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Effects of excitatory coupling

When Inhibition and not Excitation Synchronizes Neural Firing

In this paper of 1994 by Van Vreeswijk, Abbott, and Ermentrout the authors affirm:

It is commonly believed that excitatory synaptic coupling tend to synchronize
neural firing, while inhibitory coupling pushes the neurons toward anti-synchrony

However, in the reticular nucleus of the thalamus, synchronized oscillations occur
via purely inhibitory coupling [Wang and Rinzel (1992)]

For two coupled neurons we will show that such reversed behaviour is the rule
rather than the exception

Which is the situation for large populations of neurons ?
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Collective Dynamics in the Brain

Rhythmic coherent dynamical behaviours have been widely identified in different
neuronal populations in the mammalian brain [G. Buszaki - Rhythms of the Brain]

Collective oscillations are commonly associated with the inhibitory role of
interneurons

Pure excitatory interactions are believed to lead to abnormal synchronization of the
neural population associated with epileptic seizures in the cerebral cortex

However, coherent activity patterns have
been observed also in “in vivo” measure-
ments of the developing rodent neocortex
and hyppocampus for a short period after
birth, despite the fact that at this early stage
the nature of the involved synapses is essen-
tially excitatory [C. Allene et al., The Journal
of Neuroscience (2008)]

Calcium fluorescence traces
two-photon laser microscopy
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Summary

We analyze pulse-coupled leaky integrate-and-fire (LIF) neurons

Analysis of the dynamics of two coupled neurons

LIF neuronal models coupled

α pulses and exponential pulses

inhibitory and excitatory coupling

Hodgkin-Huxley coupled neurons

Van Vreeswijk, Abbott, Ermentout, JCN (1994);

Hansel, Mato, Meunier, Neural computation (1995)

Emergence of collective solution in fully coupled networks of LIF neurons

Splay states

Coherent collective solutions - Partial Synchronization

Abbott - van Vreeswijk, Physical Review E (1993)

Mohanty, Politi EurophysLett (2006)

Zillmer et al. Physical Review E (2007)
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Leaky integrate-and-fire

One of the simplest neuronal models : LIF neuron;

LIF combines linear integration with reset + spike emission;

Equation for the membrane potential v, with threshold Θ and reset R :

v̇(t) = I − v(t) v(t) = R + I(1 − e−t) =⇒ R + I

If (R + I) > Θ Repetitive Firing, Supra-Threshold - T = log I
(R+I)−Θ

If (I + R) < Θ Silent Neuron, Below Threshold - v(t = ∞) = R + I

In networks: at threshold a pulse is sent to the connected neurons
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Two pulse coupled LIFs

We consider two simmetrically pulse coupled LIF neurons, where R = 0 and Θ = 1, the
equation for neuron 1 is (for neuron 2 is analogous)

v̇1(t) = I − v1(t) + E1(t) E1(t) =
X

k|t
(k)
2 <t

Es(t − t
(k)
2 )

E1 is the synaptic input to neuron 1

t
(k)
2 are the firing times of neuron 2 (no delay in the pulse trasmission)

Pulses

α-function Es(t) = gα2te−αt

Exponential pulses Es(t) = gγe−γt

Delta pulses Es(t) = gδ(t)

The strenght g of the synapses is given by the
normalization condition

R ∞
0 Es(t)dt ≡ g

The synapse speed is α for the α-function

Neuron 1 Neuron 2

E
S
(t)

E
S
(t)
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Two pulse coupled LIF

Hp1) The two uncoupled g = 0 neurons are supratreshold I > 1 (periodic firing)

Hp1) When coupled g 6= 0 they continue to fire periodically with period T

The 2 neurons fire at times t
(n)
1 = nT and t

(n)
2 = (n − φ)T

0 < φ < 1 is the phase difference among the neurons

Complete Synchrony φ = 0 (or φ = 1) - Complete Anti-synchrony φ = 1/2

Excitatory case g = 0.4 – Inhibitory case g = −0.4 (DC current I = 1.3)

Excitatory case - Never completely synchronized (only for α → ∞)

Inhibitory case - The complete synchronization solution is always present
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Theoretical explanation

Neuron 1 fires at times t
(n)
1 = nT with n = −∞, . . . ,−2,−1, 0

The synaptic input to neuron 2 at time t = θT with 0 < θ < 1 is the sum of all the
pulses received in the past

E2(θT ) = ET (θ) =

0
X

n=−∞

ES(θT − nT )

For α-fuctions the sum gives

ET (θ) =
gα2T e−αθT

ˆ

θ(1 − e−αT ) + e−αT
˜

(1 − e−αT )2

ET is periodic outside the interval ]0 : 1[

Neuron 2 fires at times t
(n)
2 = (n − φ)T – The synaptic input to neuron 1 is

E1(θT ) =

0
X

n=−∞

ES(θT − nT + φ) = ET (θ + φ)
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Theoretical explanation

