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1 Introduction

Complex dynamical systems are typically composed of many interacting units, these systems can be usually
modelled in terms of sets of non-linear ordinary differential equations. Non-linear behaviour is ubiquitous
in nature and ranges from fluid dynamics, via neural and cell dynamics to the dynamics of financial mar-
kets. Computational neuroscience is a recent theoretical/numerical discipline emerged in order to uncover
the principles and mechanisms that guide the development, organization, information-processing and mental
abilities of the nervous system.

Dynamical modelling of neural systems and brain functions has a history of success over the last half
century. This includes, the Hodgkin-Huxley model. In 1952, A.L.Hodgkin and A.Huxley used the voltage
clamp method to achieve the experimental data required to construct a mathematical model which describes
the generation of action potentials in the neurons [23]. In 1963 they won the Nobel Prize in Physiology-
Medicine for their contribution.

Epilepsy, a neurological disorder that affects millions of patients world-wide, arises from the concurrent
action of multiple pathophysiological processes. Modern epilepsy research revealed short- and long-term
alterations at several levels of neuronal organization in epilepsy. The power of mathematical analysis and
computational modelling can be harvested to facilitate the understanding of the relative importance of such
multifaceted, seizure-related changes taking place within highly non-linear and complex neuronal systems,
with implications for both basic and clinical epilepsy research [4].

Recent evidence indicates that one of the possible causes of epilepsy and seizure generation is due to re-
organization of neuronal tissue in the hippocampus, also known as reactive plasticity. In reactive plasticity,
some neurons die whereas others, sprout and form novel aberrant connections. This phenomenon is best
documented in the dentate gyrus of hippocampus, where granule cells axons (also known as mossy fibers)
sprout to create new excitatory connections (through synapse) onto other cells. Thus, eventually there will be
a novel recurrent excitatory network among mossy fiber region of hippocampus. Crépel et al. [18], reported
that in the epileptic dentate gyrus, in addition to fast AMPA receptor synaptic currents (EPSCAMPA), slow
Kainate receptor synaptic currents (EPSCKA) exists, while in healthy dentate gyrus there is no evidence of
EPSCKA, implies that this novel excitatory connections are due to Kainate receptors.

Crépel et al. compared outgoing signals from AMPA receptor with Kainate receptor under two exper-
iments, first stimulating a neuron with single-spike and second, stimulating it with periodic-spikes. From
these experiments they observed a paradoxical behaviour in regularity of outgoing spikes; in first experiment,
the generated spikes from AMPA receptor were completely precise and regular, while spikes from Kainate
receptor were irregular [18]. However, in the second experiment they obtained contrary results, the Kainate
receptor generated regular spikes, while AMPA receptor was responsible for irregular firing [8].

In this project we simulated this epileptic behaviour based on a mathematical model, called Integrate-
and-fire model, and we obtained the same results for two experiments. From mathematical point of view,
the inter-spike interval is the time difference of two adjacent successful spike firing, and its coefficient of
variation (CV) is the criteria of its regularity. In single-spike simulation, as we expected the EPSCs from
Kainate receptor was more irregular than EPSCs generated from AMPA receptor, while in periodic-spike
simulation, on the contrary, Kainate receptor was responsible for regular firing, in confirm with experimental
data [8].

This document is organized into five parts. Section 2 provides a general introduction to the elements
of Neurophysiology needed to understand the experimental results. Section 3 focuses on foundations of
computational neuroscience and its mathematical tools. It covers classic material such as the Hodgkin-
Huxley model and the Integrate-and-fire model. Section 4 takes the simplified model derived in Part II
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Figure 1: A typical neuron is divided into three main parts: the soma or cell body, dendrites, and axon. The
dendrites receive incoming signals from adjacent neuron and then propagates them to the central processing
unit of the neuron which is known as soma. The soma is the enlarged portion of a neuron that most closely
resembles other cells. It contains the nucleus and other organelles and it coordinates the metabolic activity
of the neurons. The axon is the main conducting unit of the neuron, capable of conveying electrical signals
along distances that range from as short as 0.1 mm to as long as 2 m. The synapses are the junctions which
connect the pre-synaptic terminal of one cell to the post-synaptic membrane of another cell.

and related mathematical backgrounds. In section 5, the experimental procedure and its results are well
described. Finally, in section 6 the results of the simulation based on the experiment and analytical methods
for interpreting the results are described.

2 Elements of Neurophysiology

The aim of this section is introducing some of the fundamental concepts of neurophysiology.
The elementary processing units in the central nervous system are neurons [20], which are of great impor-
tance because of their ability to transmit information in the brain [26]. They do this by generating firing
sequences of characteristic electrical signals called action potentials or, more simply, spikes, in various tem-
poral patterns; in general, neurons can not fire on their own, they do this as a result of incoming spikes as
inputs from other neurons [15], through the connections called synapses which are treated in detail in the
following sections.

2.1 Morphology

A typical neuron consists of three functionally distinct parts, called the dendrites, the soma, and the axon
which are illustrated in Fig. 1.

The dendrites play the role of the “input device”, which provides an enlarged surface area to receive
signals from other neurons and transmits them to the soma. The shape of dendrites are of great importance
because of their role in specialization of neurons; anatomically, there are four main types of neurons: unipolar
in which dendrite and axon emerging from same process, bipolar in which have one axon and one dendritic
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Figure 2: Four different types of neurons are shown. Their different shapes have important effects on neural
processing. It has been proposed that despite their static structure, the dendrites are highly dynamic and
appear to be capable of plastic changes during brain development, leading to modifications in branching
pattern [38].

tree at opposing ends of the cell body, multipolar in which are composed of one axon and many dendritic
trees, anaxonic where axon cannot be distinguished from dendrites, as shown in Fig. 2.

The soma is the “central processing unit” that performs integration of all the inputs coming from pre-
synaptic neighbors [35].

