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Statistical mechanics

The Monte Carlo sampling methods find one very important application in Statistical

mechanics.

Statistical mechanics allows to bridge the scales from microscopic dynamics to

macroscopic observables

1. Microscopic dynamics tell us how the single atoms behaves due to the forces :

Newton’s Law or Hamilton’s equations

2. Macroscopic observables are Energy, Pressure, Specific heat, . . . that are

measured in experiments

3. Physical laws usually concern macrosocpic observables for systems made of

many, many particles : Ohm’s law, Diffusion Law, Gravity Law, . . .

4. How can I measure macroscopic observables starting from the dynamics of

≃ 1023 atoms per cm3 (Avogadro number NA = 6.022140× 1023) ?

Probabilistic concepts, we do not rely anymore on Newton’s Law that is at the basis of

the atoms’ movement, but we employ probability distribution functions (PDF) describing

the state of an entire system

The PDF depends on the Total Energy of the system
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Phase Space

We have a system made of N particles, each particle i is characterized by a coordinate

xi (these can be a positions in space or angles) and by a conjugate momentum

pi = mvi (to simplify position and velocity vi).

The state of the system is characterized by a point Γ = (X,P ) in the Phase space,

where

X = (x1, x2, x3 . . . , xN ) and P = (p1, p2, p3, . . . , pN )

1. the Phase Space is a 2N -dimensional space.

2. A point Γ represents the Microscopic Configuration of the system

3. A system is described by an Hamiltonian H(x1, x2, . . . , p1, p2, . . . ) which

represents the energy of the system composed of kinetic K and potential V
energies

4. Simple Example : For a classical system composed of N particles of mass m

and interacting via two body interactions v(xi, xj) :

H = K+V =
N
∑

i=1

p2i
2m

+
1

2N

N
∑

i=1

N
∑

j=1

v(xi, xj) =
N
∑

i=1

mv2i
2

+
1

2N

N
∑

i=1

N
∑

j=1

v(xi, xj)

Applications to Statistical Mechanics – p. 3



Microscopic Approach

The dynamics of the particles xi, pi is determined by the Hamilton’s equations

dxi

dt
=

∂H
∂pi

(1)

dpi

dt
= − ∂H

∂xi
, i = 1, . . . , N (2)

if one knows the initial values at time t = 0 of all the positions and momenta, he can

determine the time evolution of xi(t), pi(t) from the solution (numerical integration) of

the Hamilton’s equation.

This is the approach of the so-called Molecular Dynamics to find the macroscopic

properties of gas, liquids and solids.

One can arrive to simulate maybe 106 − 107 atoms nowdays, but in a mol of the system

there are already 1023 atoms, we are far from a detailed description of a real system.

For transport properties of gas, liquids sometimes N = 500 particles are sufficient to

give an good estimate of the macroscopic properties, but this will not work for phase

transitions, where there are long-range correlatons
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Statistical Approach

The Hamiltonian can be used also to determine the PDF of observing at thermal

equilibrium at a temperature T a certain microscopic state Γ = (X,P )

Boltzmann and Gibbs have shown that the PDF has the following expression

p(Γl) =
e−βH

Z =
e−βEl

Z β =
1

KbT

with normalizaton factor given by

Z =

∫

dx1 . . . dxndp1 . . . dpne
−βH(x1,...,xn,p1,...,pN ) =

∑

l

e−βEl

where Z is the Partition Function, a fundamental quantity in statistical mechanics.

KB = 1.38064852× 10−23JK−1 is the Boltzmann Constant
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Canonical Ensemble (N,V,T)

Free Energy, Internal Energy, Entropy

All these quantities can be derived from the Partition Function Z
The Free Energy is given by

F (N,V, T ) = −KBT logZ Z = e−βF

The Internal Energy is given by

U(N,V, T ) = −∂ logZ
∂β

=
∑

l

Elp(Γl)

or equivalently

U(N,V, T ) = −T 2

(

∂F/T

∂T

)

V,N
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Canonical Ensemble (N,V,T)

Free Energy, Internal Energy, Entropy

The Entropy is given by

S(N,V, T ) = −KB

∑

l

p(Γl) log p(Γl) = −∂F

∂T
= −KBβ2 ∂ logZ/β

∂β

It is easy to verify that

F (T ) = U(T )− TS(T )

since

U − TS = −T 2

(

∂F/T

∂T

)

+ T
∂F

∂T
= T

[

∂F

∂T
+ TF

1

T 2
− T

T

∂F

∂T

]

= F
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Canonical Ensemble (N,V,T)

Usually real systems are described within the so called Canonical Ensemble

The system 1 contains N particles in a volume V

at a temperature T , the temperature is maintaned

constant thanks to energy exchange with a

larger system containing it : the thermostat (or

reservoir).

