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Plan of the Talk

The Quadratic Integrate and Fire (QIF) Neuron

Derivation of the Neural Mass Model (MPR)

(Montbrió, Pazó, Roxin, PRX, 2015)

Applications of the Neural Mass Model to

Interacting Populations (2020)

Cross frequency coupling

Theta-nested gamma oscillations

Synaptic-based working memory

Extension of the neural mass to fluctuation driven population dynamics (2021)

Neural Networks with Background Noise

Neural Networks with Random Sparse Synaptic Couplings
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Quadratic Integrate and Fire Neuron

This a very simple model, which can mimick realistic neural dynamics

dV

dt
= V 2 + η

V membrane potential with threshold Vth and reset Vr

η neural excitabilty

η > 0 Tonic Neuron

η ≤ 0 Excitable Neuron

The model has been developed to reproduce parabolic bursting in neurons of the Aplysia

abdominal ganglion (when sinusoidally forced) and low firing neurons (Class I).

Ermentrout and Kopell, (1986) SIAM Journal on Applied Mathematics

Latham et al. (2000) Journal of Neurophysiology
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Quadratic Integrate and Fire Neuron

Tonic neuron η > 0

The firing period is Tfiring = π
√
η

Excitable neuron η ≤ 0

If V (t0) ≤
√

|η| - Subthreshold

Dynamics V → Vrest = −
√

|η|

If V (t0) >
√

|η| emission of a spike

followed by relaxation to Vrest
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Population of QIF neurons

The evolution of the membrane potentials of N globally cou-

pled heterogeneous neurons can be written as

dVj

dt
= V 2

j + ηj + Ie(t) + Jr(t)

where

ηj is the excitability of neuron j

Ie(t) is some external current

J is the synaptic coupling – J > 0 (J < 0) excitatory (inhibitory) neurons

r(t) =
1

N

∑

j

∑

k(j)

δ(t− tk(j)) =
1

N

∑

j

rj(t)

is the average firing rate due to all the post-synaptic potentials (δ-spikes) emitted

by all neurons in the network
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Neural Mass Model

In the limit N → ∞ we can describe the population of N neurons in term of a probability

density function (PDF) ρ(V |η, t) of their membrane potentials

Continuous formulation

ρ(V |η, t)dV = fraction of neurons with

membrane potentials between V and

V + dV , with excitability η, at time t

The excitabilities ηj ⇒ are continuous

random variable distributed according to

a PDF g(η)

Since the number of neurons should be conserved in time, the PDF ρ satisfies the

following

Continuity equation ∂tρ+ ∂V [(V 2 + η + Jr + Ie)ρ] = 0

The stationary solution ρ0 (for constant Ie) is given by

ρ0(V |η) ∝
1

V 2 + η + Jr + Ie

this is a Lorentzian (or Cauchy) Distribution L(x) = ∆
π(x2+∆2)
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Neural Mass Model

Lorentzian Ansatz

MPR assumed that also for non-stationary case the distribution is Lorentzian at any time

ρ(V |η, t) =
1

π

x(η, t)

[V − y(η, t)]2 + x(η, t)2

where the median y(η, t) and the HWHM x(η, t) correspond to the

Mean Membrane Potential

v(η, t) = y(η, t)

for the neurons with excitability η

Firing Rate

r(η, t) =
x(η, t)

π

for the neurons with excitability η
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Neural Mass Model

Therefore within the Lorentzian Ansatz the continuity equation can be rewritten as

follows for the complex variable w(η, t) = πr(η, t) + iv(η, t)

∂tw(η, t) = i[−w2(η, t) + η + Js+ I]

This is a neural mass equation describing the dynamics of a population of neurons with

the same excitability η in terms of their firing rate r(η, t) and their mean membrane

potential v(η, t).

