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Binary Alloy

Usually a material like Aluminium is never used in a pure form to create material, usually

Aluminium is fused with other materials (like Zinc) to create an Alloy with better

resistance properties.
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Zn-Al alloy Phase Diagram

The alloys have usual very complicated phase diagrams

1. L = liquid

2. α - a solid phase (FCC) rich of Al

3. β - a solid phase (FCC) rich of Zn

4. η - a solid phase with different symmetry (HCP) rich of Zn

The low temperature hexagonal close-packed (HCP) phase

The high temperature face-centered cubic (FCC) phase
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FCC versus HCP configurations
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Zn-Al alloy Phase Diagram

The configuration depends on how the melt is cooled

1. slowly cooled

2. or quenched - fast cooled
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A simple model for an alloy

In an alloy made of atoms A and B

1. We can use the Ising Model in 2d

H = −J
∗

∑

i,j

sisj where si = 1(A) si = −1(B)

where the sum is restricted ∗ to nearest neighbours spins

2. In an alloy the number of atoms of one species or of the other cannot change,

NA = const and NB = const

3. We cannot flip the spins, this is not allowed because he would change NA and

NB

4. Therefore the allowed moves are those where two neighbours spins exchange of

place
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The Kawasaki model for binary alloy separation

The moves in this case correspond to flipping two nearest neighbours spins at the same

time and to estimate the energy variation ∆E associated to this move and to employ the

Metropolis algorithm to decide if the move is accettable or not.

The Kawasaki model for a binary alloy is

H = −J
∗

∑

i,j

sisj where si = 1(A) si = −1(B)

The Metropolis Algorithm

1. Choose randomly the spin sn with coordinates i ∈ [0, L− 1] and j ∈ [0, L− 1]

2. Choose randomly one of the four neighbours spin sm

(a) If the two spins are parallel restart

(b) if they are anti-parallel estimate the energy variation ∆E due to the two spin

flipping sn = −sn and sm = −sm

3. Continue with the Metropolis algorithm
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Energy variation ∆E

The energy variation ∆E for the contemporary flip of two adjacent spins sn, sm is given

by

if the spins sn, sm do not interact

1. Energy variation due to the flip of spin sn is

∆En = 2Jsn
∑

µ∈Dn

sµ = 2JsnSD(n)

where SD(n) is the sum of the spins that are neighbours of sn

2. Energy variation due to the flip of spin sm is

∆Em = 2Jsm
∑

µ∈Dm

sµ = 2JsmSD(m)

where SD(m) is the sum of the spins that are neighbours of sm

3. the total energy variation is

∆E = ∆Em +∆En = 2Jsn[SS(n)− SD(m)]

since sm = −sn
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Energy variation ∆E

But the spins sn, sm do interact, they are nearest neighbours

If we exchange two spins the interaction energy among them does not change, this

contribution has been counted two times and it should be subtracted therefore

∆E = 2Jsn[SS(n)− SD(m)]−4Jsnsm

But the two spins are anti-parallel therefore the energy variation is

∆E = 2Jsn[SS(n)− SD(m)] + 4J

How to choose randomly the spin and its nearest neighbour to flip ?

i,j= np.random.randint(l), np.random.randint(l)

inn = np.random.random_integers(0,1)

iu = 2*np.random.random_integers(0,1)-1

if inn != 0:

i1,j1=i+iu,j

else:

i1,j1=i,j+iu

i1,j1 =i1 %l,j1 %l

if lattice[i, j]*lattice[i1, j1] <0 :

move(i,j,i1,j1)
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The Metropolis’ Move

def deltaE(i,j,i1,j1):

’’’Energy difference for a spin exchange of 2 neighbours’’’

# periodic boundary condtions

SD = lattice[(i - 1) % l, j] + lattice[(i + 1) % l, j] + \

lattice[i, (j - 1) % l] + lattice[i, (j + 1) % l]

