+1,+1,−1, . . . ,−1)
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The Hopfield Model - Learning Phase

The network is firstly trained to recognize P different patterns ξµ µ = 1, . . . , P for a

learning phase where initially the synaptice weights are set all to zero Wij = 0

The neuron values {si} are set equal to those of the patterns {ξµi } in sequence

Synaptic weights are updated with the Hebbian rule for each new presented

pattern ξµ

Wij → Wij + ηsisj = Wij + ηξ
µ
i ξ

µ
j η > 0

The synapses is potentiated by +η is the neurons are both active or inactive

The synapses is depressed by −η if one neuron is active and the other

inactive

At the end of the learning phase we will obtain

Wij =
1

N

P
∑

µ=1

ξ
µ
i ξ

µ
j η =

1

N

The Hopfield model works as an associative memory , if the network is initialized with a

corrupted version of the pattern, the network converge to the complete pattern
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The Hopfield Model - Single Pattern

Let us suppose to store a single pattern in the network

(ξ1, ξ2, . . . , ξN )

the synaptic weights are Wij = 1

N
ξiξj

The evolution is

si(t+∆t) = sgn(ξi
1

N

N
∑

j=1

ξjsj) = sgn(ξim)

Where m = 1

N

∑

j ξjsj is the overlap between the state s and the pattern ξ :

In the figure m = N−2

N
= 6

8
= 0.75

If s = ξ then m = +1 – If s = −ξ then m = −1 - These are fixed points

Since si = ξi = sgn(+ξi) and si = −ξi = sgn(−ξi)

If I consider the case {si = ξi} and I change sign to the first neuron s1 = −ξ1 the

overlap will be m = N−2

N
> 0 therefore s1(t+∆t) = sgn(ξ1m) = sgn(ξ1)

In one step the pattern is recoverered, therefore it is attractor for the dynamics:

a stable fixed point
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The Hopfield Model - Many Patterns

If I store P patterns ξµ µ = 1, . . . , P in the network the synaptic coupling matrix will be

Wij =
1

N

P
∑

µ=1

ξ
µ
i ξ

µ
j

we can introduce P overlap functions with the actual state {si(t)} of the network as

mµ(t) =
1

N

N
∑

i=1

si(t)ξ
µ
i

The evolution dynamics is given by

si(t+∆t) = sgn(
P
∑

µ=1

ξ
µ
i m

µ(t))

the overlaps mµ(t) completely determine the dynamics of the network
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Memory Retrivial

Let us suppose that the initial state {si(t = 0)} is orthog-

onal to all the stored patterns apart the pattern µ = 3

i.e.

mµ(0) = 0 ∀µ 6= 3 orthogonal

µ3(0) = 0.4 significant overlap

The evolution of the neuronal dynamics is given in this case by

si(t+∆t) = sgn





P
∑

µ=1

ξ
µ
i m

µ(t)



 = sgn
(

ξ3i 0.4
)

= ξ3i ∀i

Hence, each neuron takes, after a single time step, the desired state corresponding to

the pattern.

In other words, the pattern with the strongest similarity to the input is retrieved, as it

should be.
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Memory Capacity

Which is the maximal number of patterns that can be stored in a network of N neurons ?

Memory retrieval implies pattern completion, starting from a partial cue

A minimal condition for pattern completion is that at least the dynamics should not

move away from the pattern, if the initial cue is identical to the complete pattern

A network with initial state si(t0) = ξνi for i ≤ i ≤ N should remian in the pattern

ξν

Therefore pattern ξν must be a fixed point under the dynamics.

We insert sj(t0) = ξνj in the dynamics and we get

si(t0 +∆t) = sgn





1

N

N
∑

j=1

P
∑

µ=1

ξ
µ
i ξ

µ
j ξ

ν
j



 = ξνi sgn



1 +
1

N

N
∑

j=1

∑

µ6=ν

ξ
µ
i ξ

ν
i ξ

µ
j ξ

ν
j
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Memory Capacity

si(t0 +∆t) = ξνi sgn (1 + aνi )

where aνi = 1

N

∑N
j=1

∑

µ6=ν ξ
µ
i ξ

ν
i ξ

µ
j ξ

ν
j ,

If 1 + aνi > 0 i.e. aνi < −1 The fixed point is stable

Even if the network is initialized in perfect agreement with one of the patterns, it

can happen that one or a few neurons flip their sign.

The probability to move away from the pattern is equal to the probability of finding

a value aνi > 0 for one of the neurons i

The capacity is the maximal number of patterns Pmax that can be stored in a network of

N neurons

C =
Pmax

N
≃ 0.138

D. J. Amit, H. Gutfreund and H. Sompolinsky (1985) Phys. Rev.

Lett. 55, pp. 1530{1533.
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