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The dynamical behavior of a weakly diluted fully inhibitory network of pulse-coupled spiking neurons is
investigated. Upon increasing the coupling strength, a transition from regular to stochasticlike regime is
observed. In the weak-coupling phase, a periodic dynamics is rapidly approached, with all neurons firing with
the same rate and mutually phase locked. The strong-coupling phase is characterized by an irregular pattern,
even though the maximum Lyapunov exponent is negative. The paradox is solved by drawing an analogy with
the phenomenon of “stable chaos,” i.e., by observing that the stochasticlike behavior is “limited” to an expo-
nentially long �with the system size� transient. Remarkably, the transient dynamics turns out to be stationary.
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I. INTRODUCTION

During the last few years it has become increasingly clear
that understanding the behavior of many different systems
passes through the comprehension of the dynamics of com-
plex networks �1�. This is, for instance, the case of metabolic
systems genetic networks, the immune response system, and
neurobiological structures �1�. A particular challenge is rep-
resented by the need to unravel the mutual connections be-
tween network structure and dynamical properties. Very little
is in fact known about the expected classes of behavior and
their stability properties, even in systems of globally coupled
identical oscillators. For this reason, and under the assump-
tion of a structural stability of the possible scenarios, it is
therefore instructive to investigate simple models, such as
diluted neural networks of pulse-coupled neurons. Since it
seems that inhibition plays a major role in determining the
dynamics of single neocortical pyramidal neuron �2�, as well
as of cortical networks �3�, we have chosen to examine a
network of inhibitory coupled leaky integrate-and-fire neu-
rons. More precisely, we consider the model proposed in Ref.
�4�, where Jin, under fairly general conditions, investigated
analytically the convergence towards a periodic pattern. In
this paper we study the diluted version of this model, show-
ing that even though the dynamics is characterized by a
negative maximum Lyapunov exponent �5�, irregular and ex-
ponentially long transients are typically observed for a suffi-
ciently strong coupling strength. This phenomenon is some-
how analogous to what was observed in diluted networks of
pulse-coupled oscillators with delay �6�, although the tran-
sients therein reported are chaotic in the typical sense of the
word. More precisely, we find that for small coupling ampli-

tudes the dynamics converges, after a short transient, towards
a synchronized state with all neurons firing with the same
rate, but with their phases approximately uniformly distrib-
uted. This can be understood by first referring to a homoge-
neous network of globally coupled neurons. In that context,
the mean field is found to induce an effective repulsive in-
teraction between the neurons; as a result the asymptotic re-
gime is characterized by an evenly spaced sequence of spikes
which is known in the literature as a splay state �7�. As a
result of random dilution, one can imagine that inhomogene-
ities in the mutual interactions arise which in turn lead to
small nonuniformities in the interspike intervals.

On the other hand, for sufficiently large coupling ampli-
tudes, stochasticlike transients are observed, whose duration
is exponentially long with the network size. Since various
indicators show that this regime is stationary, it is logical to
conclude that in infinitely large networks it represents a per-
fectly legitimate thermodynamic phase. This is analogous to
the active phase in directed percolation, whose lifetime is
finite in finite systems. Even more stringent is the analogy
with “stable chaos,” a kind of irregular behavior discovered
in coupled map lattices �8� and characterized by negative
Lyapunov exponents. Since it is believed that such a
pseudochaotic behavior is sustained by discontinuities of the
mapping rule �9�, it is natural to expect this to be true also in
the present case. Quite consistently, we observe that in the
presence of disorder, where neurons are no longer equivalent
to one another, changes in the firing order are accompanied
by discontinuities in the evolution rule.

Altogether, the transition manifests itself as a collective
desynchronization phenomenon. Unfortunately, a “micro-
scopic” linear-stability analysis does not allow identifying
the threshold, since all trajectories are asymptotically stable
in both regimes. Moreover, direct numerical simulations are
not very effective either due to the difficulty of simulating
large networks, so that the study of the critical behavior is an
even more difficult task. However, the evidence of two dis-
tinct phases is rather convincing and, furthermore, the intro-
duction of a suitable space-time representation suggests a
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true analogy with directed percolation that will be worth ex-
ploring in more detail.

In Sec. II, we introduce the model and the variables, while
the homogeneous case of fully coupled networks is analyti-
cally investigated in Sec. III, where we also introduce a one-
dimensional �1D� description of the dynamics that applies
exactly in the thermodynamic limit. In Sec. IV the transient
dynamics of weakly diluted networks is discussed, both by
determining the transient length and analyzing its stationarity
properties. The resulting two-phase scenario is then summa-
rized in Sec. V, where we also present an effective stochastic
description. Further comments about open questions and in-
dications for future studies are finally presented in the Con-
clusions �Sec. VI�.