The canonical ensemble is therefore

characterized by the macroscopic variables

(N,V, T )

Each macroscopic state (N,V, T ) can correspond to many different microscopic

states/configurations Γl = (Xl, Pl), each characterized by a different energy

El = H(Xl, Pl)

The energy of the state El is its Hamiltonian H(Xl, Pl)
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Canonical Ensemble (N,V,T)

The probability to observe a certain state/configuration fixed (N,V, T ) is given by

p(Γl) =
e−βEl

Z Z =
∑

l

e−βEl

The average of a macroscopic observable A of the system is therefore given by

〈A(N,V, T )〉 =
∑

l

A(Γl)p(Γl)

and its variance is

σ2
A =

∑

l

A2(Γl)p(Γl)−
(

∑

l

A(Γl)p(Γl)

)2
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Canonical Ensemble (N,V,T)

One of the most important observable is the average internal energy of the system

U(N,V, T ) =
∑

l

Elp(Γl) =

∑

l Ele−βEl

Z = 〈H〉

and the variance of the Hamiltonian, that is the specific heat at constant volume

CV =

(

∂U
∂T

)

V,N

=
KB

T 2





∑

l

E2
l p(Γl)−

(

∑

l

Elp(Γl)

)2


 =
KB

T 2
[〈H2〉 − 〈H〉2]

Demonstration

CV = − ∂β
∂T

∑
l E

2

l e−βEl

Z
−

∑
l Ele

−βEl

Z2

∂Z
∂T

CV = − ∂β
∂T

∑
l E

2

l e−βEl

Z
+

∑
l Ele

−βEl

Z2

(
∑

l Ele−βEl
) ∂β

∂T

CV = KB

T2

[∑
l E

2

l e−βEl

Z
− (

∑
l Ele

−βEl )2

Z2

]
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Metropolis’ Algorithm

1. Therefore Statistical Mechanics of equilibrium seems reduced to the estimation

of averages

2. The problem is now to generate configurations Γl distributed accordingly to the

PDF p(Γl)

3. This is what we are going to do with Montecarlo Methods, and in particular with

the Metropolis’ algorithm

4. The Metropolis’ algorithm accept a modification from a configuration Γi to Γj

according to the transition PDF

Tλ(Γi → Γj) = min

[

1,
p(Γj)

p(Γi)

]

where p(Γi) =
e−βEi

Z

5. The ratio becomes

p(Γj)

p(Γi)
=

e
−βEj

Z

e−βEi

Z

= e−β∆E

6. ∆E = Ej − Ei is the energy variation associated to the proposed change of

state Γi to Γj
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Metropolis’ Algorithm

The acceptance probablity for a modification of a microscopic configuration will be

therefore

Tλ(Γi → Γj) = min
[

1, e−β∆E
]

How do we proceed ?

1. We have a microscopic configuration of the particles of our system

Γi = (Xi, Pi) at time t of energy Ei
2. We modify for example the position of one particle in the system at time t+ 1

and we get a new trial configuraton Γj = (Xj , Pj) at time t+ 1 of energy Ej
3. If Ej < Ei the system energy is reduced and the new configuration accepted

4. If Ej > Ei the new configuration Γj is accepted with a probability e−β∆E
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Equilibrium State

An equilibrium configuration corresponds to a minimum value of the Helmholtz’s Free

Energy F = U − TS for a system that can just exchange heat with the reservoir

(mechanically isolated)

Demonstration - Thermodynamics

1. For an isothermal transformation T = constant (canonical ensemble) from state

A to B from the second law of thermodynamics, one has :

∫ B

A

δQ

T
≤ S(B)− S(A) = ∆S

2. Since T = constant then
∆Q

T
≤ ∆S

where ∆Q is the heat absorbed by the system during the transformation ;

3. By using the first law of thermodynamics ∆W = ∆Q−∆U one gets

∆W ≤ T∆S −∆U → ∆W ≤ −∆F

where ∆W is the work done by the system
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Equilibrium State

1. Thus, the equilibrium of an isothermal system which does not perform work

∆W = 0 (mechanically isolated) always looks for a minimum of Helmholtz Free

Energy

∆F = F (B)− F (A) ≤ 0 → F (A) ≥ F (B)