However for a heterogeneous population one has still an extremely large number of

equations corresponding to all the possible values of the excitability ηi

How can we reduce the system to a low dimensional one ?
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Neural Mass Model

Systems with random heterogeneities have been treated exactly in statistical mechanics

by assuming a Lorentzian distribution for the heterogeneities E. Yakubovich,

Soviet Physics JETP. 1969

g(η) =
1

π

∆

(η − η̄)2 +∆2

This allows to estimate exactly the average mean membrane potential and firing rate

v(t) =

∫ +∞

−∞

v(η, t)g(η)dη r(t) =

∫ +∞

−∞

v(η, t)g(η)dη

2-dimensional Neural Mass Model

ṙ =
∆

π
+ 2rv v̇ = v2 + η̄ + Jr + I(t)− π2r2

[Montbrió, Pazó, Roxin, Phys. Rev. X (2015)]
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MPR Model

2-dimensional Neural Mass Model

ṙ =
∆

π
+ 2rv v̇ = v2 + η̄ + Jr + I(t)− π2r2

This Neural Mass Model describes exactly the dynamics of the Network done of N QIF

neurons

[Montbrió, Pazó, Roxin, Phys. Rev. X (2015)]
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γ Oscillations in Inhibitory Networks

Fast γ oscillations emerge in recurrently coupled inhibitory networks

An external excitatory drive tends to synchronize the inter-neuronst that fire

together

The firing of the inhibitory neurons leads to their silencing on a timescale dictated

by the duration τd of the post-synaptic potentials S

This mechanism generates collective oscillations in the network

[Whittington, Traub, Jefferys, Nature. 1995]

If τd >> τm, the synaptic time scale is longer that that the membrane time scale no

oscillations, the recurrent input appears as an average inhibitory current

[DeValle, Roxin, Montbrió, PLOS Comp Biol (2017)]
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γ Oscillations in Inhibitory Networks

τmṙ =
∆

τmπ
+ 2rv

τmv̇ = v2 + η̄ − τmJ(ii)S + I(i) − (πτmr)2

τdṠ = −S + r

super-critical Hopf-Bifurcation to COs

Ceni, Olmi, AT, Angulo Garcia, Chaos (2020)

INS, Marseille 01/04/21 – p. 12



γ Oscillations in Inhibitory Networks

Oscillations are sustained within a frequency range (ν ≃ 5− 30Hz) thanks to

finite synaptic time τd

self-inhibitory action of neurons

For increasing heterogeneity (∆ = 0.01, ∆ = 0.05, ∆ = 0.1 , ∆ = 0.14) the

observation of collective oscillations requires finer tuning of the parameters

Frequency decreases for increasing τd and J
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γ Oscillations in Inhibitory Networks

The heuristic firing rate models (e.g. Wilson-Cowan model)

τmṙ = −r + F (−τmJ(ii)S + I(i))

τdṠ = −S + r

do not display Collective Oscillations without introducing an effective delay which takes

somehow in account for the sub-threshold dynamics

Firing rate models do not encompass Subthreshold Dynamics of the Membrane

potential

The membrane potential dynamics is fundamental to have synchronization effects

The MPR model reproduces network dynamics in this case, Wilson-Cowan not

[DeValle, Roxin, Montbrió, PLOS Comp Biol (2017)]
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θ-γ Cross Frequency Coupling

One of the most present cross-frequency coupling in the brain is the interaction between

slow θ-rhytms (5-10 Hz) and fast γ-oscillations (20-100 Hz)

Which is the origin of this CFC ?

White, Banks, Pearce, and Kopell, PNAS 2000 proposed that θ-γ CFC emerges due to

the interaction of two inhibitory populations with different kinetic properties

Two classes of interneurons identified in the

Hippocampus (CA1)

GABAA,fast τd ≃ 9 ms

GABAA,slow τd ≃ 50 ms

May we observe this phenomenon for two coupled neural masses A and B with

exponential synapses with different kinetics ?