The axons play the role of the “output device”, which carry output and deliver the signal to other
neurons. Axons terminate at sites called synapses, where the axon of a pre-synaptic neuron makes contact
with the dendrite of a post-synaptic cell. Moreover, the elaborate branching structure of the dendritic tree
allows neurons to receive the input from the neighbouring axon through these synaptic connections. Roughly
speaking, there exists two types of synapses called chemical synapse, and electrical synapse (also called gap
junction), see Fig. 3. However, the most common type of connection between neurons in the central nervous
system of vertebrate brain is the chemical synapses [40], which will be described below.

The electrical synapse or gap junction is composed of two channel proteins called connexons which is a
electrically conductive link between two neighbouring neuron; at gap junction, such cells approach within
about 3.5 nm of each other [27]. These electrical connections are typically dendrite-to-dendrite or axon-to-
axon [37]. Also there exists two types of electrical synapses, in the first type which is known as rectifying
junctions, the ions can only flow one way, but the second type tend to be bi-directional and ions can generally
flow both ways [11].

The chemical synapses are the principal mediators of targeted neuronal communication [37]. They pass
information directionally from a pre-synaptic cell to a post-synaptic cell and are therefore asymmetric in
structure and function. The gap between the post- and pre-synaptic terminals is larger than the gap junction
(it is about 20nm wide [24]), and the mode of transmission is not electrical, but carried out by neurotrans-
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Figure 3: The electrical and chemical synapses differ fundamentally in their transmission mechanisms. In
electrical synapses, the pores connect the two cells and ions from the pre-synaptic action potential diffuse
directly into the post-synaptic neuron.The mechanism of chemical synapses is more complicated; when the
action potential reaches the synapse, it triggers the release of vesicles which contain neurotransmitters and
finally they will be received by specific receptors in the post-synaptic neuron.

mitters. These neurotransmitters are kept within small vesicles. At the arrival of an action potential at the
axonal terminal, neurotransmitters are released into the synaptic cleft that is adjacent to another neuron.

These molecules then bind to receptors on the post-synaptic cell’s side of the synaptic cleft. After bind-
ing, receptors allow the flow of different types of ionic currents. Depending on the nature of ions flowing
into the post-synaptic cell, the chemical synapse can be either excitatory or inhibitory.

The shape of the pulse transmitted via chemical synapses can be modelled via the following equation,
known as α-function [40]:

∆Vm = Ate−αt (1)

Where ∆Vm denotes the difference between the membrane potential and the resting potential, A is
for normalization which can also be considered as amplitude parameter, and α denotes the inverse of the
post-synaptic time constant.

2.2 Physiology

Besides morphological features of neurons, they have physiological specializations [15].

The permeability of cell membranes to certain ions is achieved via ion channels that control the flow of
ions across the cell membrane by opening and closing in response to voltage changes. There are different
types of ion channels that can open and close under various conditions: Leakage channel, Voltage-gated ion
channel, Ion pump, Ionotropic, Metabotropic(second messenger). Common ions involved in such processes
within the nervous system are sodium (Na+), potassium (K+), calcium (Ca2+), and chloride (Cl−).
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Figure 4: Typical form of an action potential. Spikes can be generated only if the incoming signals make
the membrane potential more positive and reach the threshold.

The electrical potential difference between the interior of the cell and its surrounding is called the mem-
brane potential. At rest, the cell membrane has a strongly negative polarization of about -65 mV. The
voltage response of the post-synaptic neuron to a pre-synaptic spike is called the post-synaptic potential
(PSP). If a post-synaptic neuron receives a sufficient number of spikes from several pre-synaptic neurons
within a short time, its membrane potential becomes more depolarized, and if it reaches a critical value
called threshold potential, then the neuron will generate an action potential. To go more into details of this
mechanism, we introduce the excitatory post-synaptic potential or, more simply EPSP, and the inhibitory
post-synaptic potential or IPSP, which depends on the nature of the ion flow into or out of the cell. If
positively charged ion current flows into the cell and changes the membrane potential to less negative or
even positive values, we call this process “depolarization”; while, if the positive current flows out of the cell,
the membrane potential becomes more negative, a process which called “hyper-polarization”, see Fig. 4.

Many different neurotransmitters have been identified in the nervous system. Common neurotrans-
mitters include small organic molecules such as glutamate (Glu), gamma-aminobutyric acid (GABA), and
dopamine (DA) [40]. Synaptic channels gated by the neurotransmitter Glu are a very common example
of excitatory synapses with different types of receptors. One fast ionotropic Glu receptor is called -amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, known as AMPAR. Another Glu receptor is called
N-methyl-D-aspartate receptor, or simply NMDAR which is much slower and voltage dependent. A promi-
nent example of inhibitory synapses uses the neurotransmitter GABA with a fast receptor called GABAα

and a slow receptor called GABAβ . The neurotransmitter DA has several receptor types, some of which
are excitatory and some of which are inhibitory. It’s worth to mention that abnormalities in the function of
neurotransmitter systems contribute to a wide range of neurological and psychiatric disorders [31].

In the brain, or more precisely in the synapses, there are some chemical substances which by binding to
a specific receptor, are able to activate or inactivate it. The term agonist refers to those chemicals that bind
to a receptor and activates the receptor to produce a biological response. so agonist causes an action, while
antagonist by binding to the related receptor, will block the action of the agonist.

