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Neurons in Brief

Cells of the nervous system, called neurons, are specialized in transporting and

elaborating "messages" (information).

These functions are performed via the transmission of electric signals, associated to

ionic currents, through the membrane of the neuronal cells

The human brain contains 100 billions neurons

One mm3 of cerebral cortex contains 100.000 neurons .

Neurons can have different forms and dimensions: the smallest have diameters of

4 µm, while the largest can have axons of 1 or 2 meters
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Neuron Morphology

Despite their enourmous variety, neurons have some common morphological aspect:

The soma is a compact almost sperical structure (diamter ≃ 70 µm) it is the unity

deputed to information elaboration (CPU )

The dendrites collect information from other neurons and bring it to the soma, they

are ramified nearby the cell body (lenght up to 1 mm) (Input )

The axons bring information to other neurons, normally there is only 1 axon for

cell, they can be as long as 1 meter (Output )

The Synapses are the junctions among two neurons. these are the structures

transmitting information from one nervous cell to the other. There are two types of

synapses: chemical and electrical (gap junction), the most common among the

vertebrates is the chemical one. The synapses can be inhibitory as well as

excitatory.
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Neuronal Signals

The membrane potential Vm represents the voltage difference

between internal and external part of the neuronal cell, at rest

(without any stimulation) Vm ≃ -60mV / -75 mV . The neuron

is in a dynamical equilibrium

The neuronal signal represents the temporal and spatial

variation of Vm. The Action Potentials (AP) are voltage

pulses emitted during the neuronal dynamics: they have a

quite standard shape for pyramidal neurons

The AP is generated each time a stimulus (depolarizing current) leads Vm above a

certain threshold Θ ∼ −55 mV ;

The AP has duration of 1-2 ms and amplitude of 100-120 mV ; in the descending

phase the pulse, before returnig to the rest state, passes through an

iperpolarization stage, of ∼ 10 ms (refractory period)

The AP travels along the axon and it is transmitted to the other neurons,

representing the elementary unit for neuronal signal transmission
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Leaky integrate-and-fire model

Linear integration combined with a reset mechanism + formal spike event

Equation for the membrane potential v , with threshold Θ and reset R :

τ v̇ = −(v − vr) + I v(t) = v(0)e−t/τ + (I + vr)(1− e−t/τ )

If I + vr > Θ Repetitive Firing (Oscillator)

If I + vr < Θ Silent Neuron (Fixed point)
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Leaky integrate-and-fire model

Periodic Behaviour

If I + vr > Θ Repetitive Firing (Oscillator)

At t = 0 the neuron has been resetted to V (0) = vr

After one period t = T the neuron is at threshold V (T ) = Θ

Since the solution is v(t) = v(0)e−t/τ + (I + vr)(1− e−t/τ ) the period T is given by

T = τ ln
I

Θ− vr − I

In networks: at the threshold a pulse is sent to the other neurons
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Pulse coupled network

A system of N identical all to all pulse-coupled neurons:

v̇j = I − vj + g
1

N

N
∑

i=1,( 6=j)

∞
∑

k=1

P (t− t
(k)
i ) , j = 1, . . . , N

More formally we can rewrite the dynamics as

v̇j = I − vj + gE(t), j = 1, . . . , N

the field E(t) is due to the (linear) super-position of all the past pulses.

α-function

If we choose the pulse shape given by P (t) = α2t exp(−αt), we can verify that it

satisfies the following ODE :

P̈ (t) + 2αṖ (t) + α2P (t) = 0

Boundary condition P (0) = 0

the effect of a pulse emitted at time t = 0 is Ṗ (0) = α2
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Pulse coupled network

The field evolution (in between consecutive spikes) is given by

Ë(t) + 2αĖ(t) + α2E(t) = 0

the effect of a pulse emitted at time t0 is

Ė(t+0 ) = Ė(t−0 ) + α2/N

N is the normalization constant since each neurons receives N spikes, as in the

Kuramoto model , it allow the field E to be an extensive quantity

Therefore we have N ODEs for the membrane potentials vj and 2 ODEs for the field E,

for a total of N+2 ODEs to integrate numerically

Abbott - van Vreeswiijk, Physical Review E (1993)
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Event-driven map(I)

