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Foreword and Summary

Populations of biological oscillators can spontaneously synchronize to

a common frequency, despite a distribution of natural frequencies

among the population

swarms of fireflies flash in synchrony;

crickets chirp in unison;

groups of women whose menstrual cycles synchronize.

Summary

The Kuramoto Model

The Millennium Bridge

Collective Behaviour of Limit-Cycle Oscillators
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Kuramoto Model

N coupled phase oscillators with different frequencies ωk

Frequencies distributed according to g(ω)

dϕk

dt
= ωk +

k

N

N
∑

j=1

sin(ϕj − ϕk)

The coupling is rescaled by N to avoid divergence of the forcing term in the

thermodynamic limit (N → ∞)
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Order Parameter

Mean Field Variable Amplitude R and Phase Θ

Z = R cosΘ + iR sinΘ = ReiΘ =
1

N

N
∑

k=1

eiϕk

R cosΘ =
1

N

N
∑

k=1

cos(ϕk) R sinΘ =
1

N

N
∑

k=1

sin(ϕk)

Z is a Coherence Indicator

if ϕk = ϕj ∀j, k System Fully Synchronized R ≡ 1

if ϕk are equally distributed on the circle

Desynchronized System R ≃ 1√
N

If some oscillator are frequency locked R 6= 0

The model can be rewritten as

dϕk

dt
= ωk + kR sin(Θ− ϕk)

each oscillator is forced by the Self-Consistent Mean Field
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Synchronization Transition

By increasing the coupling k a coherent be-

haviour emerges in the system characterized

by a non zero order parameter R

This effect can be explained in terms of self-consistency: a non zero R forces some

oscillator to synchronize, in turn these oscillators form a coherent group which generate

a finite R

To estimate kc analytically, we make the following hypothesis:

the frequency distribution is peaked around ω0

g(ω) is an even function g(ω − ω0) = g(−ω + ω0)

On average the mean field will oscillate with the peak frequency and the amplitude will

be almost constant, therefore we can assume

Θ = ω0t R = const.
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Synchronization Transition

By setting ψj = ϕj − ω0t and Ωj = ωj − ω0, the equation for each oscillator is again the

Adler equation

dψj

dt
= Ωj − kR sin(ψj)

The synchronized state, where ϕj is locked to Θ corresponds to
dψj

dt
= 0 therefore

sinψj =
Ωj

kR
for Ωj < kR

The asynchronous regime is found for Ωj > kR

Now we impose the self-consistency by estimating the order parameter in the

synchronized phase found before

Now a few integrals . . .
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Synchronization Transition

sinψ =
Ω

kR
dΩ = kR cosψdψ

R =

∣
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eiψk

∣
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∣

∣

∣

=
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∣

∫ +∞

−∞

dΩ g(Ω) eiψ(Ω)

∣

∣

∣

∣

=

∣
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∫ +∞

−∞

dΩ g(Ω) [cos(ψ(Ω)) + i sin(ψ(Ω))]

∣

∣

∣

∣

Since G(Ω) is even we remain with the real part only, since g is peaked we can limit to

consider the second order Taylor expansion around ω0, then

R =

∫

dΩ [g(ω0)−
g”(ω0)Ω2

2
] cos(ψ(Ω)) dΩ = kR cosψdψ

1 = k

∫ π/2

−π/2
dψ cos2 ψ[g(ω0)−

g”(ω0)k2R2

2
sin2 ψ] =

kπ

2

[

g(ω0)−
g”(ω0)k2R2

8

]
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Synchronization Transition

Therefore

R =

√

8[kπg(ω0)− 2]

g”(ω0)k3
kc =

2

πg(ω0)

We observe a continuous transition from the incoherent to the coherent regime at kc, In

proximity of the transition the order parameter increases as

R ∝
√

k − kc β = 1/2
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Kuramoto Summary

The Kuramoto model for a population of fully coupled oscillators with different natural

frequency exhibit three different collective behaviours :

Incoherence: all the oscillators run at their natural frequencies (k < kc and R ∼ 0)

Partial Locking: some of the oscillators are locked, while the others drifts at

different frequencies (k > kc and R 6= 0)

Complete Locking : all the oscillators are locked , the phase difference between

any two oscillators is constant in time (k >> kc and R ∼ 1)

All these states are characterized by a constant R value, no time evolution for R, for

sufficiently large number of oscillators N (eventually N → ∞)

The single oscillator has 1 degree of freedom, even with external forcing cannot display

chaotic behaviour (at least 2 degrees of freedom + forcing)
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Millennium Bridge

Crowd Synchrony on the Millennium Bridge

Strogatz, Abrams, Mc Robie, Eckhardt, Ott Nature, 438 (2005) 43

When the London Millennium Bridge opened on June 10, 2000, soon after the crowd

streamed on the bridge, the bridge begins to oscillate from side to side (to wobble):

many pedestrians synchronize spontaneously their steps with the bridge’s vibrations,

amplyfying them. The synchronized steps of the people caused such heavy oscillations

that the bridge had to close down until dampers were put in 2 years later.

