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Stability of the splay state in pulse-coupled networks
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The stability of the dynamical states characterized by a uniform firing rate (splay states) is analyzed in a
network of globally coupled leaky integrate-and-fire neurons. This is done by reducing the set of differential
equations to a map that is investigated in the limit of large network size. We show that the stability of the splay
state depends crucially on the ratio between the pulse width and the interspike interval. More precisely, the
spectrum of Floquet exponents turns out to consist of three components: (i) one that coincides with the
predictions of the mean-field analysis [Abbott and van Vreesvijk, Phys. Rev. E 48, 1483 (1993)], (ii) a
component measuring the instability of “finite-frequency” modes, (iii) a number of “isolated” eigenvalues that
are connected to the characteristics of the single pulse and may give rise to strong instabilities (the Floquet
exponent being proportional to the network size). Finally, as a side result, we find that the splay state can be

stable even for inhibitory coupling.
DOI: 10.1103/PhysRevE.76.046102

I. INTRODUCTION

Understanding the mechanisms of information processing
in the brain can be tackled by analyzing the dynamical prop-
erties of neural network models. Nonetheless, approaching
the problem in full generality is a formidable task, since it
requires taking into account (i) the role of the topology of the
connections, (ii) the dynamics of the connection themselves
as a representation of the synaptic plasticity, (iii) the internal
dynamics of the model neurons, which can depend on the
number of ionic channels and other variables and parameters,
(iv) the diversity among neurons and connections, and (v)
the unavoidable presence of noise. On the other hand, we can
conjecture that at least some basic mechanisms are quite ro-
bust and may depend on only a few ingredients. In fact, even
simple models made of globally coupled identical units ex-
hibit interesting dynamical properties, far from being com-
pletely interpreted. For instance, the stability of their steady
states is still a debated problem. In fact, one can find claims
that the splay state [1], characterized by a uniform spiking
rate of the neurons, is stable only in the presence of excita-
tory coupling [2], and yet stable splay states have been found
also in networks with fully inhibitory coupling [3]. The stan-
dard approach for determining the stability properties of such
simple models is based on the mean field approximation.
This allows us to obtain the spectrum of eigenvalues associ-
ated with the stability matrix in the thermodynamic limit N
— oo, N denoting the number of neurons. It is far from obvi-
ous if and how such results can be extended to the stability
problem of large but finite networks. This is all more impor-
tant in the light of some currently known results: (i) for in-
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hibitory coupling, in the thermodynamic limit, the splay state
has been shown to be marginally stable for finite pulse width,
while strictly stable for S-like pulses [3]; unstable, transient
dynamics has been observed for excitatory coupling [4].
Moreover, we have discovered that in the limit of vanishing
pulse width, the formula derived in Ref. [2] does not coin-
cide with the result of direct simulations.

We want to point out that assessing the linear stability of
the splay state is just a preliminary step towards a complete
understanding of the dynamical properties of neural net-
works. Nonetheless, even the accomplishment of this
“simple” task is going to reveal unexpected subtleties, which
should be taken into account for pursuing further progress. In
particular, in this paper we introduce a specific formalism for
determining the stability of the splay state in (in)finite en-
sembles of neurons. The approach is not entirely new, as it is
based on the introduction of a Poincaré section, which trans-
forms the original dynamical system into a map connecting
dynamical configurations of the neural network after con-
secutive neural pulses (spikes). A similar technique was used
in Ref. [5] for obtaining analytic upper bounds of the maxi-
mum stability exponent of disordered neural networks with
global inhibition. In Ref. [6] such a technique was exploited
to setup a general approach for the investigation of various
dynamical regimes, including the splay state. The analysis
was performed by considering the dynamical transformation
describing consecutive spikes of the same neuron: due to its
complicacy such a transformation does not allow us to pro-
ceed much beyond formal statements. In this paper we have
taken advantage of the idea of constructing a map between
consecutive spikes of whatever neurons, combined with a
suitable shift of the neuron labels. In this way the computa-
tional complexity is significantly reduced with respect to
Ref. [6] and we are able to also obtain analytic expressions
for large finite values of N.

One important consequence of our analysis is that one
must be extremely careful when dealing with the stability
problem generated by finite pulse width in large networks.
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Actually, even if the leading correction to the mean-field
approximation is found to be O(1/N), we show that higher
order corrections, up to O(1/ N?), have to be taken into ac-
count for determining the correct stability properties, even
for arbitrarily large values of N.

Another important result of our study is that the thermo-
dynamic limit does not commute with the zero pulse-width
limit. In order to clarify this issue we consider the stability
problem in the presence of pulses, whose width is inversely
proportional to N. Although this recipe may appear a math-
ematical trick, it allows one to point out a crucial aspect of
the problem at hand: when both N and the spiking rate are
large, their ratio is the only relevant stability parameter. This
implies also that the stability of a network subject to fixed
small pulse widths may qualitatively change when N is in-
creased, precisely because the above mentioned ratio varies.

