
Importance Sampling
Alessandro Torcini

LPTM - Université de Cergy-Pontoise

Importance Sampling – p. 1

Non-Uniform Random Numbers

Suppose I have a generator of random numbers which gives numbers x distributed in

[0, 1] with a probability distribution function (PDF) q(x), and I want to obtain with a

transformation of variable y = y(x) random numbers y which are distributed accordingly

to another PDF p(y) defined in a domain [a, b].

The probability is conserved

Therefore

1.
∫ 1
0 q(x)dx =

∫ b
a p(y)dy = 1 —- q(x) and p(y) are PDFs

2. The probability to have a random number in [x, x+ dx] is given by q(x)dx

3. This is conserved if I make a transformation of variables from x → y

4. Therefore q(x)dx = p(y)dy with y = y(x)

Importance Sampling – p. 2

Non-Uniform Random Numbers

To simplify our derivation let us suppose that x are random number distributed uniformly

in [0, 1] then q(x) ≡ 1. Thus we have

dx = p(y)dy → x =

∫ y

a
p(y′)dy′ = P (y)

where P (y) is the cumulative probability function. We can invert this relationship and get

y = P−1(x)

which gives the desired random number y with the PDF p(y).

A simple example

I want random numbers y distributed as p(y) = y/2 in the interval [0, 2], therefore

x = P (y) =

∫ y

0

y′

2
dy′ =

y2

4

and

y = P−1(x) =
√
4x

and since x ∈ [0, 1] then y ∈ [0, 2] as desired.

Importance Sampling – p. 3

Exponential Distribution

Let us consider an important distribution the exponential one

p(y) = ae−ay with y ∈ [0;∞)

the cumulative distribution is

P (y) =

∫ y

0
p(y′)dy′ = 1− e−ay

Therefore

x = 1− e−ay → (1− x) = e−ay → y =
− ln(1− x)

a

since 1− x is a random variable in [0, 1] as x, we can finally write

y =
− ln(x)

a

Importance Sampling – p. 4

Exponential Distribution

import numpy as np

import matplotlib.pyplot as plt

def ranexp (a):

x=np.random.random_sample()

y= -np.log(x)/a

return y

N=1000000

data=[]

for i in range (1,N):

z=ranexp(0.5) #a=0.5

data.append(z)

plt.hist(data, bins=200, range=(0,10),normed=1)

data contains the number of times you have the random number

bins is the number of bins you want

range fix the extrema

normed tells that you want a histogram with area one

plt.show()

Importance Sampling – p. 5

Importance Sampling

Instead of employing an uniform sampling of random points it would be clever to choose

the random points accordingly to a probability distribution function (PDF) p(x) that

favours the converge of the integral

I =

b
∫

a

dx f(x)

In particular we can rewrite the integral as

I =

b
∫

a

dx
f(x)

p(x)
p(x) = 〈 f(x)

p(x)
〉p where

b
∫

a

dx p(x) = 1

therefore p(x) is a PDF defined in [a, b].

Importance Sampling – p. 6

Importance Sampling

An estimate of I can be obtained by generating N random points xi which follows a

distribution p(xi), then

Iestimate =
1

N

N
∑

i=1

f(xi)

p(xi)

obvously Iestimate → I for N → ∞.

Which is the variance of the estimate of I ?

σ2
I =

〈

(

f(x)

p(x)

)2
〉

p

−
〈

f(x)

p(x)

〉2

p

For which choice of p(x) the error is minimal ?

1. If we choose p(x) = Cf(x) clearly σ2
I is zero ! ! !

2. Is this magic or should we pay a price for this optimal choice ?

3. p(x) is a PDF, therefore
∫ b
a p(x)dx = C

∫ b
a f(x)dx = CI = 1

Importance Sampling – p. 7

Importance Sampling

No lunch for free

To define p(x) = Cf(x) we should know the normalization constant C = 1/I, therefore

we should know the integral I that we want to calculate ! ! !

How to proceed

1. We should choose p(x) “close” to f(x), such that the points where f(x) is large

are more frequently selected

2. Ensure that we never have p(x) << f(x) or we risk to have a very large error

(variance σ2
I

3. The method is very effective : individual steps are very simple (random number

xi according to the law p(x) to calculate f(xi)/p(xi))

4. The error is 1/
√
N in any spatial dimension

5. Problems :

(a) It is not always easy to select a “good” p(x)

(b) We need to construct a specific random number generator for each function

Importance Sampling – p. 8

An example

0 2 4 6 8 10
x

-0.2

-0.1

0

0.1

0.2

0.3

f(
x)

f(x)=x
-1/2

cos(x)e
-x

Exercise

Estimate the integral

I =

∫

∞

0

√
x cos(x)e−xdx

by employing the importance sampling method

with PDF p(x) = e−x

First all the integral can be rewritten as

I =

∫

∞

0
G(x)p(x)dx G(x) =

√
x cos(x)

which can be estimated by a MC method with a sequence of random numbers {yi}
obtained from the PDF p(y) as

Iestimate =
1

N

N
∑

i=1

G(yi)

where yi = − ln(xi) with xi random variable uniform distributed in [0, 1].

