The Kuramoto model with inertia: from
fireflies to power grids

Simona Olmi

Istituto dei Sistemi Complessi - CNR - Firenze, ltaly

CC @

Consiglio Nazionale delle Ricerche




Pteroptix Malaccae

B A phase model with inertia has been introduced to mimic the synchronization
mechanisms observed among the Malaysian fireflies Pteroptix Malaccae. These
fireflies synchronize their flashing activity by entraining to the forcing frequency
with almost zero phase lag. Usually, entrainment results in a constant phase angle
equal to the difference between pacing frequency and free-running period as it
does in P. cribellata.

(B. Ermentrout (1991), Experiments by Hanson, (1987))
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Why introducing “inertia”?

B First-order Kuramoto model

M It approaches too fast the partial synchronized state
M Infinite coupling strength is required to achive full synchronization

B Second-order Kuramoto model

M Synchronization is slowed down by inertia (frequency adaptation)
M Firstly proposed in biological context (Ermentrout, (1991))

M Used to study synchronization in disordered arrays of Josephson junctions
(Strogatz (1994), Trees et al. (2005))

M Derived from the classical swing equation to study synchronization in power
grids (Filatrella et al. (2008))
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The Model

Kuramoto model with inertia

L K .
mb; +0;, = Q,; + N zj:Sln(Qj — (9@)

M ¢, is the instantaneous phase

M (), is the natural frequency of the i—th oscillator with Gaussian distribution
M K is the coupling constant

M V is the number of oscillators

By introducing the complex order parameter r(t)e’*(!) = < 57 e'%

r = 0 asynchronous state, » = 1 synchronized state
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Damped Driven Pendulum

Stable limit circle | mez + 92 = Q’L — Kr Sll’l(ez)

Histabie Stable fixed point m K r
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B

B One node connected to the grid (the grid is considered to be infinite)
M Single damped driven pendulum

B Josephson junctions

B One-machine infinite bus system of a generator in a power-grid (Chiang, (2011))
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Damped Driven Pendulum

For sufficiently large m (small )

B For small 2; two fixed points are

T present: a stable node and a saddle.
Stable lmit circe The linear stability is given by
0 1
08 | ) J —
e —cos¢p* —p3
T Bistable Stable fixed point 1 — j: 2_ 4 COS *
| 1o = =F \/52 ¢
B At large frequencies Q; > Qp =
4 [ Kr g 48 i
v, —4/ - (le. T > ==) a limit cycle
0 02 0.4 06 08 1B 12 14 16 1.8 2 emerges from the Saddle V|a a homo_

clinic bifurcation

M Limit cycle and fixed point coexists until Q; = Qp = Kr (i.e. I = 1), where a
saddle node bifurcation leads to the disappearence of the two fixed points

M For O, > Qp (i.e. I > 1) only the oscillating solution is present

For small mass (large ), there is no more coexistence.
(Levi et al. 1978)
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Simulation Protocols

Dynamics of N oscillators (first order transition and hysteresis)

M O, maximal natural frequency of the locked oscillators

Protocol |: Increasing K

The system remains desynchronized
until K = K} (filled black circles).

Qs increases with K following 4,

2; are grouped in small clusters
(plateaus).

Protocol II: Decreasing K

The system remains synchronized until
K = K2 (empty black circles).

Qs remains stucked to the same value
for a large K interval than it rapidly de-
creases to 0 following 21/ .
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Mean Field Theory
(Tanaka et al. (1997))

mb; + 0; = Q; — Krsin(0; — ¢)

M by following Protocol | and Il there is a group of drifting oscillators and one of
locked oscillators which act separately

M |ocked oscillators are characterized by < 6 >= 0 and are locked to the mean
phase

M drifting oscillators (with < 6 >+ 0) are whirling over the locked subgroup (or
below depending on the sign of €2;)

M Drifting and locked oscillators are separated by a certain frequency:
M Following Protocol | the oscillators with ©; < Q) p are locked
M Following Protocol Il the oscillators with ©; < (), are locked

B These two groups contribute differently to the total level of synchronization in the
system

T=7rL+7TD
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Mean Field Theory
(Tanaka et al. (1997))

Protocol I: Qg) = %\/%

M All oscillators initially drift around its own natural frequency €;

M Increasing K, oscillators with ©2; < Q p are attracted by the locked group

M Increasing K also Q2 p increases = oscillators with bigger 2; become
synchronized