In this paper we also clarify the basic question whether a
given network of pulse-coupled neurons exhibits a finite sta-
bility or if it is “marginally” stable. A general formula ob-
tained in Ref. [2] indicates that the amplitude of the eigen-
values of the stability spectrum of the splay state converges
to zero from below as 1/N?. This implies that infinitely large
networks exhibit an arbitrarily large number of eigenvalues
arbitrarily close to zero. Accordingly, one should conclude
that marginal stability is a generic feature of infinite net-
works. This seems to contrast with the result of Ref. [3],
where numerical evidence of stability in the thermodynamic
limit was found for &-like pulses. Our analysis clarifies that
the Abbott—Van Vreeswijk’s formula [2] applies to the case
of finite pulse width, while in the case of vanishing pulse
width, stability is also maintained in the thermodynamic
limit. The following argument provides a heuristic explana-
tion of the mechanism generating such different stability
conditions. In networks of pulse-coupled oscillators the same
pulse acts differently on the various oscillators, because they
can be located in different regions of their phase space, when
the pulse is received. If the states of two neurons are close to
each other in phase space (e.g., the neurons exhibit almost
equal values of their membrane potentials), they will experi-
ence only slightly different effects from the same pulse of
finite width. This concludes that the two neurons are very
weakly coupled, thus yielding very small values of the Flo-
quet stability exponent. The same is no longer true when
very small (infinitesimal) pulse widths are considered, since
the coupling field also oscillates strongly over “microscopic”
time scales, even for large values of N. In other words, the
“roughness” of the coupling is able to strongly lock the neu-
rons, thereby yielding a finite stability of the splay state.

By this argument one can also understand the limitations
of the mean-field approach proposed in Ref. [2]. In fact, once
the neurons are ordered according to their instantaneous po-
tential, we have verified that in many cases the stability of
the state is controlled by the stability of “high-frequency”
modes. A typical example of such a mode is the perturbations
associated with the forward (backward) shift of the even
(odd) neurons (see Sec. IV). These modes are by definition
neglected in the mean-field approach [2].

In Sec. II, we describe the model of leaky integrate-and-
fire neurons considered in this paper and we reduce it in full
generality to an event-driven map. Moreover, also the for-

PHYSICAL REVIEW E 76, 046102 (2007)

malism for the linear stability analysis is introduced. In Sec.
III, we discuss the stability of the splay state in the case of
finite pulse width. Section IV is devoted to the analysis of
vanishing (1/N) pulse widths. A brief summary of the results
and future perspectives are reported in Sec. V.

II. THE MODEL

We consider a network of N identical leaky integrate-and-
fire neurons. The dynamics of the ith neuron is described by
a single variable, the membrane potential v(¢), which obeys
the differential equation

v;=a-v;+gE{), (1)

where all variables and parameters are expressed in adimen-
sional rescaled units (for a comparison with physical scales
see the discussion in Ref. [3]). According to the above equa-
tion, the membrane potential v; relaxes towards the value a
+gE(t), but as soon as it reaches the threshold value v;=1, it
is reset to v;=0 and a spike is simultaneously sent to all
neurons (see below for the spike definition). This resetting
procedure is an approximate way to describe the discharge
mechanism operating in real neurons. The parameter a> 1
corresponds to the suprathreshold input current, while g
gauges the strength of the effective coupling field E(z). This
field is the linear superposition of the pulses emitted when
the membrane potential of each single neuron reaches the
threshold value. By following Ref. [2], we assume that the
shape of a pulse emitted at time 7=0 is given by E(7)
:%e‘“’, where 1/ is the pulse width. This is equivalent to
saying that the total field evolves according to the equation

2
() +2aE(0) + PED) == Si—1,), 2)

nlt, <t

where the sum in the right-hand side represents the source
term due to the spikes emitted at times 7, <t.

A. Event-driven map

As anticipated in the Introduction, it is convenient to
transform the differential equations into a discrete-time map-
ping. We do so, by integrating Eq. (2) from time ¢, to time
t,+1, Where 1, is the time immediately after the nth pulse has
been emitted. The resulting map reads

E(n+1)=En)e " + NO(n)m(n)e ™", (3a)

o2
O(n+1)=0(n)e @™ + ]?’ (3b)

where m(n)=t,,,—t, is the interspike time interval and, for
the sake of simplicity, we have introduced the new variable
Q:=(aE+E)/N.