SD1 = lattice[(i1 - 1) % l, j1] + lattice[(i1 + 1) % l, j1] + \

lattice[i1, (j1 - 1) % l] + lattice[i1, (j1 + 1) % l]

var=2*J*lattice[i,j]*(SD-SD1)+4*J

return var

def move(i,j,i1,j1): # Montecarlo Move

dE = deltaE(i, j, i1, j1)

if dE < 0:

lattice[i, j] = -lattice[i, j]

lattice[i1, j1] = -lattice[i1, j1]

return

if np.random.random() < np.exp(-dE*beta):

lattice[i, j] = -lattice[i, j]

lattice[i1, j1] = -lattice[i1, j1]

return
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Phase Transition

The Kawasaki model is able to reproduce some known experimental fact for the phase

transitions in binary alloys :

1. For T > Tc the two metals are well mixed

2. For T < Tc one can observe a phase separation with each component of the

alloy occupying only a localized spatial area

3. The evolution of the phase separation strongly depends on the initial relative

proportion of the two metals A and B

(a) If this proportion in around 50%, one oberve the so-called spinodal

decomposition or coarsening, where where filament-like structures

connecting the atoms coarsen and grow in time

(b) If one of the two metal is more abundant than the other, the metal that is in

minority starts forming droplets which coalescence in time and finally only

one large one will remain, plus several minor ones
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How to plot more graphs

T=0.95

beta=1./T # K_B =1

nit = 4 # number of iterations

print("temperature",T)

iumax=1

for t in range(0,nit):

for iu in range(0,iumax):

mc=0

while mc < n*K: # K MC steps is n*K moves

# the data are more independent

i,j= np.random.randint(l), np.random.randint(l)

inn = np.random.random_integers(0,1)

iu = 2*np.random.random_integers(0,1)-1

if inn != 0:

i1,j1=i+iu,j

else:

i1,j1=i,j+iu

i1,j1 =i1 %l,j1 %l

if lattice[i, j]*lattice[i1, j1] <0 :

move(i,j,i1,j1)
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How to plot more graphs

plt.matshow(lattice)

plt.xlabel("i")

plt.ylabel("j")

plt.title("Binary Alloy 2d -- T = 0.95*J/KB ")

plt.xlim(0,l)

plt.ylim(0,l)

plt.legend()

iumax=iumax*10

plt.show()

input()

If I choose random initial conditions, almost 50% for A and B, what do I observe ?

IDLE3
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Coarsening - probability = 50%
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Coarsening - what do measure?

1. In this case it makes no sense to measure the magnetization because the

number of atoms A and B is fixed, and also M

2. In 2 spatial dimensions, we can measure the number Nc of places where the

spins change sign in the lattice, this is the number of links connecting spins of

different sign.

3. Nc represents the Contact Area between the metal A and the metal B

4. The typical size of one phase Lc can be obtained as

Lc ∝
N

(Nc/2)
=

L2

(Nc/2)

5. Suppose one has regular areas of side Lc of atoms A and B inside the total

square of side L, how much is in this case Nc ?
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Estimating Nc

We should now find a way to count Nc let us

make an example at the black-board

A volunteer?
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Counting the number of anti-parallel spins

def nch(i,j):

’’’counts the number of anti-parallel spins among neighbours’’’

ss = lattice[(i - 1) % l, j] + lattice[(i + 1) % l, j] + \

lattice[i, (j - 1) % l] + lattice[i, (j + 1) % l]

ss=ss*lattice[i,j]

if ss == 4:

return 0

if ss == 2:

return 1

if ss ==0 :

return 2

if ss == -2:

return 3

if ss == -4:

return 4

return
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Scaling of the characteristic lenght

10 100

Number of MCs

1

L
c

L = (t)
0.11

     --- t = Number of MCs

L = 100  -- N = 100 x 100  - T =0.95
Initial conditions 50% in each metal A and B

Lc = tβ β > 0 lim
t→∞

Lc →∞

The characteristic dimension of the domains diverge in the infinite time
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Non equal initial probability

import matplotlib.pyplot as plt

import numpy as np

def init_lattice_p(l,p):

’’’Create a lxl lattice with random binomial spin configuration’’’

’’’Atom A have a density p and atoms B have a density 1-p’’’

lattice = 2*np.random.binomial(1,p,size=(l,l))-1

print(lattice)

return lattice

def deltaE(i,j,i1,j1):