Let us introduce

Q =
αE + Ė

N

Therefore I can rewrite the 2 ODEs for the field E as

Ė = −αE +NQ

Q̇ = −αQ

If we integrate the field equations between successive spike emissions of any neuron,

we can rewrite in an exact way the time evolution between successive spike emissions

This corresponds to perform a Poincaré section and to write a Poincaré map, whenever

a neuron reach threshold !!!
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Event-driven map(II)

The set of N + 2 continuous ODEs can be reduced to a time discrete event driven map

By integrating the field equations between successive pulses, one can rewrite the

evolution of the field E(t) as a discrete time map:

E(n+ 1) = E(n)e−ατ(n) +NQ(n)τ(n)e−ατ(n)

Q(n+ 1) = Q(n)e−ατ(n) +
α2

N2

where τ(n) is the interspike time interval (ISI) and Q := (αE + Ė)/N .

For the LIF model also the differential equations for the membrane potentials can be

exactly integrated

vi(n+ 1) = [vi(n)− a]e−τ(n) + a+ gF (n) = [vi(n)− vq(n)]e
−τ(n) + 1 i = 1, . . . , N

with
τ(n) = ln

[

vq(n)− a

1− gF (n)− a

]

q is the neuron next to threshold

where F (n) = F [E(n), Q(n), τ(n)]
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Event-driven map(III)

In a networks of identical neurons the order of the potentials vi is preserved, therefore it

is convenient :

to order the variables vi;

to introduce a comoving frame j(n) = i− n Mod N ;

in this framework the label of the closest-to-threshold neuron is always 1 and that

of the firing neuron is N .

The dynamics of the membrane potentials for the LIF model becomes simply:

vj−1(n+ 1) = [vj(n)− v1(n)]e
−τ(n) + 1 j = 1, . . . , N − 1 ,

with the boundary condition vN = 0 and τ(n) = ln
[

v1(n)−a
1−gF (n)−a

]

.

A network of N identical neurons is described by N + 1 equations

Zillmer et al. Physical Review E (2006)
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Fully coupled network
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Only regular solutions for fully coupled networks:

the membrane potentials v is periodic or

quasi-periodic

the field E is constant or periodic

van Vreeswiijk, Physical Review E 1996

Depending on the shape of the pulse (value of α) new collective solutions emerge:

Excitatory Coupling - g > 0

Low α – Splay State

Larger α – Partially Synchronized State

α → ∞ – Fully Synchronized State

Inhibitory Coupling - g < 0

Low α – Fully Synchronized State

Larger α – Several Synchronized Clusters

α → ∞ – Splay State
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Splay States

These states are collective modes emerging in networks of fully coupled nonlinear

oscillators.

all the oscillations have the same wave-form X ;

their phases are "splayed" apart over the unit circle

The state xk of the single oscillator can be written as

xk(t) = X(t+ kT/N) = Acos(ωt+ 2πk/N) ; ω = 2π/T ; k = 1, . . . , N

N = number of oscillators

T = period of the collective oscillation

X = common wave form

For pulse coupled neuronal networks the splay state corresponds to the N neurons firing

one after the other at regular intervals T/N – Asynchronous State
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Splay States

Splay states have been numerically and theoretically studied in

Josephson junctions array (Strogatz-Mirollo, PRE , 1993)

globally coupled Ginzburg-Landau equations (Hakim-Rappel, PRE, 1992)

globally coupled laser model (Rappel, PRE, 1994)

fully pulse-coupled neuronal networks (Abbott-van Vreesvijk, PRE, 1993)

Splay states have been observed experimentally in

multimode laser systems (Wiesenfeld et al., PRL, 1990)

electronic circuits (Ashwin et al., Nonlinearity, 1990)

Nowdays Relevance for Neural Networks

LIF + Dynamic Synapses - Plasticity (Bressloff, PRE, 1999)