2. Therefore, irreversible processes happen spontaneously, until the minimum is

reached

∆F = 0 → F = Fmin

3. The Free Energy takes in account the conflicting role of entropic effects, which

tends to increase S, and energetics effects, that tend to reduce U

(a) At T = 0 the configuration of equilibrium corresponds to a minimum of U

(b) At T → ∞ the equilibrium corresponds to a maximum of S
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Physical Meaning of the Metropolis’ Algorithm

The equilibrium configurations minimize the Helmholtz’s free energy

F = U − TS

which is a balance between

1. the internal energy U , which tends to a minimum

2. the entropy S which tends to a maximum

In the Metropolis’ Algorithm the balance is achieved by

1. accepting all proposal Γi → Γj for which energy decreases (∆E ≤ 0)

2. accepting those proposal for which the energy increases ∆E > 0 with a

probability e
−

∆E

KBT that depends on the temperature T

(a) For T → 0 the propability to accept proposal that increase the energy goes

to zero

(b) For T → ∞ such probability becomes one, all the proposal are accepted, if

they increase or decrease energy, since energy becomes irrelevant
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The paramagnet to ferromagnet transition

1. The microscopic magnetic moments si associated to each atom interact among

them in a magnetic material (e.g Nickel) .

2. If two microscopic magnetic moments are parallel in adjacent (nearby) atoms

the energy is lower than if they are anti-parallel

3. The thermal fluctuations prevent the alignement

4. Therefore, for sufficiently low temperature energy decrease favours the

alignement of all the atomic moments giving rise to a macroscopic

magnetization,

5. Below a temperature Tc the systems is a ferromagnet, with a finite

magnetization, above it is a paramagnet with a zero magnetization : at T = Tc

we have a phase transition
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The Ising Model

Ising model : the simplest model for a magnetic material

1. A two dimensional regular lattice with N sites

2. In each site (i, j) a variable sk = ±1 (The spin)

3. A configuration is Γ = (s1, s2, s3, . . . , sN )

4. 2N configurations

5. The magnetization is given by M =
∑

k sk

The Hamiltonian of an Ising model (or the energy of the configuration Γ) is given by

H(Γ) = −J
∗
∑

k,h

sksh −H
∑

k

sk

where J is the interaction term and H is an external applied magnetic field

∗ The sum
∑

k,h is restricted to the nearest neighbours
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The Ising Model

H(Γ) = −J
∗
∑

k,h

sksh −H
∑

k

sk

1. The interaction energy among 2 spins is given by

−Jsksh =







−J if sk = sh (parallel)

J if sk = −sh (antiparallel)

2. At T = 0 K the system has no thermal fluctuations, all the spins will be parallel,

since the minimal energy is achieved for parallel spins.

3. The minimal energy state is called ground state and it can have si = +1 ∀i or

equivalently si = −1 ∀i
4. A system is ferromagnetic if the average magnetizaton M =

∑

k sk 6= 0

5. At T = 0 K the magnetization M = ±N – At T → ∞ the spins are pointing 50%

up and 50% down therefore M = 0 (paramagnetic phase)

6. At some critical temperature Tc > 0 the system passes from ferromagnetic to

paramagnetic, we should find such temperature
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The Ising Model

H(Γ) = −J
∗
∑

k,h

sksh −H
∑

k

sk

1. The presence even of a very small field H breaks the symmetry

(a) If H > 0 the ground state will have M = +N (sk = +1 ∀k)

(b) If H < 0 the ground state will have M = −N (sk = −1 ∀k)

2. Lars Onsager in 1944 has solved analytically the Ising Model in 2d with zero

field H = 0 (Nobel Prize for Chemistry in 1968)

M/N =







0 if T > Tc

(1− [sinh (2J/KBT )]−4)1/8 if T ≥ Tc

Tc =
J

KB

2

log 1 +
√
2
≃ 2.2691853

J

KB

We will use the Monte Carlo method to solve the very difficult problem
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The Metropolis’ Algorithm

Ising Model with H = 0

E(Γ) = −J
∗
∑

k,h

sksh Γ = (s1, s2, . . . , sN ) sk = ±1

with N sites Montecarlo Strategy

1. We select randomly a site (i, j) in the lattice with

spin sk

2. We flip its spin sk → −sk and we get a new trial

configuration Γ′ = (s1, s2, . . . ,−sk, . . . , sN )

3. We estimate the new energy E(Γ′) and the energy

variation ∆E = E(Γ′)− E(Γ)
4. If ∆E < 0 the new configuration Γ′ is accepted

5. If ∆E > 0, we extract a random number 0 < r < 1

(a) if r < e
−

∆E

KBT the configuration is accepted

(b) otherwise, the spin sk is not flipped
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The Metropolis’ Algorithm