’’’Energy difference for a spin exchange of 2 neighbours’’’

# periodic boundary condtions

SD = lattice[(i - 1) % l, j] + lattice[(i + 1) % l, j] + \

lattice[i, (j - 1) % l] + lattice[i, (j + 1) % l]

SD1 = lattice[(i1 - 1) % l, j1] + lattice[(i1 + 1) % l, j1] + \

lattice[i1, (j1 - 1) % l] + lattice[i1, (j1 + 1) % l]

var=2*J*lattice[i,j]*(SD-SD1)+4*J

return var
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Non equal initial probability

def move(i,j,i1,j1): # Montecarlo Move

dE = deltaE(i, j, i1, j1)

if dE < 0:

lattice[i, j] = -lattice[i, j]

lattice[i1, j1] = -lattice[i1, j1]

return

if np.random.random() < np.exp(-dE*beta):

lattice[i, j] = -lattice[i, j]

lattice[i1, j1] = -lattice[i1, j1]

return

return

global lattice,J,beta,l

J=1

l= 50 # lenght of the lattice

n= l * l # number of sites

K=1 # parameter for the MC

# random initial conditions

lattice = init_lattice_p(l,0.1)
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Non equal initial probability

T=0.95

beta=1./T # K_B =1

nit = 1000 # number of iterations

print("temperature",T)

iumax=1

for t in range(0,nit):

print(t)

mc=0

while mc < n*K: # K MC steps is n*K moves

# the data are more independent

i,j= np.random.randint(l), np.random.randint(l)

inn = np.random.random_integers(0,1)

iu = 2*np.random.random_integers(0,1)-1

if inn != 0:

i1,j1=i+iu,j

else:

i1,j1=i,j+iu

i1,j1 =i1 %l,j1 %l

if lattice[i, j]*lattice[i1, j1] <0 :

move(i,j,i1,j1)

mc+=1
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Droplet coalescence - probability = 10%
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Scaling of the characteristic lenght

10000 1e+05

Number of MCs (time)

L
c

L = (t)
0.17

     --- t = Number of MCs

L = 100  -- N = 100 x 100  - T =0.95
Initial conditions 10% metal A and 90% metal B

Lc = tβ β > 0 lim
t→∞

Lc →∞

The characteristic dimension of the droplet diverges in the infinite time (MC steps)
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Fast quenching vs Slow cooling

1. The properties of the material depends in how fast its temperature is reduced

from the liquid state down to the solid state

2. If the temperature is reduced rapidly we say that the system is quenched

3. If the temperature is decreased in small steps we say that the material is slowly

cooled
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Quenching - Opening of Multiple files

global lattice,J,beta,l

J,l=1, 100

n= l * l # number of sites

K=1 # parameter for the MC

file=[’quenchT4.png’,’quenchT1.png’,’quenchT0.25.png’,’quenchT0.0625.png’]

# random initial conditions 50%

lattice = init_lattice(l)

# warming up phase at high temperature

T=4.00

beta=1./T # K_B =1

for iu in range(0,100):

print(iu)

mc=0

while mc < n*K: # K MC steps is n*K moves

# the data are more independent

i,j= np.random.randint(l), np.random.randint(l)
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Quenching - Opening of Multiple files

inn = np.random.random_integers(0,1)

iu = 2*np.random.random_integers(0,1)-1

if inn != 0:

i1,j1=i+iu,j

else:

i1,j1=i,j+iu

i1,j1 =i1 %l,j1 %l

if lattice[i, j]*lattice[i1, j1] <0 :

move(i,j,i1,j1)

mc+=1

plt.matshow(lattice)

plt.xlabel("i")

plt.ylabel("j")

plt.title("Binary Alloy 2d quenched T =4 --> T=0.0625 3 steps")

plt.xlim(0,l)

plt.ylim(0,l)

plt.savefig(file[0])
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Quenching - Opening of Multiple files

nit = 3 # number of iterations

iumax=100

for t in range(0,nit):

