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Neuronal Populations

The brain contains millions of neurons which are organized in different brain areas,

within a brain area in different subregions, inside each small region into different layers,

inside each layer into various cell types.
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Neuronal Populations

Suppose a subject receives a visual, auditory, or somatosensory stimulus.

What is the activity of all the cells in this layer of this subregion that are of type

‘pyramidal’ in response to the stimulus?

What is the response of this subregion as a whole?

What is the response of a brain area?

In other words, at any of the scales of spatial resolution, we may be interested in

the response of the neuronal population as a whole, rather than in the spikes of

individual neurons.
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Columnar Organization

The cortex in the brain is organized in cortical columns, these are organised in cortical

layers : a plausible biological candidate of a neuronal population is a group of neurons of

the same type in one layer of a cortical column .

Receptive fields

Neurons in sensory cortices can be experimentally characterized by the stimuli to

which they exhibit a strong response.

The neuron responds maximally to a moving light bar with an certain orientation

aligned with the elongation of the positive subfield.

If the orientation of the stimulus changes, the activity of the cell decreases.
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Columnar Organization

Cortical Columns

Neighboring neurons in visual cortex have similar receptive fields.

If the experimentalist moves the electrode vertically down from the cortical surface

to deeper layers, the location of the receptive field and its preferred orientation

does not change substantially.

If the electrode is moved to a neighboring location in cortex, the location and

preferred orientation of the receptive field of neurons at the new location changes

only slightly compared to the receptive fields at the previous location.

This observation has led to the idea that cortical cells can be grouped into

‘columns’ of neurons with similar properties.

Each column contains several thousand neurons with similar receptive fields

In other sensory cortices:

In the auditory cortex neurons can be characterized by stimulation with pure tunes.

Each neuron has its preferred tone frequency and neighboring neurons have

similar preferences.

In the somatosensory cortex neurons that respond strongly to touch on, e.g., the

index finger are located close to each other.
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Columnar Organization

Inside a column neurons are organized in different layers.

Each layer contains one or several types of neurons: excitatory and inhibitory

neurons (different types of inhibitory interneurons)

The concept of cortical columns suggests that localized populations of neurons

can be grouped together into populations, where each population (e.g., the

excitatory neurons in layer 4) can be considered as a homogeneous group of

neurons with similar intrinsic properties and similar receptive fields.
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Homogeneous Population of LIF neurons

For a Homogeneous population of N Leaky Integrate-and-Fire neurons the

sub-threshold evolution is given by

τm
du

dt
= −u+RIi(t) for ui < θ i = 1, . . . , N

Whenever the neuron goes supra-threshold

i.e. ui > θ

a spike is emitted and transmitted to

all the connected neurons

ui is resetted to ur

Homogeneous population : all neurons have the same input resistance R, the same

membrane time constant τm, the same threshold θ and same reset potential ur

We assume that a neuron is coupled to all others with coupling strength w0. The input

current is

Ii(t) = w0

N
∑

j=1

∑

f

α(t− t
(f)
j ) + Iext(t)
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Synaptic current

Ii(t) = Isyn(t) + Iext(t) = w0

N
∑

j=1

∑

f

α(t− t
(f)
j ) + Iext(t)

The input current to neuron i has 2 components:

an external drive

a synaptic current that is the superposition of all the post-synaptic currents (PSCs)

α(t− t
(f)
j ) received from all the neurons at previous times t

(f)
j

The PSCs have different time durations depend-

ing on the aminoacid neurotrasmitters in the

chemical synapses:

w0 > 0 excitatory :

AMPA (2-5 ms) and NMDA (40-100 ms)

w0 < 0 inhibitory :

GABAA (6-7 ms) and GABAB (100-400

ms)
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Population Activity

Due to the all-to-all coupling the synaptic current is the same for all neurons and it can

be writtent in terms of the population activity

A(t) = lim
∆t→0

1

∆t

nact(t, t+∆t)

N
=

1

N

N
∑

j=1

∑

f

δ(t− t
(f)
j )

which is a the population average of all the spikes emitted in the network within a time

bin ∆t.