B The phase coherence r! increases and 2; exhibits plateaus

B ! Depending on m the transition to synchronization may increase in complexity

Protocol Il Qg” = Kr
M Oscillators are initially locked to the mean phase and ! ~ 1

M Decreasing K, locked oscillators are desynchronized and start whirling when
Q; > Qp and a saddle node bifurcation occurs

Qp, Qp are the synchronization boundaries
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Mean Field Theory
(Tanaka et al. (1997))

Total level of synchronization in the system: r=rr,+rp

For the locked population the self-consistent equation is

Op,D

I ey / cos? 6 g(Krsin@)do
Op,D

where 0p = Sin_l(%), Op = Sin_l(%) =7/2, g¢(Q) frequency distribution.

The drifting population contributes to the total order parameter with a negative

contribution
1.1 o 1
T —mK’r/ g(Q2)d2
D o (m)3

The former equation are correct in the limit of sufficiently large masses
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Hysteretic Behavior

Numerical Results for Fully Coupled Networks (N = 500, m = 6)

B The data obtained by following protocol Il are quite well reproduced by the mean
field approximation 1

B The mean field extimation »’ does not reproduce the stepwise structure
numerically obtained in protocol |

B Clusters of N, locked oscillators of T eeveveTestTiTivivivieisistsieseisy
any size remain stable between r/ | sees
and 1

B The level of synchronization of these
clusters can be theoretically obtained
by generalizing the theory of Tanaka et
al. (1997) to protocols where €2, re-
mains constant

I207
0 2 4 6 8 10 12 14 16 18 20
(Olmi et al. (2014)) K
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Finite Size Effects

B K¢ is the transition value from asynchronous to synchronous state
(following Protocol I)

B K5 is the transition value from synchronous to asynchronous state
(following Protocol Il)

0-0 N=500
N=1000
o— N=2000
- N=4000
<+ N=8000
N=16000

IIIIIII
14 16 18 20
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Finite Size Effects
(Olmi et al. (2014))

Mam=08 b m=1(c)m=2and (d)m =6

B K5 (lower points) does not depend heavily on N

(i.e. clusters of whirling oscillators) is determinant

B K¢ (upper points) is strongly influenced by the size of the system

B Good agreement between Mean Field and simulations is achieved for small m

B For large m the emergence of the secondary synchronization of drifting oscillators
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Dashed line — KM mean field value by Gupta et al (PRE 2014)
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r(t).

(Olmi et al. (2014))

r(t) |

0.

oo

0.6

0.4

0.2

Drifting Clusters

For larger masses (m=6), the synchronization transition becomes more complex, it
occurs via the emergence of clusters of drifting oscillators.

The partially synchronized state is characterized by the coexistence of
M 2 cluster of locked oscillators with < 6 >~ 0

M clusters composed by drifting oscillators with finite average velocities

time

Extra clusters induce (periodic or quasi-periodic) oscillations in the temporal evolution of
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Drifting Clusters

If we compare the evolution of the instantaneous velocities 6; for 3 oscillators and r(¢)
we observe that

M the phase velocities of O, and O3 display synchronized motion

M the phase velocity of O oscillates irregularly around zero

M the oscillations of r(¢) are driven by the periodic oscillations of O2 and Os

(Olmi et al. (2014))
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Power Grids

national
transmission

B Power Plants

B Swing Equation

substation

& Na

houses, shops and other buildings

B Decentralization

B Turbulent Character of
Renewable Sources

M Control
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Power Plants

Power

“\ = Ab
H:- e il g |
( DM 0 0,

Fig. 1. Equivalent diagram of generator and machine con-
nected by a transmission line, The turbine consists of a flywheel
and dissipation D).

B A power plant consist of a boiler producing a constant power, as well as a turbine
(generator) with high inertia and some damping.

B Transmitted power through a line: P/%2%% sin (6 — 61).

B Power plant + transmission line =power source that feeds energy into the system.
This energy can be accumulated as rotational energy or dissipated due to friction.

B The remaining part is available for a user (the machine 1), provided that there
exists a phase angle difference A6 = 0> — 0, between the two mechanical
rotators (phase shift is necessary for ac power transmission)
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Power grids: swing equation

Power flow analysis can be described in terms of the phase angles ¢’ s that characterize
both the rotor dynamics (and hence the energy stored or dissipated) and the power flow
between any two rotors connected by an ac line.