A slow inhibitory population A with self-coupling JAA = −2,

A fast inhibitory population B with self-coupling JBB = −11

Cross-couplings JAB (A → B) and JBA (B → A)
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θ-γ Cross Frequency Coupling

Fast population: τA,d = 9 ms - Slow population: τB,d = 50 ms

3 : 1 phase-locking mode: θ − γ coupling

⇒ For large values of JAB and disorder ∆, the 3 : 1 locked mode is lost

[Ceni, Olmi, AT, Angulo Garcia, Chaos (2020)]
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θ-γ Cross Frequency Coupling

External θ-forcing on the slow population θ ≃ 10 Hz

Fast population: τA,d = 9 ms - Slow population: τB,d = 50 ms

⇒ Power in the θ band is increased

⇒ Adding the (slow) modulation to the slow population increases the amount of disorder

(∆) that can sustain the θ − γ coupling

[Ceni, Olmi, AT, Angulo Garcia, Chaos (2020)]
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θ-γ Cross Frequency Coupling

IB = I0 sin(2π10t)

∆ = 0.05

Phase-phase CFC:

collective oscillations

of the slow population

an of the fast one are

locked in phase

∆ = 0.2

Phase-amplitude CFC:

the slow population

modulates the

amplitude of the

oscillations of the fast

one
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θ Nested γ Oscillations

Several optogenetic experiments performed in different areas of the hippocampus and

entorhinal cortex suggest that a θ frequency drive is sufficient to induce in vitro θ-γ CFCs

Butler et al. (2016) stimulated CA1

pyramidal neurons with an excitatory drive

Iθ = I0 sin(νθt) with νθ ∈ [1 : 10] Hz in

vitro

They show that this is sufficient to

generate intrinsic CA1 γ oscillations in

vitro similar properties to in vivo CA1 γ

oscillations.

They suggest that the mechanism for the

generation of the oscillations is of the

pyramidal - interneuron gamma (PING)

type
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θ Nested γ Oscillations

Excitatory-Inhibitory Neural Masses

We consider two coupled populations : an excitatory and an

inhibitory plus an external periodic forcing on the excitatory

population

We observe θ nested γ oscillations as in the experiments

[Segneri, Bi, Olmi, AT Front. Comp. Neuroscience (2020)]
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θ Nested γ Oscillations

Comparisons with the experiments

I(e)(t) = I0 sin(νθt)

nested γ oscillation

are observable in

the whole θ-range

νθ = [1 : 10] Hz

For increasing I0

the amplitude of the

γ-oscillations

increases
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θ Nested γ Oscillations

Power Spectra

νθ : forcing frequency

Fr : response frequency

I0 : forcing amplitude

Pγ : power under the main γ-peak

Black stars : simulations

Red cicles experiments:

Filled: Butler et al., J. Neurosci. (2016)

Empty: Butler et al., Eur. J. Neuroscience

(2018)
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θ Nested γ Oscillations

Power Spectra

Fr grows with I0 (as in experiments)

and with the noise amplitude

In the experiments Fr grows with νθ :

in the simulation this happens only by

increasing at the same time the

θ-power

[Segneri, Bi, Olmi, AT Front. Comp. Neuroscience (2020)]
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Synaptic-Based Working Memory

What is working memory (WM) ?

Working memory is a cognitive function fun-

damental for goal directed behaviours

solve a task

achieve the desired goal

Information can be rapidly

stored & maintained

processed

rehearsed
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Synaptic-Based Working Memory

How to measure WM related activities ?

Train a subject (animal or human) to solve a task

requiring short-term storage of information

Perform electrophysiological

measurements:

Electrodes: spike trains or local field

potentials (LFPs)

Electroencephalography (EEG):

Event Related Potentials (ERPs)

Delayed response paradigm:

Present a sample

Remove the sample for a delay period

Test if new samples match the initial

one
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Synaptic-Based Working Memory

Early experimental results

Fuster & Alexander (1971):

Single unit recording in monkeys in the

prefrontal cortex (PFC)

Sample presentation (cue) evokes

increased firing

Enhanced activity persists in delay period

Information is stored in WM via persistent spiking

Criticisms to the Persistent State Paradigm

High metabolic cost

Data processing artifacts (neural spiking

averaged over time and across trials)

Absence of delayed activity in some

experiments
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Short-Term Synaptic Plasticity (STP)

A pioneering study revealed that the interactions among pyramidal neurons in the PFC

display synaptic facilitation lasting hundreds of milliseconds [Wang et al., Nature

