
Montecarlo Methods
Alessandro Torcini

LPTM - Université de Cergy-Pontoise

Montecarlo Methods – p. 1

The course

1. CM Tuesday : 9.00-12.00 (E428) all

2. TP Tuesday : 15.30-18.30 (E428) (29p) (French)

3. TP Wendsday : 14.00-17.00 (E428) (30p) (English)

The term Monte Carlo Method refers to any numerical method employing random

numbers to solve a problem in a probabilistic manner.

These methods are largely used in science :

1. to simulate stochastic and deterministic processes ;

2. to perform approximate numerical estimation (integrals etc.)

3. to simulate the response of experimental apparatus

4. to find a minimum or a maximum of a function (simulated annealing)

Montecarlo Methods – p. 2

Brief History

1. 1930s First significant scientific application of MC : Enrico Fermi used it for

neutron transport in fissile material. Segre : “Fermi took great delight in

astonishing his Roman colleagues with his ”too-good-to-believe” predictions of

experimental results.”

2. 1940s Monte Carlo named by Nicholas Metropolis and Stanislaw Ulam

3. 1953 Algorithm for sampling any probability density Metropolis, Rosenbluth, and

Teller (generalized by Hastings in 1970)

4. 1962,1974 First QMC calculations, Kalos, Levesque, Verlet.

Montecarlo Methods – p. 3

Program of the Course

1. Integral Estimation with Monte Carlo Methods

2. Statistical Physics and Equilibrium Thermodynamics (Canonical Ensemble)

3. The Montecarlo Method

4. Applications

(a) Ising model

(b) Simulated annealing

(c) etc

Montecarlo Methods – p. 4

Integration of a functon in 1d

One of the most employed deterministic methods consists in dividing the interval of

definition of a function f(x) in small sub-intervals :

Simple approximation

The most simple estimation of the integral of a function f over the interval [a, b] can be

obtained by estimating the surface of a rectangle of sides (b− a) and f(a) (the inferior

limit of the function)
b
∫

a

dx f(x) ≈ (b− a) f(a) =: F1 .

In order to estimate the error done in such an estimation of the real integral, we uses of

the Taylor expansion of f around a

f(x) = f(a) + (x− a) f ′(a) + . . . ,

therefore

b
∫

a

dx f(x) =

b
∫

a

dx
[

f(a) + (x− a) f ′(a)
]

+ . . . = F1 +
(b− a)2

2
f ′(a) +

The error made with the approximation F1 is proportional to (b− a)2.

Montecarlo Methods – p. 5

Method of the median point

To obtain a better estimation it is sufficient to consider the median point of the interval

[a, b] to estimate the integral of f :

b
∫

a

dx f(x) ≈ (b− a) f

(

a+ b

2

)

=: F2 .

By considering the Taylor expansion around the point xm = a+b
2

f(x) = f (xm) + (x− xm) f ′ (xm) +
(x− xm)2

2
f ′′ (xm) + . . .

one gets

b
∫

a

dx f(x) =

b
∫

a

dx

(

f (xm) + (x− xm) f ′ (xm) +
(x− xm)2

2
f ′′ (xm)

)

+ . . .

= F2 +
(b− a)3

24
f ′′(xm) +

Now the eror of the approximation F2 is proportional to (b− a)3. and if b− a is small, the

approximation F2 is better than the approximation given by F1.
Montecarlo Methods – p. 6

Simpson Method

By employing the lower and upper bound of the interval, as well the median point one

can obtain an even better approximation of the integral :

b
∫

a

dx f(x) ≈ b− a

6

(

f(a) + 4 f

(

a+ b

2

)

+ f(b)

)

=: F3 .

One can use once more the Taylor expansion to estimate the error done with such

approximation, after very long calculus . . . one gets

b
∫

a

dx f(x) = F3 +
(b− a)5

2880
f(iv)(ξ)

with ξ ∈ [a, b].

Montecarlo Methods – p. 7

Equidistant values

The approximations are good for small b−a, therefore one

should divide the interval [a, b] in small sub-intervals and

estimate the integral on each of that. By taking N intervals

of the same length,

∆x =
b− a

N

with extrema ai := a+ i∆x , bi := a+ (i+ 1)∆x for i = 0, . . . , N − 1. Obviously,

a0 = a, bN−1 = b et ai+1 = bi. Finally, one can utilize the expressions for the

approximations F1, F2 and F3, for the sub-intervals [ai, bi].