In general there are five types of receptors: Glutamate, GABA, Acetylcholine, Dopamin, and Serotonin.
The related receptors to the experiment is described below:
Glutamate receptors can be divided in two categories, ionotropic receptors and metabotropic receptors which
are a G-protein coupled receptors (GPCR).
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AMPA, Kainate, and NMDA considered in ionotropic category which are ligand-gated non-selective cation
channels that allow the flow of K+, Na+ and Ca2+ in response to glutamate binding. Upon binding, the
agonist will stimulate direct action of the central pore of the receptor, an ion channel, allowing ion flow
and causing excitatory post-synaptic current (EPSC). This current is depolarizing and, if enough glutamate
receptors are activated, may trigger an action potential in the post-synaptic neuron.
In Metabotropic category, GPCRs modulate synaptic transmission and post-synaptic excitability.
GABA receptors are a class of receptors that respond to the GABA which are gating anion channels that
allow Cl− ions to enter the post-synaptic neuron and causes hyper-polarization within the neuron, so they
will decrease the probability of an action potential firing as the voltage becomes more negative.

2.3 Persistent Sodium Current

As it discussed in the previous section, the voltage-dependent activation and inactivation of sodium and
potassium channels, leads to spike generation. Abnormal activity of Voltage-gated sodium channels (VGSCs)
has long been linked to disorders of neuronal excitability such as epilepsy and chronic pain. Recent genetic
studies have now expanded the role of sodium channels in health and disease, to include autism, migraine,
multiple sclerosis, cancer as well as muscle and immune system disorders [16], and the role of VGSC blockers
drugs in the treatment of these disorders [29]. As an example, Epilepsy is a disorder of neuronal excitability,
characterised by episodes of excessive synchronised neuronal activity.

In this section we will introduce and compare two different types of sodium currents, known as transient
sodium current (INaT) and persistent sodium current (INaP). Although inactivation is often referred to as a
single process, there are at least two distinct kinetic classes of inactivation, termed fast and slow [3] [39].

The transient sodium current is the former type which at resting membrane potential, the sodium channel
is closed requiring depolarization to be activated. Upon activation within a few hundred microseconds, they
will depolarise the membrane potential further towards the equilibrium potential for sodium (+60mV in
most neurons), resulting in an inward sodium ion current (Na+), and finally within a few milliseconds they
will inactivate which is considered as fast inactivation. The observations proposed that in many neurons,
the fast inactivation process of Na+ current is not complete and besides transient sodium current, the small
percentage of slow inactivation current (typically less than 1% of the maximal transient current) which is
referred to as persistent Na+ current in the order of tens of seconds exists [14], and is open to serious ques-
tions [2].

The existence of INaP was first suggested by current clamp experiments in hippocampal [25], and it has
been reported in a variety of cells: mammalian neurons located in neocortex, thalamus, entorhinal cortex,
hippocampus, cerebellum, and squid axon [14]. In squid axon, the persistent sodium current activates at
more negative potentials than the transient sodium current and hence has been called a “threshold” sodium
current [21].

Despite its small amplitude compared with peak sodium current, INaP can alter firing behaviour pro-
foundly, especially in the sub-threshold voltage range. INaP can be activated by small synaptic depolariza-
tions and can then augment those potentials [36]. Clearly, an increase of only a few percent in the sodium
current can dramatically alter cell firing and facilitate hyperexcitability, since it will amplify their responses
to synaptic inputs (because it keeps the membrane depolarized longer), thereby driving them to repetitive
firing [3], which in turn contributes to the chronic seizures [28]. The other consequences, including amplifica-
tion of synaptic potentials and EPSP [34], generation of sub-threshold oscillations, heightened depolarization
in the sub- and near-threshold voltage range, and reduced threshold for action potential firing [41].

Three general hypotheses about the origin of the non-inactivating current have been presented [14]. First,
the window current hypothesis based on Hodgkin-Huxley whole cell current properties. But INaP probably
is not due to a “window current”, reflecting overlap between the Hodgkin-Huxley activation and inactivation
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Figure 5: Location of Hippocampus in the brain and its components.

curves (i.e., a voltage range in which some channels are activated, while others are not yet inactivated) [36].
Besides this, the window current occurs only cover a restricted voltage range [41]. second, the possibility
that INaP is generated by an unusual subtype of sodium channels that does not inactivate [19]; and third,
recent evidence of a modal change in the inactivation properties of the transient sodium channels [3].

The calcium channel antagonist is cadmium, for the potassium channel is 3M CsCl, and for the sodium
is Tetrodotoxin (TTX) [33]. In separate experiment French et al. group [19] blocked different channels and
they realized the persistent current was blocked by TTX not other antagonists, so it was concluded that it
was a sodium current. Also in their experiment they observed the persistent sodium current is activated
in -60mV (about 10 mV negative to the transient sodium current [14]) which increased in amplitude with
further depolarization to reach a maximum of -0.76nA at -40mV [19].

Goldin et al. have shown that slow inactivation does not depend on the fast inactivation gate, but one
of the hypothesis is that it is due to the rearrangements of the channel pores [22].

2.4 Hippocampus

Hippocampus is a part of limbic system in Temporal lobe of brain and plays important roles in the consol-
idation of information from short-term memory to long-term memory and spatial navigation. Some of the
brain diseases such as Alzheimer, Stress, Epilepsy, and Schizophrenia are related to this part of the brain.
The hippocampus and its components are shown in Fig. 5.

In the hippocampus, granule cells of the dentate gyrus form distinctive unmyelinated axons that project
along the mossy fiber pathway to the Cornu Ammonis area 3 (CA3). Granule cell synapses tend to be
glutamatergic, but also evidence of GABAergic neurotransmitters within mossy fiber terminals has been
detected. The signal a granule cell receives from a Mossy fiber depends on the function of the mossy fiber
itself. Therefore, granule cells are able to integrate information from the different mossy fibers and generate
new patterns of activity [7].

Dentate granule cells are thought to function in the formation of spatial memories [13]. Young and old
dentate granule cells have distinct roles in memory function. Adult-born granule cells function in pattern
separation whereas old granule cells contribute to rapid pattern completion [30].
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Figure 6: The Hodgkin-Huxley equivalent electrical circuit.