Qz(t) = Qt + gbi(t), =27 x 50Hz

source __ diss acc transmaitted
P = pdiss | pacc 4 p

- ; 1 d?0;
Pidzss — k-DQZ'Q, Piacc — 7 7

E 5 p SR Pitransmitted — P{;Laa: sin(ej . 92)

Assuming only slow phase changes compared to the frequency (|0;| < Q)

[;Q¢; = PO — kP Q% — 2k;Qd + > P sin(0; — 60;)
J
only the phase difference between the elements of the grid matters!

(Filatrella et al. (2008))
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Power grids: parameters

Every element 7 is described by the same rescaled equation of motion with a parameter
P; giving the generated (P; > 0) or consumed (P; < 0) power

dth = P — Oéq;g =+ zj:Kij sin(0; — 0;)
nmax source _ 1, D 2 .
8 WhereK’ij:}Z—Q=Pi:Pz IiQRZQaOﬂiZ%stPJZO-

B Large centralized power plants generating P7°“"“¢ = 100\ w each

B Each synchronous generator has a moment of inertia of I; = 10*kgm?

B The mechanically dissipated power k,LD (22 usually is a small fraction of Psouree
B Additional sources of dissipation are not taken into account

B A transmission capacity for major overhead power line is up to Per = 100MW
B The transmission capacity for a line connecting a small city is K;; < 10%s~2

Mo, =015, P, = 1052 for large power plants, P; = —1s— 2 for a small city
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M Larger networks of complex

Decentralization: Real Grid

topologies equally exhibit
coexistence with power
outage and self-organized
synchrony

M Average frequency

w =Y, |dg;/dt|/N

B Order parameter

r(t) =32, €% (t)/N

M Topology of the British power

grid: 120 nodes and 165
transmission lines; 10 power
plants (randomly chosen)
and 110 consumers

B Power plants are connected

to their neighbors with a
higher capacity c K

(Rohden et al. (2012))

3 e J
" - - by,
%

_d | limit behavior

b dynamics K = 10 Pu

IIUI"

o -1 A —— '
% 100 -
= P
gg () ——
58 o =13.4 0
£°-100 =" -8 o=

0 20 40 60 0 20 40 60

timet (s)

time t(s)



Decentralization: Stability
(Rohden et al. (2012))

How does decentralization impact the system’s stability to dynamic perturbations?

B Replace large power plants (P; = 11P,) by smaller ones (P; = 1.1F).

B Test the stability against fluctuations by transiently increasing the power demand of
each consumer during a short time interval ( the condition Zj P; = 0 is violated)

B After the perturbation is switched off, the system either relaxes back to a steady
state or does not, depending on the strength of the perturbation

B The maximally allowed perturbation strength shrinks with decentralization, but still
all grids are stable up to strengths a few times larger than the unperturbed load

weak perturbation strong perturbation
: a

-
o

2000 b

0 10 20 30 40 0 10 20 30 40
t(s) t(s)

|
o

phases ¢ (t)/2n

0 20 40 60 80 100
distributed sources [%] distributed sources [%)]

0 20 40 60 80 100

. .0 0.5 1
Fraction of stable power grids: T 0

(a) weak and strong (b) perturbation
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Wind turbines convert a turbulent wind speed « into a turbulent-like electrical power P.

Turbulent Character of
Wind Energy

For time scales larger than several minutes, i.e., larger than the regulating time of the
control system, power dynamics can be considered to follow adiabatically the wind
dynamics with similar -5/3 spectral properties.

PiPr

00 02 04 06 08 1.0

110"

1100

S(f) [o°]

REaliy

0 15 0.01 0.1 1

f[Hz)

B Trajectory of power output vs wind speed signals for a turbine

B Power spectra of wind speed «? and power output P2

(Milan et al. PRL (2013))
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Turbulent Character of
Wind Energy

For the smaller time scales, where the control system of the wind conversion systems
interacts dynamically with wind fluctuations, the power output has highly intermittent
increment PDFs with multifractal scaling close to Kolmogorov’s log-normal laws.

The intermittent properties of wind power are maintained on an entire wind farm scale

ol

i (b}
b
e T
; 1%10°5+
- .

0 15 20 -20
t {min]

121079

(d)

2.0

P, la.
-5 0 5 10

f{x.)