Neuroscience (2006)] :

Synaptic Plasticity could be relevant for WM

Short-term synaptic plasticity can be mimicked with a model developed by Tsodyks, et

al. (1998) based on 2 synaptic variable :

depression x(t) and facilitation u(t)

The post-synaptic potentials delivered by neuron i are given in this model by:

Jxi(t)ui(t)

xi(t) is the fraction of still available resources after neurotransmitter depletion

ui is the the fraction of available resources xi ready for use : uixi
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Short-Term Synaptic Plasticity (STP)

The evolution in time of these 2 synaptic variables is given by

dxi

dt
=

1− xi

τd
− uixiδ(t− t

(i)
k

)
dui

dt
=

U − ui

τf
+ U(1− ui)δ(t− t

(i)
k

)

Following a spike emission,

ui increases due to spike-induced calcium

influx to the presynaptic terminal

after which a fraction ui of available resources

xi is consumed to produce the post-synaptic

current

Between spikes,

ui decays back to U with time constant τf

xi recovers to one with time constant τd

[Tsodyks, Pawelzik, Markram (1998) Neural Computation]
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Short-Term Synaptic Plasticity (STP)

Facilitation Dominated Synapse τf = 1500 ms >> τd = 200 ms

[Tsodyks, Pawelzik, Markram (1998) Neural Computation]
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Synaptic Theory of Working Memory

A new paradigm

A spiking network model for WM with

synaptic depression x and facilitation u

Cue presentation triggers:

depression x & facilitation u

Depression: Triggers population bursts

needed to refresh memory

Facilitation: Silent WM maintenance &

selectivity for unspecific stimuli

[Mongillo, Barak, and Tsodyks,

Science (2008)]
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Synaptic Theory of Working Memory

Benefits of Synaptic Theory of Working Memory

WM is maintained in absence of spiking

Population bursts allow interference free

storage of more memory items

Information is stored at a population level

We search for a neural mass model for WM:

Based on short-term synaptic plasticity

(STP)

Able to exhibit spike synchrony

Capable to give acces to experimental

measures (EEGs,LFPs,ERPs)

IDEA : extend the MPR model by including STP
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Synaptic-Based Working Memory

Neural Mass with Synaptic Depression and Facilitation
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Synaptic-Based Working Memory

Minimal Architecture to Load up to Two Items in the WM

Each Item is Loaded in an Excitatory Population

The Inhibitory Pool avoids Abnormal synchronization

3 Neural mass Models ===> 10 Degrees of Freedom

Comparison with networks with N = 600, 000 neurons
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Synaptic-Based Working Memory

Loading of One Item in the WM

[Taher, Olmi, AT PLOS Comp Biol (2020)]
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Comparison with Experimental Data

The novelty of this neural mass is that we have at disposal the mean membrane potential

V and we can estimate the Power Spectra (the Spectrogram) and compare with

experimental measurements at a macroscopic scale (LFPs, EEGs, ERPs)

LFP measurements in prefrontal cortex of monkeys during WM tasks
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LFPs in Monkeys

[Taher, Olmi, AT PLOS Comp Biol (2020)]
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LFPs in Monkeys

[Taher, Olmi, AT PLOS Comp Biol (2020)]
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EEGs in Humans

[Taher, Olmi, AT PLOS Comp Biol (2020)]
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Multi-item Loading in WM

Multiple items can be loaded in an architecture with 7 excitatory populations and 1

inhibitory pool

Three Item Loading in WM

Activity in the δ-band upon item

presentation

Fundamental memory cycle

frequency fcycle

Frequency of burst emission fburst

Resonance with the β-band

sub-thresold oscillations

[Taher, Olmi, AT PLOS Comp Biol (2020)]
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Working Memory Capacity

A series of studies have investigated the working memory capacity and indicated as

maximal number of stored items Nc ≃ 3− 5

[Cowan N, Behavioral and brain sciences (2001); Cowan N, Current

directions in psychological science (2010)]
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Working Memory Capacity

How to measure the WM Capacity from neurophysiological data ?