Ising Model with H = 0

E(Γ) = −J
∗
∑

k,h

sksh Γ = (s1, s2, . . . , sN ) sk = ±1

with N sites Montecarlo Strategy II

We should now estimate the energy variaton ∆E due to one

spin flip sk → −sk

1. N − 1 spins remain unchanged

2. the energy variation is due only to the terms in the

sum in which sk appears

3. In two dimension each spin has 4 neighbours D,

therefore 4 terms change in the sum

∆E = 2Jsk
∑

µ∈D

sµ = 2J



































−4

−2

0

2

4
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Random Generators

In order to perform MonteCarlo simulations we need good random generators, to

generate uniform numbers between [0, 1) we will use

np.random.random()

>>> np.random.random()

0.47108547995356098

>>> type(np.random.random())

<type ’float’>

>>> np.random.random((5,))

array([ 0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428])

Three-by-two array of random numbers from [-5, 0) :

>>> 5 * np.random.random((3, 2)) - 5

array([[-3.99149989, -0.52338984],

[-2.99091858, -0.79479508],

[-1.23204345, -1.75224494]])

Is it a good random generator? Yes
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Random Generators

import numpy as np

import matplotlib.pyplot as plt

plt.plot(range(10000), np.random.random(10000), ’.’)

plt.savefig(’numpy-random.png’)

plt.show()

It gives uniformly distributed random numbers
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Random Generators

Initial configuration of the Spins

As a first step we should inizialize configuration of the N spins on the lattice of

N = L× L sites with random values si = +1 or si = −1

We will use the integer random generator

(2*np.random.random_integers(1,size=(L,L))-1)

import matplotlib.pyplot as plt

import numpy as np

def init_lattice(l):

# Create a nxn lattice with random spin configuration

lattice = (2*np.random.random_integers(0,1,size=(l,l))-1)

return lattice

l=100 # lenght of the lattice

n= l * l # number of sites

lattice = init_lattice(l)

plt.matshow(lattice)

plt.show()
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Periodic Boundary Conditions (PBCs)

The indeces of the spins on the 2d lattice are

i = 0, . . . , L− 1 j = 0 . . . , L− 1

Which are the neighbours of the spin (i, j)?

1. 4 neighbours : (i, j − 1) (i, j + 1) (i− 1, j) and (i+ 1, j)

2. If i = L− 1 One neighbour is out of the lattice (L, j)

3. Periodic Boundary Conditions L → 0 the neighbour is (0, j)

4. The two dimensional lattice becomes a Torus
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Periodic Boundary Conditions (PBCs)

How to implement PBCs in Python ?

We use the function Modulus % already introduced in the first part of the course

We want to estimate the sum SD of the four spin neighbours of the spin sk with random

position (i, j), which enters in the estimaton of the nergy variation

∆E = 2Jsk
∑

µ∈D

sµ = 2JskSD

i = np.random.randint(l)

j = np.random.randint(l)

# Periodic Boundary Conditions

SD = lattice[(i - 1) % l, j] + lattice[(i + 1) % l, j] + \

lattice[i, (j - 1) % l] + lattice[i, (j + 1) % l]

The spin sk corresponds to lattice[i, j]
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The Montecarlo Algorithm for the Ising 2d

import matplotlib.pyplot as plt

import numpy as np

def init_lattice(l): # Create a nxn lattice with random spin configuration

lattice = (2*np.random.random_integers(0,1,size=(l,l))-1)

return lattice

def deltaE(i,j): #Energy difference for a spin flip - PBCs

SD = lattice[(i - 1) % l, j] + lattice[(i + 1) % l, j] + \

lattice[i, (j - 1) % l] + lattice[i, (j + 1) % l]

return 2*J*lattice[i,j]*SD

def move(): # a MC move

i,j = np.random.randint(l), np.random.randint(l)

dE = deltaE(i, j)

if dE < 0:

lattice[i, j] = -lattice[i, j]

return

if np.random.random() < np.exp(-dE*beta):

lattice[i, j] = -lattice[i, j]

return

return
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The Montecarlo Algorithm for the Ising 2d

global lattice,J,beta,l

J, T, K =1, 4, 3 # coupling, temperature and parameter for the MC

l=100 # lenght of the lattice

n= l * l # number of sites

beta=1/T

lattice = init_lattice(l) # random initial conditions

for t in range(0,1000): # thermalization phase

for mc in range(0,n): # 1 MC steps is n moves

move()

for t in range(0,100):# generate a configuration

for mc in range(0,n*K): # K MC steps is n*K moves

# the data are more independent

move()

plt.matshow(lattice) # plot the configuration

plt.xlim(0,l)

plt.ylim(0,l)

plt.savefig(’Ising2d.T4_N100.png’)

plt.show()
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The Configurations for the Ising 2d
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Magnetization