E,
1.0 1.5
\

~

B Normalized increment time series: turbine (black) and farm (green) output, wind
speed (blue)

M Increment PDFs for P (upper black), P¢qrm (mMiddle green), and u (lower blue)

B Scaling exponents for P and P¢qrm- Kolmogorov's 1962 model (red line)

(Milan et al. PRL (2013))
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Turbulent Character of
Solar Energy

The power spectra computed from high frequency time series (with sample rate 1 Hz) of
solar irradiance, wind velocity and wind power exhibit a power-law behaviour with an
exponent ~ 5/3 (Kolmogorov exponent) in the frequency domain 0.001 < f < 0.1 Hz,

indicating that they are turbulent-like sources

@ = (b) 0/ p—— s [ = [
0% " . | P o & 10°1 "k @
~ & 2 4 E.
e il - i |
= poo1 B0l o4 = 1 — e 0.001 001 O = 10°%+
o 14 M = flHz] o
[ | = L e =
| = . 10 @ 10°-
-2 ] !
10 - Wind power 107 : = gD:"" -~
-~ Wind velocity = Solar (single) 102 rmany o,
1 = Fitwith exponent 53 = Solar {feid) — Hawai -
F = P Fit with exponent 53 | = Fit with exponent 5/3
T e N PR | X B A | P T T PRl rre
0.001 0.01 0.1 0.001 0.01 01 1075 10~ 10-3
fiHz] fiHz] f[Hz]

B Power spectra of wind velocity, wind power fluctuations
B Power spectra of irradiance fluctuation for a single site (red) and averaged over 16

sensors (black)
B Power spectra of irradiance fluctuations for minute-averaged solar irradiance

(Anvari et al. New J. Phys. (2016))
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Turbulent Character of
Solar Energy

Not only the increment PDFs of the single wind turbine and the single solar sensor
depart largely from the normal distribution, but also the wind farm and solar field deviate
significantly from the Gaussian distribution =- extreme events are the normality!

Solar Wind

Wind and Solar

-0~ Sedar T=18
14 2 -0~ Wind 1=1s
- p-exponential

- A ™

"y
3 - I s g . ,'._‘,.?_-' a '-;__'._‘:I = 3
F: ' - "" . 'l
0 i | C e, b Wl et
: - i ] o ‘: i '.." ¥ B
] 1072 ¢
e Solar {fisi] 4] *=ts Wenid (falfths <
- t=10s,  Soler flieid| 107" o = r=1is Wind {farm)
1= t=i000s, Salar |ledd} o == Twil00s,  Wnd Tam
10710 Bemmsinn PoE | 1078 - = Busssar poF
=38 S Solar jmngk) J O mis

Wind |snghsi
440 1=l Solar {Enghe)

T
P(X:)

PX:)

-6 _|
12 e S o (a) 18 3m, ot (o) o
T T T T T T T T T X T x T T
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Probability distribution functions (PDF) of increment statistics

M Solar irradiance fluctuations of a single sensor and the whole field
B Wind turbine and wind farm

B Wind and solar power time series

(Anvari et al. New J. Phys. (2016))
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Implementing Noise

Intermittent power time series are generated
by a Langevin-type model

€T
y = —yy+I'(t), T = (g — z—) +V Dz2y
0

M 4 colored noise generated by an
Ornstein-Uhlenbeck process with
correlation time 1/~

M T being 5-correlated Gaussian noise

B D controls the intermittence strength:
From D = 0.1 (weakly intermittent,
nearly Gaussian) to D = 2.0 (strongly
intermittent)

M (a) Time series x(t); (b) Power spectrum S(f)
B (c) PDFs P (x); (d) Normalized PDFs of the increments Az = x(t) — z(t — 7)
(Schmietendorf et al. Eur. Phys. J. B (2017))
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Control: Two layer network

Communication infrastructure in a full dynamic description +
Power grid layer : Kuramoto model with inertia

N
mb;(t) = —0;(t) + QU + PE(t) + K Y Agjsin(0; — 0;)

e
{'\f ”\\M‘
b S

M ;: Node index (=1,...,N)
M ¢,: Phase
M 9: Frequency

B : Mass, inertia constant, m=10

M Q;: Inherent frequency = power
generation/consumption

B P¢: control signal supplied by the
communication layer

P
. . H H ©  National grid 380 KV substation ()J\f” A ",
;;: Coupling matrix ; P -~
J ® Mot national grid substation { —_—
3
B Hydroplant RN
. . = Thermal plant Nf\ o LT—
L] \ y
K: Coupling strength . N
National grid 380 kV single-circuit line
rerevre National grid 380 KV double-crcut line
= National grid 400 kV DC single-circuit line
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Topology:

{
§oruingin
4 o
. s a % -
PLANTS =
L] National grid 380 kV substation o~
®  Customer substation 4
L3 Not national grid substation
nnnnnn
B Hydro plant
= Thermal plant " i

LINES
National | grid 380 kV single-circuit line

-+ National grid 380 kV double-circuit line
e====National grid 400 kV DC single-circuit line

Italian transmission grid

GENI—Global Energy Network In-
stitute, Map of Italian electricity grid:
https://www.geni.org/

M 127 nodes
34 generators
93 consumers

B 342 transmission lines
(220 kV & 380 kV)

B Average connectivity 2.865

M Natural frequencies:
Qload = —1
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Control: Two layer network

Communication layer:

B Phasor measurement units provide

information: local controllers integrated \\\’\\q
with the generators use the information to = /{\g
calculate a control signal Pf € R < ™
B The loads are not controlled. >
B The control signal can be interpreted as ~s-

power injection for P > 0 or power
absorption for P < 0

B The control is realized using storage de-
vices (batteries) that absorb or inject power
to the generator buses [H. Qian et al, IEEE
Trans. Power Electron. 26, 886 (2010).]

Pf = Gifilci;, {0;(1)})

c;,; adjacency matrix of the communication layer
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Control:
Two layer network

Communication layer:
Pf = Gifi(cij,{0;()})

Control function f;(c;. i, {6;(t)}):
M Frequency droop control
£ (ei, 5,460} = SN 165 — 6i]
A [Giraldo et al, in 52nd IEEE Conf. Decision and
Control (2013), 4638]

M Proportional control
FEr(ei g {0;,(0}) = F 27 cijf;
B Combined control

feome (i g, {6;(0)}) = SN cij {ald; — 6,1 —vd; |

Control strength G;: Effective only for generators

local ,global
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Single node perturbation

Intermittent noise

(1) = Qgen + pa(?)

pu= penetration parameter, x(t)= intermittent noise series

uncritical

(Totz et al. Phys. Rev E (2020))
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Single node perturbation

1 T
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(Totz et al. Phys. Rev E (2020))
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B no control
A £ (ei 5, 46;(6)}) NO
0 f7(cij,{65()}) OK
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Single node perturbation
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Single node perturbation

Increasing Load Demand
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Italian High Voltage Power Grid

B We do not observe any hysteretic behawor or multistability down to K’ = 9

B For smaller coupling an intricate behavior is observable depending on initial
conditions

B Generators and consumers compete in order to oscillates at different frequencies
B The local architecture favours a splitting based on the proximity of the oscillators
B Several small whirling clusters appear characterized by different phase velocities

B The irregular oscillations in r(¢) reflect quasi-periodic motions
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Italian High Voltage Power Grid

By following Protocol Il

M the system stays in one clusterupto K = 7

B at K = 6 wide oscillations emerge in (¢) due to the locked clusters that have
been splitted in two (is this also the origin for the emergent multistability?)

M By lowering further K several whirling small clusters appear and » becomes

irregular
mmo e @ b oot] [ dem T ebo b oet] [ deel o o T b
= 4 2" 4 2 .
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Linear Stability Analysis of the
Asynchronous State

B Tool: nonlinear Fokker-Planck formulation for the evolution of the single oscillator
distribution p(0, 0,, t) for coupled oscillators with inertia and noise

B Critical coupling KM for an unimodal frequency distribution g(2) with width A

1 wg(0) m [ g(Q)dQ

KMFE 2 2 J_ oo 1 4+m202

i B If g(Q) is Lorentzian = KM = 2A(1 + mA)
M If g(Q) is Gaussian

M the zero mass limit gives

MF 2 2 2 2 A2 2 ’ 2 3A3 4 A4
Ki"" =2A4/ —< 144/ —mA 4+ —m“A“ + — ] — —m7A° }4+0(m™*A"%)
™ 71' ™ ™ T

B The limit mA — oo gives KM o 2mA?2

(Acebron et al. PRE (2000); Gupta et al. (PRE 2014))
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Finite size effects for K7

g(£2)dQ

oo 1+ m202

How to identify the scaling law ruling the approach of K{ (V) to its mean-field value for
increasing system sizes?

