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Nobel Prize in Physics 2021 S

lll. Niklas Elmehed © Nobel Prize

Qutreach Qutreach Qutreach
Syukuro Manabe Klaus Hasselmann Giorgio Parisi
Prize share: 1/4 Prize share: 1/4 Prize share: 1/2

The Nobel Prize in Physics 2021 was awarded "for groundbreaking contributions to our
understanding of complex systems" with one half jointly to Syukuro Manabe and Klaus
Hasselmann "for the physical modelling of Earth’s climate, quantifying variability and
reliably predicting global warming" and the other half to Giorgio Parisi "for the discovery
of the interplay of disorder and fluctuations in physical systems from atomic to planetary
scales."

The ceremony took place on 10th December, 2021
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Scientific Motivations gﬁmﬁvmne

Scientific Background on the Nobel Prize in Physics 2021

“FOR GROUNDBREAKING CONTRIBUTIONS TO OUR
UNDERSTANDING OF COMPLEX PHYSICAL SYSTEMS”

The Nobel Committee for Physics

This year’s Nobel Prize in Physics focuses upon the complexity of physical systems, from
the largest scales experienced by humans, such as Earth’s climate, down to the
microscopic structure and dynamics of mysterious and yet commonplace materials, such
as glass...

A central emphasis is on the physical reality that the variability in the basic processes,
from climate dynamics to frustrated materials, leads to the emergence of multiple length
and time scales . ..
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What is it a Complex System ? Qo

Two different view of a complex system :

P A quite simple system that can give rise to a very complex behaviour : e.g. a
pendulum/ a clock (Dynamical Point of View)

» A system made of a large number of interacting elements, so that the collective
behaviour of those elements goes far beyond the simple sum of the individual
behaviours. (Statistical Mechanics Point of View)

» schools of fishes
» swarm of birds FILM
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&‘,T:r_ﬂ— Galileo Gailei was the first who had the idea to exploit
et RN :
Feis o the regularity of pendulum oscillations to realize a clock,
e however was the Dutch scientist Christian Huygens to
PO NS realize it in 1656.
-
3 ¥
e The first clock had an error less than 1 minute per day,
Sans - W an incredible good accuracy at the time.

Everyone will safely affirm that the oscillations of a pendulum are regular
(predictable), but as we will see this is completely FALSE

From pendulum to chaos
Deterministic (Newton’s law) # Predictable
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The nonlinear pendulum
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Planar Pendulum
Mass M

attached to a Pivot O

via a massless and inextensibile wire of length L

L 3 I I

2 forces acting on the mass :
® gravity Fg = Mg
$ wiretension T = Mgcos6

By applying the Newton’s second law (F=m a) it emerges that the system
can be described simply by the angle 6 between the wire and the vertical
axis and by the angular velocity w = df/dt.

More at the Blackboard
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The nonlinear pendulum Qoivense

& Along the inextensible wire — Equilibrium | T = M gcos = May

2
& Tangent to the circle — Dynamics | —Mgsin § = ML% = May

Therefore the equation of motion turns out to be independent of the mass

do? ,
ﬁ p— —ESIHQ

This is a NONLINEAR second order ordinary differential equation (ODE), difficult to solve.
This can be rewritten as a system of two first order ODEs :

6 =w : w:—gsine
L

P Two first order ODEs — 2 Degrees of Freedom - 2 dimensional Phase Space
P Trajectories’ visualization

9o Approximate simplified equation for small angles
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The linear pendulum Qisivensre

For small oscillations sin 8 ~ 0 (x ~ L0) therefore

do? o g 5

this a LINEAR ODE and it can be solved analytically, the angle oscillates periodically in time

0(t) = Acos(wot + @)  0(t) = —Awp sin(wot + ¢)  wo = %
The period I’ of the motion is

® 72t _9op /L
wQ g

® 7T isindependent of the amplitude A and of the phase ¢

However how can we determine amplitude A and phase ¢ ?
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The linear pendulum Qisivensre

The total energy is conserved

® Kinetic Energy - K = %MU? ~ %ML2 (%)2 : H\ /Jf
® potential Energy g? \ y
&P Force = minus derivative of the potential 1 X /