II. THE MODEL

In this paper we investigate a system of N leaky integrate-
and-fire �LIF� neurons, analogous to the model discussed in
Ref. �4�. The state of the ith neuron is fully determined by
the membrane potential Vi�t̃� and obeys the differential equa-
tion

�V̇i = C − Vi − ��Vi + W��
j=1

N

�
m

gij��t̃ − t̃ j
�m�� , �1�

where � is the membrane time constant, C is the suprathresh-
old input current �referred to a unitary membrane resistance�,
and W is the reversal potential. Whenever the potential Vj�t̃�
reaches the threshold value �, it is reset to R��, and a
spike is sent to and instantaneously received by all connected
neurons at time t̃ j

�m� �the superscript m enumerates the firing
events of the jth neuron�. The net result of a received spike is
that the membrane potential of the ith receiving neuron is
decreased according to the transformation

Vi� + W = �Vi + W�exp�− gij� . �2�

As a consequence of the inhibitory connections, the potential
Vi� can go below the reset value R, but Eq. �2� shows that −W
is a true lower bound. However, for small coupling values
and in the absence of clustering phenomena �as in the present
paper�, it turns out that Vi is essentially bounded between R
and �. The last ingredient defining the system dynamics is
the connectivity matrix gij. Following the recent literature on
randomly connected directed networks �6,10�, the coupling
strength is scaled to the connectivity of the receiving neuron,

gij = �G/�i, if i and j are coupled

0, otherwise
; �3�

where G is the coupling constant and �i is the number of
incoming links to neuron i. In other words, we consider the
simplest type of disorder, determined just by the presence
�absence� of links between neurons �notice that self-
interactions are excluded, i.e., gii=0�. As we are interested in
studying networks with a given fraction rm of missing links,
there are in principle different ways of doing that: �i� each
link is cut with a probability rm; �ii� the total number Nm of
cut links is fixed deterministically �Nm=rmN�N−1��; �iii� the

number of cut links per neuron is fixed deterministically.
Since preliminary simulations performed according to the
three philosophies have given qualitatively similar results,
we eventually decided to restrict our quantitative analyses to
the second approach. Moreover, since we aim at understand-
ing the possibly qualitative changes induced by disorder in
the neural network dynamics, we limit ourselves to analyzing
the case of weak disorder. This is done by choosing small
values for the fraction rm �typically rm=0.05�.

Most of the parameter values are set according to the
current literature �see, e.g., �4,11��, namely: �=20 ms,
C=−45 mV, W=63 mV, �=−52 mV, and R=−59 mV. As a
matter of fact, the only free parameters of the model are the
fraction rm and the coupling constant G, which tunes the
strength of the inhibitory coupling.

The dynamical equation �1� can be recasted into a simpler
form by introducing the following dimensionless parameters:

t = t̃/�, vi = �Vi − R�/�� − R� ,

c = �C − R�/�� − R�, w = �W + R�/�� − R� .

This amounts to rescaling � and R to the values 1 and 0,
respectively. Moreover, for the above choice of parameter
values, c=2 and w=4/7.

As a result, Eq. �1� reads

v̇i = c − vi − �vi + w��
j=1

N

�
m

gij��t − tj
�m�� . �4�

Since w�0, the coupling is fully inhibitory, i.e., an incoming
spike lowers the potential of the receiving neuron and hence
the coupling inhibits firing.

At variance with the original model in Ref. �4�, where
both the threshold currents Ci and the coupling constants gij
are assumed to be randomly distributed, here the only source
of disorder is the presence �absence� of inhibitory connec-
tions. This choice is dictated by our interest in relatively
simple structures to better understand the possible scenarios.
However, the most important difference concerns the cou-
pling constant: no dependence on the system size is postu-
lated in Ref. �4�, while an inverse proportionality to the num-
ber of incoming connections is assumed here.

This latter normalization is more suited to investigate the
large N limit, since it guarantees that the coupling strength
remains comparable to the amplitude of the force field
�c-v�.

By following the approach of Ref. �4�, we map the origi-
nal model onto a discrete-time map. Let vi�n� denote the
membrane potential of the ith neuron immediately after the
nth spike. Until the next spike is emitted, the network evo-
lution corresponds to an exponential relaxation of each vi
towards c. One can easily infer from �4� that the time interval
�ti needed by the ith neuron to reach the firing threshold
vi=1 is

�ti�n� ª ln �i�n�, with �i�n� =
c − vi�n�

c − 1
. �5�
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Let k�n� denote the label of the neuron characterized by the
shortest time, i.e.,

�k�n� = min
i

��i� . �6�

By now including the effect of the next spike, the network
dynamics can be transformed into a discrete map for the
quantities �i�n�. In the large N �and, accordingly, �i� limit,
one obtains

�k�n + 1� =
c

c − 1
, �7a�

�i�n + 1� = gika + �1 − gik�
�i�n�
�k�n�

for i � k , �7b�

where

a ª

c + w

c − 1
. �8�

The process can be iterated by finding the minimum among
the �i�n+1� and so on. Therefore, �tk�n��n� represents the
time interval between the nth and the �n+1�-st spike; follow-
ing the standard notation, it will be denoted with tISI�n�. On
the other hand T�m� denotes the time elapsed between the
�m+1�-st spike and the previous spike emitted by the same
neuron.