Accordingly, also the differential equations (1) can be in-

tegrated by exploiting the known time dependence of the

field E,
vin+1)=v,(n)e ™ +a(l —e ™)+ gF(n), i=1,...,N,
(4)

where F is
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o7 _ o)

Flm) = a-1

NQO(n).
(5)

The interspike time interval 7 is obtained by imposing the
condition v,,(n+1)=1,

NQ(n)) _ e

(E(n) + (@ 1)

a-1

v,(n)—a }

() =ln{ 1-gF(n)-a

(6)
where the index m denotes the closed-to-threshold neuron.
Equations (4) and (5) can be written in a more compact form
by expressing F(n) as a function of 7(n) from Eq. (6),

viin+ ) =v,(n)e ™ +1-v,(n)e™, j=1,....N-1.
(7)

Since in networks of identical neurons the order of the po-
tentials v, is preserved, it is convenient to introduce a comov-
ing frame, i.e., x;(n) =v;_,(n). In this frame, the label of the
closest-to-threshold neuron is constant and can be chosen
equal to 1, without prejudice of generality. The updating
equation is written as

xi_y(n+1) =xj(n)e_’(") +1-x,(n)e™, j=1,...,N—1,

(8)
with the boundary condition xy=0 and where
xi(n)—a
=ln| —————|. 9
e “[1—gF<n>—a} ®)

The set of equations (3), (5), (8), and (9) defines a discrete-
time mapping [notice that in the comoving frame the label m
in Eq. (6) is always set equal to 1], that is fully equivalent to
the original set of ordinary differential equations. Altogether,
it turns out that a network of N identical neurons is described
by N+1 equations: Two of them account for the dynamics of
E(n), while the remaining N—1 equations describe the evo-
lution of the neurons (xy is no longer a variable being, by
definition, equal to 0). Accordingly we see that, at variance
with Ref. [6] where no field dynamics was explicitly intro-
duced, the model has a finite dimension.

In this framework, the periodic splay state reduces to a
fixed point that satisfies the following conditions:

=, (10a)
Em)=E, Q) =0, (10b)
So=xe N+ 1 -5, (10¢)

where T is the time elapsed between two consecutive spike
emissions of the same neuron. A simple calculation yields

2
~ o _ ~
- N2(1 _ e—aT/N)—l, E= TQ(eaT/N_ 1)—1 .
The solution of Eq. (10c) involves a geometric series that,

together with the boundary condition Xy=0, leads to a tran-
scendental equation for the period 7. Not surprisingly, the
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result turns out to be independent of the pulse width «. For
simplicity, we report only the leading terms for N> 1,

T+ .
Fyy= B (1 = iy, (11a)
T+
T=ln[&}. (11b)
(a-DT+g

By assuming that the uncoupled neurons are in the repetitive
firing regime, i.e., by taking a>1, the period T is well de-
fined in the excitatory case (g>0) only for g<1 (T—0,
when g approaches 1), while in the inhibitory case (g<0), a
meaningful solution exists for any coupling strength (7—
for g— —o0).

B. Linear stability

In order to perform the stability analysis of the splay state,
it is necessary to linearize Egs. (3) and (8) around the fixed
point (10),

SE(n+1)=e"*"NSE(n) + Te " 50Q(n)

— (aE = NQe ™) 5x(n), (12a)

50(n+1)=e""N50(n) — aQe " 51(n),  (12b)

xj_y(n+1)= e‘T/N[éxj(n) — o (n)]+ e "N(F, - X;)6r(n),
(12¢)

where we have introduced 87(n) whose expression can be
obtained by linearizing Egs. (9) and (5)

ot(n) = 7,6x,(n) + 70E(n) + 7,60(n); (13)

where 7,:=d7/dx; and analogous definitions are adopted for
7 and 7.

The boundary condition x,=0 imposed by the comoving
frame yields dxy=0. In practice, the stability problem is
solved by computing the Floquet spectrum of multipliers
{mi}, k=1,...,N+1 associated with the eigenvalue problem
of the set of linear equations (12). In general the explicit
computation has to be performed numerically.

For the sake of clarity, it is first convenient to discuss the
trivial case of vanishing interaction, i.e., g=0. After simple
calculations the eigenvalues turn out to be u;=exp(igy),
where gokzz—:,k, k=1,...,N-1, and uy=pun, =exp(—aT/N).
The last two exponents concern the dynamics of the coupling
field E(z), whose decay is ruled by the time scale o'

As soon as the coupling is on, small amplitude fluctua-
tions ~O(g/N) affect the neuron dynamics and the spectrum
of Floquet multipliers takes the general form

21k

o=y

My = eTOwertion IN (14)

T(\Hiwp/N
9

W = e%ke k=1,...,N—-1,

= eTONHONIN,
where A\, and w; are the real and imaginary parts of the
Floquet exponents. As an example, in Fig. 1 we show the
spectrum of the Floquet multipliers of the splay state for
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FIG. 1. (Color online) Unitary circle and exact Floquet multi-
pliers spectra for the complete maps for N=20 (red circles) and N
=10 (blue crosses) for excitatory coupling. The parameters are a
=3.0, g=0.4, and a=30.0.

excitatory coupling (g>0) and finite values of N. The mul-
tipliers with k=1,...,N—1 are very close to the unit circle,
while the two isolated multipliers uy and wuy,; lay very close
to the real axis inside the unit circle. We want to point out
that already for g/N=~0(1072) the multipliers of the coupled
case can be viewed as small “perturbations” of the uncoupled
one. This observation supports the perturbative approach that
we are going to discuss in the following sections.