The average magnetization per particle is defined as

m(T ) =
M(T )

N
= 〈 1

N

∑

k

sk〉

The quantity m is obtained by averaging 1
N

∑

k sk over many different configurations

during the dynamics of the Ising model

In proximity of the critical temperature Tc ≃ 2.2691853J/KB the magnetization behaves

as

m(T ) ∝
(

Tc − T

Tc

)1/8

T ≤ Tc

obviously above the transition

m(T ) = 0 for T > Tc
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Magnetization

def magnetization(l):

# estimate the instantaneous magnetization

mm=0.

for i in range (0,l):

for j in range(0,l):

mm=mm+lattice[i,j]

mm=mm/(l*l)

return mm

global lattice,J,beta,l

J=1

l=20 # lenght of the lattice

n= l * l # number of sites

K=1 # parameter for the MC

beta=1./3.

lattice = init_lattice(l) # random initial conditions

for t in range(0,1000): # thermalization phase

for mc in range(0,n): # 1 MC steps is n moves

move()

print(’thermalization finished’)
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Magnetization

T=0.

vt=[]

mt=[]

for t in range (1,21):

T=T+0.2

beta=1./T # K_B =1

vt.append(T)

magnet=0. # average magnetization

nit = 10000 # number of iterations

print("temperature",T)

for t in range(0,nit):

for mc in range(0,n*K): # K MC steps is n*K moves

# the data are more independent

move()

magnet += abs(magnetization(l))

magnet=magnet/nit

mt.append(magnet)

Applications to Statistical Mechanics – p. 32



Magnetization

The simulations are really long
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How to write and read a file

In Python in order to open a file one should specify if one want to read, write etc

1. ’r’ : use for reading

2. ’w’ : use for writing

3. ’x’ : use for creating and writing to a new file

4. ’a’ : use for appending to a file

5. ’r+’ : use for reading and writing to the same file

ff = open(’name.dat’,’w’) # open the file to write

ff = open(’name.dat’,’r’) # open the file to read

To write/read to/from a file

ff.write()

ff.read()

to close the file

ff.close()
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How to write and read a file

The file "days.txt" contais the names of the days of the week

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

How can we read this file in Python ?

How can we write a file ?
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How to write and read a file

path = ’days.txt’

days_file = open(path,’r’)

days = days_file.read()

new_path = ’new_days.txt’

new_days = open(new_path,’w’)

title = ’Days of the Week\n’

new_days.write(title)

print(title)

new_days.write(days)

print(days)

days_file.close()

new_days.close()
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How to write and read a file

How can we write in a file numbers ordered in rows and separated by white spaces, like

31 22 18

13 14 15

A possibility is the following

ff = open(’data.dat’,’w’) # open the file to write

a=31

b=22

c=18

d=13

e=14

f=15

ff.write(str(a) + " " + str(b) + " "+ str(c) + "\n")

ff.write(str(d) + " " + str(e) + " "+ str(f) + "\n")

# write in the file

ff.close() # close the file
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Magnetic Susceptibility

The variance of the magnetization m(T ) measures its fluctuations and it is called

Magnetic Susceptibility

χ =
1

KBT

[

〈m2〉 − 〈m〉2
]

The magnetic susceptibility diverges at the critical temperature Tc as

χ =∝ |Tc − T |
Tc

7/4
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Magnetic Susceptibility

ff = open(’suscept.L20.dat’,’w’) # open the file to write

T=0.

vt=[]

mt=[]

for t in range (1,21):

T=T+0.2

beta=1./T # K_B =1

vt.append(T)

magnet=0. # average magnetization

magnet2 = 0. # average square of the magnetization

nit = 10000 # number of iterations

print("temperature",T)
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Magnetic Susceptibilty

for t in range(0,nit):

for mc in range(0,n*K): # K MC steps is n*K moves

# the data are more independent

move()

magnet += abs(magnetization(l))

magnet2 += magnetization(l)**2

magnet=magnet/nit

magnet2=magnet2/nit

magnet2=(magnet2-magnet*magnet)/T

mt.append(magnet2)

ff.write(str(T) + " " + str(magnet2) + " "+ str(magnet) + "\n")

# write in the file

ff.close() # close the file
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