III. THE HOMOGENEOUS CASE

In this section we discuss the dynamics of homogeneous
networks, i.e., gij =G /�i �for i� j� and �i=N. In the absence
of any disorder �globally coupled identical neurons�, any ini-
tial ordering of the neuron spikes will persist at all times,
because it cannot be changed by the dynamical rule.

Accordingly, after a short transient, the trajectory con-
verges towards a periodic orbit characterized by equispaced
spikes, tISI�n�=T /N and T�m�=T for all n, m. By formally
interpreting the separation between the spike time tj

�m� of the
jth neuron and the preceding spike time ti

�n� of some refer-
ence neuron as a phase variable, one can summarize the sce-
nario by stating that the single-neuron phases repel each
other until an equilibrium state, characterized by a maximal
and uniform separation, is attained. In the literature, this
alignment is called splay state and it has been found in vari-
ous models of globally coupled oscillators �7�. Such a state
can be viewed as the opposite situation of a fully synchro-
nized state, where all oscillators share the same phase. It is
curious that this regime is attained in the presence of inhibi-
tory coupling, since this property is usually associated with
the propensity to synchronize instead. In fact, splay states
have been found in globally coupled LIF neurons in the pres-
ence of excitatory coupling with spikes of finite width
�12,13�.

A. Stationary solution

Since the ordering of the neuron potentials, vi, does not
change in time, one is free to label the spiking neuron in such

a way that k�n+1�=k�n�+1 mod N. It is also convenient to
choose a “moving” frame, namely j= i−n, since the label of
the spiking neuron remains constant and can thereby be set
equal to 1, without loss of generality. The resulting map
reads

� j−1�n + 1� =
aG

N
+ 	1 −

G

N

 � j�n�

�1�n�
, �9�

with the boundary condition �N= c̃ªc / �c−1�. This equation
admits a stationary solution, which corresponds to a regime
of evenly spaced spikes, i.e., a splay state �7�.

The fixed point of �9� is obtained by solving the recursive
relation

�̃ j−1 =
aG

N
+ 	1 −

T + G

N

�̃ j ,

where �̃1 is approximated with 1+T /N. In fact, from the

very definition, one has ln �̃1= tISI=T /N, so that T is the
�constant� single neuron interspike interval. By iterating the

above equation backward from the initial condition �̃N= c̃,
one obtains

�̃N−n =
aG

T + G
�1 − e−�T+G�n/N� + c̃e−�T+G�n/N. �10�

The value of T can be finally determined by imposing the
condition

�̃1 = 1 + T/N . �11�

By neglecting first-order corrections in 1/N, one obtains

1 =
aG

T + G
�1 − e−�T+G�� + c̃e−�T+G�. �12�

B. Linear stability

Let us consider the evolution of an infinitesimal perturba-

tion 	 j�n� of the fixed point �̃ j. From the linearization of Eq.
�9� it follows that 	 j�n� satisfies the recursive relation

	 j−1�n + 1� = 	1 −
T + G

N

�	 j�n� − 	1 −

T

N

�̃ j	1�n�� ,

�13�

where higher order corrections in 1/N are neglected. Be-

cause of the reset �̃N=c / �c−1�, it is natural to impose the
boundary condition 	N=0. By further setting 	 j�n+1�
=
	 j�n�, one obtains the eigenvalue equation,

	 j − 	1 −
T

N

�̃ j	1 − 
̃	 j−1 = 0, �14�

where


̃ ª




1 − �T + G�/N
.

By iterating the above equation and imposing the boundary
condition, we find that 
̃ satisfies the equation
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̃N−1 + 	1 −
T

N

�

j=0

N−2

�̃N−j
̃
j = 0.

By inserting the expression of �̃N−j �see Eq. �10�� and using
the condition �12�, we find that for N�1


̃ = − 1 −
ln c̃

N
; �15�

which yields the expression of the Lyapunov exponent of the
discrete map,

� = ln 


 = −
1

N
�T + G − ln c̃� . �16�

The Lyapunov exponent of the original system is finally ob-
tained by rescaling time with the interspike interval T /N,


 =
N

T
ln 


 = − 1 −

G − ln c̃

T
. �17�

In Fig. 1 we plot 
 and compare it with numerical results
for different values of the coupling G. It is worth recalling
that T�T�G� as from Eq. �12�.

C. Continuous approach

In the large N limit, the discrete time �n� and space � j�
variables can be transformed into continuous ones by intro-
ducing

x = j/N, x � �0,1�, � = n/N .