Before accomplishing this task, it remains to comment
that the variable ¢, plays the same role of the wavenumber in
the linear stability analysis of spatially extended systems, so
that we can say that N\, characterizes the stability of the kth
mode. In the following analysis it is convenient to distin-
guish between modes characterized by ¢,=~0, mod(2)
+O(1/N), and the other modes. Actually they identify two
spectral components, that require a different mathematical
treatment. The first component corresponds to the condition
lug=1]|~N"" and is referred to as “long wavelengths”
(LWs), while the second one corresponds to ||u,— 1]~ O(1)
and is referred to as “short wavelengths” (SWs).

II1. FINITE PULSE WIDTH

In this section we investigate the stability problem of the
splay state for networks subject to pulses with finite « (i.e.,
independent of the system size) for large values of N. This is
also the setup studied in Ref. [2] by a mean field analysis. By
retaining all the terms up to the order 1/N, the event-driven
map [see Egs. (3) and (8)] simplifies to the set of N+ 1 equa-
tions

En+1)=(1-anEn)+NQO0n)T, (15a)
2
Q(n+1)=(l—aT)Q(n)+1%, (15b)
xif(n+ 1) =1 =1x;(n) + 1 —xy(n) + 7, (15¢)
where j=1,...,N—1 and 7x; has been approximated with 7

by recalling that 1—x; =~ O(1/N). Here the expression of the
interspike interval (9) simplifies to

Hn) = 1 —x(n)

a-1+gEn) (16)
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The periodic solution for the pulse field becomes E=T"', and
Q=al/NT, while X; and the period T are still given by Eq.
(11). The Floquet eigenvalue spectrum uy, k=1,...,N+1,
can be obtained by linearizing Eqgs. (15) around this periodic
solution and by assuming that each perturbation grows as u,

M OE = (1 — aT/N)SE + TSQ, (17a)
80 = (1 — aTIN) & «“ s (17b)

Mk Q_ -—a Q_ NT 7,
M0xj_q = (1 = TIN) &x; — oxy + (1 - X)) 6. (17¢)

An explicit expression for o7 is obtained by evaluating the
derivatives of Eq. (16)

T° T
8t=——06E — —6x,.
N g

With this substitution in Eq. (17) we conclude that the eigen-
value problem amounts to finding the N+1 roots w,; of the
associated polynomial. A partial simplification of the prob-
lem can be obtained by extracting from Egs. (17b) and (17¢)
the dependence of o7 directly in terms of the perturbation of
the potential of the next-to-threshold neuron dx;,

ot7=Kbx,, (18)
where

o?gT
N*(u;— 1+ aT/N)?

K=|-(a-1+g/T)+ (19)

Finally, by substituting this expression into Eq. (17a), we
obtain a closed set of equations for the perturbations of the
membrane potentials

Mk5Xj_1:(1_T/N)§Xj+(K—1)6xl—K.’fj5xl. (20)

After imposing the boundary condition dxy=0, Eq. (20) re-
duces to the following eigenvalue equation:

1= ™1
w 1ol = K(a+ g/T)% “[Ka—1+g/T)+1]
— Mg
1= -l
><—1 ol (21)

where K is a function of u; [see Eq. (19)]. In order to solve
the above equation analytically, it is necessary to distinguish
between long and short wavelengths.

A. Long wavelengths

Let us consider the modes for which |g,—1]|~N"" or,
equivalently, ¢; =0, mod (27)+O(1/N). In order to simplify
the notation we define

Ak =

N =

In M-

At leading order, K writes
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2 -1

a’g
K=|-(a=1+g/T) + ——>—
(@-1+e/D+ 73 1 oy

By replacing this expression into the eigenvalue equation
(21) and removing 1/N terms, we eventually obtain

al' + g

(1 - e_A’J)(Ak + a)z(Ak + 1)

azg
=Ak(€T— g‘AkT),

This equation coincides with that one derived from the mean
field analysis [2], except for the missing ||A,/|=0, which cor-
responds to the trivial zero Floquet exponent of the continu-
ous time evolution (1) and disappears in the discrete-time
dynamics. We want to stress again that, despite Eq. (22)
yields N+1 roots, it provides a suitable approximation only
for tll1ose eigenvalues which satisfy the relation [u,—1|
~N.

A # 0. (22)

B. Short wavelengths

The second component of the spectrum (14) is obtained
for ||u,—1]|~ O(1). In this case K has the simple form

K=—(a-1+g/T)™".