® F=Ma~—-Mg)=—-% b) 0 e
® U= MgLL B

2
® TotalEnergy-F = K + U = %ML2 (le_i) —I—MgL%

At time ¢ = O the pendulum is at rest = O:
P I(t =0) = —Awp sin(e) therefore ¢ = 0
P )(t=0)=Acos(¢)=A
The total energy att = O is
77 — 0%(t=0) _ AZ _ 2F . : N
E=U= MgLT = MgLT and A = ol 1S determined by the initail energy £/

The linear approximation works only for small 6 angles, because for large 6 the potential energy

diverges to infinite
92
U:MgL?—M)o for 0 — +oo
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Trajectories’ visualization 5w

Since the nonlinear ODE for large oscillations cannot be solved analytically

df? ,
— = —=5sinf
dt? L
but only numerically we plot the dynamics graphically in the Phase Space <9; Z—(z)
Each curve in the Phase Space is called a trajectory

4
3
2 P Oscillations (closed orbits)
1
= B Rotations (open orbits)
=]
: P The separatrix corresponds to the pendulum starting
-2
3 with zero velocity from the unstable equilibrium
(c) -4 : : position & = 7 and returning to it with zero velocity
- -2 w2 T

I e

in an infinite time.
P The motion continues for ever, the system is conservative,

B The motion repeats periodically

P Liouville’s Theorem : Volumes in Phase Space are preserved
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The separatrix Qe

Potential Energy

_ _ . _ au
P F=Ma =—Mgsinf = — 3=

® UB) =MgL[° dfsind = MgL(1 — cos¥)

The system is conservative, its total energy is constant

1., (dO\?
E:K+U:§ML p + MgL(1 — cos®6)

Separatrix
The separatrix divides oscillations from rotations, its energy can be estimate by setting the pedulum
at rest at the unstable fixed point, i.e. 0 = 7 and & = 0, therefore it will need an infinite time to

make one complete oscillation.
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The damped nonlinear pendulumy;;....

The previous picture is not realistic, the friction due to the air drag on the pendulum is always
present. This force is proportional to the velocity d@/dt and it acts against the motion (Stokes’ law):

df? do

g . : :

— =V sin 0 v is the damping constant

dt dt L
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t 8

The energy is no more conserved, the friction dissipates energy, and the pendulum ends up always

in the resting state 6 = 0 In mathematical language:

B ihe system is dissipative

D therest state (0, df/dt) = (0,0) is an attractor for the dynamics : a stable fixed point
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Dissipative vs Conservative Qoivense

The Liouville Theorem

GO TO THE BLACKBOARD !!!
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Dissipative Systems Piivensre

N
WY
Dissipative systems :

) 0 ® e not time reversible

P areasin phase space are contracted

The area occupied by a set of initial conditions diminishes in time

There are different ways to contract such area

0
- - D All directions are contracted in the same way

time

One direction is expanded,

but the other contracts even more

time

Area contraction does not necessarily imply that all the directions in phase space will be contracted,

someone can even expand
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The driven damped pendulum 5w

O Botafumeiro - Santiago de Compostela

A giant censer of 53 kg (1.60 mt height) hanging from the vault of the Cathedral by a rope of 20 meter.

Due to dissipation the pendulum tends to stop, by varying periodically the length of the rope it is

possible to maintain it in motion: parametric energy pumping !

FILM and Derivation of the Equation at the BlackBoard
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The driven damped pendulum 5w

The equation of motion of the driven damped nonlinear pendulum where the pivot moves

periodically in time as h(t) = hg cos(wt) is

df?

dt?

the period of the forcing is T

cos(wt)) sin

WU'}"\W%

n‘ﬁ---

(=18

] 2000 4000 G000
1

For a certain choice of parameters L, hg, w one observes

9o (a) After a transient the dynamics ends up on a periodic orbit

2 K

9o (c) By observing the trajectory at stroboscopic times t,, = n’I only 4 points remain :

Periodic Motion of Period 47, (Stroboscopic Map)
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The driven damped pendulum 5.

