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Nobel Prize in Physics 2021

The Nobel Prize in Physics 2021 was awarded "for groundbreaking contributions to our

understanding of complex systems" with one half jointly to Syukuro Manabe and Klaus

Hasselmann "for the physical modelling of Earth’s climate, quantifying variability and

reliably predicting global warming" and the other half to Giorgio Parisi "for the discovery

of the interplay of disorder and fluctuations in physical systems from atomic to planetary

scales."

The ceremony took place on 10th December, 2021
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Scientific Motivations

This year’s Nobel Prize in Physics focuses upon the complexity of physical systems, from

the largest scales experienced by humans, such as Earth’s climate, down to the

microscopic structure and dynamics of mysterious and yet commonplace materials, such

as glass . . .

A central emphasis is on the physical reality that the variability in the basic processes,

from climate dynamics to frustrated materials, leads to the emergence of multiple length

and time scales . . .
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What is it a Complex System ?

Two different view of a complex system :

A quite simple system that can give rise to a very complex behaviour : e.g. a

pendulum/ a clock (Dynamical Point of View)

A system made of a large number of interacting elements, so that the collective

behaviour of those elements goes far beyond the simple sum of the individual

behaviours. (Statistical Mechanics Point of View)

schools of fishes

swarm of birds FILM
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A clock

Galileo Gailei was the first who had the idea to exploit

the regularity of pendulum oscillations to realize a clock,

however was the Dutch scientist Christian Huygens to

realize it in 1656.

The first clock had an error less than 1 minute per day,

an incredible good accuracy at the time.

Everyone will safely affirm that the oscillations of a pendulum are regular

(predictable), but as we will see this is completely FALSE

From pendulum to chaos

Deterministic (Newton’s law) 6= Predictable
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The nonlinear pendulum

Planar Pendulum

Mass M

attached to a Pivot O

via a massless and inextensibile wire of length L

2 forces acting on the mass :

gravity Fg = Mg

wire tension T = Mg cos θ

By applying the Newton’s second law (F=m a) it emerges that the system

can be described simply by the angle θ between the wire and the vertical

axis and by the angular velocity ω = dθ/dt.

More at the Blackboard
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The nonlinear pendulum

Along the inextensible wire – Equilibrium T = Mg cos θ = Map

Tangent to the circle – Dynamics −Mg sin θ = ML dθ2

dt2
= Mat

Therefore the equation of motion turns out to be independent of the mass

dθ2

dt2
= −

g

L
sin θ

This is a NONLINEAR second order ordinary differential equation (ODE), difficult to solve.

This can be rewritten as a system of two first order ODEs :

θ̇ = ω ; ω̇ = −
g

L
sin θ

Two first order ODEs → 2 Degrees of Freedom – 2 dimensional Phase Space

Trajectories’ visualization

Approximate simplified equation for small angles
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The linear pendulum

For small oscillations sin θ ≃ θ (x ≃ Lθ) therefore

dθ2

dt2
= θ̈ = −

g

L
θ = −ω2

0θ

this a LINEAR ODE and it can be solved analytically, the angle oscillates periodically in time

θ(t) = A cos(ω0t+ φ) θ̇(t) = −Aω0 sin(ω0t+ φ) ω0 =

√

g

L

The period T of the motion is

T = 2π
ω0

= 2π
√

L
g

T is independent of the amplitude A and of the phase φ

However how can we determine amplitude A and phase φ ?
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The linear pendulum

The total energy is conserved

Kinetic Energy – K = 1
2
Mv2t ≃ 1

2
ML2

(

dθ
dt

)2

Potential Energy

Force = minus derivative of the potential

F = Mat ≃ −Mgθ = − dU
dx

U = MgL θ2

2

Total Energy – E = K + U = 1
2
ML2

(

dθ
dt

)2
+MgL θ2

2

At time t = 0 the pendulum is at rest θ̇ = 0:

θ̇(t = 0) = −Aω0 sin(φ) therefore φ = 0

θ(t = 0) = A cos(φ) = A

The total energy at t = 0 is

E = U = MgL
θ2(t=0)

2
= MgLA2

2
and A =

√

2E
mgL

is determined by the initail energy E

The linear approximation works only for small θ angles, because for large θ the potential energy

diverges to infinite

U = MgL
θ2

2
→ ∞ for θ → ±∞
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Trajectories’ visualization

Since the nonlinear ODE for large oscillations cannot be solved analytically

dθ2

dt2
= −

g

L
sin θ ,

but only numerically we plot the dynamics graphically in the Phase Space

(

θ; dθ
dt

)

Each curve in the Phase Space is called a trajectory

Oscillations (closed orbits)

Rotations (open orbits)

The separatrix corresponds to the pendulum starting

with zero velocity from the unstable equilibrium

position θ = π and returning to it with zero velocity

in an infinite time.