Upon introducing into Eq. (21) the explicit form of the peri-
odic solution (11b), the spectrum simplifies considerably,
namely,

N T a+gl/T

- =1, 23
M= ot 23

i.e., it coincides with a fully degenerate Floquet spectrum

Wy = 0, )\k =0. (24)

Notice that this approximation holds only for those eigenval-
ues such that ||u;—1||~O(1), ie., those representing the
large majority of the spectrum, except those laying close to
the point (1,0), where the unit circle intercepts the real axis
(see Fig. 1).

For what concerns the isolated eigenvalues uy and upy,
one can easily argue that for finite N and finite pulse widths
they are always contained inside the unit circle close to the
real axis and they approach the point (1,0) from the left as
N — . Accordingly, they can at most contribute to the mar-
ginal stability of the dynamics.

C. Phase diagram and finite-size corrections

According to the above results one can conclude that in
the limit N — o the onset of instabilities is determined by the
Floquet exponents associated with LW [see Eq. (22)]. It is,
therefore, not surprising to discover that our result coincides
with the predictions of the mean-field analysis reported in
Ref. [2]. We also confirm that the splay state is always un-
stable for inhibitory coupling (g <0). In the case of excita-
tory coupling the mean-field analysis predicts stability of the
splay state for a< «a,(g,a), where the a.(g,a) is the critical
line separating the stable from the unstable region (see Fig.
2). This line corresponds to a Hopf bifurcation that is known
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FIG. 2. (Color online) Phase diagram for the stability of the
splay state in a neural network with excitatory coupling acting
through finite pulse width. The solid line separating the stable from
the unstable regions in the (g, @) plane has been derived from the
analytic formula of the Floquet spectrum (22) with a=1.3. Please
notice that in this context “stable” refers to finite N, for infinite
systems the stability will become marginal.

to give rise to collective periodic behavior [7,8]. Moreover,
we see that a, diverges to +oo for g— 1 (for g> 1 no station-
ary regime can be sustained, since the evolution steadily ac-
celerates). In the opposite limit of a vanishing coupling (g
—0) the bifurcation survives. From Eq. (22), one can see
that, in this case the frequency w, of the bifurcating solution
converges to w.=2m/T and a,=—1+1 +wf

By including the role of SWs we can conclude that in the
limit N— < the splay state can be at most marginally stable
for @< a.(g,a). The perfect degeneracy of the zero Floquet
exponents associated to SWs sheds doubts on the effective
stability properties of large but finite networks, since such
modes turn out to be marginally stable. Therefore, we have
decided to solve numerically the eigenvalue equations (12)
for different system sizes and for values of the parameters g
and «a, which correspond to marginally stable splay states in
the limit N—oc. The results plotted in Fig. 3 show that the
splay state is strictly stable in finite lattices and that the
maximum Floquet exponent approaches zero from below as
1/N?. This implies that a 1/N perturbation theory such as the
one developed in this section, cannot account for such devia-
tions and even a second-order approximation scheme cannot
capture the instabilities of the original model. This is con-
firmed in Fig. 4, where the Floquet spectra obtained from
first- and second-order approximations are seen to yield an
unstable splay state, even though the numerical solution of
the stability problem indicates that the finite-N model is
stable.

As the event-driven map is the standard approach adopted
to simulate this type of networks, an important consequence
of our analysis is that one should be careful enough to con-
sider at least third order approximations in the 1/N perturba-
tive expansion, otherwise the resulting approximate equa-
tions may fail to reproduce the correct asymptotic dynamics.

IV. VANISHING PULSE WIDTH

In Ref. [3], we have investigated the synchronization
properties of a network of leaky integrate-and-fire neurons in
the case of &-like pulses. One might expect that the stability
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FIG. 3. (Color online) (a) Log-log plot of the absolute values of
the Floquet exponents A, ordered from the largest to the smallest as
a function of the index k=1,...,N for N=100,200,400. The
dashed line has slope —2. (b) The Floquet exponent as a function of
the rescaled phase @N, for N=100 (black circles) and N=200 (red
crosses). In both pictures the parameter values are a=3.0, g=0.4,
and a=30.0.

properties of such a network can be determined by taking the
limit of vanishing pulse width in the formulas obtained in
Ref. [2]. However, the lack of agreement with numerics sug-
gests that the N—oc limit does not commute with the zero
pulse-width limit. In order to clarify this issue, we introduce
a new setup, where the pulse width is rescaled with the net-
work size N as N~!. This amounts to impose a decay rate
proportional to N

8x10™ - - -
}\'k
4x10™ 3

45107

s
.
3

o e 2w

R S — 2 7
P

FIG. 4. (Color online) Floquet exponents A(¢) as a function of

the phase ¢ for finite pulse width @=30.0 and finite neuron num-

bers N=500 in the case of excitatory coupling g=0.4. The filled

circles represent the exact result for finite N, while the red empty

squares and the blue empty triangles refer to approximated results

correct up to the first or second order in 1/N, respectively. The
parameters here are a=3.
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a:= BN.