T=T/4. # rapid quenching

beta=1./T # K_B =1

print("temperature",T)

for iu in range(0,iumax):

mc=0

while mc < n*K: # K MC steps is n*K moves

i,j= np.random.randint(l), np.random.randint(l)

inn = np.random.random_integers(0,1)

iu = 2*np.random.random_integers(0,1)-1

if inn != 0:

i1,j1=i+iu,j

else:

i1,j1=i,j+iu

i1,j1 =i1 %l,j1 %l

if lattice[i, j]*lattice[i1, j1] <0 :

move(i,j,i1,j1)

mc+=1
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Quenching - Opening of Multiple files

plt.matshow(lattice)

plt.xlabel("i")

plt.ylabel("j")

plt.title("Binary Alloy 2d quenched T =4 --> T=0.0625 3 steps")

plt.xlim(0,l)

plt.ylim(0,l)

plt.savefig(file[t+1])

plt.show()
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Quenching from T = 4 to T = 0.0625 in 3 steps
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The Lennard-Jones Fluid

It is possible to simulate with a Montecarlo strategy also a continuous system like a fluid

(gas or liquid). This is a classical system composed of N particles of mass m and

interacting via a two body interactions v(~ri, ~rj) :

H = K+ V =

N
∑

i=1

p2i
2m

+ V (~r1, ~r2, . . . , ~rN ) =

N
∑

i=1

mv2i
2

+
1

2N

N
∑

i=1

N
∑

j=1

v(~ri, ~rj)

The most studied model is the Lennard-Jones fluid, which

describes the dynamcs of Noble Gases (Ar, He, Ne, Kr,

Xe, Rn), the corresponding two body potential can be

written as :

v(~ri, ~rj) = Φ(rij) = 4ε

[

(

σ

rij

)

12

−

(

σ

rij

)

6
]

1. rij = |~ri − ~rj | is the distance among the two

particles i and j

2. ε is the depth of the minimum of the potential

3. σ is the distance for which the potential vanishes
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The Lennard-Jones Fluid

The force acting on the particles is given by ~F = −∇V (r) = − dV
dr

~r
r

1. The force is repulsive (F > 0) for r < rmin

2. The force is attractive (F < 0) for r > rmin

3. The force is zero and the two particles are at equilibrium at a distance

r = rmin = 21/6σ
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The Lennard-Jones Fluid

1. The short range repulsion term 1/r12 is due to the Pauli exclusion principle

when the electrons of the two atoms come too near and tend to occupy the

same energy levels ;

2. The Long range attractive term 1/r6 is due to teh van der Waals forces

associated to fluctuating dipoles

3. The lowest energy configuration is the solid hexagonal close-packing (HCP)

phase, that at higher teperature becomes a face-centered cubic (FCC) phase.
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The Argon Phase Diagram

A LJ solid-fluid can be simulated in a NVT ensemble by emploing the Montecarlo Method
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The Montecarlo Simulation

The Montecarlo Method

1. A LJ particle is randomly selected

2. The random particle i is randomly translated as follows

xi → x′

i = xi + δξ1 yi → y′i = yi + δξ2 zi → z′i = zi + δξ3

where ξ1, ξ2, ξ3 are uniform random numbers in [−1, 1] and δ is the amplitude

of the displacement

3. δ is chosen to be of the order of the average distance among particles
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The Montecarlo Simulation
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The Montecarlo Simulation
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The Montecarlo Simulation

The Metropolis Algorithm

1. The difference of energy among the two configurations to use in the Metropolis

algorithm is now

∆E = 1

N

∑

i>j [Φ(r′ij)− Φ(rij)] r′ij = |~r′i − ~rj |

2. The sum is over all the couples of atoms, without repetitions, but it includes

N(N − 1)/2 terms← too much !

3. Therefore the potental is often truncated at a distance rc ≃ 2− 3σ

Φtrunc(r) =







Φ(r) if r ≤ rc;

0 if r > rc .

4. Only the particles inside the radius rc are considered in the energy estimation,

this speeds up the algorithm (list of neighbours are employed)

5. Question : Why we do not consider the Kinetic Energy, but only the Potential

one ?

6. Question : Which is a good initial condition ?
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Molecular Liquids

For molecular systems, the elementary moves must change all the configurational

degrees of freedom

1. rigid translation

2. rigid rotation

3. rotation about bonds

4. bond distortion
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