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Chaos in a Faucet

The dynamics is controlled by the Reynolds

number

r =
LU

ν

L size of the open hole of the faucet

U average velocity of the water

ν viscosity of the fluid

r < r1 Laminar Motion (V = const.) – Fixed point

r1 < r < r2 Periodic Oscillations in the velocity

rn < r < rn+1 Irregular motion, Turbulent regime

Which is the mechanism leading from laminar to turbulent regime ?
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The Landau-Hopf scenario

Landau says (1944):

The turbulent behaviour in fluids with high Reynolds numbers is due to the superposition of a

growing number of regular oscillations with different frequencies.

r < r1 v(t) = U — Fixed Point

r1 < r < r2 v(t) = U +A1 sin (ω1t+ φ1) — Limit Cycle

r2 < r < r3 v(t) = U +A1 sin (ω1t+ φ1) + A2 sin (ω2t+ φ2) — Torus T2

. . .

rn < r < rn+1 v(t) = U +
∑

n

k=1 Ak sin (ωkt+ φk) — Torus Tn

ω1, ω2, . . . , ωn are incommensurable frequencies, i.e. they cannot be summed linearly with

integer coefficients to give a zero result.

This scenario was considered valid until seventies, without experimental confirmations, and indeed

it was wrong !

Cergy 17/01/18 – p. 3



The Ruelle-Takens scenario

Ruelle and Takens (1971) however proved that a Torus T3 is structurally unstable and therefore the

Landau-Hopf scenario cannot go beyond a quasiperiodic motion with 2 frequencies.

Def Structurally Stable System

ẋ = Fr(x)

a property of this system is structurally stable is it is valid also for the perturbed system

ẋ = Fr(x) + δFr(x)

where δFr is a very small perturbation of the original system, but it is a generic (non ad hoc)

perturbation.

In theory, it can exist a system Fr exhibiting the Landau-Hopf scenario, but a small modification will

destroy it, apart very special perturbation. This implies that experimentally it will be never observed.

Ruelle-Takens predicted that Chaos can appear already in ODEs with three degrees of freedom
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Population Growth Model

The simplest model for the growth of population of organisms was suggested by Malthus in 1798

and reads as

Ṅ(t) = rN(t) N(t) = N0e
rt

N(t) is the population at time t

r is the reproductive power of each individual

The model is too simple leading to exponential growth, but due to resources’ limitation , above a

critical value K carrying capacity the death rate is higher than birth rate (Ṅ < 0).

Logistic equation by Verhulst

Ṅ(t) = rN(t)

(

1−
K

N

)

Two fixed points

N∗ = 0 Unstable

N∗ = K Stable

The populations always approaches the car-

rying capacity NO CHAOS
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Logistic Map

A continuous time model for populations is not the best choice, since populations grow or decrease

from one generation n to the next n+ 1

xn+1 = rxn(1− xn) = f(xn)

one dimensional non-invertible map → Chaos

the map is well defined for x ∈ [0 : 1] and r ∈ [0 : 4]

Linear Stability Analysis

r < 1 An unique stable fixed point x∗ = 0 (Population Extinction)

1 < r < r1 = 3 Two fixed points x∗ = 0 — Unstable and x∗ = 1− 1
r

— Stable

r1 < r < r2 = 3.448 The two fixed points are unstable, but the sytem exhibits a stable

period-2 orbit

rk < r < rk+1 The two fixed points are unstable, but the sytem exhibits a stable period-2k

orbit
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Period Doubling Transition I

r1 = 3, r2 ≃ 3.449 . . ., r3 ≃ 3.544 . . .

r∞ = lim
n→∞

rn = 3.569945 . . .

The sequence of parameter values Rn for

which one has super-stable periodic orbit of

period 2n is also a series with the same lim-

iting value R∞ = r∞

For r > r∞ → CHAOS

Universality properties of the logistic map (Feigenbaum 1975)

rn−r
n−1

r
n+1−rn

=
Rn−R

n−1

R
n+1−Rn

≃ δ = 4.6692 . . .

∆n

∆
n+1

≃ −α = −2.5029 . . .