Importance Sampling – p. 9

An example

import numpy as np

import matplotlib.pyplot as plt

def ranexp (a):

x=np.random.random_sample()

y= -np.log(x)/a

return y

def f1(x): # the function

return np.sqrt(x)*np.cos(x)

Importance Sampling – p. 10

An example

def HM(f):

somme, somme2 = 0. , 0.

i = 0

while i<HM.N:

fi=f(ranexp(1.0)) # function evaluated in random values

somme += fi

somme2 += fi*fi

i += 1

somme /= float(HM.N) # the integral

somme2 /= float(HM.N)

HM.erreur = np.sqrt((somme2-somme*somme)/float(HM.N))

standard deviation of the average

return somme

we can estimate the integral over many realizations N

for N in [1e2, 1e3, 1e4, 1e5,1e6]:

print ("N =", N)

HM.N = N

print ("I1 = ", HM(f1), "+/-", HM.erreur, "(exact : 0.201656)")

Importance Sampling – p. 11

Markov Chains

A more general method to obtain sequences of random numbers {xi} distributed

according to a generic PDF p(x) is the so called method of Markov Chains

The random sequence can be generated as a random walk :

1. Given a value xi at time t the next value xj ∈ [xi − λ, xi + λ] at time t+ 1 can

be generated by a transition probability density Tλ(xi → xj)

2. if Pt(xi) is the probability to get the variable in xi at time t then

Pt+1(xj) =

∫

Pt(xi)Tλ(xi → xj)dxi

3. since Tλ is a PDF we have

∫

Tλ(xi → xj)dxj = 1 the point xi should end in

a point within the interval [xi − λ, xi + λ]

4. therefore we can formally write

Pt+1(xj)− Pt(xj) =

∫

Pt(xi)Tλ(xi → xj)dxi −
∫

Pt(xj)Tλ(xj → xi)dxi

Importance Sampling – p. 12

Markov Chains

The transition PDF Tλ should be selected in a way that the chosen p(x) is stationary

solution (independent of t) of the recurrence equation for the PDF Pt(x), namely

p(x) ≡ P ∗(x) =

∫

P ∗(y)Tλ(y → x)dy

by employing the fact that Tλ is normalized to one we can write the following

∫

P ∗(x)Tλ(x → y)dy =

∫

P ∗(y)Tλ(y → x)dy

or equivalently

∫

[P ∗(x)Tλ(x → y)− P ∗(y)Tλ(y → x)]dy = 0

A necessary (but not sufficient) condition ensuring that the above equation is satisfied is

the so-called detailed balance condition

P ∗(x)Tλ(x → y) = P ∗(y)Tλ(y → x)

Importance Sampling – p. 13

Markov Chains

What happens when we start with a distribution Pt(x) 6= P ∗(x) and we apply the

recurrence iteration

Pt+1(xj) =

∫

Pt(xi)Tλ(xi → xj)dxi

the PDF Pt(x) → P ∗(x) for t → ∞ or not ?

Yes if the Markov chain is ergodic

1. ergodic means that, for any couple xi, xj , there is a possibility to go from xi to

xj with a finite number of consecutive individual jumps.

2. independently from the initial condition xi the recurrence relation can bring you

in any final value xj

Importance Sampling – p. 14

Metropolis’ Algorithm

A simple choice to select Tλ that fulfills the detailed balance has been proposed by

Metropolis (1953)

Tλ(xi → xj) = min

[

1,
p(xj)

p(xi)

]

The Algorithm

1. xi is the value of the variable at time t

2. For time t+ 1 we select a tentative value xtr = xi + λi, where λi ∈ [−λ, λ] is a

random number

3. we calculate the transition probability Tλ(xi → xtr) = min
[

1,
p(xtr)
p(xi)

]

4. the new point is selected xi+1 = xtr with probability Tλ(xi → xtr)

5. we restart from step one

The step 4 can be implemented by choosing a random number q ∈ [0, 1] :

1. if q < Tλ(xi → xtr) the trial point xtr is selected

2. otherwise we select xi another time

Importance Sampling – p. 15

Remarks on the Metropolis’ Algorithm

1. We do not need to know the normalization constant p(x) = Cf(x), because the

algorithm is defined only in term of the ratio of the functions

p(xtr)

p(xi)
=

f(xtr)

f(xi)

However, the algorithm will generate a distribution of random points accordingly

to a normalized PDF p(x). i.e. for which
∫

p(x)dx = 1.