In the case of the method of the median point one gets :

b
∫

a

dx f(x) ≈ ∆x

N−1
∑

i=0

f

(

a+

(

i+
1

2

)

∆x

)

=: F2(N) .

In this case, for every sub-interval the error is proportional to ∆x3. Since we have N

intervals, the total error is proportional to N ∆x3 = (b− a)3/N2 ∝ 1/N2.

Montecarlo Methods – p. 8

Integration errors

1. Simple approximation
∣

∣

∣

∣

∣

∣

b
∫

a

dx f(x)− F1(N)

∣

∣

∣

∣

∣

∣

∝ 1

N

2. Method of the median point

∣

∣

∣

∣

∣

∣

b
∫

a

dx f(x)− F2(N)

∣

∣

∣

∣

∣

∣

∝ 1

N2

3. Simpson Method
∣

∣

∣

∣

∣

∣

b
∫

a

dx f(x)− F3(N)

∣

∣

∣

∣

∣

∣

∝ 1

N4

Montecarlo Methods – p. 9

Higher dimensions

Let us consider an hypercube Q = [a1, b1]× . . .× [ad, bd] in d dimensions, in this case

the d-dimensonal integral can be written as

∫

Q

ddx f(~x) =

bd
∫

ad

dxd . . .

b1
∫

a1

dx1 f(x1, . . . , xd) .

One can use one of the three methods descibed so-far, if we discretize each dimension

with N points the total number of points we have is NT = Nd or otherwise

N = d
√
NT = (NT)1/d.

The error for the medina point is therefore

∣

∣

∣

∣

∣

∣

∣

∫

Q

ddx f(~x)− F2(N)

∣

∣

∣

∣

∣

∣

∣

∝ N
−2/d
T .

The error for the simple approximation is proportonal to N
−1/d
T and for the Simpson

method is proportional to N
−4/d
T

Montecarlo Methods – p. 10

Higher dimensions

In higher dimensions one need many more NT points to get a precise result :

1. Let us assume that N = 100 for each dimension and we are in d = 10

dimensions, therefore we must estimate the sum over NT = 10010 = 1020

points ;

2. if our computer needs 10−10 secs to estimate each element of the sum

3. the total CPU time required by the computer is T ≃ 1010secs ≃ 1000 years

We need another method

Montecarlo Method

Montecarlo Methods – p. 11

How to estimate the area of a surface

We want to estimate the area AF of a surface F ⊂ R
2 in 2 dimensions. Le us use the

characteristic funtion χF of F ,

χF (~x) =

1 si ~x ∈ F

0 si ~x /∈ F

We should therefore estimate a two dimensional integral. We can approximate this

integral with a so-called Riemann sum, namely

AF =

∫

R2

d2xχF (~x) ≈
∑

i

χF (~xi)Ai .

where ~xi are points in the plane, each one surrounded by a surface Ai.

One would think to use a regular distribution of the points ~xi, but this is not needed. We

can use a completely random distribution

Montecarlo Methods – p. 12

The Monte-Carlo method

the Hit and Miss method

In practice, one should include the surface F p.-ex. within a rectangle R.

The area AR of the rectangle is known and if we consder N points inside R, their

average area is Ai = AR/N .

Therefore for F ⊂ R the area can be approximated as

AF =

∫

R

d2xχF (~x) ≈ AR

N

N
∑

i=1

χF (~xi) .

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

y

Exercise (Estimate π with the Hit and Miss Method) :

Consider N = 100 000 couples (xi, yi) with xi, yi,∈
[0, 1). Now you should count the number of cases for

which x2
i + y2i < 1 and estimate the probabilty of having

the point (xi, yi) inside the circle see the Figure. Estimate

the error for such evaluation and compare it with π/4.

Please employ np.random.random_sample() .

Random generator within [0 : 1) with uniform distribution.