3 Mathematical Models

Biological neuron models aim to explain the mechanisms underlying the operation of the nervous system.
In this section we will introduce two types of models for neuronal dynamics, the Hodgkin-Huxley model [23]
and the Integrate-and-fire model [12].

3.1 The Hodgkin-Huxley Model

The HH model is a conductance-based models that describes the generation of action potentials in the neu-
rons through a set of non-linear differential equations. Hodgkin and Huxley in 1952 used the voltage clamp
method to achieve the experimental data required to construct mathematical descriptions of how the sodium,
potassium and leakage currents depend on the membrane potential. In 1963 they received the Nobel prize
in Physiology-Medicine for their contribution.

The equation for the membrane current is derived by summing up the various currents in the membrane,
including Na+, K+, L which refers to a leakage current consists mainly of Cl−; and also one external current
[23]. By considering the interplay of these currents, if the external current is large enough, then a spike can
be generated. See Fig. 7.

Cm
dV

dt
= −gL(V − EL)− gNam3h(V − ENa)− gKn4(V − EK) + I (2)

The circuit representation of the Hodgkin-Huxley model is illustrated in Fig. 6. This circuit includes a
capacitor on which the membrane potential can be measured and three resistors with their own batteries,
modelling the ion channels; two are voltage-dependent and one is static. The different gating variables are
also described by differential equations, as follows:

Sodium activation gating variable:

dm

dt
= αm(1−m)− βmm αm = 0.1

V + 40

1− exp(−(V + 40)/10)
βm = 4 exp(−(V + 65)/18) (3)

Sodium inactivation gating variable:

dh

dt
= αh(1− h)− βhh αh = 0.07 exp(−(V + 65)/20) βh =

1

1 + exp(−(V + 35)/10)
(4)
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Cm = 1.0µFcm−2

I E g

Na+ 50 mV 120 mScm−2

K+ -77 mV 36 mScm−2

L -54.4 mV 0.3 mScm−2

Table 1: Experimental data in Hodgkin-Huxley model.

Figure 7: Simulation of spike generation in a neuron with Hodgkin-Huxley conductance-based model. If the
external input causes the membrane voltage to rise, the conductance of sodium channels increases due to
increasing m. As a result, positive sodium ions flow into the cell and raise the membrane potential even
further. If this positive feedback is large enough, an action potential will be initiated.

Potassium activation gating variable:

dn

dt
= αn(1− n)− βnn αn = 0.01

V + 55

1− exp(−(V + 55)/10)
βn = 0.125 exp(−(V + 65)/80) (5)

3.2 The Integrate-and-Fire Model

The Integrate-and-fire (also known as IF) model is a common model of simplified neuron used in neural
simulations. The IF model is comprised of a sub-threshold leaky-integrator dynamic, a firing threshold, and
a reset mechanism. When the membrane potential reaches a certain threshold, a spike will be generated.

When the voltage is below the threshold θ, its value is determined by the equation for an RC circuit:

Cm
dV

dt
= −V − Em

Rm
+ I (6)

where Cm is the membrane capacitance, Rm is the membrane resistance and I is the total current flowing
into the cell, which could come from an electrode or from other synapses.

we can also write this equation in terms of the membrane time constant τm, which is the product of Cm
and Rm:

9



τm
dV

dt
= −V + Em +RmI (7)

When the membrane potential V reaches the threshold, the neuron fires a spike and the membrane
potential V will reset to Em. By solving above equation for V , the membrane potential increases from zero
and follows an exponential time course, saturating at RmI:

V = Em +RmI
(

1− e
−t
τm

)
(8)

However, if RmI is bigger than the threshold θ, the voltage will cross the threshold at some point in
time. The larger the current, the sooner this will happen. The membrane potential then resets to zero and
the process repeats. For supra-threshold constant input, the integrate-and-fire neuron fires at a constant
frequency.

In order to understand this equation better, we can analyse it and find the time when our system generates
a spike. For a given level of current injection starting at time t = 0, at time TISI a spike occurs, when the
membrane potential is equal to θ. By substituting V = θ and t = TISI and rearranging the equation, the
time to the spike TISI is:

TISI = −τm ln

(
1− θ

RmI

)
(9)

When a spike occurs and RmI exceeds θ, the argument of this logarithmic function is between zero and
one. This makes the logarithm negative which, combined with the negative sign in front of τm, makes the
time to the spike positive, as it should be. As the current increases, the θ

RmI
term gets smaller, and the

argument of the logarithm approaches one, making the logarithm smaller. Thus the time to spike is shorter
for greater input currents, as expected.

4 Theoretical Background

In this section we are going to introduce the mathematical backgrounds of our simulation on Experimental
data.

4.1 Model

Our simulation was based on LIF model. The membrane potential v(t) of the neuron evolves according to
the following ordinary differential equation:

v̇(t) = a− v(t) + gE(t), v(t) ∈ [−∞, 1] (10)

where all variables and parameters are now expressed in adimensional units. According to this equation,
the membrane potential v(t) evolves between minus infinity and one, and relaxes towards the value a+gE(t).

When the membrane potential is equal to v(t) = 1, it means that it reaches the threshold value, then
it will reset to v(t) = 0 and a spike is simultaneously sent to the post-synaptic neurons. This resetting
procedure is an approximate way to describe the discharge mechanism operating in real neuron and results
in a contribution to the coupling variable E(t) [42].

The parameter a > 1 is the supra-threshold input DC current and g determines the strength and depen-
dence of coupling on v and its sign determines whether the coupling is excitatory or inhibitory. The neural
field E(t) is the input synaptic current [1].