For a different choice of parameters L, hg, w

M W
I \/)
| (d) " _

(

o 2000 4000 5000 BOOD -x -2 o w2 T
t i

-100

P (d) The dynamics is always irregular
N (e) The Phase Plane is almost filled

9o (f) The stroboscopic observation reveals a Chaotic Attractor

0 —

iy reference’ e
Wi R, predicted ¢

Two initial conditions differing less than 1 part/100,000 give rise

=20 +

a0 to different trajectories :

Sensitivity to Initial Conditions (SIC)

-80

Deterministic but NOT predictable : chaotic

-100

6000 6100 6200 6300 6400 6500
1
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Dynamical Systems

The state of a generic system is characterized by the set of the variables describing the system

x(t) = (z1(t), 22(t), ..., 2q(t))

where d is the dimension of the Phase Space.
For the pendulum d = 2 and x1(t) = 0(t) , xz2(t) = dO(t)/dt

The evolution in time of the variables is ruled by a set of ODE’s - The Flow

dc% — fi(z1 (), x2(t), ..., aq(t))
dx g B
— & = fa(@r (), 22(1), ..., za(t)

Dissipative Systems

B Phase Space volumes are contracted

P The set of points asymptotically reached by the trajectories lives in a space of dimension

D < d- D can be non integer: Fractal dimension

B Such setis called Attractor

Y

CERGY PARIS

UNIVERSITE

CYU 11/01/2022 —p. 18



Regular Attractors Qe

Fixed Point
o i Limit Cycle
- -."'. " L |
- < ) Periodic Motion characterized by 1 single period
"
ll“t - - l‘-’_'.f/
Torus T2

Quasi-periodic Motion characterized by 2 incommensurable peri-
ods

Torus TV
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Stability of a Fixed Point Qoivense

Let us consider a 1d system with a fixed point

— =f(x) f(@")=0
Is the dynamics attracted or repelled by =™ ?

To answer we perform a linear stability analysis, we perturb the fixed point by d.xg and look for its

evolution:
z(0) = ™ + dxg — x(t) =z + oz
therefore
d dx* do do
d—f = f(z* + 6z) — ;t + dtx ~ f(a®) + f'(a")dz — d—f = f'(z")dx

by setting v = f’(x*) we get dx(t) = dxge??

® i the Floquet exponent v < 0 — Stable Fixed Point
® i the Floquet Exponent v > 0 — Unstable Fixed Point
P iithe Floquet Exponent v = 0 — Marginally Stable
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Fixed Points in 2D
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Table 2.1  Classification of fixed points (second column) in d = 2 for non-degenerate eigenvalues.
For the case of ODEs see the second eolumn and Fig. 2.5 for the corresponding illustration. The
case of maps correspond to the third eolumn.

‘ Case ‘ Eigenvalues (ODE)

Type of fixed point

Eigenvalues (maps)

(a) M <A <0
(b) A1 >A >0
(e) M <0< s

(f) Ao = tiw

(d) Mo=ptiw&k <0
(e) Mo=putiw&u>0

stable node

unstable node
hyperbolic fixed point
stable spiral point
unstable spiral point

elliptic fixed point

pL<pp<lE&t =0:=Fkr
l<pr<po &by =02=knm
p1<l<ps &y =0=Fkmr
By =—bp # thkr/2& pr=p2 <1
0y = —0s £ Lkn/2 & p1 = p2 > 1
01 =—By=+(2k+1)7/2 & p12=1

More at the blackboard !!!