The motion continues for ever, the system is conservative,

The motion repeats periodically

Liouville’s Theorem : Volumes in Phase Space are preserved
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The separatrix

Potential Energy

F = Mat = −Mg sin θ = − dU
dx

U(θ) = MgL
∫ θ
−π

dθ sin θ = MgL(1− cos θ)

The system is conservative, its total energy is constant

E = K + U =
1

2
ML2

(

dθ

dt

)2

+MgL(1− cos θ)

Separatrix

The separatrix divides oscillations from rotations, its energy can be estimate by setting the pedulum

at rest at the unstable fixed point, i.e. θ = π and θ̇ = 0 , therefore it will need an infinite time to

make one complete oscillation.

Esep = 2MgL
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The damped nonlinear pendulum

The previous picture is not realistic, the friction due to the air drag on the pendulum is always

present. This force is proportional to the velocity dθ/dt and it acts against the motion (Stokes’ law):

dθ2

dt2
= −γ

dθ

dt
−

g

L
sin θ γ is the damping constant

The energy is no more conserved, the friction dissipates energy, and the pendulum ends up always

in the resting state θ = 0 In mathematical language:

the system is dissipative

the rest state (θ, dθ/dt) = (0, 0) is an attractor for the dynamics : a stable fixed point
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Dissipative vs Conservative

The Liouville Theorem

GO TO THE BLACKBOARD !!!
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Dissipative Systems

Dissipative systems :

are not time reversible

areas in phase space are contracted

The area occupied by a set of initial conditions diminishes in time

There are different ways to contract such area

All directions are contracted in the same way

One direction is expanded,

but the other contracts even more

Area contraction does not necessarily imply that all the directions in phase space will be contracted,

someone can even expand
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The driven damped pendulum

O Botafumeiro - Santiago de Compostela

A giant censer of 53 kg (1.60 mt height) hanging from the vault of the Cathedral by a rope of 20 meter.

Due to dissipation the pendulum tends to stop, by varying periodically the length of the rope it is

possible to maintain it in motion: parametric energy pumping !

FILM and Derivation of the Equation at the BlackBoard
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The driven damped pendulum

The equation of motion of the driven damped nonlinear pendulum where the pivot moves

periodically in time as h(t) = h0 cos(ωt) is

dθ2

dt2
= −γ

dθ

dt
− (

g

L
−

h0ω2

L
cos(ωt)) sin θ

the period of the forcing is T0 = 2π/ω

For a certain choice of parameters L, h0, ω one observes

(a) After a transient the dynamics ends up on a periodic orbit

(c) By observing the trajectory at stroboscopic times tn = nT0 only 4 points remain :

Periodic Motion of Period 4T0 (Stroboscopic Map)
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The driven damped pendulum

For a different choice of parameters L, h0, ω

(d) The dynamics is always irregular

(e) The Phase Plane is almost filled

(f) The stroboscopic observation reveals a Chaotic Attractor

Two initial conditions differing less than 1 part/100,000 give rise

to different trajectories :

Sensitivity to Initial Conditions (SIC)

Deterministic but NOT predictable : chaotic
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Dynamical Systems

The state of a generic system is characterized by the set of the variables describing the system

x(t) = (x1(t), x2(t), . . . , xd(t))

where d is the dimension of the Phase Space.

For the pendulum d = 2 and x1(t) = θ(t) , x2(t) = dθ(t)/dt

The evolution in time of the variables is ruled by a set of ODE’s - The Flow

dx1

dt
= f1(x1(t), x2(t), . . . , xd(t))

.

.

.

dxd

dt
= fd(x1(t), x2(t), . . . , xd(t))

Dissipative Systems

Phase Space volumes are contracted

The set of points asymptotically reached by the trajectories lives in a space of dimension

D < d - D can be non integer: Fractal dimension

Such set is called Attractor

CYU 11/01/2022 – p. 18



Regular Attractors

Fixed Point

Limit Cycle

Periodic Motion characterized by 1 single period

Torus T 2

Quasi-periodic Motion characterized by 2 incommensurable peri-

ods

Torus TN
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Stability of a Fixed Point

Let us consider a 1d system with a fixed point

x = x∗:

dx

dt
= f(x) f(x∗) = 0

Is the dynamics attracted or repelled by x∗ ?