In order to describe accurately the post-synaptic response generated by the arrival of an action potential
at a pre-synaptic terminal, there are two commonly used waveform equations as a synapse model [37],
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Figure 8: Two types of pulse shape: (a) single exponential decay with τα = 3, (b) dual exponential with
τα1 = 3 and τα2 = 1.

called single exponential decay, and dual exponential function which are illustrated in Fig. 8, [32]. For an
electrical response, the fundamental quantity to be modelled is the time course of the post-synaptic receptor
conductance. The equations are:

F1(t) = αe−α(t−t0) (11)

F2(t) =
α1α2

(α2 − α1)
[e−α1(t−t0) − e−α2(t−t0)] (12)

which means if the membrane potential of the neuron reaches the threshold value (v = 1) at time t0,
then it will resets to zero and E(t) will be incremented by these amounts (Fi(t)). The τα = 1/α here is
corresponds to characteristic time scale of α-function.

The dual exponential waveform is more realistic representation of a typical synapse. We use this wave-
form when we want to consider the effects of rise and fall times in the coupling between neurons independently.

In the limit α2 → α1 = α, the dual exponential function will become like the following equation, known
as α-function response:

F (t) = α2te−αt, t ≡ t− t0 (13)

which represents the shape of a single pulse emitted at time t by a neuron reaching the threshold value.
For this choice of the pulse shape, the field evolution is ruled by the following second order differential

equation:

Ë(t) + 2αĖ(t) + α2E(t) = α2 (14)

Until now we see that the two equations (10) and (14) are responsible for the dynamics of our system.
One of the methods to analyse this set of equations is by transforming the differential equations into a
discrete-time event-driven map [10] and integrating from the time t = tn, just after the deliver of the nth
pulse, to time t = tn+1, corresponding to the emission of the (n+ 1)th spike, thus it will reads as [6]:

E(n+ 1) = E(n)e−ατ(n) +Q(n)τ(n)e−ατ(n) (15)

P (n+ 1) = Q(n)e−ατ(n) + α2 (16)

v(n+ 1) = v(n)e−τ(n) + a(1− e−τ(n)) + gH(n) (17)

H(n) =
e−τ(n) − e−ατ(n)

α− 1

(
E(n) +

Q(n)

α− 1

)
− τ(n)e−ατ(n)

α− 1
Q(n) (18)
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where τ(n) = tn+1− tn is the interspike time interval and for simplicity we introduced the auxiliary field
Q := αE + Ė.

The interspike time interval τ(n) is associated with two successive neuronal firing, which can be deter-
mined by solving the following equation [5]:

τ(n) = ln[
a− vq(n)

a+ gHq(n)− 1
] (19)

here q identifies the neuron which will fire at time tn+1 by reaching the threshold value vq(n + 1) = 1.

The model so far introduced contains only adimensional units, however, the evolution equation for the
membrane potential (10) can be easily re-expressed in terms of dimensional variables as follows:

τmV̇ (̃t) = I − V (̃t)− τmGẼ(̃t) (20)

where we have chosen τm=10ms as the membrane time constant in agreement with the values reported
in experiment [8]. Furthermore, t̃ = t.τm, the field Ẽ = E/τm has the dimensionality of frequency and G
of voltage. The external excitatory current I have also the dimensionality of a voltage, since it includes the
membrane resistance.

For the other parameters/variables the transformation to physical units is simply given by:

V = Vr + (Vth − Vr)v (21)

I = Vr + (Vth − Vr)a (22)

G = (Vth − Vr)g (23)

where Vr = -60 mV, Vth = -50 mV.

4.2 Poisson Process

The description of the stochastic relationship between a stimulus (input) and a response (output) would
require us to know the probabilities corresponding to every sequence of spikes that can be evoked by the
stimulus. The probability that a spike occurs within the interval between times t and t+ ∆t is proportional
to the size of the interval, ∆t, or more precisely P (t) = ρ(t)∆t, where ρ(t) is called a probability density.

The firing rate r(t) determines the probability of firing a single spike in a small interval around the
time t, but r(t) is not, in general, a sufficient information to predict the probabilities of spike sequences.
For example, the probability of two spikes occurring together in a sequence is not necessarily equal to the
product of the probabilities that they occur individually, because the presence of one spike may effect the
occurrence of the other. If, however, the probability of generating an action potential is independent of the
presence or timing of other spikes (i.e., if the spikes are statistically independent) the firing rate is all that
is needed to compute the probabilities for all possible action potential sequences [15].

A stochastic process that generates a sequence of events, such as action potentials, is called a point
process. In general, the probability of an event occurring at any given time could depend on the entire
history of preceding events. If this dependence extends only to the immediately preceding event, so that the
intervals between successive events are independent, the point process is called a renewal process. If there is
no dependence at all on preceding events,or in other words, there is no memory of past events, so that the
events themselves are statistically independent, we have a Poisson process. The Poisson process provides an
extremely useful approximation of stochastic neuronal firing, and there are two case for it, the homogeneous
Poisson process, for which the firing rate is constant over time, and the inhomogeneous Poisson process,
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which involves a time-dependent firing rate.

The probability that an arbitrary sequence of exactly n spikes occurs within a trial of duration T , is
given by PT (n) and is related to P (t) with the following equation:

P (t) = n!PT (n)(
∆t

T
)n (24)

To compute PT (n), we divide the time T into M bins of size ∆t = T
M . by taking the limit ∆t → 0, we

assume that ∆t is small enough so that we never get two spikes within any one bin.

PT (n) is the product of three factors: the probability of generating n spikes within a specific set of the M
bins, the probability of generating spikes in the remaining M − n bins, and a combinational factor equal to
the number of ways of collocating n spikes into M bins. The probability of a spike occurring in one specific
bin is r∆t, and the probability of n spikes appearing in n specific bins is (r∆t)n. Similarly, the probability
of not having a spike in a given bin is (1 − r∆t), so the probability of having the remaining M − n bins
without any spikes is (1 − r∆t)M−n. Finally, the number of ways of putting n spikes into M bins is given
by the binomial coefficient M !