As a result, by neglecting 1/N2 terms, Eq. �9� can be written
as

−
��

�x
+

��

��
= − �T + G�� + aG , �18�

where we have made use of Eq. �11�. The boundary condi-
tions now read ��0,��=1 and ��1,��= c̃. The stationary so-
lution corresponds to the fixed point of �9� and reads

�̃�x� = 	1 −
aG

T + G

e�T+G�x +

aG

T + G
. �19�

The period T is defined by imposing the boundary condition
at x=1, i.e.,

	1 −
aG

T + G

e�T+G� +

aG

T + G
= c̃ .

This result is consistent with Eq. �12�. Thus, we see that the
evolution equation of the globally coupled homogeneous net-
work can be reduced to a 1+1 dimensional partial differen-
tial equation. We shall see later that this analogy proves fruit-
ful to interpret the phase transition discussed in the following
sections.

IV. TRANSIENT DYNAMICS

From now on we study the dynamics of model �4� when a
small fraction rm of links is removed. It turns out that in this
case a much more interesting and complex dynamics may
emerge when the coupling strength is increased, even though
the Lyapunov exponent remains negative. However, at vari-
ance with the proceeding section, here we can rely on nu-
merical simulations only.

We expect that the weak amount of disorder induced by
the random pruning of directed links reduces the coupling
strength among the neurons and correspondingly increases
the value of 
 with respect to the fully coupled case. The
results plotted in Fig. 2 show that this is indeed the case, as

0 0.2 0.4 0.6 0.8 1G
-1.5

-1

-0.5

0

Λ

FIG. 1. The maximal Lyapunov exponent 
 corresponding to
�9� for rp=0, c=2, w=4/7 vs the coupling G. The dashed line refers
to the analytical expression �17� and the symbols to numerical
estimates.

0 0.05 0.1 0.15 0.2r
m

-1.4

-1.35

-1.3

-1.25

-1.2

Λ N=100
N=200
N=300

FIG. 2. The maximal Lyapunov exponent 
 for different values
of the cut ratio rm and for three values of the system size. The data
refer to a coupling G=2.
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the Lyapunov exponent is found to increase with the pruning
ratio rm. Nevertheless, 
 remains negative up to rm=0.2.
Moreover, numerical simulations indicate that 
 remains fi-
nite in the thermodynamic limit N→�.

As a result, sooner or later the dynamics must converge
towards a stable periodic orbit. In Ref. �4�, Jin has derived an
upper bound for the transient length in the case of generic
disorder. More precisely, he finds that the number of spikes
preceding a periodic pattern is

P � Nq + �q − 1� , �20�

where, in the large N limit, and with reference to our nota-
tions,

q = − ln��/8a3�/gmin + 1,

gmin = min
i,j

�gi,j�, and finally,

� = min
n=1,. . .,�

min
j�k�n�

�� j�n� − �k�n��n�� .

Although the N dependence expressed by Eq. �20� superfi-
cially looks like a power law, it is in fact much faster. First of
all, if the coupling strength scales as 1 /N �as it is assumed
here�, the exponent q grows linearly with N. Incidentally, this
is true also in the fully coupled regime, where we have seen
that the transient is, in reality, much shorter. A second reason
is that in systems with some pruning �like here�, gmin is equal
to 0 and the exponent q would be actually equal to infinity.
Finally, �, which is the minimal distance between the mem-
brane potential of the two neurons that are closest to the
firing threshold, cannot be larger than 1/N. This leads to an
additional logarithmic growth of the exponent q with N. Ac-
cordingly, we conclude that the analytic estimate contained
in Ref. �4� applied to our setup is much too large an overes-
timation of the transient length to help us to understand when
and whether a phase transition can occur.

The transient duration ttr is determined as the smallest
time for which the actual configuration of the membrane
potential is � close to a previous state,

ttr = min�t
max
i



vi�t + T� − vi�t�
 � �� ,

where1� i�N and 1�T� t−1. The choice of the threshold
is not crucial, since after the maximal distance is on the order
of 1 /N, it starts converging exponentially fast to 0. Accord-
ingly, by this procedure we determine not only the transient
length but also the periodicity T of the asymptotic solution.

The dynamics �4� is usually simulated by starting from a
random initial condition with the values of the membrane
potentials vi�0� uniformly distributed in the interval �−w ,1�.
In the following we present a detailed analysis carried out for
networks with rm=0.05.

In order to deal with a more reliable quantity, we compute
the average length of the transient �ttr� �here and in the fol-
lowing, angular brackets denote an average over both real-
izations of the network and different initial conditions of the
membrane potentials�. In Fig. 3, we have plotted the average
transient vs G for two different values of the system size
�N=100 and 200�. For G�1, �ttr� slightly decreases for in-

creasing coupling strength. This is similar to what has been
observed in the fully coupled network over the entire range
of variation of G �4�. On the other hand, by further increas-
ing the coupling strength �ttr� exhibits a sudden increase.
More important is that the rate of increase is significantly
larger when N doubles. Altogether these data suggest the
existence of two distinct phases, approximately correspond-
ing to G smaller and larger than 1.