Therefore the synaptic current is given by the convolution of the population activity A and

of the specific PSC α

Isyn(t) = w0N

∫ ∞

0
α(s)A(t−s)ds =

N
∑

j=1

∑

f

∫ ∞

0
α(s)δ(t−t

(f)
j −s)ds =

N
∑

j=1

∑

f

α(t−t
(f)
j )

The important thing to notice is that Isyn(t) grows with the number of neurons N

A possibility to avoid this is to rescale the synaptic coupling w0 = a/N : a sort of

synaptic homeostatic mechanism when neurons receive too much inputs

Turrigiano, G. Annual review of neuroscience 34 (2011) 89.
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Heterogeneous Population

Each neuron in a population can fire in a different manner to the same external drive I

for two reasons:

different values of the neuron parameters (excitability, threshold tec)

different pre-synaptic neurons - different connectivity;

The parameters θi of each neuron are different, therefore

νi = gθi(I) i = 1, . . . , N

For a symmetric distribution P (θi) of the parameters (e.g. a Gaussian ditribution) , we

can write

< ν >=

∑

i νi

N
≃ gθ̄(I) +

d2g

dθ2
|θ̄(θi − θ̄)2 + . . .

where θ̄ is the average value of the parameters.

For a smooth distribution of heterogeneitis and if the distribution is sufficiently narrow we

can neglect the second term and higher order terms.
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Connectivity Schemes

The real connectivity between cortical neurons of different types and different

layers, or within groups of neurons of the same type and the same layer is still

partially unknown.

At most, some plausible estimates of connection probabilities exist.

In simulations of spiking neurons, there are a few coupling schemes that are

frequently adopted.
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Scaling Behaviour

For each choice of the coupling scheme we should discuss how to rescale the

synaptic coupling w0 with the number of neurons.

This because if I double the number of neurons N in a fully coupled or randomly

coupled network with fixed probabilility the synaptic input to a a neuron will double

and its property will change with the number of neurons N

From a simulation and physical point of view I want that a certain network with

N = 1000 or N = 100000 neurons will have the same properties, to obtain this I

should properly rescale the coupling

Real populations of neurons have a fixed size because, e.g., the number of

neurons in a given cortical column is given and, at least in adulthood, does not

change dramatically from one day to the next. Typical numbers, counted in one

column of mouse somatosensory cortex (barrel cortex, C2) are 5750 excitatory

and 750 inhibitory neurons.

Tipically one has 80 % excitatory neurons and 20 % inhibitory ones
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Full Connectivity

All neuron connected with all the others with constant synaptic coupling w0:

τm
du

dt
= −u+w0

N
∑

j=1

∑

f

δ(t− t
(f)
j )+Iext = −u+w0N < ν >N+Iext i = 1, . . . , N

where the mean firing rate is given by

< ν >N=
1

N

N
∑

i=1

νi −→ ν0 for N → ∞

The synaptic current Isyn = w0N < ν >N should not diverge for large N , therefore an

appropriate scaling is

w0 =
J0

N

and the current becomes

Isyn = J0 < ν >N−→ J0ν0 for N → ∞
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Full Connectivity - Finite Size Fluctuations

For finite N the synaptic current can present finite size fluctuations.

The Central Limit Theorem says that the averages < ν >N are Gaussian distributed

P (< ν >N ) =
1

σ
√
2π

e−
1

2
(
<ν>N−ν0

σ
)2

with mean ν0 and standard deviation σ ∝ 1√
N

Therefore also the synaptic currents Isyn = J0 < ν >N are Gaussian distributed with

mean J0ν0 and standard deviation σI ∝ J0√
N

Due this fluctuations even for constant Iext the firing rate will oscillate randomly in time

and also the inter-spike intervals (ISI) we expect:

Cv =
STD(ISI)

