Importance Sampling

Alessandro Torcini

Non-Uniform Random Numbers

Suppose I have a generator of random numbers which gives numbers x distributed in $[0,1]$ with a probability distribution function (PDF) $q(x)$, and I want to obtain with a transformation of variable $y=y(x)$ random numbers y which are distributed accordingly to another PDF $p(y)$ defined in a domain $[a, b]$.

The probability is conserved

Therefore

1. $\int_{0}^{1} q(x) d x=\int_{a}^{b} p(y) d y=1-q(x)$ and $p(y)$ are PDFs
2. The probability to have a random number in $[x, x+d x]$ is given by $q(x) d x$
3. This is conserved if I make a transformation of variables from $x \rightarrow y$
4. Therefore $q(x) d x=p(y) d y$ with $y=y(x)$

Non-Uniform Random Numbers

To simplify our derivation let us suppose that x are random number distributed uniformly in $[0,1]$ then $q(x) \equiv 1$. Thus we have

$$
d x=p(y) d y \rightarrow x=\int_{a}^{y} p\left(y^{\prime}\right) d y^{\prime}=P(y)
$$

where $P(y)$ is the cumulative probability function. We can invert this relationship and get

$$
y=P^{-1}(x)
$$

which gives the desired random number y with the PDF $p(y)$.
A simple example

I want random numbers y distributed as $p(y)=y / 2$ in the interval $[0,2]$, therefore

$$
x=P(y)=\int_{0}^{y} \frac{y^{\prime}}{2} d y^{\prime}=\frac{y^{2}}{4}
$$

and

$$
y=P^{-1}(x)=\sqrt{4 x}
$$

and since $x \in[0,1]$ then $y \in[0,2]$ as desired.

Exponential Distribution

Let us consider an important distribution the exponential one

$$
p(y)=a \mathrm{e}^{-a y} \quad \text { with } \quad y \in[0 ; \infty)
$$

the cumulative distribution is

$$
P(y)=\int_{0}^{y} p\left(y^{\prime}\right) d y^{\prime}=1-\mathrm{e}^{-a y}
$$

Therefore

$$
x=1-\mathrm{e}^{-a y} \rightarrow(1-x)=\mathrm{e}^{-a y} \rightarrow y=\frac{-\ln (1-x)}{a}
$$

since $1-x$ is a random variable in $[0,1]$ as x, we can finally write

$$
y=\frac{-\ln (x)}{a}
$$

Exponential Distribution

```
import numpy as np
import matplotlib.pyplot as plt
def ranexp (a):
    x=np.random.random_sample()
    y= -np.log(x)/a
    return y
```

$\mathrm{N}=1000000$
data=[]
for i in range $(1, N)$:
$z=r a n \exp (0.5) \quad \# a=0.5$
data.append(z)
plt.hist(data, bins=200, range=(0,10), normed=1)
\# data contains the number of times you have the random number
\# bins is the number of bins you want
\# range fix the extrema
\# normed tells that you want a histogram with area one
plt.show()

Importance Sampling

Instead of employing an uniform sampling of random points it would be clever to choose the random points accordingly to a probability distribution function (PDF) $p(x)$ that favours the converge of the integral

$$
I=\int_{a}^{b} \mathrm{~d} x f(x)
$$

In particular we can rewrite the integral as

$$
I=\int_{a}^{b} \mathrm{~d} x \frac{f(x)}{p(x)} p(x)=\left\langle\frac{f(x)}{p(x)}\right\rangle_{p} \quad \text { where } \quad \int_{a}^{b} \mathrm{~d} x p(x)=1
$$

therefore $p(x)$ is a PDF defined in $[a, b]$.

Importance Sampling

An estimate of I can be obtained by generating N random points x_{i} which follows a distribution $p\left(x_{i}\right)$, then

$$
I_{\text {estimate }}=\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)}
$$

obvously $I_{\text {estimate }} \rightarrow I$ for $N \rightarrow \infty$.
Which is the variance of the estimate of I ?

$$
\sigma_{I}^{2}=\left\langle\left(\frac{f(x)}{p(x)}\right)^{2}\right\rangle_{p}-\left\langle\frac{f(x)}{p(x)}\right\rangle_{p}^{2}
$$

For which choice of $p(x)$ the error is minimal ?