∆n is the distance among the two points of the super-stable orbit which are closer to 1/2, the

sign indicates that they lie on opposite sides with respect to 1/2
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Period Doubling Transition II

The Feigenbaum’s costants are the same for any quadratic unimodal map

For generic unimodal maps with non quadratic maximum (behaving like |x− xc|z in

proximity of the maximum) α and δ are again universal constants whose value depend on z

Also ODEs can exhibit the period doubling scenario, with the same constants, this means

that hidden in in the system there is a unimodal quadratic map

This universality has been verified also experimentally in many many contexts, the first

verification was done by Libchaber, Fauve, La-Roche in 1983 in Rayleigh-Benard convention,

and they found δ ≃ 4.4

The Renormalization Group approach can be used to derive the Feigenbaum parameters

analytically

What happens now for r∞ < r < 4 ?

We have chaotic behaviours but not only that . . .
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Inverse Chaotic Cascade

r′0 < r < 4 An unique chaotic

attractor

r′1 < r < r′0 A two band chaotic

attractor — A single band chaotic

attractor is recovered for f2

r′2 < r < r′1 A four band chaotic

attractor — A single band chaotic

attractor is recovered for f4

limn→∞ r′n = r∞

r
′

n−1−r
′

n

r′
n
−r′

n+1

→ δ

The situation is more intricated a period three window is present
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Period Three Window

At r = r∗3 a Period Three Orbit is born

A period doubling cascade is observabel for

orbits of period 3× 2m

The system becomes chaotic and a chaotic

band merging is now observable (3× 2m

bands → 3× 2m−1 bands)

The chaos in three bands is observable

Finally at r = rc3 an unique chaotic band is

observable of size similar to that of the attractor

just before r∗3

There are an infinite number of windows of

arbitrarly high period within the chaotic range

r∞ ≤ r ≤ 4

These windows are dense in the chaotic

range

The probability to choose at random a

value of r in [r∞, 4] and to observe chaos

is not zero
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Sarkovskii Theorem (1964)

Let us consider the following ordering of positive integers

3, 5, 7, . . . , 2× 3, 2× 5, 2× 7, . . . , 22 × 3, 22 × 5, 22 × 7, . . . ,

2n × 3, 2n × 5, 2n × 7, . . . , 2n, . . . , 23, 22, 2, 1

The theorem says that

Given a 1d continous map f(x) of the real line, then if the map admits a periodic orbit of period p ,

then the map admits also all the periodic orbits with period after p in the ordering above.

If the map has an orbit of period p, which is not a power of 2, then it has infinite number of

periodic orbits

If an orbit of period three exists then the system admits periodic orbit of any possible period

For the logistic map, when it admits the stable period three orbit all the other periodic

orbits should exist , but they are all unstable

Li and Yorke (1975) have also shown that the existence of a period three orbit implies

the existence of an uncountable set of orbits which remain aperiodic for ever (they term

this chaos). But this set has zero Lebesgue measure and these orbits are unstable.
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Pomeau-Manneville Scenario 80

Lorenz Model

dX

dt
= σ(Y −X)

dY

dt
= −XZ + rX − Y

dZ

dt
= XY − bZ

σ = 10, b = 8/3

Intermittency phenomena are observables in chemical and fluid systems: long laminar (regular)

behaviours are interrupted by chaotic bursting

In the Lorenz model

For r < rc = 1.66.05 . . . one observe periodic motions

for r > rc bursting events are observable

for r >>> rc irregular oscillations dominate the dynamics
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Pomeau-Manneville Scenario 80

Poincaré Map

y(n+1) = f(y(n)) for x = 0, y > 0

For r < rc two intersections with the bisectrix are present – one stable and one unstable

r = rc the map is tangent to the bisectrix – Tangent Bifurcation

For r > rc a channel is formed where the the orbits stay long periods nearby the bisectrix,

then escape making irregular motion, the it is trapped again

The duration of the laminar periods grows proportionally to 1/
√

(r − rc)

Experimental evidences of intermittency have been reported by Bergé in 1980 for

Rayleigh-Benard convection
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