It is important to notice that in this context we have to deal
with two time scales: (i) a scale of order O(1) that corre-
sponds to the evolution of the membrane potential x; (ii) a
scale of order o'~ N~! that corresponds to the field relax-
ation. The general mapping is written as

E(n+1)=En)e P + NO(n)r(n)e PN™,  (25a)
O(n+1)=Q(n)e PN 4 g2, (25b)
xi_(n+1)= xj(n)e_T(”) +1-x,(n)e™. (25¢)

Moreover, the formal 7(n) expression (9) still holds, while
the auxiliary function F(n) writes

Fln) = NL[),Z[BE(n)(l _ eV

+0(n)(1 —e™MBT— NBre™VET)], (26)

where terms of order 1/N have been neglected. Still in the
same approximation, the expression for the fixed point is

0=p(1-e)", E=TQ(f -1)",
and the linearization of Egs. (25) yields

wOE = e PTSE + Te P50 - N(,BE - Qe P57, (27a)

w80 = e PT50 — NBQe P b7, (27b)

wdx; =(1=TN")dx;— ox, + N7\ (1 -X)) 87, (27¢)

where &7 is still given by Eq. (13), while the derivatives,
which are obtained with the help of Eq. (26) read
N
TX=—~5 TE=i(1_e_BT)T)C9
l-a-gE NB

8 _ _
To= N_,Bz(l —ePT— BTe Ph)r,.

We can repeat the same analysis illustrated in Sec. III, by
first solving the eigenvalue equations for the field perturba-
tions dx;. This shows that Eq. (18) holds with

3 (e = 1)
(P = 1)%(1 = a — gE) + [P TgePT

K (28)

By substituting this expression into Eq. (27) and by imposing
the boundary condition dxy=0, we obtain a closed equation
for the spectrum {u}, k=1,... ,N+1,

1 MN—I 1 MN—leT

N-1T k — M
e =KC—— - |K(C-1)+1|——+;
M 1 X [K( ) ]1 keT/N

(29)

where C:=(g+aT)/T. Also in this case, it is convenient to
separately discuss the behavior of long and short wave-
lengths.
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A. Long wavelengths

As in Sec. IIT A, we consider the spectral component
characterized by ||u;—1||~N"". In this case K assumes the
simple expression

K=- .
a-—1

By neglecting 1/N terms, the spectrum satisfies the equation
(1=e™)(1 + A7) = (1 =Ty £ (30)
al+g

where A,:=NT'In u,. This result agrees again with the
mean field analysis [2] in the limit @~ N> 1. Let us remark
that despite the fact that Eq. (30) yields N+1 eigenvalues, it
provides a good approximation only for those satisfying the
condition ||u,—1||~ N7

B. Short wavelengths

For ||u,—1][~0O(1) we can replace the term (uef’—1)
with (e'%+AT—1), in Eq. (28), thus obtaining K=K(¢), for
k=1,...,N—1. Moreover, by using the expression (11b) for
the period T, one can simplify Eq. (29) to the following
form:

wy=eT(1-K). (31)
Accordingly, the Floquet spectrum is written as

1 0N
M+ i =1+ In[1 - K(@)] - ”PT". (32)

For even values of N and for the maximal phase ¢, y,=1,
an explicit solution for the Floquet exponent can be obtained:

1
)\77:: )\]+N/2=—1+%1n 1

1

+ .
a—1+2BTg(1 +e*PT)(3PT - 2P + ¢7PT)~!
(33)

C. Isolated eigenvalues

The main consequence of the stability analysis discussed
at the beginning of this section is that there exist also eigen-
values whose time scale is of the order a™'~N~!. These
exponents are those labeled with the indices N and N+1 in
Eq. (14). The analysis of these two exponents becomes par-
ticularly relevant when they approach and cross the unitary
circle; their analytical expression can be easily derived by
investigating the case ||y, —1]|~ 1, which leads to a di-
vergence of the maximal Floquet exponent \,,~N. The two
corresponding eigenvalues turn out to satisfy the equation
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FIG. 5. (Color online) Floquet spectrum \(¢) as a function of
the phase ¢ in the case of vanishing pulse width. Red circles indi-
cate the numerical results obtained for the linear stability analysis
without any approximation for N=1000, the black line refers to the
first-order approximate expression (32), and the dashed blue line to
the approximation (30). In the inset we magnify the region of small
values of ¢. The parameters are a=1.3, g=—1.2, and S=1.0.

BT
2(1-a-gE)

. 4(1—a—gE))
X(l_\/l——lngg . (34

Whenever one of such solutions become positive, this will
give a leading Floquet exponent \,,~ N.

)\N,N+l

1
=—B+—1 1-
N p Tn

D. Phase diagram

The main difference with respect to the case of finite
pulse width is that the spectral component associated with
SWs does not reduce to a fully degenerate zero Floquet ex-
ponent. On the contrary, it actively contributes to determin-
ing the stability properties of the network. While the splay
state is found to be unstable for finite values of 8 and exci-
tatory coupling (g >0), a more interesting scenario is found
for the inhibitory case (g<<0).