Power-law scaling with the system size
N for fixed mass

KMF _ K¢(N) < N~1/5

= this is true for sufficently low masses
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Mean Field Theory with Noise
(Acebron, Spigler (2008))

Vq

my; = —v;+Q; + Krsin(¢ — 0;) +&;

with < §; >=0and < &;(¢)§;(t) >= 2D4;;6(t — s)

B Continuum limit (continuity equation for p(0, v, Q, t))

dp D 8% 1 0 , ap

B Normalization [ _ [™ p(0,v,9Q,0)d0dv =1
M |dentical oscillators g(2) = §(Q2)

Stationary solution p(0,v) = x(0)n(v)

= It is possible to find frequency and phase distribution from the continuity equation
= KM¥ turns out to be independent of the inertia

—-p. 42



Mean Field Theory with Noise

Via averaging the velocity v(t) in the long-time limit, the Fokker-Planck equation for the
probability distribution p(0, v, (2, t) reduces to the Smoluchowski equation

op(0,t) O Kav_w)+Dap_w)> (Hma?vw))}

ot 96 o0 o0 062

with the potential V' (0) = —Kr cos(8) — Q6. For D = 0, the stationary state solution

gives

r = (g %) g(0)Kr + mg(O)(KT)2 "(0)(KT)3 + O(Kr)*

+ 169

M Drifting and locked oscillators are both contributing to the phase coherence
B The quadratic term (K7)? induces hysteresis in the bifurcation diagram

B The hysteresis is reduced with noise

B The critical coupling strength increases monotonically with the increase of D
B The response of phase velocity to external driving is enhanced by a certain

amount of noise

(Hong et al. (1999); Bonilla (2000); Hong, Choi (2000))
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Simulations: Noise + Bimodal

B W, width of the hysteretic loop, m = 8

Frequency Distribution

B Globally coupled network with Bimodal Gaussian frequency distribution

mb; +0; = Qi + % > sin(0; — 6;) + V2D¢;

| - ‘ ] —— ‘ :
:? Vpﬂ :?“"’ /—W
1 (a) & (b)
07 _ Wi | 0.7 |
P~ AR
i -~ A %
0.3r8, 0.3
14 ; : b
.tiKDS EKPS K DS }KPS
0 30 K 70 100 0 15 K 45 60
1 H””HH,,,W.W‘...mm-w' my 1 ‘ )
| & (d)
| &
0.7¢ 0.7 i
r s r
03 ‘ 0.3 ks
EKDS iKPS KDS « Protocol (I)
: 3 1 ;' oProtocol (II)
i ‘ RS,
0 0
0 15 K 45 60 0 15 K 45 60

(a) D=0; b) 2D = 9;
(c) 2D = 15; (d) 2D = 30

B Hysteresis is reduced
with noise

B Intermediate states are
suppressed

(Tumash et al. (2018))
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Simulations: Noise + Bimodal

1 {a) I P
7 iPS P « Protocol (I)
0.7 KPS ; i aProtocol (II)|
H w H
E N,
r ;TQ’? /:L; ; 0.3 ==
/1 o &
03 Ei KW 01 |
i 4 —
7 0
sl KTV 0 30 K 70 100
0= . \
0 30 K 70 100
6 6
(b) (c)

w
w
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3 -3 i
W; ‘ w;
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-6 0 t 20 0 t 20
1 150 1 350 500 1 150 ) 350 500

(Tumash et al. (2018))
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Further works: diluted network
+ ¢({2) unimodal

M Constraint 1 : the random matrix is symmetric

M Constraint 2 : the in-degree is constant and equal to V.