(M−n)!n! . Putting all together, finally:

PT (n) = lim
∆t→0

M !

(M − n)!n!
(r∆t)n(1− r∆t)M−n (25)

Since n is fixed, we can write M − n ≈ M = T
∆t . by this approximation and defining ε = −r∆t, we

obtain:

lim
∆t→0

(1− r∆t)M−n = lim
ε→0

((1 + ε)1/ε)−rT = e(−rT ) (26)

For large M , M !
(M−n)! ≈M

n = ( T∆t )
n, so

PT (n) =
(rT )n

n!
e(−rT ) (27)

This is called the Poisson distribution.
If we use Stirling’s formula in binomial equation, for large M we will have the Gaussian distribution:

PG(n) =
1

σ
√

2π
e−

(n−<n>)2

2σ2 (28)

where < n > is the mean, σ is the standard deviation of the inter-spike interval (ISI) and the coefficient
of variation of ISI is CV = σ

<n> , which is a convenient measure of the variability of spike trains. For the
binomial distribution as a general case we will have the following values:

< n >= rT (29)

σ =
√
rT (1− rT/M) (30)

CV =

√
1− rT/M

rT
(31)

It obvious that if we consider large value for M , which corresponds to large number of bins, then these
equation will become simpler and the mean and the variance will be equal, σ2 =< n >= rT . In Fig. 9 we
demonstrate the transition from the Poisson distribution to Gaussian distribution by increasing rT .
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Figure 9: By increasing the rT as the probability of spikes occurring within a trial of duration T in Binomial
equation, we can see the transition in the shape of probability of distribution function (PDF) from Poissonian
to Gaussian.

5 Experimental Background

The dentate gyrus plays a major role at the entrance of hippocampus and acts as a filter, which converts
the dense incoming information from the upstream entorthinal cortex into a sparse and distinct code indis-
pensable for the formation and the discrimination of memory items [9].

Crépel et al. have reported that a new phenomenon corresponding to neuronal tissue alteration occurs
in hippocampus, called reactive plasticity [8]. In reactive plasticity, some neurons die and some other which
are more persistent, lead to sprouting of mossy fibers (granule cells axons) and generation of novel recurrent
connections among granule cells (GCs), called recurrent mossy fiber (rMF). The rMF has been proposed to
be at the base of epileptiform activities in the hippocampus. These activities or better known as seizure
generation refers to an abnormal, excessive, and synchronized firing of a group of neurons.

In general, three main types of ionotropic receptors which are AMPA receptors (AMPAR), NMDA recep-
tors (NMDAR), and Kainate receptors (KAR) are responsible for the glutamatergic excitatory drive which
may contribute to seizure generation [17].

The KAR-operated synapses play a more important role in glutamatergic transmission, since EPSCKA

provides as much as half of the total spontaneous synaptic glutamatergic currents. Furthermore, these cur-
rents are originated from rMF synapses which operate via KAR, because by blockade of KAR significantly
activities of mossy fiber network will decrease [17]. To explain in more details, in control DGCs, just fast
AMPA receptor-mediated synaptic currents exists, while in epileptic DGCs, besides fast EPSCAMPA, long-
lasting kainate receptor-mediated synaptic currents, or equivalently slow EPSCKA also exist Fig. 10.

In the following subsections the experimental results when the system is under stimulation by external
current will be discussed.
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Figure 10: In healthy DGCs all the synaptic events are fast and mediated by AMPAR (upper left), since
by blocking the AMPAR with GYKI (bottom left) there is no evidence of fast EPSC. However, in epileptic
DGCs besides fast currents, slow synaptic events exist which are mediated by KAR (upper right), since in
presence of GYKI just slow EPSC exists.

5.1 Single-Spike Stimulation

As I mentioned before, Kainate receptors have slower kinetic in comparison with AMPA receptors [18]. This
difference in their kinetics will influence the spike timing precision during single spike stimulation experiment.

The precision of spike-time responses with different types of receptors was assessed by setting the mem-
brane potential in a value such that a single EPSP would evoke 50% of the times an action potential (holding
potential). The spike precision was estimated by calculating the latency between the onset of the EPSP and
the emission of the spike, and standard deviation of the latencies [18].

During single kick stimulation, EPSPs evoked in healthy DGCs generated time-locked spikes at short
latencies, while in epileptic DGCs the spikes occurred with different latencies, so in contrast to regular be-
haviour from healthy rats, irregular and jittered behaviour was observed from epileptic rats. The time-locked
spiking is due to EPSPfast from AMPAR since they are only determinant parameters in healthy DGCs, while
spikes with high temporal variability are caused by EPSPslow generating from KAR. It worth mentioning the
action potential threshold, EPSP amplitude, half width and firing probability were not significantly different
in healthy and epileptic DGCs, see Fig. 11.

Crépel et al. have reported that EPSPKA in DGCs from epileptic rats showed a strong voltage-dependent
amplification which is mediated by the persistent sodium current (INaP). This current is activated below
firing threshold and amplifies EPSPs in hippocampal and neocortical neurons. In contrast, EPSPAMPA

recorded in DGCs from both control and epileptic rats were not significantly amplified with voltage.

As we can see in Fig. 12, the interplay between Kainate receptor and INaP results in amplification(upper
left figure) with depolarization from -70mV to -50mV (upper right figure), while in the presence of Tetro-
doxin (INaP blocker), we can see less irregular spiking in comparison with amplified case (bottom left). Thus,
EPSPKA is selectively amplified with depolarization via the activation of INaP and this dramatically decreases
the temporal precision of EPSP-spike coupling in DGCs from epileptic rats. As we mentioned before, INaP is
a sodium current that activates below spike threshold and slowly inactivates. The slow kinetics of EPSPKA

is sufficient to activate it and as a result, decreasing more the temporal precision.
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Figure 11: Latencies and corresponding histograms of healthy and epileptic rats after single spike stimulation.
From healthy DGCs (black) the spiking is regular and distribution of latencies in the histogram is time-locked,
while in epileptic DGCs (red) spikes occur irregularly and we can see the effect of this jittered behaviour in
related histogram. This contrary behaviour is due to the kinetics of AMPAR and KAR.