Neuron 1 fires at time t = 0 =⇒ x1(0+) = 0

At time T the neuron 1 reaches again threshold therefore

x1(T ) = I(1 − e−T ) + T e−T

Z 1

0
dθeθT ET (θ + φ) = 1

Neuron 2 fires at time t = −φT and after a period T it is again at threshold

x2((1 − φ)T ) = I(1 − e−T ) + T e−T

Z 1

0
dθeθT ET (θ − φ) = 1

From the two above equations one can obtain the period T0 and the phase φ0

By combining the two equations above

G(φ) =
x1(T ) − x2[(1 − φ)T ]

T
= e−T

Z 1

0
dθeθT [ET (θ + φ) − ET (θ − φ)]

If φ ≡ φ0 and T ≡ T0 then G(φ0) ≡ 0, possible solutions are

φ0 = 0 and φ0 = 1/2 since ET (θ + 1/2) = ET (θ − 1/2)
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Stability of the solutions

Any solution φ0 is stable whenever G′(φ0) > 0

One can notice that
x2[(1 − φ)T ] = 1 − TG(φ)

if φ ≡ φ0 and T ≡ T0 then x2[(1 − φ0)T0] ≡ 1, since G(φ0) = 0

If the phase is perturbed φ = φ0 + δφ the neuron 2 will fire at time

t
(n)
2 = (n − φ)T0 = (n − φ0)T0 − (δφ)T0

since the solution is stable, the neuron to maintain constant the period T0 will fire
next time at

tn+1
2 = (n + 1 − φ0)T0 + (δφ)T0 = (n + 1 − φ)T0 + 2(δφ)T0

Therefore at time t = (1 − φ)T0 the neuron has not reache the threshold

x2[(1 − φ)T ] < 1 =⇒ G(φ) ≃ G(φ0) + G′(φ0)δφ > 0 =⇒ G′(φ0) > 0
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Excitatory Coupling

g > 0 - α-pulses

α = 5.6 =⇒ φ = 1/2 Stable and
φ = 0(1) Unstable

α = 6.13 =⇒ Bifurcation - φ = 1/2

becomes Unstable and two new
solutions emerge

α = 7.0 =⇒ φ = 1/2 and φ = 0(1)
Unstable - 2 New stable solutions

The completely synchronized state
[φ = 0(1)] becomes stable only for
α → ∞
The synapse respond istantaneouslly
(like exponential and delta-pulses)
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Inhibitory Coupling

g < 0 - α-pulses

For inhibitory coupling the stability is
reversed since G(φ) ∝ g

The synchronous state is always
stable

The anti-synchronous state φ = 1/2

becomes stable for sufficiently large
α > 1.55
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Hodgkin-Huxley Model

Excitatory synapse

α-pulses

For the Hodgkin-Huxley model one can have synchronization for finite
α > α2 = 0.82/ms , whenever the rise time is slower than the width of an
action potential, nanely 1/α < 1.2ms

exponential-pulses

For two coupled HH models for low decay constant one has stable
asynchronous states at α < α1 ∼ 0.3/ms, while the synchronous states is
always stable for faster decay rates.
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Conclusions

To summarize the results presented so far for the LIF model

g > 0

the synchronous state is stable only for extremely rapid synaptic response
(namely, α = ∞) : like exponential or delta functions

the anti-synchronous state is stable for slow synapses α < αc

g < 0

the synchronous state is always stable apart for extremely rapid synapses

the anti-synchronous state is stable for fast synapses α > 1.55

In general excitation is desynchronizing for neurons with a response of Type I and for
neuron of Type II (Hodgkin-Huxley) whenever the synaptic response is sufficiently slow

Type I : the arrival of an EPSP always advances the next firing time

Type II : the arrival of an EPSP just after the refractory period delays the next
firing, while a EPSP received at a later time advances the next firing time

[Van Vreeswijk, Abbott, Ermentout, JCN (1994);
Hansel, Mato, Meunier, Neural computation (1995)]
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Pulse coupled network

A system of N identical all to all pulse-coupled neurons:

v̇j = I − vj +
g

N

N
X

i=1,( 6=j)

∞
X

k=1

P (t − t
(k)
i ) , j = 1, . . . , N

with the pulse shape given by P (t) = α2t exp(−αt).
More formally we can rewrite the dynamics as

v̇j = I − vj + gE(t), j = 1, . . . , N

the field E(t) is due to the (linear) super-position of all the past pulses

The field evolution (in between consecutive spikes) is given by

Ë(t) + 2αĖ(t) + α2E(t) = 0

the effect of a pulse emitted at time t0 is

Ė(t+0 ) = Ė(t−0 ) + α2/N

Abbott - van Vreeswiijk, Physical Review E (1993)