A more precise characterization of the dynamics is ob-
tained by investigating the scaling behavior with N. In Fig.
4�a�, we see that for G=0.5, the transient length increases
linearly with the system size N, while the average period �T�
of the asymptotic attractor remains almost constant. At the
same time, in Fig. 4�b�, we see that for G=1.8 and G=2.5,
the transient grows exponentially fast. Finally, it turns out
that for G=2.5 the average period also grows exponentially.
We consider this a preliminary indication that at a larger
coupling strength another transition may occur. However,
here we focus our attention on the qualitative changes occur-
ring for G�1 where only the transient starts growing expo-
nentially.

Another important point to be carefully investigated is the
statistical properties of the transient dynamics. In particular,
we start from the stationarity that can be analyzed by com-
puting the so-called coefficient of variation �CV�, which is
determined by subdividing a time series x�n�, n=1,2 , . . . ,L,
into a sequence of windows of constant duration l, and then
computing

x̄�m� =
1

l
�

i=�m−1�l+1

ml

x�i�, m = 1,2, . . . ,L/l ,

��m� = �1

l
�

i=�m−1�l+1

ml

�x�i� − x̄�m��2�1/2

.

The coefficient of variation is thereby defined as

CV�m� = ��m�/x̄�m� . �21�

0.5 0.75 1 1.25 1.5
G

10
2

10
3

<
t tr

>

N=100
N=200

FIG. 3. Average transient length �ttr� vs G for two system
sizes.
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The parameter l must be chosen in such a way that each
window contains a sufficient number of samples to reliably
compute the local average and the standard deviation.

In our case, the time series of interest is the sequence of
single neuron interspike intervals T, obtained by the iterating
map �7�. All intervals are recorded over a time window of
length l=10N, so that each neuron fires on average ten times.
In order to reduce statistical fluctuations, the CV has been
further averaged over 100 different initial conditions for a
fixed network realization. In Fig. 5, we have plotted the time
evolution of �CV�n��i for different values of G. Moreover,
for each value of G, the behavior of �CV�n��i is presented for
two different network realizations to convince the reader that
a further averaging on the disorder is not truly required to
come to a conclusion about the stationarity of the regime.
Indeed, the main point is that for G�1 the transient is non-
stationary, as �CV�n��i vanishes exponentially while ap-
proaching the periodic attractor. On the other hand, for G
�1.2, �CV�n��i approaches a finite value, thus confirming
that the transient regime is stationary and one can thereby
meaningfully speak of an invariant measure and pose the
question of determining its correlation properties.

We have also performed other stationarity tests based,
e.g., on the analysis of distributions of temporal distances of
neighboring points in state space �e.g., see Ref. �14��. They
confirm the stationarity of the transients above the transition
and confirm the existence of a transition point in the interval
1.2�G�1.3. Since these tools do not provide further in-
sight, we do not comment further on their outcome.

The transient length strongly depends on the initial con-
dition. In Fig. 6 we show the probability distribution function
P�ttr� for a given realization of the disorder in both phases.

For small G, P�ttr� can be confidently fitted with an inverse
Gaussian �see the inset of Fig. 6�, which is the typical statis-
tical distribution of biased escape-time problems �15�. This
confirms once more the nonstationarity of the corresponding
transient dynamics, since it is driven by a systematic drift
towards the asymptotic periodic state. Above the transition,
P�ttr� is Poissonian: the transient statistics can be therefore
interpreted as a typical escape process through an activation
barrier from a locally equilibrated system. Again, this evi-
dence supports the conjectured stationarity of the transient
dynamics for G�1 �in the large N limit�.

20 40 60 80 100 120
N

10
0

10
1

10
2

10
3

10
4

10
5

<
t tr

>
 , 

<
T

>

50 100 150 200 250 300
0

50

100

150

200

(a)

(b)

FIG. 4. Average length �ttr� �solid line� of transient and corre-
sponding period �T� of the periodic attractor �dashed line� vs system
size: �a� G=0.5; �b� G=1.8 �circles�, and G=2.5 �diamonds�. Note
in �b� the logarithmic scale of the vertical axis.

0 500 1000 1500 2000
n/N

0.001

0.01

<
C

V
(n

)>
i

FIG. 5. Solid lines: The coefficient of variation as a function of
integer time for N=1000 and �in ascending order starting from the
bottom� G=0.9,1.0,1.1,1.2,1.3. Stars: The same for a different
disorder realization and G=1.0,1.1,1.2. The straight line corre-
sponds to the saturation value at G=1.2.

0 2500 5000 7500t
tr

0

1×10
-5

2×10
-5

3×10
-5

4×10
-5

P(t
tr
)

0 25 50 75 100t
tr

0.001

0.002

0.003

P(t
tr
)

FIG. 6. Normalized histogram �random initial conditions at
fixed disorder, N=65� of transient lengths for G=2.1. The solid
curve is exponential; the dashed curve is an inverse Gaussian with
equal mean and variance. The inset shows the distribution with an
inverse Gaussian fit for G=1.
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Finally, P�ttr� does not change qualitatively for different
realizations of disorder, although sizable quantitative differ-
ences can be found for small values of N. However, our
simulations indicate that the probability distribution P�ttr� is
a self-averaging quantity since, upon increasing N, sample-
to-sample fluctuations become increasingly small. This is ab-
solutely clear for G� �1, when it is possible to compute the
transient time even for moderately large values of N
�O�104�. Above G=1, where direct simulations are almost
undoable, there is, however, no reason to expect a qualitative
change, given all the evidence of an ergodic dynamics.