< ISI >
=

a√
N

for N = 1000 we already have Cv ≃ 0.03 too small in the cortex Cv ≃ 1
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Random coupling: Fixed coupling probability

Experimentally the probability p that a neuron inside a cortical column makes a

functional connection to another neuron in the same column is in the range of 10 %

In the simulations we fix the probability p that a neuron j is connected to a pre-synaptic

neuron, then the number of pre-synaptic inputs Cj has

mean < C >= pN variance σ2(C) = p(1− p) ∗N

This is called a massively coupled random network, since < Cj > grows proportionally

to N
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Random coupling: Fixed coupling probability

The input synaptic current is therefore

Isyn = w0C < ν >N

to avoid the divergence of the current the synaptic coupling should be rescaled as

w0 =
J0

C
=

J0

pN

In the current there are two sources of fluctations one due to the random distribution of

the number Cj of the links and one to finite size effects, to the leading order the variance

of Isyn is given by

σ2(Isyn) = w2
0(a

p− 1

C
+ b

1

N
) ≃ 1

pN

The leading fluctuations are those associated to the random links since p << 1, but by

increasing the number of neurons N also this decreases
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Random coupling:Fixed number of presynaptic neurons

The number of synapses of a single pyramidal neuron is of the order of a few

thousand.

Thus, when one simulates networks of a hundred thousand neurons or millions of

neurons, a modeling approach based on a fixed connection probability in the range

of 10 % cannot be correct.

Moreover, in an animal participating in an experiment, not all neurons will be active

at the same time. Rather only a few subgroups will be active, the composition of

which depends on the stimulation conditions and the task.

In other words, the number of inputs converging onto a single neuron may be of

order thousand

A possible strategy is to consider neurons with a constant number C of pre-synaptic

input neurons randomly chosen among the whole N population

If N >> 1 the finite size effects are negligible

If C << N each neuron receives completely independent inputs
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Random coupling:Fixed number of presynaptic neurons

We do not need to rescale the synaptic coupling , the mean and variance of the synaptic

current do not depend on N (for N >> 1) and are given by

< Isyn >= w0Cν0 σ2(Isyn) = w2
0Cν0

this because one can assume that the train of spikes reaching one neuron is the

superposition of K independent Poissonian spike trains
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Poissonian Spike Trains

C independent neurons emitting spikes via a Homogeneous Poisson Process with

rate ν0;

the spike trains are inputs for a post-synaptic neuron.

each neuron emits a spike with probability ν0∆t in

a time interval ∆t

all neurons together emits spikes with probability

Cν0∆t, since they are independent

The post-synaptic neurons receives a Poissonian Spike train with rate Cν0

the average number of spikes received in ∆t is the spike count

< nsp(∆t) >= Cν0∆t

the average synaptic current is therefore < Isyn >= w0
<nsp(∆t)>

∆t
= w0Cν0

the variance of the spike count is (∆nsp)2 >= Cν0∆t

the variance of the synaptic current is σ2(Isyn) = w2
0
(∆nsp)2

∆t
= w2

0Cν0
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Cortical Dynamics

A cortical area can be seen as a recurrent random network made of a large number N of

excitatory and inhibitory neurons, each one receiving many inputs

(C ≃ 1, 000− 10, 000):

the output of a neuron is an input to another neuron of the same area, the input

and output firing rate should be quite similar;

the inputs are uncorrelated due to the high dilution in the connections C
N

<< 1,

each neuron share

neurons emit spikes in an irregular fashion Cv ≃ 1 and not too frequently

ν0 ≃ 1− 10 Hz despite the many excitatory and inhibitory inputs. Why ?

CYU 12/04/22 – p. 21



The Balanced Network

In a network of two populations, one excitatory and one inhibitory, it is possible to adjust

parameters such that the mean input current into a typical neuron vanishes.

< Isyn >= Ie + Ii ≃ 0

The condition is that the total amount of excitation and inhibition cancel each other,

so that excitation and inhibition are ‘balanced’.