CERGY PARIS

UNIVERSITE
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Limit Cycles

|

A Limit Cycle is a Closed and Isolated Trajectory

LCs are examples of naturally oscillating systems without being forced periodically

(Autonomous ODE)

LCs are characterized by a typical period, amplitude and wave form determined by the

equation structure

The LCs are nonlinear phenomena emerging in dissipative systems

LCs exist for autonomous ODEs in dimension d > 2 (amplitude and phase)
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C - _ 21 B The fluid density depends on the temperature
_ ___ | B Forces: Buoyancy (Spinta di Archimede) vs Viscosity

HOT Tg

® Ty >Tg

® Usual Heat Conduction
Ty—Tg

# Linear Profile of Temperature T'(2) = Tg + 2=+

® the state is stable
® 1Ty, <Tg

® The situation is unstable : fluid below is less dense than fluid above Expandible Fluid
#® Buoyancy Towards Upwards

®» Dissipative Effects act against the Buoyancy
The heat can be transfered from on plate to the other via 2 mechanisms :

. . - : S | B
&P Fluid Motion with a time 7, = v0ga HAT

® Heat Diffusion with a time 7. oc H? /k
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Flllid COnVeCtiOIl a UNIVERSITE

_ N N =1 ® Thefluid density depends on the temperature
lg>< >< )( "I 8 Forces : Buoyancy (Spinta di Archimede) vs Viscosity
_ - = -

HOT Tg

D The dynamics is controlled by the Rayleigh humber

B pogoH3AT _ Tc

kv Tm,

Ra AT =Tg — Ty

g is the gravity constant
p(AT) = po(1 — aAT), o thermal dilatation coefficient
k thermal diffusivity - Heat equation T = KV2T

e o0 b0

v fluid viscosity
® iRa> Ra. the heat conduction is replaced by the convective motions
B The fluid motion is faster then the heat diffusion Te > Tm

D i Ra>> Ra. the steady convection state is replaced by erratic dynamics

Rayleigh-Bénard convection is fundamental for atmosphere, stars, earth magmatic mantile etc.
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Lorenz Attractor 1960

A three dimensional simplified model for the description of convective motions in a fluid

dx
= =5(Y - X)

dt

dy

= XZ47rX-Y
dt

dz

= = XY -bZ

dt

$ X (t) is the amplitude of the convective motion
X Y () is the temperature difference between ascending and descending fluid

® 7 (t) is the deviation from the linear temperature profile

The parameters have physical meaning

B Ra
N Ra.

r

=N IAN

b is a geometrical factors linked to the rolls wave lenght

Blackboard !!!

CERGY PARIS

UNIVERSITE
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Lorenz Attractor 1960

Distant initial points

Nearby initial conditions

20 b X(1) Aft) | | )

107 |
III|'|r|“"||l LW TP P

I | Il m fn\-.“l' |||I VY ILI.\-Iﬂl‘.l WA I".l "
1[] I flwe

il w 0 | -
il i R e

0 | 2|

I| ‘ 10 i
|| | ||‘ |||| || hfe
|| | A
-10 | _
‘ 1 ! I]q4 | nl'lpwll
|

W
20 | . i l‘aﬁ'

1] 10 ¢ 2[] 3l] 1] 10 . 20 30
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Stroboscopic Maps

Flux in 3 Dimensions
I=F.(f) ZTe€R?> ceR

c is the control parameter of the dynamics

Stroboscobic Map
We measure the values of Z(%) at regular time intervals t = nlj

P = S = Fo(#(nT)

9o by rescaling time as t’ = t/To, one can always assume 1 = 1
D F(nTy+Tp) = Tpna1and Z(nTp) = Tp,
® 7,1 %, =F.(Z,)

Finally we get the stroboscobic map

fn—kl — F‘c(fn) + fn — C—);fc(fn)

The dynamical evolution is obtained by applying . times the map (G to the initial condtion Z(:

i1 = Ge(@n) = G2(Zn_1) = ... = G (Zo)

Y

CERGY PARIS

UNIVERSITE

CYU 11/01/2022 — p. 27



P()illcal‘é SeCtiOIl a UNIVERSITE

For d > 3 the visualization of the trajectories is impossible !