Altogether, the transient dynamics observed for G� �1:
�i� is characterized by a negative Lyapunov exponent; �ii� is
effectively stationary; �iii� lasts �with the system size� for
exponentially long times. These are the distinguishing prop-
erties of “stable chaos,” a phenomenon extensively investi-
gated in coupled map lattices �8�, where similar features of
the transient statistics have been observed �16�. However, it
is worth recalling that stable chaos has been observed also in
chains of forced oscillators �17� and recently uncovered in
the 1D hard-point gas of diatomic particles �18�.

In all such instances, stable chaos is associated with the
presence of discontinuities in phase space. In the coupled-
map models, the discontinuities are transparent in the defini-
tion of the local piecewise linear maps �8�. In the hard-point
gas they arise in connection with three-body collisions.
Around any configuration leading to one such multiple col-
lision, the ordering of the two-body collisions changes
abruptly. The noncommutativity of the collision itself in-
duces therefore a discontinuity in the dynamics that is
conceptually similar to those postulated in the coupled-map
lattices. The same happens in the present context. In fact, let
us consider the time-evolved one-parameter family of con-
figurations, v��t�= �v1

��t� ,v2
��t� , . . . ,vk

��t� ,vk+1
� �t� , . . . ,vN

� �t��
where v j

��0�=uj +�� jk and � jk is the Kronecker delta func-
tion. It is easy to convince oneself that v��t� breaks into two
disconnected parts when vk

��t�=1 if � is such that vk
��t�

=vk+1
� �t� and there is only one connection between neurons k

and k+1. The discontinuity is due to the fact that only one of
them inhibits the other. It is therefore interesting to verify
that, in agreement with the past observations, the presence of
discontinuities in the phase space is a condition for the onset
of a stable chaos dynamics. If no anomalous transients arise
for small coupling strengths, it is because the condition is
necessary but not at all sufficient.

V. TWO DYNAMICAL PHASES

In this section we study the properties of the dynamical
phases and perform a preliminary analysis of the transition.
For G�1, the evolution is similar to that of the fully coupled
case. After a short transient time the system converges to a
state characterized by a sequence of N spikes �emitted by the
N neurons�, which periodically repeats itself �see Fig. 7�. All
neurons fire with the same pace �T�m�=const. �, but their
phases are no longer equispaced �i.e., tISI�n� varies in time�.
In other words, the asymptotic solution is a phase-locked, i.e.
synchronized, state. In the following, this dynamical regime

will be denoted locked phase �LP�. The main difference with
the fully coupled case is that different spike sequences are
not equivalent to one another. In the limit of identically
coupled neurons the dynamics is invariant under any permu-
tation, but this is no longer true as soon as some degree of
heterogeneity is introduced in the network connectivity. As a
result, for rm�0 there exists an exponentially large number
of different periodic attractors. More precisely, the total num-
ber of attractors can be estimated to be of the order of
N ! / ��d=1

M Nd ! �, where Nd is the number of neurons connected
to the same �incoming and outgoing� neurons in the network
and M is the number of these equivalence classes present in
a given network realization.

For larger coupling strengths, an irregular dynamical re-
gime arises that we call unlocked phase �UP�, because the
mutual ordering keeps changing during the entire transient,
as one can, e.g., see in Fig. 8, where slow but systematic
pattern adjustments can be seen in the whole time range.

One can better elucidate this dynamical phase by looking
at the relative potential differences. Without prejudice of
generality, we choose one of the N neurons, say neuron i, and
consider the subsequence of its firing events. Given the spike
emitted at time t, we compute the difference between the last
ISI, T�i�, of that neuron and the average ISI of the j neurons
firing immediately before and after time t. We denote this
time-dependent quantity by ���i��t�. The value of j has to be
chosen neither too large, to avoid inclusion of spikes from
the same neurons, nor too small, to get rid of local fluctua-
tions. We have checked that the choice j=5 is a reasonable
compromise. The integrated phaseshift ���i��t�=�0

t dt����i�

��t�� is plotted in Fig. 9 for a generic initial condition and a
typical realization of the disorder. In the LP, after a short
transient, ���i� collapses onto a constant value, which indi-
cates that the system has converged to a periodic firing se-
quence with the neurons firing with the same pace. On the
other hand, in the UP, ���i� wanders erratically, performing
a sort of unbiased random walk. We can indeed confirm that
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FIG. 7. Firing pattern �index of the firing neuron vs time� of a
typical periodic attractor for G=2, N=50 in the LP; k is the index of
the firing neuron.
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at least for G�1.8 and within statistical fluctuations all neu-
rons are characterized by the same average firing rate.