1. If we choose $p(x)=C f(x)$ clearly σ_{I}^{2} is zero!!!
2. Is this magic or should we pay a price for this optimal choice ?
3. $p(x)$ is a PDF, therefore $\int_{a}^{b} p(x) d x=C \int_{a}^{b} f(x) d x=C I=1$

Importance Sampling

No lunch for free

To define $p(x)=C f(x)$ we should know the normalization constant $C=1 / I$, therefore we should know the integral I that we want to calculate !!!

How to proceed

1. We should choose $p(x)$ "close" to $f(x)$, such that the points where $f(x)$ is large are more frequently selected
2. Ensure that we never have $p(x) \ll f(x)$ or we risk to have a very large error (variance σ_{I}^{2}
3. The method is very effective : individual steps are very simple (random number x_{i} according to the law $p(x)$ to calculate $\left.f\left(x_{i}\right) / p\left(x_{i}\right)\right)$
4. The error is $1 / \sqrt{N}$ in any spatial dimension
5. Problems:
(a) It is not always easy to select a "good" $p(x)$
(b) We need to construct a specific random number generator for each function

An example

Exercise

Estimate the integral

$$
I=\int_{0}^{\infty} \sqrt{x} \cos (x) \mathrm{e}^{-x} d x
$$

by employing the importance sampling method with PDF $p(x)=\mathrm{e}^{-x}$
First all the integral can be rewritten as

$$
I=\int_{0}^{\infty} G(x) p(x) d x \quad G(x)=\sqrt{x} \cos (x)
$$

which can be estimated by a MC method with a sequence of random numbers $\left\{y_{i}\right\}$ obtained from the PDF $p(y)$ as

$$
I_{\text {estimate }}=\frac{1}{N} \sum_{i=1}^{N} G\left(y_{i}\right)
$$

where $y_{i}=-\ln \left(x_{i}\right)$ with x_{i} random variable uniform distributed in $[0,1]$.

An example

```
import numpy as np
```

```
import matplotlib.pyplot as plt
```

def ranexp (a):
$x=n p . r a n d o m . r a n d o m _s a m p l e()$
$y=-n p . \log (x) / a$
return y
def fi(x): \# the function
return np.sqrt(x) *np.cos(x)

An example

```
def HM(f):
```

 somme, somme2 \(=0 ., 0\).
 \(i=0\)
 while i<HM.N:
 fi=f(ranexp(1.0)) \# function evaluated in random values
 somme \(+=\mathrm{fi}\)
 somme2 += fi*fi
 i \(+=1\)
 somme /= float (HM.N) \# the integral
 somme2 /= float(HM.N)
 HM.erreur = np.sqrt((somme2-somme*somme)/float(HM.N))
 \# standard deviation of the average
 return somme
 \# we can estimate the integral over many realizations N
for N in $[1 e 2,1 e 3,1 e 4,1 e 5,1 e 6]:$
print ("N =", N)
HM.N $=\mathrm{N}$
print ("I1 = ", HM(f1), "+/-", HM.erreur, "(exact : 0.201656)")

Markov Chains

A more general method to obtain sequences of random numbers $\left\{x_{i}\right\}$ distributed according to a generic PDF $p(x)$ is the so called method of Markov Chains The random sequence can be generated as a random walk :

1. Given a value x_{i} at time t the next value $x_{j} \in\left[x_{i}-\lambda, x_{i}+\lambda\right]$ at time $t+1$ can be generated by a transition probability density $T_{\lambda}\left(x_{i} \rightarrow x_{j}\right)$
2. if $P_{t}\left(x_{i}\right)$ is the probability to get the variable in x_{i} at time t then

$$
P_{t+1}\left(x_{j}\right)=\int P_{t}\left(x_{i}\right) T_{\lambda}\left(x_{i} \rightarrow x_{j}\right) d x_{i}
$$