Nottingham 2013 – p. 15



Fully coupled network
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time
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Only regular solutions for fully coupled networks:

the membrane potentials v is periodic or
quasi-periodic

the field E is constant or periodic

van Vreeswiijk, Physical Review E 1996

Depending on the shape of the pulse (value of α) new collective solutions emerge:

Excitatory Coupling - g > 0

Low α – Splay State

Larger α – Partially Synchronized State

α → ∞ – Fully Synchronized State

Inhibitory Coupling - g < 0

Low α – Fully Synchronized State

Larger α – Several Synchronized Clusters

α → ∞ – Splay State
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Splay States

These states are collective modes emerging in networks of fully coupled nonlinear
oscillators.

all the oscillations have the same wave-form X ;

their phases are "splayed" apart over the unit circle

The state xk of the single oscillator can be written as

xk(t) = X(t + kT/N) = Acos(ωt + 2πk/N) ; ω = 2π/T ; k = 1, . . . , N

N = number of oscillators

T = period of the collective oscillation

X = common wave form

For pulse coupled neuronal networks the splay state corresponds to the N neurons firing
one after the other at regular intervals T/N – Asynchronous State
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Splay States

Splay states have been numerically and theoretically studied in

Josephson junctions array (Strogatz-Mirollo, PRE , 1993)

globally coupled Ginzburg-Landau equations (Hakim-Rappel, PRE, 1992)

globally coupled laser model (Rappel, PRE, 1994)

fully pulse-coupled neuronal networks (Abbott-van Vreesvijk, PRE, 1993)

Splay states have been observed experimentally in

multimode laser systems (Wiesenfeld et al., PRL, 1990)

electronic circuits (Ashwin et al., Nonlinearity, 1990)

Nowdays Relevance for Neural Networks

LIF + Dynamic Synapses - Plasticity (Bressloff, PRE, 1999)

More realistic neuronal models (Brunel-Hansel, Neural Comp., 2006)
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Splay State – LIF

Splay States are collective solutions emerging in Homogeneous Networks of N neurons

the dynamics of each neuron is periodic – the field E = 1/T is constant

the interspike time interval (ISI) of each neuron is T

the ISI of the network is T/N - constant firing rate

the dynamics of the network is Asynchronous
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Abbott - van Vreeswijk, PRE (1993) -- Zillmer et al. PRE (2007)
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Splay state - LIF

In this framework, the periodic splay state reduces to the following fixed point:

τ(n) ≡ T

N

E(n) ≡ Ẽ , Q(n) ≡ Q̃

x̃j−1 = x̃je−T/N + 1 − x̃1e−T/N

where T is the time between two consecutive spike emissions of the same neuron.

A simple calculation yields,

Q̃ =
α2

N2

“

1 − e−αT/N
”−1

, Ẽ = TQ̃
“

eαT/N − 1
”−1

.

and the period at the leading order (N ≫ 1 ) is given by

T = ln

»

aT + g

(a − 1)T + g

–
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Partial Synchronization
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Partial Synchronization

Splay 
State

Partial Synchronization is a collective dynamics emerging in Excitatory Homogeneous
Networks for sufficiently narrow pulses

the dynamics of each neuron is quasi periodic - two frequencies

the firing rate of the network and the field E(t) are periodic

the quasi-periodic motions of the single neurons are arranged
(quasi-synchronized) in such a way to give rise to a collective periodic field E(t)

van Vreeswiijk, PRE (1996) - Mohanty, Politi EPL (2006)
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Quasi Periodic Motion
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The dynamics of each neuron is quasiperiodic, this can be shown by reporting the
Interspike Interval (ISI)of a single neuron Tm = tm − tm−N versus the previous one
Tm−N where {tm} is the sequence of the firing times.

The map Tm = F (Tm−N ) represents a Poincaré section of the time evolution of the
system, therefore a quasiperiodic motion is represented by a closed curve and T is
periodic
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Periodic Mean-Field

0 2 4 6
time

E(t)

T(t)

Small α  - Splay State

Large  α -- Partial Synchronizaton

The ratio between the period of the field E(t) and the average ISI of the single neurons
is irrational

This peculiar collective behaviour has been recently discovered by Rosenblum and

Pikovsky PRL (2007) in a system of nonlinearly coupled oscillators and studied also
in the conntext of diluted neural networks by Olmi, Livi, Politi, AT Physical

Review E (2010)
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Splay vs Partial Synchronization

The Splay State is Asynchronous

Partially Synchronized exhibit collective dynamics
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Bifurcation

The bifurcation is Hopf supercritical leading
to the emergence of oscillatory state from a
stationary fixed point

∆ ∝
√

α − αc
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