Vogel et al. (Nature 2004, Nature 2005) introduced a measure of the WM capacity on

humans based on event-related potentials (ERPs) from adults performing a visual

memory task.

The task consists in memorizing an array of NL colored squares
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Working Memory Capacity

The mean membrane potential can be employed, analogously to the ERP in the

experiments, as a proxy to measure the memory load and capacity
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Neural Mass for Fluctuation Driven

Populations

The MPR Neural Mass (PRX,2015) reproduces the dynamics of one

heterogeneous population of globally coupled neurons

The MPR model can be extended to two or more interacting populations

The MPR model can be extended to the whole connectome:

[V. Jirsa, S. Olmi, G. Rabuffo, et al, bioRxiv 2 preprints (2021)]

The MPR model has been extended to encompass delay, gap junctions,

short-term plasticity, asymmetric spike forms, conductance based neurons etc

However so far this Neural Mass always concerns globally coupled neurons without

noise sources, a non realistic representations of neural systems, which always present:

background noise

random distribution of the synaptic connections

May we develop a Neural Mass encompassing quenched and dynamical disorder sources ?

YES WE DID !
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Neural Mass for Fluctuation Driven

Populations

The MPR model is based on the assumption that the distribution of the membrane

potentials is Lorentzian (LD),

The presence of dynamical disorder modifies the LD, which is now distorted

The LD cannot be expanded in regular cumulants or moments, they all diverge

We have introduced an expasion of the LD in pseudo-cumulants, to treat distorted LD

This allow to derive a neural mass encompassing different sources of noise

A low dimensional mean-field model reproducing the dynamics of spiking QIF

neurons

subject to background noise

and/or arranged in sparse random network

[Goldobin, diVolo, AT, "A reduction methodology for fluctuation

driven population dynamics", preprint (2020)]
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The Model

For a heterogeneous population of QIF neurons subject to different noise sources we

can derive a 4 dimensional neural mass model

ṙ =
∆η +∆Jr + p2

π
+ 2rv

v̇ = I0 + η0 + J0r − π2r2 + v2 + q2

q̇2 = 2NR + 4(q2v − πp2r)

ṗ2 = 2NI + 4(πq2r + p2v)

Four Macroscopic Variables :

Mean Membrane Potential and Firing Rate (v, r)

Two Dynamical Variables for the LD Distortions (q2, p2)

Quenched heterogeneities

Excitabilities : LD with (η0,∆η)

Synaptic Couplings : LD with (J0,∆J )

Noise Sources are encompassed in the terms (NR,NI)
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Background Noise

Globally coupled inhibitory network of QIF neurons each subject to independent additive

Gaussian noise of variance σ2 : (NR = σ2,NI = 0)

the bifurcation diagram reveals Asynchronous States (ASs), Collective Oscillations

(COs) and regions of coexistence of ASs and COs

the neural mass results are in agreement with the network simulations

the MPR model cannot capture even qualitatively these regimes displayed by the

noisy spiking network

Noise induced COs in absence of any synaptic or delay time scale

[Goldobin, diVolo, AT, bioRxiv (2020)]
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Sparse Networks

Random network with in-degrees kj distributed as a LD, with median K and

HWHM ∆K = ∆0K.

We assume that each neuron receive kj independent Poissonian spike trains with

rate r

This amounts to set (NR = (J2
0 r)/(2K),NI = −∆0NR)
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Summary

The Next Generation Neural Masses of MPR open a complete new perspective for

realistic simulations of heterogenous spiking networks

The Neural Masses reproduce with high fidelity the network dynamics:

not only the firing rate but also the sub-threshold membrane potential

dynamics

synchronization and de-synchronization phenomena

The Neural Masses reproduces relevant neuroscience phenomena:

θ-γ cross coupling in the hippocampus and other areas

fast and slow γ oscillations in the hippocampus

working memory processes

the neural mass MPR can be extended to capture fluctuation driven phenomena

present in realistic brain circuits

[Ott, & Antonsen Chaos (2008)] 753 citations
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Collaborators
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Marco Segneri Honjie Bi Matteo di Volo Denis Goldobin
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