The resulting network is called a balanced network or a population with balanced

excitation and inhibition

The neurons fire irregularly and with low frequency due to current fluctuations

Vogels, Rajan, Abbott, Annu. Rev. Neurosci. (2005)
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The Balanced Network: a Mathematical Model

Each neuron in a random recurrent network receives spikes of amplitude w0 from C

neurons firing with frequency ν0.

Average Excitatory and Inhibitory Synaptic Currents Ie = w0Cν0 Ii = −w0Cν0

Fluctuations of the total current Isyn = Ie + Ii σ2(Isyn) = 2w2
0Cν0

The neurons in the cortex fire quite irregularly with a finite frequency (≃ ν0), therefore

< Isyn >= Ie + Ii and σ2(Isyn) should be both FINITE for large C, this is possible if

Excitatory and Inhibitory Inputs cancel each other < Isyn >= Ie + Ii = 0: the

neurons fire due to current fluctuations

The synaptic coupling scales as w0 = J0√
C

therefore the variance

σ2(Isyn) = 2w2
0Cν0 = 2

J2
0

C
Cν0 = 2J2

0 ν0

does not depend on the number C of synaptic input
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The Balanced Network: a Mathematical Model

By adjusting the parameters to obtain < Isyn >= Ie + Ii = 0 and by rescaling the

synaptic coupling as w0 = J0√
C

we obtain a fluctuation driven dynamics with low

neuronal firing rate ν0 for 1 << C << N

The nature does not adjust the parameters to obtain the balanced state, is it possible to

obtain a dynamical balance, without adjusting the parameters ?

YES

van Vreeswijk and Sompolinsky, Science (1996)
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The Balanced Network: a Mathematical Model

A simple non-linear integrate and fire model for an excitatatory and inhibitory population

can be written as

τm
dui

dt
= F (ui)+

J0√
C





N
∑

j∈pree(i)

∑

f

δ(t− t
(f)
j )−

N
∑

k∈prei(i)

∑

f

δ(t− t
(f)
j )



 i = 1, . . . , N

therefore by assuming ν0 as the average firing rate

τm
dui

dt
= F (ui) +

J0√
C

[Cν0 − Cν0] = F (ui) + J0
[√

Cν0 −
√
Cν0

]

i = 1, . . . , N

In order to explain the dynamical balance mechanism we can simplify the model to a

single inhibitory population with a constant excitatory drive Ie =
√
Ci0 thus

τm
dui

dt
= F (ui) +

√
Ci0 − J0√

C

N
∑

k∈prei(i)

∑

f

δ(t− t
(f)
j ) i = 1, . . . , N
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The Balanced Network: Inhibitory Network

τm
dui

dt
= F (ui) +

√
Ci0 − J0√

C

N
∑

k∈prei(i)

∑

f

δ(t− t
(f)
j ) ≃ F (ui) +

√
C[i0 − J0ν0]

The average synaptic current is Isyn =
√
C[i0 − J0ν0]

For C >> 1 I want that Isyn remains finite as in the cortex :

Isyn > 0 ⇒ ν0 → ∞ ⇒ Isyn < 0

Contraddiction

Isyn < 0 ⇒ ν0 → 0 ⇒ Isyn > 0

Contraddiciton

The only possible solution is Isyn = 0 ⇒ ν0 = i0
J0

Dynamical balance without adjusting the parameters

Monteforte & Wolf, PRL (2010)
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The Balanced Network: Inhibitory Network

For sufficiently large C

Isyn =
√
C[i0 − J0ν0] = 0

lim
C→∞

ν0 =
i0

J0

This works independently from the considered neuronal

model : QIF or Morris-Lecar

di Volo & Torcini, PRL (2018)
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The Balanced Network: Chaotic Dynamics