Poincaré Section for a 3 dimensional flow dx /dt

P define a plane

P consider the successive points P,, in which the trajectory crosses the plane (from the same

side)
» P, =F(P1),P3s=FP2)=F?P,)
Pn = F(Pn_1) = F?(Pn_2) =...= FN(Pq)t

P Fis the 2d Poincaré Map (discrete time) - time intervals are NOT constant
®» Periodic Orbit F — 1 or more isolated points
® Torus 72? F — Closed Curve

®» Strange Attractor F — A very reach and foliated structrure
CYU 11/01/2022 — p. 28
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At time ¢ = 0 consider two slightly different initial conditions for
2 orbits:

z(0)  2'(0) = z(0) + dzq
and follow their time evolution ruled by some ODE or Map

z(t) () = z(t) + dx(t)

If their distance increases exponentially in time for any generic
z(0)

dx(t) ~ e Mdzg A >0

the system exibits SIC

If the Maximal Lyapunov exponent )\ is positive the system is Chaotic

The chaotic behaviour is deterministic, ruled by a set of ODEs, no noise, no stochastic term in the
system, despite this the information concerning the initial condition is lost within a short time
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Strange Attractor

Attractors exhibiting SIC are Strange
& the volume should contract because the system is
dissipative

P but at the same time the orbits should exponentially
diverge

D the only possibility is that the attractor is folded , he has
an extremely foliated structure

To have volume reduction it is not necessary that all the directions will contract, someone can

expand, but the average expansion rate should be smaller than the average contraction rate

P the direction along which there is SIC are termed Unstable Manifolds and are characterized by

positive Lyapunov exponents A > 0

B the direction along which the system is contracted are termed Stable Manifolds and are

characterized by negative Lyapunov exponents A < 0
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Smale’s Horseshoe Map Qisivensre

The rectangle ABCD is stretched by a factor 2 along x direction
The rectangle ABCD is contracted by a factor 277 ( > 1) along y direction

The stripe is then folded and reinserted in the original rectangle (without changing its area)

L 3 I I

The operation is repeated many times thus obtaining a very foliated structure typical of
strange attractors
The operations correspond to properties of strange attractors

® cContraction - The area of ABCd is reduced by a factor 17 — Dissipative System

9o Folding - The orbit remains in a finite portion of the space — Attractor

9o Stretching - The orbit is stretched by a factor 2 along x — Sensitivity to the Initial Conditions
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Stable and Unstable Manifold g

Let us consider once more the Smale’s Attractor:

9o along x the distance among 2 points is
doubled at each iteration

AXn+1

AXpy1 = 2"AXg=e""2AX,

AM=1n2>0
9

along y the distance among 2 points is contracted at each iteration

1
AYpi1 =AYy = e M2IAY, Ay =—In2n <0
n

» the volumes are contracted

1 1
AXp i1 XAYpi1 = —AX,AY, —=eMxe=eMTA2c1 A\ 4+X<0
n n

x is the Unstable manifold and v is the Stable manifold
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Attractor Dimension Qiivessrr

| ‘
“‘l
|- . J r.j

.||'f
f
. k‘=I g |
'H_p-" hu.i
f f

The attractor dimension D, is the phase space dimension for which elements of initial conditions of

dimension D on the attractor are neither expanded nor contracted

B initial conditions over a surface are contracted A X,, X AY,, ~ e(A1TA2)nMA X x AY)
therefore D < 2

& initial conditions along a line are expanded A X,, ~ e*1" A X therefore D > 1

The dimension can be implicitely expressed as

D
Z i = usually D is not an integer Fractal Dimension
i=1

By performing a linear interpolation one gets
D=1+ A1 14 In 2
A2 [ In 27|

forn=4—-D=1.5
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Lyapunoy Spectrum Qoviverse

For N dimensional system one has /N manifolds characterized by a Lyapunov spectrum

Dissipative Systems Zfll A <0

Stable Fixed Point 0 > A1 > Ao > A3 > ...
Stable LimitCycle A\ =0 ;0 > Ao > A3 > ...
TorusTk)\l =d=...= 2, =0 ;0> A1 > A2 > ...

L I I

Chaos at least A\{ > 0

Autonomous Continuous Systems without Fixed points

At least one Lyapunov exponent is zero, perturbation along the trajectory are neither contracted nor
expanded

Fractal Dimension

Zf:l A

Dgy =k +
[Akt1]

A >0 A1 <0

upper limit for the attractor dimension
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