3

1 I I I

LB R :’31' !*.!i? bl
* N=N . *ggggéiﬂ*ﬂ*f*“?*’*?*? T
o -0 N=5 *;013 'ab‘*g* ,'.".,o".- 2.5 N
0.8F |. . N.=10 ; *&*3%6 o' _|
0.0 N=IS wo ¢ o B s
[ aaN=2s SR N Pl 1 2F 7]
0.6F N=50 baolo i P . s
N =125 N Coe
Pob o | D R { Wy isp .
x--x N =500 R Do
| 041 g onzonn] i1 00 s : 7 WL |
- I B o oN=200
I P =a N=1000]| -
0.2 ( R P 7 0.5 ++N=2000| -
- (a) S —
Oarmmwm*""'. | | 0 ‘ i
0 1 2 3 4 5 6

M Diluted or fully coupled systems (whenever the coupling is properly rescaled with
the in-degree) display the same phase-diagram

B For very small connectivities the transition from hysteretic becomes continuous

M By increasing the system size the transition will stay hysteretic for extremely small

percentages of connected (incoming) links
—-p. 47



Further works: ¢({?) bimodal

| Globally coupled network
: B Traveling Wave (TW): a single
itk cluster of oscillators, drifting
| K together with a velocity Qg
: B Standing Wave (SW): two
i e | | | clusters of drifting oscillators with
0 R 30 symmetric opposite velocities
) _(a)l T I/ _._e'— 1 ©) T ' . :I:QO
N — 1.4 1" B Partially Synchronized state (PS):
- / 1 ettt © a cluster of locked rotators with
N 4+ - r
— o | . | ! | ) \/VMVMV/WWMMM n .
g_ e o} i b zero average velocity
v T,
ol i (Olmi, Torcini (2016))
4_ / |
0 4
Q
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Further works: diluted network
+ ¢({)) bimodal

B For bigger masses, larger values
of critical coupling are required to
reach synchronization

.NC:pN

B The hysteretic loop decreases as
the network topology becomes
0] = - ‘ more sparse

(Tumash et al. (2018))

45 60
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Further works:
frequency-degree correlation

2; proportional to its degree with zero mean (so that ) . Q; =0) : Q; = B(k;— < k >)
mb; 4+ 0; = B(ki— < k >)+ A3, A; jsin(6; — 6;)

Average frequency < w;, > of nodes with the same degree k:

< Wik >= D ik =k] < 0; >t /(NP(K))

I o Iﬁeg'ee.is P——
g 8 g S
T 9
s e A e " 5 i2
08 : / i 1 B #omaia o ity 1=
A= > i 5 13
...... e L i 14 ——
| 1 4 ——— pi @, % L 12 -
| | 06F | i sty EE Thes Tm i NG
| | ~ N = Y . . .
" /:f 2F —ap o o N - ®e - =]
; Simulation r# with increasing y/ —— \\3/ e R > : hat T T =S
04l | Analytic 7 with increasing A7 = | ok bt G l -y ~a e 3 .
: : Simulation ro with decreasing y» ---%- e e : oy >
Analytic  rowith decreasing yv —— s - \ an ==Y
. " -
2F memo g "-._._ A..‘.‘_ﬁ_‘_':_.. = v--32 |
02- 1 . B R TTORE
il -, 5 e
i " - g
SRR . L st 4
(a) r el (b)
Threshold line
0 L 1 -6 1 1 1
0 16 24 0 0.8 1.6 2.4
A A

M Oscillators join the synchronous component grouped into clusters of nodes with
the same degree

B Small degree nodes synchronize first (cluster explosive synchronization )

(Ji et al. (2013) — extension of TLO theory) ~p.50



Josephson Junctions

B The Josephson effect is the phenomenon of supercurrent, a current that flows
indefinitely long without any voltage applied, through a Josephson junction (JJ)

B A JJ consists of two or more superconductors coupled by a weak link, which can
consist of a thin insulating barrier, a short section of non-superconducting metal, or
a physical constriction that weakens the superconductivity at the point of contact

B The Josephson effect is an example of a macroscopic quantum phenomenon,
predicted by Brian David Josephson in 1962 (Josephson (1962))

B The DC Josephson effect had been seen in experiments prior to 1962, but had
been attributed to “super-shorts” or breaches in the insulating barrier

B The first paper to claim the discovery of Josephson'’s effect, and to make the
requisite experimental checks, was that of (Anderson and Rowell (1963))

M Before JJ, it was only known that normal, non-superconducting electrons can flow
through an insulating barrier (quantum tunneling). Josephson first predicted the
tunneling of superconducting Cooper pairs (Nobel Prize in Physics 19783).