The dynamics of a neuron in a balanced network is completely irregular

The distribution of the firing rates

νi =
1

ISI
is exponential

The values of the Cvi ≃ 0.5− 1.0

The dynamics is Poissonian as

the neurons in the cortex

The models are completely deterministic, the dynamics of a single neuron inside the

network can be seen as due to

Gaussian fluctuations of variance σ2(Isyn) ∝ J2
0 ν0

self-induced in the network, without the addition of any noise. Therefore the irregularity

are due to chaotic dynamics.

van Vreeswijk and Sompolinsky, Science (1996)
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Experimental Confirmations

Barral & Reyes in 2016 have shown in experiments on a in vitro culture of neurons of the

cortex that the main theoretical predictions done by van Vreeswijk & Sompolinsky in

1996 were correct
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Experimental Confirmations

Barral & Reyes considered a culture of cortical neurons composed of 77 % of excitatory

and 23 % of inhibitory neurons.

They measured the Postsynaptic Potential amplitudes of excitatory (EPSP) and

inhibitory (IPSP) neurons and observed that

Amplitudes of EPSP and IPSP decrease with the density of neurons, therefore

with the number of pre-synaptic connections K

The amplitude of EPSP (IPSP) scales as K−0.60 (K−0.52) with the connectivity K

in good agreement with the prediction of van Vreeswijk & Sompolinsky ∝ 1/
√
K
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Experimental Confirmations

Barral & Reyes stimulated with light a small group of neu-

rons that were optogenitically modified to induce fring ac-

tivity in the network, the activity of these neurons repre-

sented the excitatory drive to the network.

The evoked activity in the network is consis-

tent with key predictions:

The Fano factor ≃ 1 indicating

Poissonian dynamics;

The spiking variability does not vary

with the number of neurons N , as

expected since σ2(Isyn) does not

depend on K or N

The distribution of the firing rates has

a long-tail approximately log-normal.

CYU 12/04/22 – p. 31



Bibliography

Neuronal Dynamics (online book): From single neurons to networks and models of

cognition, Wulfram Gerstner, Werner M. Kistler, Richard Naud and Liam Paninski

Van Vreeswijk, Carl, and Haim Sompolinsky. Chaos in neuronal networks with

balanced excitatory and inhibitory activity Science 274.5293 (1996): 1724-1726

Monteforte, Michael, and Fred Wolf. Dynamical entropy production in spiking

neuron networks in the balanced state Physical review letters 105.26 (2010):

268104.

Barral, Jérémie, and Alex D. Reyes. Synaptic scaling rule preserves

excitatory–inhibitory balance and salient neuronal network dynamics Nature

neuroscience 19.12 (2016): 1690-1696.

Di Volo, Matteo, and Alessandro Torcini. Transition from asynchronous to

oscillatory dynamics in balanced spiking networks with instantaneous synapses

Physical review letters 121.12 (2018): 128301.

CYU 12/04/22 – p. 32


	Summary
	Neuronal Populations
	Neuronal Populations
	Columnar Organization
	Columnar Organization
	Columnar Organization
	large Homogeneous Population of LIF neurons
	large Synaptic current
	large Population Activity
	large Heterogeneous Population
	large Connectivity Schemes
	large Scaling Behaviour
	large Full Connectivity
	large Full Connectivity - Finite Size Fluctuations
	small Random coupling: Fixed coupling probability
	small Random coupling: Fixed coupling probability
	small Random coupling:Fixed number of presynaptic neurons
	small Random coupling:Fixed number of presynaptic neurons
	Poissonian Spike Trains
	
ormalsize Cortical Dynamics
	
ormalsize The Balanced Network
	
ormalsize The Balanced Network: a Mathematical Model
	
ormalsize The Balanced Network: a Mathematical Model
	
ormalsize The Balanced Network: a Mathematical Model
	
ormalsize The Balanced Network: Inhibitory Network
	
ormalsize The Balanced Network: Inhibitory Network
	
ormalsize The Balanced Network: Chaotic Dynamics
	
ormalsize Experimental Confirmations
	
ormalsize Experimental Confirmations
	
ormalsize Experimental Confirmations
	Bibliography