Montecarlo Methods – p. 13

Hit and Miss method

pi and the Monte-Carlo Method

import numpy as np # importer le module comme "np"

N=1000 # number of points points

cnt = 0

var = 0

for i in range(0,N):

x = np.random.random_sample() # generate the couple (x,y)

y = np.random.random_sample()

if x*x + y*y < 1: # Is the couple within the circle ?

cnt += 1 # If yes count them

var += 1**2

moy = cnt/float(N) # the average

var= var/float(N) -moy*moy # the variance

ecart = np.sqrt(var/N) # standard deviation of the average

print "compte =", moy, "+/-", ecart

print "pi/4 =", np.pi/4

print "(error =", np.abs(moy-np.pi/4), ")"

Montecarlo Methods – p. 14

Hit and Miss method : Function

The Hit and Miss Method for a function f(x)

We want to estimate A =

∫ b

a
f(x)dx

Aestimate =
Na

N
fmax(b− a)

1. N points uniformely chosen within the square

2. Na : number of points that “fall”” under f(x)

3. The probabilty to fall below the curve is pa ≃ Na

N

The following is true

lim
N→∞

Aestimate = A lim
N→∞

pa = p

but the convergence is very slow , you need a lot of points N

Montecarlo Methods – p. 15

Hit and Miss Method

The blind archer

An archer is throwing uniformly and randomly arrows in points (xi, yi) on the plane

1. if yi ≤ f(xi) → YES (0)

2. if yi > f(xi) → NO (1)

3. This is a Bernoulli process with probability p

4. We perform N times the random experiment to

throw arrows on the plane

(x1, y1), (x2, y2), (x3, y3) . . . (xN , yN)

and Na times we will be below the curve f(x).

5. Na is random and follows a binomial distribution

(a) average pN

(b) standard deviation
√

Np(1− p)

Montecarlo Methods – p. 16

Hit and Miss Method

The blind archer

The estimate of the area below the function f(x) is also a random variable

Aestimate =
Na

N
fmax(b− a)

1. Average 〈Aestimate〉 = pfmax(b− a)

2. Standard Deviation σA =

√
Np(1−p)

N
fmax(b− a) =

√

p(1−p)
N

fmax(b− a)

The error is decreasing as 1/
√
N with the number of trials N , as expected from the

Central Limit Theorem and the Aestimate will be distributed for different realizations of

the random sequence of the points as a Gaussian distribution with average Āestimate

and standard deviation σA.

Blind Archer → Random generator

Montecarlo Methods – p. 17

Hit and Miss method

Integration of a function with Hit and Miss Method

import numpy as np # import the library as "np"

def HM(f, a, b, fmax):

#

somme = 0.

i = 0

while i<HM.N:

x = np.random.random_sample() # the blind archer

y = np.random.random_sample() # the blind archer

xi = (b-a)*x+a # random number in [a,b]

fi = f(xi) # value of the function in xi

if fi > fmax*y :

somme += 1

i += 1

somme /= float(HM.N) # probability p

area = somme*fmax*(b-a) # average area

HM.erreur = np.sqrt(somme*(1-somme)/float(HM.N))*fmax*(b-a)

#standard deviation on the average

return area

Montecarlo Methods – p. 18

Hit and Miss method

def f1(x): # the function

return x**4

we can estimate the area over many realizations N

for N in [1e2, 1e3, 1e4]:

print "N =", N

HM.N = N

print ("I1 = ", HM(f1, 0, 1,1), "+/-", HM.erreur, "(exact : 1/5)")

Idle HitandMiss.py

Montecarlo Methods – p. 19

Uniform Sampling

We consider again the integral

I =

∫ b

a
f(x)dx

but we rewrite it as

I =

∫ b

a
G(x)p(x)dx = 〈G〉p with p(x) =

1

(b− a)
G(x) = (b− a)f(x)

where p(x) is the uniform probability distribution function on the interval [a, b], please

notice that
∫ b
a p(x)dx = 1

As already previously explained I = 〈G〉p is the average of the function G(x) with

respect to the random variable x uniformly distributed in [a, b] :

x = a+ (b− a) ∗ r r ∈ [0, 1]

r can be generated with np.random.random_sample() in [0, 1].

Montecarlo Methods – p. 20

Uniform Sampling

Pratical Implementation

We employ the random generator and we produce a sequence of N random numbers

(x1, x2, . . . , xN) from these we can compute the mean the variance of G

〈G〉 = 1

N

N
∑

i=1

G(xi)

σ2
N (G) =

1

N

N
∑

i=1

G2(xi)−
(

1

N

N
∑

i=1

G(xi)

)2

and from these the integral with the erron on the average

I = 〈G〉 ± σN (G)√
N

in terms of the original function f this becomes finally

I = (b− a)

[

〈f〉 ± σN (f)√
N

]

the error on the integral decreases as 1/
√
N

Montecarlo Methods – p. 21

Generalization to higher dimensions

The uniform sampling Montecarlo method can be easily generalized to estimate integrals

in dimension larger then one.