To answer we perform a linear stability analysis, we perturb the fixed point by δx0 and look for its

evolution:

x(0) = x∗ + δx0 → x(t) = x∗ + δx

therefore

dx

dt
= f(x∗ + δx) →

dx∗

dt
+

dδx

dt
∼ f(x∗) + f ′(x∗)δx →

dδx

dt
= f ′(x∗)δx

by setting γ = f ′(x∗) we get δx(t) = δx0eγt

If the Floquet exponent γ < 0→ Stable Fixed Point

If the Floquet Exponent γ > 0→ Unstable Fixed Point

If the Floquet Exponent γ = 0→ Marginally Stable
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Fixed Points in 2D

More at the blackboard !!!
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Limit Cycles

A Limit Cycle is a Closed and Isolated Trajectory

LCs are examples of naturally oscillating systems without being forced periodically

(Autonomous ODE)

LCs are characterized by a typical period, amplitude and wave form determined by the

equation structure

The LCs are nonlinear phenomena emerging in dissipative systems

LCs exist for autonomous ODEs in dimension d ≥ 2 (amplitude and phase)
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Fluid Convection

The fluid density depends on the temperature

ρ = ρ(T )

Forces : Buoyancy (Spinta di Archimede) vs Viscosity

If TU > TB

Usual Heat Conduction

Linear Profile of Temperature T (z) = TB + z TU−TB

H

the state is stable

If TU < TB

The situation is unstable : fluid below is less dense than fluid above Expandible Fluid

Buoyancy Towards Upwards

Dissipative Effects act against the Buoyancy

The heat can be transfered from on plate to the other via 2 mechanisms :

Fluid Motion with a time τm = η
ρ0gαH∆T

Heat Diffusion with a time τc ∝ H2/k
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Fluid Convection

The fluid density depends on the temperature

Forces : Buoyancy (Spinta di Archimede) vs Viscosity

The dynamics is controlled by the Rayleigh number

Ra =
ρ0gαH3∆T

kν
=

τc

τm
∆T = TB − TU

g is the gravity constant

ρ(∆T ) = ρ0(1− α∆T ), α thermal dilatation coefficient

k thermal diffusivity - Heat equation Ṫ = K∇2T

ν fluid viscosity

If Ra > Rac the heat conduction is replaced by the convective motions

The fluid motion is faster then the heat diffusion τc > τm

If Ra >> Rac the steady convection state is replaced by erratic dynamics

Rayleigh-Bénard convection is fundamental for atmosphere, stars, earth magmatic mantile etc.
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Lorenz Attractor 1960

A three dimensional simplified model for the description of convective motions in a fluid

dX

dt
= σ(Y −X)

dY

dt
= −XZ + rX − Y

dZ

dt
= XY − bZ

X(t) is the amplitude of the convective motion

Y (t) is the temperature difference between ascending and descending fluid

Z(t) is the deviation from the linear temperature profile

The parameters have physical meaning

r =
Ra

Rac
σ =

ν

k

b is a geometrical factors linked to the rolls wave lenght

Blackboard !!!
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Lorenz Attractor 1960

Distant initial points

Nearby initial conditions
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Stroboscopic Maps

Flux in 3 Dimensions

~̇x = ~Fc(~x) ~x ∈ R3 c ∈ R

c is the control parameter of the dynamics

Stroboscobic Map

We measure the values of ~x(t) at regular time intervals t = nT0

~̇x =
~x(nT0+T0)−~x(nT0)

T0
= ~Fc(~x(nT0))

by rescaling time as t′ = t/T0, one can always assume T0 = 1

~x(nT0 + T0) = ~xn+1 and ~x(nT0) = ~xn

~xn+1 − ~xn = ~Fc(~xn)

Finally we get the stroboscobic map

~xn+1 = ~Fc(~xn) + ~xn = ~Gc(~xn)

The dynamical evolution is obtained by applying n times the map Gc to the initial condtion ~x0:

~xn+1 = ~Gc(~xn) = ~G2
c(~xn−1) = . . . = ~Gn

c (~x0)
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Poincaré Section

For d > 3 the visualization of the trajectories is impossible !