Let us illustrate such situations by analyzing the stability
spectrum obtained for a=1.3, B=1.0, and g=-1.2. In Fig. 5
we show that the theoretical expression (32) reproduces most
of the spectrum obtained by the numerical diagonalization of
the exact Jacobian for a network of 1000 neurons. In particu-
lar, the agreement is very good around the top part of the
Floquet spectrum, which accounts for the stability of the net-
work. More precisely, the least stable mode is that one char-
acterized by the highest frequency (the 7 mode), i.e., it cor-
responds to an up-down behavior of the perturbation, when
passing from one to the next neuron. As this condition holds
true for arbitrary values of N, we are led to conclude that one
cannot perform the continuum limit straightforwardly, since
this would remove those fluctuations that are most relevant
for the stability of the network.
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FIG. 6. (Color online) Maximal Floquet exponent \,, (red dia-
monds and dashed line) and second Floquet exponent (blue filled
circles) as a function of B for a=1.3 and g=—1.2. The exponents
have been numerically obtained by diagonalizing the matrix that
corresponds to N=500 neurons. The black solid line corresponds to
the analytical expression (33) for A . In the inset, the rescaled Flo-
quet exponent \,,/N (red diamonds) is compared to the analytical
expression (34) for Ay v, (black solid line).

Notice also that the only region where Eq. (32) fails to
reproduce the true spectrum is close to vanishing values of
the frequency ¢. Analogously to the previous case, in this
region (see the inset in Fig. 5) one has to invoke Eq. (30) to
account for the dip centered around ¢~ 0.

If one has to determine the entire spectrum of a finite
network, the two components arising from Egs. (30) and (32)
have to be properly matched. After selecting equispaced
modes according to the system size (the spacing being
2/ N), one has to identify the value of k where the distance
between the two spectral components is minimal. Below this
value the component to be considered is that of LWs [see Eq.
(30)], while above such a value the spectrum is well approxi-
mated by Eq. (32).

It is also instructive to investigate the dependence of the
spectrum on the parameter 8. In Fig. 6 we have plotted the
maximum Floquet exponent \,, as a function of 8. The maxi-
mum has been determined by diagonalizing numerically the
Jacobian for a network of N=500 neurons: it corresponds to
the border of the shaded region (for the sake of clarity, the
peak has been cut out). The comparison with the results ob-
tained from Eq. (32) confirms that SW modes account for the
stability of the entire network in a quite wide range of S
values, except for an intermediate region, where the maxi-
mum Floquet exponent is well reproduced by Eq. (34) (as it
can be appreciated by looking at the inset of Fig. 6).

Outside this region, \,, is well reproduced by the analyti-
cal expression (33), except for $<<0.125. Indeed, for small
B, the maximum of the spectrum occurs for |¢| <, as can
be seen in Fig. 7. Moreover, the maximal Floquet exponent
\,, remains finite even for S— 0. Finally, inside the interme-
diate region dominated by Ay y., the analytical prediction
(33) is extremely close to the second (numerically computed)
exponent. Therefore, the theory exposed in this section pre-
dicts correctly the stability of the network, although one
must carefully identify the spectral component that is respon-
sible for the relevant contribution.

There is another important conclusion that can be drawn
from Fig. 6, by comparing two limit cases. On the one hand,
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FIG. 7. (Color online) Finite-frequency Floquet spectra \(¢) for
B=0.01 (black solid line), 0.02 (red dashed line), 0.04 (green dot-
dashed line), and 0.08 (blue dotted line) and a=1.3, g=—1.2.

the limit 8— o corresponds to o-like pulse. In fact, one can
see that the maximum Floquet exponent coincides with the
expression derived in Ref. [3]. On the other hand, for 8=0,
the model converges to the a— o limit of the model consid-
ered in Ref. [2]. In the two limits,
272

N, =— s T . (35)

6[(a— DT +gl(aT+3g)

Altogether, the 8 dependence resolves the contradiction
mentioned in the beginning of this section, as we can con-
clude that the pulse width not only affects the quantitative
value of the Floquet exponent, but also contributes to deter-
mining the qualitative stability properties. It is therefore use-
ful to think about the meaning of B. It expresses the pulse
bandwidth 1/« in terms of “1/N” units. By remembering
that the interspike interval is 7/N, it is convenient to intro-
duce the adimensional parameter

This parameter, being the ratio between the interspike inter-
val and the pulse width, is susceptible of being determined in
general contexts that go beyond the specific pulse-shape
choice and model adopted in the present paper.