2. the value of λ (maximal step) should be selected by trials and errors, searching

for a λ values giving acceptance rate around 30− 50%, i.e. on average every

two/three trials xtr will be accepted

(a) if λ is too small the acceptance rate is high, but the random points are quite

similar xi and the estimation of the integral is not well done, since the same

region is always explored ;

(b) if λ is too large the acceptance rate is quite low, and xi does not change in

time, also not good for the integral

Importance Sampling – p. 16

Remarks on the Metropolis’ Algorithm

1. Thermalization Phase : a transient period is needed to the Markov chain to

converge towards the asymptotic PDF p(x), therefore the first M steps should

be discarded and not used for the estimation of the integral. M will depend on

the λ value.

2. How often ? The points generated by a Markov chain are always correlated, and

the estimaton of the ntegral is better performed with uncorrelated random

numbers. A method to increase the decorrelation is to use one random point

every K generated points in the Markov chain.

3. A good starting point x0 for the sequence of random numbers is around the

maximum of p(x) because this is the point of maximal probability that

contributes more to the integral and it should be visited as long as possible by

the Markov chain ;

Importance Sampling – p. 17

Integration with the Metropolis’ Algorithm

I want to estimate the variance of a Gaussian distribution, namely

I =

∫

∞

−∞

x2

√
2πσ

e−x2/(2σ2)dx = σ2

since in this case the average is exactly zero.

How do I proceed with the Metropoli’s algorithm ?

1. I rewrite the integral as
∫

∞

−∞
f(x)p(x)dx, where f(x) = x2 and

p(x) = e−x2/(2σ2), I do not need to normalize the PDF ! ! !

2. I generate a Markov chain {xi} of lenght N accordingly to the chosen p(x)

3. I use the N random numbers {xi} to estimate the integral

Iestimate =
1

N

N
∑

i=1

f(xi)

Importance Sampling – p. 18

Integration with the Metropolis’ Algorithm

Selecting the parameters

1. It can be demonstrated that the best choice for a Gaussian distribution is

λ = 3.70, for other distribution it can be different ;

2. For the thermalization phase we choose M = 10000 , this seems a good choice ;

3. For this integration we choose K = 1 in other cases can be clever to choose

K > 1

Importance Sampling – p. 19

Variance of a Gaussian

import numpy as np

import matplotlib.pyplot as plt

def met(y):

rr=np.random.random_sample()

x=y+rr*met.lam*2. - met.lam

ratio = PDF(x)/PDF(y)

if ratio > 1.:

return x

rr=np.random.random_sample()

if rr > ratio:

return y

return x

def PDF(x):

return np.exp(-x*x/2.) # sigma = 1

def f1(x): # the function

return x*x

Importance Sampling – p. 20

Variance of a Gaussian

def HM(f):

somme, somme2 = 0. , 0.

i = 0

yi= 0.

while i<10000: # thermalization

yi = met(yi)

i += 1

i=0

while i<HM.N:

yi = met(yi)

fi=f(yi) # function evaluated in random values

somme += fi

somme2 += fi*fi

i += 1

somme /= float(HM.N) # the integral

somme2 /= float(HM.N)

HM.erreur = np.sqrt((somme2-somme*somme)/float(HM.N))

standard deviation of the average

return somme

Importance Sampling – p. 21

Variance of a a Gaussian

we can estimate the integral over many realizations N

met.lam=3.70

for N in [1e3,1e4,1e5,1e6]:

print ("N =", N)

HM.N = N

print ("I1 = ", HM(f1), "+/-", HM.erreur, "(exact : 1.00)")

Importance Sampling – p. 22

	large Non-Uniform Random Numbers
	large Non-Uniform Random Numbers
	large Exponential Distribution
	large Exponential Distribution
	large Importance Sampling
	large Importance Sampling
	large Importance Sampling
	large An example
	large An example
	large An example
	large Markov Chains
	large Markov Chains
	large Markov Chains
	large Metropolis' Algorithm
	large Remarks on the Metropolis' Algorithm
	large Remarks on the Metropolis' Algorithm
	small Integration with the Metropolis' Algorithm
	small Integration with the Metropolis' Algorithm
	large Variance of a Gaussian
	large Variance of a Gaussian
	large Variance of a a Gaussian