In general, if R is a region in d dimensions with a volume VR, l’integral is given by

∫

R

ddx f(~x) ≈ VR

N

N
∑

i=1

f(~xi) .

where ~xi = (x
(1)
i , x

(2)
i , . . . , x

(d)
i) ∈ R is a random vector, where each component is

uniformly distributed.

In two dimensons (d = 2) the region R = [a, b]x[c, d] is a rectangle with « volume »

VR = (b− a)× (d− c). Therefor ein 2d one has

b
∫

a

d
∫

c

dx dy f(x, y) ≈ (b− a)× (d− c)

N

N
∑

i=1

f(xi, yi) ,

where (xi, yi) are random points uniformly distributed in R.

Montecarlo Methods – p. 22

Comparison Monte Carlo and deterministc methods

The error for the MC method for any dimension remains ∝ 1√
N

Instead for the deterministic methods (quadrature) the error increases with the

dimension d.

For the method of the median point the error was growing as 1/N2/d, therefofre the

Monte Carlo method becomes more efficient for

1

2
>

2

d
,

when

d > 4

For the Simpson method the MC method becomes more efficient for

1

2
>

4

d
,

when

d > 8

and for the simple approximation, already for d > 2.

Montecarlo Methods – p. 23

Method of the median point for 2 dimensions

We would liek to integrate the two dimensional function f(x, y) over the rectangle

R = [a, b]× [c, d] with the method of the median point. As a first step we will divide the

interval [a, b] in N equidistant sub-intervals and [c, d] in M equidistant sub-intervals,

each of length

∆x =
b− a

N
∆y =

d− c

M

and with extrema
ai := a+ i∆x , bi := a+ (i+ 1)∆x cj := c+ j∆y , dj := c+ (j + 1)∆x

for i = 0, . . . , N − 1 et j = 0.M − 1. Obviously„ a0 = a, bN−1 = b and ai+1 = bi ;

c0 = c and dM−1 = d.

Montecarlo Methods – p. 24

Method of the median point for 2 dimensions

The method of the median point in 2d is given by :

b
∫

a

dx

d
∫

c

dy f(x, y) ≈ ∆x ×∆y

N−1
∑

i=0

M−1
∑

j=0

f(x∗
i , y

∗
j) =: F 2d

2 (N,M) .

where x∗
i = a+

(

i+ 1
2

)

∆x and y∗j = c+
(

j + 1
2

)

∆y

For the SImpon method, the expression in 2d is really complicated, see

http ://mathfaculty.fullerton.edu/mathews/n2003/SimpsonsRule2DMod.html

Exercise : Please estimate the following integral with the method of the median point and

with the Monte Carlo method :

I2d =

∫ 5

3
dx

∫ 9

2
dy(x2 + 10y)

Montecarlo Methods – p. 25

Method of the median point for 2 dimensions

I2d =

∫ 5

3
dx

∫ 9

2
dy(x2 + 10y) =

∫ 9

2
dy

[

x3

3
+ 10xy

]x=5

x=3

=

=

∫ 9

2
dy

98

3
+ 20y =

[

98

3
y + 10y2

]y=9

y=2

=
686

3
+ 770 ≃ 998.666

Montecarlo Methods – p. 26

Summary

In summary the Monte Carlo method with uniform sampling is :

1. a very simple method

2. that converges for any dimension

3. but the method is not very efficient, because the points xi [or (xi, yi), . . .] are

not selected with regards to their weight (that is, their “importance”...) in the

integral !

We need a better sampling !

Montecarlo Methods – p. 27

	The course
	Brief History
	Program of the Course
	large Integration of a functon in 1d
	large Method of the median point
	large Simpson Method
	large Equidistant values
	large Integration errors
	large Higher dimensions
	large Higher dimensions
	large How to estimate the area of a surface
	large The Monte-Carlo method
	large Hit and Miss method
	large Hit and Miss method: Function
	large Hit and Miss Method
	large Hit and Miss Method
	large Hit and Miss method
	large Hit and Miss method
	large Uniform Sampling
	large Uniform Sampling
	large Generalization to higher dimensions
	small Comparison Monte Carlo and deterministc methods
	
ormalsize Method of the median point for 2 dimensions
	
ormalsize Method of the median point for 2 dimensions
	
ormalsize Method of the median point for 2 dimensions
	
ormalsize Summary