3. since T_{λ} is a PDF we have $\int T_{\lambda}\left(x_{i} \rightarrow x_{j}\right) d x_{j}=1$ the point x_{i} should end in a point within the interval $\left[x_{i}-\lambda, x_{i}+\lambda\right]$
4. therefore we can formally write

$$
P_{t+1}\left(x_{j}\right)-P_{t}\left(x_{j}\right)=\int P_{t}\left(x_{i}\right) T_{\lambda}\left(x_{i} \rightarrow x_{j}\right) d x_{i}-\int P_{t}\left(x_{j}\right) T_{\lambda}\left(x_{j} \rightarrow x_{i}\right) d x_{i}
$$

Markov Chains

The transition PDF T_{λ} should be selected in a way that the chosen $p(x)$ is stationary solution (independent of t) of the recurrence equation for the PDF $P_{t}(x)$, namely

$$
p(x) \equiv P^{*}(x)=\int P^{*}(y) T_{\lambda}(y \rightarrow x) d y
$$

by employing the fact that T_{λ} is normalized to one we can write the following

$$
\int P^{*}(x) T_{\lambda}(x \rightarrow y) d y=\int P^{*}(y) T_{\lambda}(y \rightarrow x) d y
$$

or equivalently

$$
\int\left[P^{*}(x) T_{\lambda}(x \rightarrow y)-P^{*}(y) T_{\lambda}(y \rightarrow x)\right] d y=0
$$

A necessary (but not sufficient) condition ensuring that the above equation is satisfied is the so-called detailed balance condition

$$
P^{*}(x) T_{\lambda}(x \rightarrow y)=P^{*}(y) T_{\lambda}(y \rightarrow x)
$$

Markov Chains

What happens when we start with a distribution $P_{t}(x) \neq P^{*}(x)$ and we apply the recurrence iteration

$$
P_{t+1}\left(x_{j}\right)=\int P_{t}\left(x_{i}\right) T_{\lambda}\left(x_{i} \rightarrow x_{j}\right) d x_{i}
$$

the PDF $P_{t}(x) \rightarrow P^{*}(x)$ for $t \rightarrow \infty$ or not?
Yes if the Markov chain is ergodic

1. ergodic means that, for any couple x_{i}, x_{j}, there is a possibility to go from x_{i} to x_{j} with a finite number of consecutive individual jumps.
2. independently from the initial condition x_{i} the recurrence relation can bring you in any final value x_{j}

Metropolis’ Algorithm

A simple choice to select T_{λ} that fulfills the detailed balance has been proposed by Metropolis (1953)

$$
T_{\lambda}\left(x_{i} \rightarrow x_{j}\right)=\min \left[1, \frac{p\left(x_{j}\right)}{p\left(x_{i}\right)}\right]
$$

The Algorithm

1. x_{i} is the value of the variable at time t
2. For time $t+1$ we select a tentative value $x_{t r}=x_{i}+\lambda_{i}$, where $\lambda_{i} \in[-\lambda, \lambda]$ is a random number
3. we calculate the transition probability $T_{\lambda}\left(x_{i} \rightarrow x_{t r}\right)=\min \left[1, \frac{p\left(x_{t r}\right)}{p\left(x_{i}\right)}\right]$
4. the new point is selected $x_{i+1}=x_{t r}$ with probability $T_{\lambda}\left(x_{i} \rightarrow x_{t r}\right)$
5. we restart from step one

The step 4 can be implemented by choosing a random number $q \in[0,1]$:

1. if $q<T_{\lambda}\left(x_{i} \rightarrow x_{t r}\right)$ the trial point $x_{t r}$ is selected
2. otherwise we select x_{i} another time

Remarks on the Metropolis' Algorithm

1. We do not need to know the normalization constant $p(x)=C f(x)$, because the algorithm is defined only in term of the ratio of the functions

$$
\frac{p\left(x_{t r}\right)}{p\left(x_{i}\right)}=\frac{f\left(x_{t r}\right)}{f\left(x_{i}\right)}
$$