A locally coupled Kuramoto model with inertia can be derived from a coupled resistively
and capacitively shunted junction egs for an underdamped ladder with periodic boundary
conditions (Trees et al. (2005)): good agreements are achieved for phase and frequency
synchronization e
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Extension of the Mean Field

In principle one could fix the discriminating frequency to some arbitrary value 2o and
solve self-consistently

T=7rL+7TD

[©.@)

0o
ré’” = Kr/ cos? Og(Krsin0)do rg” ~ —mKT/ g(£2)dQ

—6, _0, (mQ)3

This amounts to obtain a solution »° = r%(K, Q) by solving

1 1
()3 I = 2

0o oo
/ cos? 0g(Kr° sin 6)do — m/
—00 —Q0

with 6y = sin—1(Q0/Kr?). The solution exists if Qo < Qp = KrY.

= A portion of the (K, r) plane delimited by the curve »!! (K) is filled with the curves
rV(K) obtained for different Q¢ values.
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Drifting Clusters
(Olmi et al. (2014))

B The amplitude of the oscillations of »(¢) and the number of oscillators in the drifting
clusters N correlates in a linear manner

B The oscillations in r(¢) are induced by the presence of large secondary clusters
characterized by finite whirling velocities

B At smaller masses oscillations are present, but reduced in amplitude. Oscillations
are due to finite size effects since no clusters of drifting oscillators are observed

B Blue dashed line = estimated
mean field value r! by Tanaka et
al. (1997)

M The mean field theory captures
the average increase of the order
parameter but it does not foresee
the oscillations
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Dependence On the Mass K7

B K¢ increases with m up to a maximal value and than decreases at larger masses

B by increasing N K¢ increases and the position of the maximum shifts to larger
masses (finite size effects)

5.5

o6k / ++N=16,000| A

| g /A == N=8,000

1 +4N=4,000
0.4} 4 e o N=2,000 |

++N=1,000
0.2 —

| | |
0 1IO 2|O 3|0 00 2 4 6 8
m m/N 13

The following general scaling seems to apply

¢ K{WF—Kf(m,N) _ m
KMF ~ N1/5

> where KM o 2m for m > 1
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Dependence On the Mass K

The TLO approach fails to reproduce the critical coupling for the transition from
asynchronous to synchronous state (i.e., K7), however it gives a good estimate of the

return curve obtained with protocol Il from the synchronized to the aynchronous regime
2.2

Lsb [0 [ . B

i —

1.6 L | L | L | L | L |

B K¢ initially decreases with m then saturates, limited variations with the size N

B 29 is the minimal coupling associated to a partially synchronized state given
by TLO approach for protocol

= KELO exhibits the same behaviour as K5, however it slightly understimates the
asymptotic value (see the scale)
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Further works: diluted network

B The TLO mean field theory still gives reasonable results (70% of broken links)

M All the states between the synchronization curves obtained following Protocol | and
Il are reachable and stable

1

0.8

B These states, located in the region between the synchronization curves, are
characterized by a frozen cluster structure, composed by a constant Ny,

B The generalized mean-field solution % (K, Q) is able to well reproduce the
numerically obtained paths connecting the synchronization curves (I) and (ll)
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Further works: ¢(¢2) bimodal
Finite size effects

T I
| [e—= N=1000
N=2000
<= N=5000

= N=10000

| N=50000

]
(o]
T

I ! o— N=1000
0.4 i N=2000 |

ps! + N=5000

K" &= N=10000
0.2 | |
) cooirAReeg | | | | (b)
N A N .
0 20 40 60

B Small inertia value

B KTW and K°W increase with N

M The transition value K° and KP° seem independent from N

M In the thermodynamic limit TW ans SW will be no more visited (the incoherent
state will loose stability at K5"")

M Large inertia value
M The transition to SW occurs via the emergence of clusters
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Italian High Voltage Power Grid

Each node is described by the phase:

i (t) —wact+0; (t)
where w1 = 27 50 Hz is the standard
AC frequency and 0; is the phase devi-
ation from w 4 .
Consumers and generators can be
distinguished by the sign of parameter
P;:

P; >0 (Pz < O)

corresponds to generated (consumed)
power.

PPPPPP

° Not national grid :J“bs!ation ) ——
Hydro plant N A :

m el - 0; = |—0; + P, + K E Cz’,j sln(ej — «92')
LINES

National grid 380 kV single-circuit line 'L -
-+ National grid 380 kV doubl le-circuit line '-7
lational gri C single-circuit line

Average connectivity < N. >= 2.865

[ Filatrella et al., The European Physical Journal B (2008)] ~p.59
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