Actually, the phase diagram reported in Fig. 8, confirms
that =BT is a meaningful parameter, since stable and un-
stable phases are separated by a critical line, where r is con-
stant independently of g. By solving A ,=0, we find that the
critical value of r discriminating between stable and unstable
phase is given by the following implicit equation

=2+ 1)e¥ =2r%" +1=0. (36)

Moreover, we see that the strongly unstable regime seen in
Fig. 6 arises only for a sufficiently strong inhibitory coupling
(g<-1).

We conclude this section by coming back to the possible
reasons for the failure of the mean field approach. In the
upper panel of Fig. 9, we show the time evolution of the field
E(?) for increasing values of N and fixed a=120. The oscil-
lations around the mean value tend to decrease and this in-
deed suggests that it is meaningful to introduce a sort of
average flux of spiking neurons as done in the mean field

046102-8



STABILITY OF THE SPLAY STATE IN PULSE-COUPLED...

BT

wn
—]
>

Il

2F STRONGLY
UNSTABLE |

ki | 1 R 1 R 1 R
-%.5 -2 -1.5 -1 -0.5 0

FIG. 8. (Color online) Phase diagram for the stability of the
splay state for a=1.3 and inhibitory coupling in the sharp spike
limit. The solid black horizontal line divides the stable from the
unstable region, while the dashed red line encircles the strongly
unstable phase where the maximum Floquet exponent is propor-
tional to NV.

approach. One can also see that since E(7) is increasingly flat
(for increasing N), it is natural to expect that the stability of
the splay state is very weak: The neuron-neuron interactions
are in fact mediated by the common field E. It might be
tempting to reduce the stability of the splay state to that of
the single neuron exposed to a given field dynamics E(7), but
this would amount to no more than a crude approximation. In
other words, there is no shortcut for performing the analysis
carried out in this paper.

In the lower panel of Fig. 9, the field evolution is reported
for the same values of N and B=0.14. In this case, field
oscillations become faster but their size does not decrease
upon increasing N. We consider this as the major reason for
the failure of the mean field approach. Furthermore the finite
amplitude of the oscillations is also responsible for maintain-
ing a finite stability even in the limit N — .

V. CONCLUSIONS AND PERSPECTIVES

In this paper we have shown that the stability of splay
states can be addressed by reducing a model of globally
coupled differential equations to suitable event-driven maps
which relate the internal configuration at two consecutive
spike emissions. The analytical investigation of the Jacobian
in the large N limit reveals that the spectrum of eigenvalues
is made of three components: (i) long wavelengths eigen-
modes that emerge also from a mean-field approach [2]; (ii)
short wavelengths; (iii) isolated eigenvalues, which signal
the existence of strong instabilities, i.e., eigenvalues that are
proportional to the network size. Altogether, we find that
drastically different results can be found for different values
of the ratio r between the interspike interval and the pulse
width. This leads us to conclude that the stability of large
networks of neurons coupled via narrow pulses, crucially
depends on the parameter r, thus suggesting that the dynami-
cal stability of these models demands a more refined treat-
ment than mean field. It will be interesting to investigate the
role of r in more general contexts, e.g., by considering dif-
ferent pulse shapes (possibly adding the effect of delay) and

PHYSICAL REVIEW E 76, 046102 (2007)

FIG. 9. (Color online) Time evolution of the field E(¢) associ-
ated to a splay state for increasing N values: N=100 (black solid
lines), 200 (blue dashed lines), 300 (red dotted lines). The upper
panel refers to a fixed value of a=120, while the lower panel to a
constant $=0.14. The other parameters are a=1.3 and g=-1.2

different force fields (possibly including further degrees of
freedom, as it naturally appears in the Hodgkin-Huxley
model).

Another issue that it will be worth analyzing concerns the
exact stability in large but finite networks in the presence of
finite pulse widths. Our analysis has revealed that the first
order approximations fails to reproduce even the sign of the
maximum Floquet exponent. That is a consequence of the
1/N? decay of the spectrum which, in turn, requires devel-
oping a third-order perturbation theory. Our numerics shows
that the splay state is always stable towards SW perturba-
tions in networks of LIF neurons with excitatory coupling,
while a first and second order approximation theories may
give rise to unstable states. Is this an indication of a system-
atic drawback of discrete-time models, or an indication that
qualitatively different stability properties may be found for
different force fields? The analysis of nonlinear force fields is
definitely needed for obtaining a convincing answer to this
question.

Finally, another aspect that should be explored is the role
of noise. On the one hand, as already discussed in Ref. [2],
noise has a stabilizing effect, especially on the “marginally”
stable modes. On the other hand, the smoothing of the prob-
ability density induced by noise should make the mean-field
approximation more accurate. In the inhibitory case and for
sufficiently small pulse width, these two expectations con-
flict with one another, since the mean-field analysis predicts
an unstable splay state, while the exact treatment herein dis-
cussed implies it to be stable. In order to solve this puzzle, it
is necessary to introduce a further smallness parameter,
namely, the noise amplitude o, and thereby discuss the com-
mutativity of the 0— 0 limit with the two limits N— o and

a— 0,
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