More realistic neuronal models (Brunel-Hansel, Neural Comp., 2006)
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Splay State – LIF

Splay States are collective solutions emerging in Homogeneous Networks of N neurons

the dynamics of each neuron is periodic – the field E = 1/T is constant

the interspike time interval (ISI) of each neuron is T

the ISI of the network is T/N - constant firing rate

the dynamics of the network is Asynchronous
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Splay States for Drosophila Flight

Insect Asynchronous Flight is controlled by motoneurons connected by gap junctions in

a Central Pattern Generator firing as in a splay state (2022)
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Splay state - LIF

In this framework, the periodic splay state reduces to the following fixed point:

τ(n) ≡ T

N

E(n) ≡ Ẽ , Q(n) ≡ Q̃

x̃j−1 = x̃je
−T/N + 1− x̃1e

−T/N

where T is the time between two consecutive spike emissions of the same neuron.

A simple calculation yields,

Q̃ =
α2

N2

(

1− e−αT/N
)−1

, Ẽ = TQ̃
(

eαT/N − 1
)−1

.

and the period at the leading order (N ≫ 1 ) is given by

T = ln

[

aT + g

(a− 1)T + g

]
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Stability of the splay state

In the limit of vanishing coupling g ≡ 0 the Floquet (multipliers) spectrum is

composed of two parts:

µk = exp(iϕk), where ϕk = 2πk
N

, k = 1, . . . , N − 1

µN = µN+1 = exp(−αT/N) .

The last two exponents concern the dynamics of the coupling field E(t), whose

decay is ruled by the time scale α−1

As soon as the coupling is present the Floquet

multipliers take the general form

µk = eiϕkeT (λk+iωk)/N

ϕk = 2πk
N

, k = 1, . . . , N − 1

µN = eT (λN+iωN )/N

µN+1 = eT (λN+1+iωN+1)/N

where, λk and ωk are the real and imaginary

parts of the Floquet exponents. -1.0 -0.5 0.0 0.5 1.0
Re{µκ}
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Analogy with extended systems

The “phase” ϕk = 2πk
N

plays the same role as the wavenumber for the stability analysis

of spatially extended systems: the Floquet exponent λk characterizes the stability of the

k−th mode

If at least one λk > 0 the splay state is unstable

If all the λk < 0 the splay state is stable

If the maximal λk = 0 the state is marginally stable

We can identify two relevant limits for the stability analysis:

the modes with ϕk ∼ 0 mod(2π) corresponding to ||µk − 1|| ∼ N−1

Long Wavelengths (LWs)

the modes with finite ϕk corresponding to ||µk − 1|| ∼ O(1)

Short Wavelengths (SWs)

For the LIF model the implicit expression of the Floquet spectrum is

A(eT − 1)µN−1
k = −

(

A(eT − 1) + eτ
) eτ−T − µN−1

k

1− µkeτ
+ eτ

1− µN−1
k

1− µk

where A = A(τ, x̄1, Ē, Ē)
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Infinite Network – LIF

Post-synaptic potentials with finite pulse-width 1/α and large network sizes (N )

N → ∞ Limit

The instabilities of the LW-modes determine the stability domain of the splay state,

this corresponds to the Abbott-van Vreeswijk mean field analysis (PRE 1993)

The spectrum associated to the SW-modes is fully degenerate

ωk ≡ 0 λk ≡ 0

The splay state is always unstable for

inhibitory coupling

For excitatory coupling there is a criti-

cal line in the (g, α)-plane dividing un-

stable from marginally stable regions
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Finite Network – LIF

In finite networks,

Splay state are strictly stable;

the maximum Floquet exponent

approaches zero from below as 1/N2
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A perturbative expansion O(1/N2) of the

Floquet matrix is sufficient to well reproduce

the Floquet spectrum
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Partial Synchronization
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Splay 
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Partial Synchronization is a collective dynamics emerging in Excitatory Homogeneous