Poincaré Section for a 3 dimensional flow dx/dt

define a plane

consider the successive points Pn in which the trajectory crosses the plane (from the same

side)

P2 = F(P1), P3 = F(P2) = F2(P1)

PN = F(PN−1) = F2(PN−2) = . . . = FN (P1) t

F is the 2d Poincaré Map (discrete time) - time intervals are NOT constant

Periodic Orbit F → 1 or more isolated points

Torus T 2 F → Closed Curve

Strange Attractor F → A very reach and foliated structrure
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Deterministic Chaos

At time t = 0 consider two slightly different initial conditions for

2 orbits:

x(0) x′(0) = x(0) + δx0

and follow their time evolution ruled by some ODE or Map

x(t) x′(t) = x(t) + δx(t)

If their distance increases exponentially in time for any generic

x(0)

δx(t) ∼ eλtδx0 λ > 0

the system exibits SIC

If the Maximal Lyapunov exponent λ is positive the system is Chaotic

The chaotic behaviour is deterministic, ruled by a set of ODEs, no noise, no stochastic term in the

system, despite this the information concerning the initial condition is lost within a short time
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Strange Attractor

Attractors exhibiting SIC are Strange

the volume should contract because the system is

dissipative

but at the same time the orbits should exponentially

diverge

the only possibility is that the attractor is folded , he has

an extremely foliated structure

To have volume reduction it is not necessary that all the directions will contract, someone can

expand, but the average expansion rate should be smaller than the average contraction rate

the direction along which there is SIC are termed Unstable Manifolds and are characterized by

positive Lyapunov exponents λ > 0

the direction along which the system is contracted are termed Stable Manifolds and are

characterized by negative Lyapunov exponents λ < 0
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Smale’s Horseshoe Map

The rectangle ABCD is stretched by a factor 2 along x direction

The rectangle ABCD is contracted by a factor 2η (η > 1) along y direction

The stripe is then folded and reinserted in the original rectangle (without changing its area)

The operation is repeated many times thus obtaining a very foliated structure typical of

strange attractors

The operations correspond to properties of strange attractors

Contraction - The area of ABCd is reduced by a factor η → Dissipative System

Folding - The orbit remains in a finite portion of the space → Attractor

Stretching - The orbit is stretched by a factor 2 along x → Sensitivity to the Initial Conditions

CYU 11/01/2022 – p. 31



Stable and Unstable Manifold

Let us consider once more the Smale’s Attractor:

along x the distance among 2 points is

doubled at each iteration

∆Xn+1 = 2∆Xn = eln 2∆Xn

∆Xn+1 = 2n∆X0 = en ln 2∆X0

λ1 = ln 2 > 0

along y the distance among 2 points is contracted at each iteration

∆Yn+1 =
1

2η
∆Yn = e− ln 2η∆Yn λ2 = − ln 2η < 0

the volumes are contracted

∆Xn+1×∆Yn+1 =
1

η
∆Xn∆Yn

1

η
= eλ1 × eλ2 = eλ1+λ2 < 1 λ1 + λ2 < 0

x is the Unstable manifold and y is the Stable manifold
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Attractor Dimension

The attractor dimension D, is the phase space dimension for which elements of initial conditions of

dimension D on the attractor are neither expanded nor contracted

initial conditions over a surface are contracted ∆Xn ×∆Yn ∼ e(λ1+λ2)n∆X0 ×∆Y0

therefore D < 2

initial conditions along a line are expanded ∆Xn ∼ eλ1n∆X0 therefore D > 1

The dimension can be implicitely expressed as

D
∑

i=1

λi = 0 usually D is not an integer Fractal Dimension

By performing a linear interpolation one gets

D = 1 +
λ1

|λ2|
= 1 +

ln 2

| ln 2η|
for η = 4 → D = 1.5

CYU 11/01/2022 – p. 33



Lyapunov Spectrum

For N dimensional system one has N manifolds characterized by a Lyapunov spectrum

λi i = 1, . . . , N

Dissipative Systems
∑N

i=1 λi < 0

Stable Fixed Point 0 > λ1 > λ2 > λ3 > . . .

Stable Limit Cycle λ1 = 0 ; 0 > λ2 > λ3 > . . .

Torus Tk λ1 = λ2 = . . . = λk = 0 ; 0 > λk+1 > λk+2 > . . .

Chaos at least λ1 > 0

Autonomous Continuous Systems without Fixed points

At least one Lyapunov exponent is zero, perturbation along the trajectory are neither contracted nor

expanded

Fractal Dimension

DKY = k +

∑k
i=1 λi

|λk+1|
λk > 0 λk+1 < 0

upper limit for the attractor dimension
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