A spontaneous symmetry breaking induced by disorder
appears at larger coupling strengths when we can, e.g., find
periodic orbits with different neurons exhibiting different fir-
ing rates �see Fig. 10�. This phenomenon is, however, not
connected with the onset of exponentially long transients that
appears for significantly smaller G values.

Further information about the two dynamical phases can
be gained from the introduction of a suitable space-time rep-
resentation. Having verified that all neurons statistically be-
have in the same manner, we can split the entire spike series
into sequences of N consecutive events and label the se-
quences with an index m, which naturally plays the role of

time. On the other hand, the index i, labeling the position
within a single sequence, plays the role of space. Finally, we
introduce a binary variable b�m , i� to distinguish two cases:
whenever the neuron emitting the ith spike in the mth se-
quence is the same neuron which emits the ith spike in the
�m−1�-st sequence, we set b�m , i�=0, otherwise b�m , i�=1.
The resulting patterns are reported in Fig. 11, where 0, 1 are
coded as black and white, respectively. In the UP, the pattern
is very irregular and no order seems to emerge even after a
very long time lapse. Conversely, in the LP, black tends to
prevail quite soon, indicating that the system rapidly con-
verges to a fixed firing sequence, i.e., to a periodic attractor.
The most interesting features of this representation are the
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FIG. 8. Firing pattern for G=2, N=50 in the UP; k is the index
of the firing neuron.
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FIG. 9. Time evolution of the local phase difference ���i��t� for
G=1.0 �solid line� and G=1.5 �dashed line�. We consider a system
with N=1000 and dilution rm=0.05.
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FIG. 10. Firing pattern associated with a periodic attractor in the
UP for G=2.0, N=50. The period is indicated by the vertical lines.

FIG. 11. Patterns associated with the two different phases of the
dynamical system. The vertical axis �from top to down� reports the
time, while the horizontal axis represents the index of successive
firing neurons. The upper pattern refers to LP for G=0.5, and the
lower to the transition region with G=1.3. In both cases a system
with N=801 and dilution rm=0.05 is considered.
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white defects propagating in the black background. They in-
dicate that the firing rate of some neurons is temporarily
slower or faster than that of the neighboring ones. These
patterns are strongly reminiscent of a directed percolation
�DP� transition. Actually, defects tend to be eliminated in the
LP, which is analogous to the absorbing phase of DP. In turn,
the UP shows similarities with the so-called “active” phase
of DP, ruled by a persistent defect dynamics. It is remarkable
that the dynamics of an almost globally coupled system ex-
hibits distinctive features of one-dimensional systems with
short-range interactions, as is the case of 1+1 contact pro-
cesses. The analogy appears less astonishing after recalling
that the evolution of the fully coupled model is described by
a suitable partial differential equation �see Eq. �18��. How-
ever, including the role of disorder and proving a possible
analogy with directed percolation is not an easy task. We
prefer to leave the elucidation of this problem to future
analyses and here we concentrate our efforts on obtaining a
refined characterization of the two dynamical phases.

In particular, we have determined the distribution and the
time autocorrelation function of the single-neuron interspike
time interval T�i��m�. In the UP, the normalized autocorrela-
tion function CISI is plotted in Fig. 12. It exhibits an expo-
nentially fast decay, typical of both chaotic and stochastic
regimes: memory is lost after typically 3 to 4 firing events.
This quantitative confirmation of the irregularity is yet an-
other element strengthening the analogy with stable chaos.
The stochasticlike character of the evolution is also con-
firmed by the shape of the probability density function �PDF�
P�T�i��, which has a Poisson-type tail but also is not much
different from an inverse Gaussian—a typical distribution
encountered in neural dynamics �19�.

Finally, given the evidence of the effective stochastic be-
havior, we develop a standard mean-field approach to char-
acterize the behavior of the network in the large N limit. In
particular, one can conveniently approximate the mean field

with a deterministic drift plus a zero-average stochastic pro-
cess. This amounts to replacing the initial model with the
following stochastic equation �to be interpreted in the Ito
sense, as the noise arises from a discrete-time equation�,

v̇ j = c − v j −
G�v j + w�

T
+

G�v j + w�
�1 − rm�

� j�t�, v � �0,1� ,

�22�

where the time T is determined self-consistently, while � j�t�
is a �-correlated stochastic process

��i�0�� j�t�� =
rm�1 − rm�

TN
�ij��t� ,

with �ij and ��t� being the Kronecker and Dirac � functions,
respectively. In the thermodynamic limit the noise term van-
ishes and can therefore be neglected in the computation of
average properties. In particular, by integrating the determin-
istic force field in Eq. �22��, one obtains an implicit equation
for T�G�,