Collective synchronization was responsible for the wobbling of the bridge
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Millennium Bridge

The experiment by Arup

Groups of people of increasing number walk together along the bridge until it begins to

wobble, there is a critical number of people
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Millennium Bridge

The Model

The left/rigth walking cycle of each pedestrian

is seen as an oscillator θi with his own

frequency ωi forced by the bridge oscillations;

The lateral motion X of the bridge is

schematized as a weakly damped harmonic

oscillator driven by the collective motion of the

pedestrians.

M
d2X

dt2
+ B

dX

dt
+KX = G

N
∑

i=1

sin θi where X = A sinψ

where M , B and K are the mass, the damping and the stifness associated to the lateral

motion of the bridge and G is the maximal force exterted by a pedestrian

dθi

dt
= ωi + CA sin(ψ − θi + α)

where C is the sensitivity of the pedestrian to bridge vibration, to be fitted
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Millennium Bridge

The Simulation Result

The simulations have been performed by

employing realistic values for the parameters,

apart C which has been fitted to the

experimental data by Arup

The simulation start with bridge at rest and

N = 50 pedestrians on the bridge

The number of pedestians is increased by 10

at each step

Bernard Feldman, a writer for Physics Today, however, believes Strogatz is wrong: since

the frequency of the lateral oscillation of bridges is around 0.5 Hz whereas the average

frequency of walking is 1.0 Hz (2 steps per second). Therefore it is unlikely that

synchronized footsteps could have intensified the wobbling of the Millennium Bridge.
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Limit-Cycle Oscillator

In proximity of a Hopf bifurcation from a fixed point

solution to a periodic limit-cycle oscillation all the non-

linear dynamical systems in 2d can be rewritten in a

general Normal Form

dz

dt
= iω0z + z(1− |z|2) z = x+ iy

This is a weakly nonlinear oscillator characterized

by an amplitude and a phase z(t) = A(t)eiθ where

the oscillator frequency is independent from the am-

plitude (Isochronous Oscillator)

The Stuart-Landau equation with an external forcing can become chaotic at variance

with the phase oscillator, therefore we expect a much richer behaviour for a population of

these oscillators
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Population of amplitude oscillators

A model of linearly coupled amplitude oscillators is the following

dzj

dt
= iωjzj + zj(1− |zj |2) +

K

N

N
∑

i=1

(zi − zj) = iωjzj + zj(1− |zj |2)+K(z̄− zj)

where K is the coupling strength and

z̄ = Reiθ =
1

N

N
∑

i=1

zi

is a macroscopic order parameter (mean field variable) which gives a measure of the

degree of synchronization within the system.

The frequencies ωj are randomly chosen from a distribution g(ω) of zero mean and

width ∆

PC Matthews and SH Strogatz, Physical Review Letters 65 (1990) 1701
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Steady Collective Behaviours

Steady Collective Solutions

Amplitude Death: for K > 1 and ∆ large

zj = 0 is a stable fixed point

Locking: each oscillator moves along a circle

of radius
√
1−K with the same frequency –

R 6= 0

Incoherence: each oscillator moves along a

circle of radiun
√
1−K with his own frequency

– R = 0 in the thermodynamic limit
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Unsteady Macroscopic Behaviours

Hopf oscillations: for K > 1 the locked state

loses stability via a hop bifurcation giving rise

to small oscillations around the locked state –

R(t) is periodic

Large oscillations: For K < 1 the locked state

undergoes a saddle-node bifurcation to large

oscillations – R(t) is periodic

Quasiperiodicity: the large oscillations lose

stability via successive Hopf bifurcations

adding a second and a third frequency – R(t)

moves on Torus T 2 and T 3

Chaos: the single oscillators as well as R(t)

behaves in an erratic manner. Moreover there

is a SIC for the collective dynamics and a

broadband spectrum
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Collective Chaos

Routes to Chaos

Two different Route to chaos are observable for the

macroscopic dynamics

Period Doubling: for fixed K = 1.05 by

increasing ∆ the period of the oscillations

show a period-doubling cascade ending up in a

low dimensional chaotic attractor

Ruelle-Takens route to chaos: for fixed

K = 0.8 by increasing ∆ the oscillatory

solution undergoes hopf bifurcations to a T 2

and then to a T 3 Torus and then to chaos

Collective Chaos has been observed also for identical

non isochronous oscillators

Hakim & Rappel (1992) Nakagawa & Kuramoto

(1993)
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