Figure 12: The Kainate receptor in interplay with INaP amplifies the jittered behaviour. By blocking the
INaP with TTX (bottom left) we will have more regular spiking in comparison with the interplay case (upper
left).

16



Figure 13: When the neuron is under periodic input injection, the EPSPs from AMPAR in both healthy
and epileptic rats are irregular, while the EPSPs from KAR exhibit more regular behaviour.

To summarize, the change in EPSP-spike latency from control to epileptic rat is due to the slow kinetics
of EPSPKA when compared with EPSPAMPA, and not to intrinsic membrane properties or difference in
EPSP amplitude. In addition, the slow shape of EPSPKA leads to activation of INaP which will amplify the
jittered spikes and decrease the temporal precision.

5.2 Periodic-Spikes Stimulation

In this experiment [8], the neuron is stimulated with EPSPs generated periodically with a period T and a
jitter from 10% to 100%.

In healthy rats, EPSPAMPA was recorded in the absence of KAR antagonist, because there is no rMF or
reactive plasticity, but in epileptic rats, the data is obtained in the presence of AMPA and KA antagonist
separately, so no interplay between EPSPAMPA and EPSPKA can be assessed.

Under various frequencies of stimulation , the trains of EPSPAMPA lead to a sparse firing regime for both
healthy and epileptic rat, while in epileptic rat EPSPKA triggered sustained and rhythmic spikes, which
is in contrast to previous result of single-spike stimulation. This paradoxical behaviour is just due to the
difference in kinetics of AMPA and KA receptors, as shown in Fig. 13.

All in all, one of the possible interpretation of these data is that the slower kinetics of EPSPKA allows
a high temporal summation, which in turn offsets the short-term depression, contrary to fast EPSPAMPA.
Since EPSPKA are periodic and more regular in comparison with EPSPAMPA, the coefficient of variation
(CV) of inter spike interval (ISI) for EPSPKA was dramatically lower than EPSPAMPA for different frequency
of stimulation, as shown in Fig. 14.

As we reported earlier, the INaP strongly amplified EPSPKA at a sub-threshold potential in epileptic
DGCs. Also in this experiment, the INaP is required to trigger the kainate receptor-driven rhythmic firing
pattern. As a matter of fact, the role of INaP is in the regulation of excitability and rhythmic activity,
because by blockade of INaP with tetrodoxin (TTX), the regularity of spiking from KAR was reduced and
the CV was larger, in comparison with the case in which the TTX is absent, see Fig. 15. Thus, INaP plays
a central role in the generation of the kainate receptor-driven firing pattern.

6 Results

We attempted to model the experimental set-up by considering a LIF neuron with and excitatory input that
generates α-shaped synaptic response. Depending on the type of experiment (described in sections 5.1 and
5.2) a different type of input will be used. Since the main results rely on the differences of the kinetics of

17



Figure 14: Since EPSPs generated from KAR are more regular, for different frequencies the CV of EPSPKA

is less than CV of EPSPAMPA.

Figure 15: In the presence of TTX as INaP blocker, the CV of ISI form KAR is large. while in the absence
of TTX the CV is reduced.
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Figure 16: By increasing the decaying time of EPSP, the values of Latency (on the left) and its SD (on the
right) will increase, which means the spiking time precision is decreasing and becoming more irregular. The
membrane potential is set to a=0.66; each α has specific synaptic strength g, leading to generation of spikes
in 50% of trials. The number of our trials was of the order of 104.

AMPA and Kainate receptors (EPSPfast and EPSPslow respectively), we will model these differences via the
PSP time-scale parameter α [18].

6.1 Single-Spike Stimulation

For the experiment described in sec. 5.1, we set the membrane potential of the LIF neuron to a value equiv-
alent to the holding potential. A simple comparison between the reported data in [18], and the conversion to
the adimensional units of the LIF model allowed to estimate the value of the parameter and set it to a = 0.66.

A single EPSP is generated with an average strength g and a small variability ∆g = 10%g. Very small
kicks will ever generate a spike, while very large kicks will generate it 100% of the trials. Following the
guidelines described in [18], we will compare the values of g that generate spikes 50% of the trials for differ-
ent values of the PSP time scale τα.

Once we have found the duplet [g, α] generating spikes 50% of the trials, we calculate in the spike gener-
ating trials, the average and standard deviation of the latency in the response. Results in this regard can be
seen in Fig. 16. Both the average and the standard deviation of the latency increased by increasing the value
of τα, which is in accordance with the experiment. For large τα which corresponds to KAR, the precision in
the latency is reduced and the spikes were generated irregularly.

The number of our trials was of the order of 104, and the slopes of curves were obtained by linear fitting
and its correlation coefficient was equal to 0.99.

6.2 Periodic-Spikes Stimulation

For the second experiment, we fix again the membrane potential (equivalently the a-value) to the holding
potential as reported in [8]. To account for the periodic input we generate fixed-strength EPSPs periodically
with a period T and a variability jitter (J), ∆T = J*T, and calculate the ISI statistics during the emission
of 104 spikes. According to what reported in [8], by increasing input frequencies of stimulation (νi = 1/T ),
the AMPA mediated activity produces a train of spikes with smaller precision than the Kainate mediated
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Figure 17: For g = 0.5 by increasing input frequency (ν) , the firing rate will increase. As we can see for
frequencies larger than ν = 0.40 there is a convergence in behaviour of the system for different EPSP. s
indicates the value of slope for each curve which obtained with linear fitting and correlation coefficient equal
to 0.98. The number of trials for obtaining data was of the order of 104.

activity. To estimate the values of g, αKA and αAMPA that better fit the experimental results, we examined
a wide range of values for the parameters which reads as:

a = 0.83 α ∈ [0.1, 5] g ∈ [0.1, 1] ν ∈ [0.18, 0.80] (32)

For each g, and different alpha, we calculate the “Response curve” (Output Firing Rate/Input Frequency)
slope and the ratio between the slopes for all the possible pairs of alpha; the slopes of curves were obtained
by linear fitting and its correlation coefficient was equal to 0.99.

