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Foreword

Everyone likes to synchronize

Tout le monde aime synchroniser

Les Lucioles

Danseurs et Danseuses

et aussi . . . les oscillateurs
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Synchronization of
Two Clocks

Christiaan Huygens reported the first observation of synchronization:

"... It is quite worth noting that when we suspended two clocks

so constructed from two hooks imbedded in the same wooden

beam, the motions of each pendulum in opposite swings were

so much in agreement that they never receded the least bit

from each other and the sound of each was always heard

simultaneously. Further, if this agreement was disturbed by

some interference, it reestablished itself in a short time. For a

long time I was amazed at this unexpected result, but after a

careful examination finally found that the cause of this is due to

the motion of the beam, even though this is hardly perceptible."

Antiphase Synchronization

This problem is still nowdays studied:

Bennett, Schatz, Rockwood, Wiesenfeld,

"Huygens Clocks", Proc. R. Soc. Lond. A, vol. 458 (2002), pp. 563 - 579.
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Summary

Periodic Oscillators

Synchronization by external force

Mutual Synchronization

Synchronization by common noise

Synchronization of ensembles of coupled oscillators

Chaotic Oscillators

Complete Synchronization

Phase Synchronization

Generalized Synchronization
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Phase Model I
Many physical, chemical, biological systems exhibit Rhytmic Oscillations

A.T Winfree, The geometry of biological time (2001)

G. Buzsaki, Rhythms of the Brain (2006)

A dissipative autonomous dynamical system exhibiting a stable periodic orbit γ is called

an Oscillator, dx
dt

= f(x) we will study synchronization properties of these systems.

The motion along the orbit γ can be characterized by the time t from the last crossing tn

of a certain point x0 on the orbit, and a phase can be introduced as

θ =
t− tn

tn+1 − tn
2π 0 ≤ θ ≤ 2π

the dynamics on the orbit can now be rewritten simply as

θ̇ = ω0

where ω0 is the natural frequency of the oscillation.

Information on the amplitude oscillation are lost, but not on its phase.

Cergy 16/02/21 – p. 5



Phase Model II
θ̇ = ω0 λ = 0 (Phase is Marginally Stable)

Ȧ = −η(A−A0) λ = −η (Amplitude is Stable)

Since the amplitude is stable it is difficult to modify it with small perturbations

The phase is at the edge between stability and instability small perturbations (due

to external forcing or coupling) can induce large modifications of the phase

Thus with a small forcing it is possible to adjust the phase and the frequency of the

oscillations, without altering the amplitude:

this is the essence of the synchronization phenomenon
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Synchronization by
external forcing

Examples:

Radio controlled clocks: low quality clocks can become precise due to adjustment

by a periodic radio signal

Cardiac pacemakers: heart beats are made regular by a sequence of pulses from

an electronic generator

Kuramoto Approach (1984)

If an oscillator θ is forced by a second one ψ, for a small forcing term (e.g ε sinωt) only

the phase is affected:

dθ

dt
= ω0 + εQ(θ, ψ)

dψ

dt
= ω

If ω ∼ ω0, then the phase difference ϕ(t) = θ(t)− ψ(t) evolves slowly in time, therefore

by keeping only slow terms

dϕ

dt
= ∆ω + ε sin(ϕ) ∆ω = ω0 − ω

one gets the Adler equation
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Adler equation

dϕ

dt
= ∆ω + ε sin(ϕ)

∆ω < ε – stable fixed point – Synchronization Region or Arnold Tongue

Frequency entrainment Ω =< θ̇ >= ω

Phase Locking ϕ = θ − ψ = const.

∆ω > ε – periodic orbit

Asynchronous quasi-periodic motion - 2 frequencies - Torus T 2
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Arnold Tongues
1:1 Synchronization

Frequency entrainment

Ω =< θ̇ >= ω

Phase Locking ϕ = θ − ψ = const.

Higher order locking

Frequency entrainment Ω =< θ̇ >= n
m
ω

Phase Locking

mθ = nψ + const. = nωt+ const

Devil staircase – At fixed ε: Horizontal plateaus

at all possible rational frequency ratios, in

between quasi-periodic motions.