Networks for sufficiently narrow pulses

the dynamics of each neuron is quasi periodic - two frequencies

the firing rate of the network and the field E(t) are periodic

the quasi-periodic motions of the single neurons are arranged

(quasi-synchronized) in such a way to give rise to a collective periodic field E(t)

van Vreeswiijk, PRE (1996) - Mohanty, Politi EPL (2006)

CYU 09/03/21 – p. 23



Quasi Periodic Motion
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The dynamics of each neuron is quasiperiodic, this can be shown by reporting the

Interspike Interval (ISI)of a single neuron Tm = tm − tm−N versus the previous one

Tm−N where {tm} is the sequence of the firing times.

The map Tm = F (Tm−N ) represents a Poincaré section of the time evolution of the

system, therefore a quasiperiodic motion is represented by a closed curve and T is

periodic
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Periodic Mean-Field

0 2 4 6

time

E(t)
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Small α  - Splay State

Large  α -- Partial Synchronizaton

The ratio between the period of the field E(t) and the average ISI of the single neurons

is irrational

This peculiar collective behaviour has been recently discovered by Rosenblum and

Pikovsky PRL (2007) in a system of nonlinearly coupled oscillators and studied also

in the conntext of diluted neural networks by Olmi, Livi, Politi, AT Physical

Review E (2010)
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Splay vs Partial Synchronization

The Splay State is Asynchronous

Partially Synchronized exhibit collective dynamics
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Bifurcation

The bifurcation is Hopf supercritical leading

to the emergence of oscillatory state from a

stationary fixed point
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Collective Dynamics in the Brain

Rhythmic coherent dynamical behaviours have been widely identified in different

neuronal populations in the mammalian brain [G. Buszaki - Rhythms of the Brain]

Collective oscillations are commonly associated with the inhibitory role of

interneurons

Pure excitatory interactions are believed to lead to abnormal synchronization of the

neural population associated with epileptic seizures in the cerebral cortex

However, coherent activity patterns have

been observed also in “in vivo” measure-

ments of the developing rodent neocortex

and hyppocampus for a short period after

birth, despite the fact that at this early stage

the nature of the involved synapses is essen-

tially excitatory [C. Allene et al., The Journal

of Neuroscience (2008)]

Calcium fluorescence traces

two-photon laser microscopy
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Chimera

La Chimera d’Arezzo

Etruscan Art

In Greek mythology, Chimera was a monstrous fire-breathing female creature of Lycia in

Asia Minor, composed of the parts of multiple animals: upon the body of a male lion with

a tail that terminated in a snake’s head, the head of a goat arose on her back at the

center of her spine (Wikipedia)
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Chimera in Oscillator Population

Let us consider two oscillator populations {θa} and {θb} made of identical oscillators,

where each oscillator is coupled to equally to all the others in its group, and less strongly

to those of the other group

dθai
dt

= ω +
µ

N

N
∑

j=1

sin(θaj − θai − α) +
ν

N

N
∑

j=1

sin(θbj − θai − α) µ > ν

Simulations of the 2 populations reveals two different dynamical behaviours

Synchronized state r = 1

A Chimera State: one population is synchronized and the other not

The oscillators are identical and symmetrically coupled : the

Chimera State emerges from a spontaneous symmetry breaking

Abrams, Mirollo, Strogatz, Wiley,

Phys. Rev. Lett 101 (2008) 084103

CYU 09/03/21 – p. 30



Chimera States

A = µ− ν β =
π

2
− ν

By increasing A one observes:

the chimera stays stationary

the stationary state looses stability and the chimera starts to breathe

at a critical Ac the breathing period become infinite,

beyond Ac the chimera disappears and the synchronized state becomes a global

attractor

CYU 09/03/21 – p. 31



Quasiperiodic Chimeras

Order parameter for the non-synchronized family of oscillators

X2 + iY2 = r2e
iΘ2 =

1

N

N
∑

j=1

eiθj

A. Pikovsky and M. Rosenblum, Phys. Rev. Lett 101 (2008) 264103

Collective chaos can be observed in more complex models ...
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