We select the values g, αKA and αAMPA, as the closest-to-the-experimental value of the ratio between
the slopes (see Fig. 17). These values are reported here:

g = 0.5 αKA = 0.2 αAMPA = 1.2 (33)

For small values of g, we did not obtain results since the strength was too weak, also for too large values
the firing rate was almost equal to input frequency ν. By increasing α, the slopes of the curves decrease,
thus the maximum ratio of the slopes will be for α = 0.2 and α = 1.2, which we considered as Kainate and
AMPA EPSP respectively. The reason why we did not consider larger value for α is that, since the pulses
are too fast, we could not observe specific difference in behaviour of the system for α between 1.2 and 5.
The other point is that for larger values of ν from 0.40 to 0.80 for different α, the behaviour of the systems
did not change and curves were parallel, that’s why in order to better demonstrate the effect of transition
form small α to larger α, the results were illustrated until ν = 0.40.

As a final issue, we plotted the ISI and CV of different α from 0.2 to 1.5 for different range of frequencies
from 0.28 to 0.80. In each simulation we considered different percentage of jitter for the period of stimulation
(T = 1

ν ). In Fig. 18 we illustrated the behaviour of the system under 50% and 100% jitter:

From the experiment [8], we expected when the neuron is under periodic stimulation, the spikes from
KAR be more regular than AMPAR. In other words, the CV of ISI for small α (EPSPfast) be smaller than
larger α (EPSPslow). We obtained the same results for fast frequencies from 0.80 to almost 0.50, but for
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synaptic strength was equal g=0.5; The number of our trials for obtaining data and integration time for
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smaller frequencies we obtained contrary results. For small α (larger τα) the CV was larger, which indicates
under periodic stimulation the spikes from KAR are more irregular than AMPAR.

For instance, in Fig. 19 we demonstrated the distribution of ISI for ν = 0.28 for different α. In the left
figure which y − axis is in logarithmic scale, we can see for small α, the slope of distribution is lower which
indicates the spiking occurs irregularly. For fast frequencies, since the synapse receives more stimulation
during each PSP, the spiking occurs regularly, that’s why the shape of its distribution is Gaussian (see Fig.
20), while in the previous case, the shape was Poissonian.

7 Conclusion

In this document we have briefly reviewed a new phenomenon described at the Hippocampus in epileptic
rats, termed reactive plasticity. Reactive plasticity leads to the sprout of Mossy Fibers in the dentate gyrus
producing aberrant recurrent excitatory connections. In particular we focused on the experimental results
reported in [18], [8]. On one hand, in [18], it was demonstrated that under single EPSP stimulation of
Granule Cells of healthy mice (AMPA mediated), the response of the neuron occurs via precise spike-timing
with a fixed latency and small variability. In contrast, single EPSP stimulation of epileptic mice (Kainate
mediated) produced a decrease in the spike-time precision, and therefore large variability in the latency of
response. On the other hand, for a stimulation protocol consisting of periodic trains of EPSPs, granule cells
of epilleptic mice emitted spikes at high frequency and low variability; this is in contrast to healthy mice
that produced a sparse firing with high variability in the ISI.

By means of a simple model of a LIF neuron, receiving α-pulses, we aimed to emulate at qualitative
extent some of the findings reported in the above mentioned experiments. The qualitative difference be-
tween epileptic and healthy cases was modelled through different time-scales of the incoming EPSP. AMPA
mediated EPSP were assigned smaller time scales while Kainate EPSP were modelled through larger values
of the time scale; this in accordance to the reported experimental results.
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Figure 19: The distribution of inter-spike interval for ν = 0.28. Since the frequency of stimulation is small,
the shape of distribution is Poissonian and for α = 0.2 its slope is smaller, which indicates the neuron fires
more imprecise. In upper plot which the distribution is in Logarithmic scale we can compare the distribution
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same values, that’s why the peak of distribution for α = 0.2 is higher than other cases.

In the single EPSP stimulation protocol we found that the both the average and standard deviation of
the latency between the EPSP onset and the spike emission grew with the time scale of the synapse. This re-
sults were in accordance with the experiment, where epileptic mice showed a reduced precision in the latency.

In contrast, for the periodic train of stimulation, we found that under certain range of stimulation fre-
quencies, the “Response curve” behaves as expected from the experimental results, i.e, the slope of the curve
is larger for slower synapses. Nevertheless, we saw that the variability of the ISI can increase or decrease with
α depending on the stimulation frequency, contrary to what reported in [8]. We believe that the differences
between the experiments and the model can be ascribed to the simplified nature of the LIF neuron, which
is unable to capture several non-linear features of the original system.

In particular [36], has demonstrated that persistent sodium currents, which are voltage dependent can
dramatically alter cell firing and facilitate hyperexcitability, since it will amplify their responses to synaptic
inputs, thereby driving them to repetitive firing. It is worth to mention that the LIF does not consider any
voltage dependent conductances and therefore we are not able to model these currents. Despite the simplicity
of the LIF we were able to provide some insights in the generation of epileptiform activity in hippocamus,
and we believe that future research with more complete models may provide useful explanations on novel
phenomena during reactive plasticity.
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