The picture is preserved for moderate forcing, at strong forcing chaos can emerge.
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Mutual
Synchronization

Let us consider 2 coupled oscillators, if the interaction is weak we can write

dθ1

dt
= ω1 + εQ1(θ1, θ2) ;

dθ2

dt
= ω2 + εQ2(θ1, θ2)

For ω1 ∼ ω2, the phase difference φ = φ1 − φ2 is evolving slowly, by averaging and

taking only slow terms one obtains once more The Adler equation

dϕ

dt
= ∆ω + ε sin(ϕ)

The coupling among the oscillators can now be attractive or repulsive : In-phase or

Anti-phase Synchronization

For strong ε one can observe oscillation death, this is due to the dissipative effect of

coupling that tend to equalize the two states
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Synchronization by
Noise

dθ1

dt
= ω1 + εη(t) ;

dθ2

dt
= ω2 + εη(t) < η(t) >= 0 < η(t)η(0) >= δ(t)

For quite strong noise two oscillators subjected to the same noise can synchronize,

since the noise induced phase dynamics is stable (λ < 0) and both phases follow the

same pattern induced by noise.

Neuron reliability

Neurons can be considered as oscillators, their synchronization by common noise can

be interpreted as a reliable response of the neuron to the presentation of the same noisy

signal

Hunter et al., J Neurophysiol 80 (3): 1427 (1998)
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Phase of a chaotic oscillator
Rössler Oscillator

ẋ = −y − z

ẏ = x+ 0.15y

ż = 0.4 + z(x− 0.85)

This oscillator is chaotic:

λ1 > 0 λ2 = 0 λ3 < 0

A phase can be introduced as

φ = arctan

(

y(t)

x(t)

)

φ =
t− tn

tn+1 − tn
2π 0 ≤ φ ≤ 2π

Phase corresponds to the zero Lyapunov exponent (time, motion along the orbit)
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Coupled chaotic oscillators

ẋ1,2 = −ω1,2y1,2 − z1,2 + C(x2,1 − x1,2)

ẏ1,2 = ω1,2x+ 0.15y1,2

ż1,2 = 0.2 + z1,2(x− 10)

The two uncoupled oscillator are chaotic for C = 0:

λ1 & λ2 > 0 λ3 = λ4 = 0 λ5 & λ6 < 0

By increasing C we observe a transition form a regime

where the phases rotate with different velocities

ϕ1 − ϕ2 ∼ ∆Ωt

to a regime where they are phase locked

|ϕ1 − ϕ2| < const ∆Ω = 0

The amplitudes remain completely chaotic

Rosenblum et al. Phys. Rev. Lett. 76 (1996) 1804
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Phase synchronization

The transition to phase synchronization oc-

curs when one of the two zero Lyapunov ex-

ponents, associated to the phases, becomes

negative inducing an attraction of the two

phases which then phase lock.

Qualitatively the phase dynamics of chaotic oscillators can be mimicked by an equation

like this
dφ

dt
= ω + F (A)

where the chaotic action of the amplitude can be seen as a small noise source, due to

the weak coupling between phase and amplitude.

Therefore for 2 coupled oscillator we end up once more with the Adler equation plus a

small noise term, due to the coupling with the amplitudes, and results similar to non

chaotic oscillators are expected.
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Phase synchronization

In order to observe phase synchronization one needs a zero Lyapunov exponent λ = 0,

which leaves the phase free, therefore it is impossible in

non autonomous system (i.e. periodically forced)

systems with discrete time (i.e. maps)

Weak phase synchronization

One can have a weak form of phase synchronzations whenever

ϕ1 − ϕ2 ∼ ∆Ωt with < ∆Ω >= 0

but ϕ1 −ϕ2 has a random walk behaviour, on average its value it is zero but ϕ1 −ϕ2 it is

not confined and it can have a so-called diffusive behaviour

This can happen by coupling a chaotic (3d) and a hyper-chaotic (4d) Roessler oscillators
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Complete chaotic
synchronization

Let us consider two coupled identical chaotic systems, (chaotic maps)

xn+1 = f(xn) + ε(f(yn)− f(xn)) yn+1 = f(yn) + ε(f(xn)− f(yn))

for strong enough coupling ε > εcr they can completely synchronize to a common

chaotic state xn = yn
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Transverse Lyapunov
To measure the distance between the two orbits let us introduce vn = xn−yn

2
its

evolution is given by

vn+1 =
(1− 2ε)[f(xn)− f(yn)]

2

For almost synchronized states vn << 1 we can consider the linearization the Taylor

expansion

f(yn) = f(xn)− 2f ′(xn)vn where yn = xn − 2vn

and therefore

vn+1 = (1− 2ε)f ′(xn)vn = (1− 2ε)eλvn = eλ+ln(1−2ε)vn

The vanishing of the transverse Lyapunov λ⊥ = λ+ ln(1− 2ε) tell us the

synchronization threshold

εcr =
1− e−λ

2
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Chaotic lasers
Two coupled chaotic Nd:YAG lasers

Roy et al., Phys. Rev. Lett. 72 (1994) 2009
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