However, the algorithm will generate a distribution of random points accordingly to a normalized PDF $p(x)$. i.e. for which $\int p(x) d x=1$.
2. the value of λ (maximal step) should be selected by trials and errors, searching for a λ values giving acceptance rate around $30-50 \%$, i.e. on average every two/three trials $x_{t r}$ will be accepted
(a) if λ is too small the acceptance rate is high, but the random points are quite similar x_{i} and the estimation of the integral is not well done, since the same region is always explored;
(b) if λ is too large the acceptance rate is quite low, and x_{i} does not change in time, also not good for the integral

Remarks on the Metropolis' Algorithm

1. Thermalization Phase : a transient period is needed to the Markov chain to converge towards the asymptotic PDF $p(x)$, therefore the first M steps should be discarded and not used for the estimation of the integral. M will depend on the λ value.
2. How often? The points generated by a Markov chain are always correlated, and the estimaton of the ntegral is better performed with uncorrelated random numbers. A method to increase the decorrelation is to use one random point every K generated points in the Markov chain.
3. A good starting point x_{0} for the sequence of random numbers is around the maximum of $p(x)$ because this is the point of maximal probability that contributes more to the integral and it should be visited as long as possible by the Markov chain ;

Integration with the Metropolis’ Algorithm

I want to estimate the variance of a Gaussian distribution, namely

$$
I=\int_{-\infty}^{\infty} \frac{x^{2}}{\sqrt{2 \pi} \sigma} \mathrm{e}^{-x^{2} /\left(2 \sigma^{2}\right)} d x=\sigma^{2}
$$

since in this case the average is exactly zero.
How do I proceed with the Metropoli's algorithm?

1. I rewrite the integral as $\int_{-\infty}^{\infty} f(x) p(x) d x$, where $f(x)=x^{2}$ and $p(x)=\mathrm{e}^{-x^{2} /\left(2 \sigma^{2}\right)}$, I do not need to normalize the PDF !!!
2. I generate a Markov chain $\left\{x_{i}\right\}$ of lenght N accordingly to the chosen $p(x)$
3. I use the N random numbers $\left\{x_{i}\right\}$ to estimate the integral

$$
I_{\text {estimate }}=\frac{1}{N} \sum_{i=1}^{N} f\left(x_{i}\right)
$$

Integration with the Metropolis’ Algorithm

Selecting the parameters

1. It can be demonstrated that the best choice for a Gaussian distribution is $\lambda=3.70$, for other distribution it can be different;
2. For the thermalization phase we choose $M=10000$, this seems a good choice ;
3. For this integration we choose $K=1$ in other cases can be clever to choose $K>1$

Variance of a Gaussian

```
import numpy as np
import matplotlib.pyplot as plt
```

def met (y):
rr=np.random.random_sample()
$x=y+r r * m e t . l a m * 2$. - met.lam
ratio $=P D F(x) / P D F(y)$
if ratio > 1.:
return x
rr=np.random.random_sample()
if rr > ratio:
return y
return x
def PDF (x):
return np.exp(-x*x/2.) \# sigma $=1$
def $f 1(x): \quad \#$ the function
return $x * x$

Variance of a Gaussian

```
def HM(f):
```

 somme, somme2 \(=0 ., 0\).
 \(i=0\)
 \(y i=0\).
 while i<10000: \# thermalization
 yi \(=\) met (yi)
 i \(+=1\)
 \(i=0\)
 while i<HM.N:
 yi = met(yi)
 fi=f(yi) \# function evaluated in random values
 somme += fi
 somme2 += fi*fi
 i \(+=1\)
 somme /= float(HM.N)
 \# the integral
 somme2 /= float(HM.N)
 HM.erreur = np.sqrt((somme2-somme*somme)/float(HM.N))
 \# standard deviation of the average
 return somme

Variance of a a Gaussian

```
# we can estimate the integral over many realizations N
```

met. $1 \mathrm{lam}=3.70$
for N in $[1 e 3,1 e 4,1 e 5,1 e 6]:$
print ("N =", N)
HM.N $=N$
print ("I1 = ", HM(f1), "+/-", HM.erreur, "(exact : 1.00)")