G =
x

1 + x
ln

c − xw

c − 1 − x�1 + w�
, �23�

where x=G /T�G�. This formula holds not only in the UP but
also in the LP, because the main difference between the two
regimes does not concern the noise amplitude, but its corre-
lation properties. In fact, the relative diffusion of the generic
neurons i and j depends on the fact that the stochastic signals
�i and � j are not correlated with one another. If this is the
case, the relative diffusion induced by the noise over a time
equal to the average ISI is 1 /�N. Since, on the other hand,
the average distance between consecutive neuron potentials
is on the order of 1 /N, we conclude that for any finite G and
large enough N the diffusion is sufficiently strong as to
scramble the neurons. The smallness of the noise amplitude
also explains why, at a coarse-grained level, the firing pat-
terns appear almost periodic �see, e.g., Fig. 8�. Now, in order
to complete a self-consistency argument, it would be neces-
sary to connect the changes in the neuron ordering with the
correlation properties of the noise terms in Eq. �22��. Since
different neurons have different connection trees, �i�t+T�
will be decorrelated from �i�t� and, more important,
�i�t+T�−� j�t+T� will change with respect to the previous
ISI. However, transforming these hand-waving arguments
into a quantitative criterion for the identification of the criti-
cal value Gc, above which self-generated fluctuations can be
robustly sustained, is not an easy task and we leave it to
future studies. Here, we limit ourselves to stressing the rel-
evant role played by correlations between neighboring neu-
rons �i.e., those with the closest-to-threshold membrane po-
tentials�. Below Gc the neurons’ rearrangement continues
until a suitable ordering is reached, characterized by the
property that neighboring neurons do not diffuse away from
each other. The existence of exponentially long transients in
the UP tells us that such an arrangement does not exist in the
strong coupling regime.

The two-phase scenario here above described persists for
a wide range of rm values. While no qualitative changes are
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FIG. 12. The normalized autocorrelation CISI of the T�i� during
transient for a single neuron i vs the integer delay for N=1000, G
=2.0. The inset shows the corresponding distribution of the T�i� and
an inverse Gaussian with the same mean and variance.
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expected to appear until rm becomes so large that the net-
work is decomposed into uncoupled blocks, we are unable to
formulate any conjecture for the limit case rm→0 due to the
need of studying very large networks.

VI. CONCLUSIONS AND OPEN PROBLEMS

The main result of this paper is the observation that a
network of leaky integrate-and-fire neurons can exhibit a
pseudochaotic behavior in spite of an entirely negative
Lyapunov spectrum. Previous studies �17� have identified in
strong localized nonlinearities a necessary �and far from suf-
ficient� condition for this phenomenon to exist. Discontinui-
ties are indeed responsible for a sudden amplification of
�finite-amplitude� perturbations and for the resulting irregu-
lar dynamics. In the models where this phenomenon was
initially observed, the discontinuities are somehow artificial
features of the local maps, but it has been recognized that
they may also spontaneously emerge. This is the case of the
hard-point diatomic gas, where discontinuities arise in the
vicinity of three-body collisions �18�. Here, we have seen
that they also occur in neuronal networks, in connection with
changes in the spike ordering. However, when and why a
discontinuity may be so important as to steadily sustain �in
the thermodynamic limit� an irregular dynamics is still a
completely open problem.

Another open question concerns the nature of the phase
transition. Macroscopically, it manifests itself as a collective
desynchronization, but there are difficulties in quantitatively
describing the phenomenon. On one hand, it cannot be ana-
lyzed by looking at the linear stability of some solution,
since linear stability is ensured above and below the transi-
tion. Moreover, the absence of local instabilities �standard
deterministic chaos� makes questionable the concept of a

transition point. In fact, the study of a partially analogous
transition in a coupled map lattice revealed that regular and
irregular phases are separated by a finite fuzzy region, rather
than by a pointlike transition �20�. Perhaps the almost global
coupling of the network studied in this paper may induce a
standard transition scenario; the analogies with contact pro-
cesses suggested by Fig. 9 indicate that this is a reasonable
expectation. However for the moment, we must limit our-
selves to observing that the scenario is robust against various
modifications, such as the addition of further disorder ac-
counting for the nonhomogeneous strength of the coupling
and specific modifications of the network topology.

Recently, it has been pointed out that an irregular dynam-
ics should significantly enhance information processing �21�.
At variance with sparsely coupled chaotic networks, where
chaos results from the balance of inhibition and excitation
�22�, we have found irregular firing patterns, characterized
by a Poisson-type distribution of interspike intervals, in the
presence of linear stability and the absence of excitation. It
would be worth investigating if and how such a Lyapunov
stable irregular dynamics is an effective tool for information
processing. In the literature there is a growing evidence of
recurrent motifs in the firing pattern �see, e.g., Ref. �23��,
which suggests that phase locking may be a tool to encode
information. In our model, recurrent motifs appear naturally
in the UP and yet keep evolving, indicating a sort of infor-
mation processing which certainly deserves a thorough in-
vestigation from this point of view.
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