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Abstract

The dynamical properties of a diluted fully inhibitory network of pulse-coupled neurons are investigated. Depending on the coupling

strength, two different phases can be observed. At low coupling the evolution rapidly converges towards periodic attractors where all

neurons fire with the same rate. At larger couplings, a new phase emerges, where all neurons are mutually unlocked. The irregular

behavior turns out to be ‘‘confined’’ to an exponentially long, stationary and linearly stable transient. In this latter phase we also find an

exponentially tailed distribution of the interspike intervals (ISIs). Finally, we show that in the unlocked phase a subset of the neurons can

be eventually synchronized under the action of an external signal, the remaining part of the neurons acting as a background noise. The

dynamics of these ‘‘background’’ neurons is quite peculiar, in that it reveals a broad ISI distribution with a coefficient of variation that is

close to 1.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A challenging task in the context of complex neural
networks is the comprehension of how their dynamical
features are influenced by their structure. A good strategy
to tackle the problem consists in studying simple models,
since one can more easily identify the minimal and relevant
ingredients that are responsible for generic properties. In
this work we investigate a diluted neural network of pulse-
coupled neurons.1 Since inhibition plays an important role
in the dynamics of neurons in vivo [3,4], we have chosen to
examine a network of inhibitory coupled leaky integrate-
and-fire neurons. Recently, it has been shown that dilution
can induce long chaotic transients in excitatory networks
with delay [13]. We aim at understanding the new features
emerging in the dynamics of a network where two
competitive effects like dilution and full inhibition coexist.
e front matter r 2006 Elsevier B.V. All rights reserved.
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n refers to a random pruning of directed links in a globally

k.
We show that the maximum Lyapunov exponent is
negative,2 so that the evolution eventually converges onto
a periodic attractor. This notwithstanding, the dynamics is
far from trivial, because above a given threshold, the
transient grows exponentially with the system size and is
characterized by seemingly stationary properties. These
features altogether, plus the stochastic-like nature of the
transient, suggest a strong analogy with stable chaos (SC), a
phenomenon discovered in the context of coupled map
lattices [8]. The possibility of observing SC in the
neuroscience context is important because this regime is
both stable to external perturbations and characterized by
a richness of behavior depending on the initial conditions:
both properties are welcome for a system that is expected
to reliably perform universal computations. The present
case study can be considered as the first example of SC in
an autonomous continuous-time system. In fact, it was
formerly believed that SC can arise only in periodically
forced systems, as one must simultaneously have a zero
2Strictly speaking, it is the second exponent, as there exists an exponent

equal to zero that corresponds to the motion along the trajectory. For the

sake of clarity and since we study the dynamics emerging from the

introduction of a Poincaré section, we always disregard the zero exponent.

www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2006.10.121
mailto:livi@fi.infn.it
mailto:antonio.politi@isc.cnr.it
mailto:alessandro.torcini@isc.cnr.it


ARTICLE IN PRESS
R. Zillmer et al. / Neurocomputing 70 (2007) 1960–1965 1961
Lyapunov exponent (in order to ensure a meaningful
dynamics different from a dull fixed point) and a strictly
negative second Lyapunov exponent. The continuity of
Lyapunov spectra in autonomous spatially extended
systems prevents the above condition to be fulfilled and,
in fact, the only previous SC example in a continuous time
system is a chain of periodically forced Duffing oscillators
[1]. However, these arguments do not apply to globally
coupled systems and this explains why SC can and has been
observed in neural networks.

2. Dynamics of a weakly disordered network

We consider a system made of N leaky integrate-and-fire
neurons, which interact by sending each other pulses
through a directed graph of connections. The non-zero
elements of the connectivity matrix are Gij ¼ G0=‘i, where
G0 is the coupling constant and ‘i is the number of
incoming links to neuron i. Such a normalization condition
has been used in the literature when dealing with randomly
connected networks [5,13]. The membrane potential viðtÞ of
the ith neuron obeys the dynamical rule

_vi ¼ c� vi � ðvi þ wÞ
XN

j¼1

XMj

m¼1

Gijdðt� t
ðmÞ
j Þ, (1)

where we use dimensionless quantities (details about the
derivation of the model can be found in [12]). The
suprathreshold input current, c, and the reversal potential,
w, are assumed to take the values 2 and 4

7
, respectively. This

choice was derived from values used in the current literature
(see e.g., [2,6]). The potential viðtÞ follows the above dynamics
until it reaches the threshold value 1, whereupon the neuron
emits a spike and the potential is reset to the value 0. The
integer Mj in the coupling term counts the spikes emitted by
neuron j at the time t

ðmÞ
j . Since we assume G040 and w40,

the coupling turns out to be fully inhibitory.
One further important ingredient of the model is disorder

that is introduced by randomly pruning a fraction rp of
directed links. As a matter of fact, the main control
parameters are rp and the coupling constant G0.

By introducing a Poincaré section (defined as the
manifold where a generic neuron potential reaches the
threshold), it has been shown that the network dynamics
can be reduced to a discrete map of the potentials viðnÞ

between successive spikes [12]. Accordingly, one can
replace the continuous time axis with an integer n denoting
the nth spike. It is convenient to simulate the model by
directly iterating the resulting map.

A preliminary analysis has been performed in Ref. [6],
where it was shown that the evolution converges to a
periodic state and rigorous upper bounds for the transient
time have been thereupon derived. Accordingly, the
dynamics seems to be quite straightforward and in fact the
maximum Lyapunov exponent remains negative even in the
thermodynamic limit [12]. More precisely, a homogeneous
fully coupled network rapidly converges towards a periodic
phase with all neurons firing with the same rate. On the
other hand, the transient length may become exponentially
long with the system size, so that in large networks the name
transient becomes inadequate to identify what turns out to
be a long-lasting stationary regime. Interestingly enough,
upon increasing the amount of disorder (i.e., by increasing
the fraction rp of cut links) one passes from the former to the
latter regime. The results reported in this section for rp as
small as 0.05, show that for sufficiently large coupling
strengths a stochastic-like behavior is self-generated.
At low coupling strengths (up to G0t1), the evolution is

substantially equivalent to that of a fully coupled system.
After a short transient time, on the order of the system size
N, all neurons fire with the same pace ðtisi ¼ constÞ but are
characterized by different absolute phases. The main
difference between this synchronized regime, that we call
Locked Phase (LP), and that one occurring in the fully
coupled case is the difference among the relative phases. In
fact, the equivalence among all neurons of a homogeneous
network forces the evolution to converge towards a highly
symmetric state characterized not only by a constant
interspike interval (ISI) tisi, but also by a constant time
separation between consecutive spikes. On the other hand,
already the introduction of a small amount of disorder
breaks the symmetry, and different spiking sequences
are no longer equivalent to one another, with the
consequence that slightly different time series are generated
for different initial conditions. Although this phase is
dynamically trivial, it may have some relevance from the
point of view of information storage, since there is an
exponentially large (and even more than that) number of
different attractors that may be selected by means of
suitable initial inputs.
At higher coupling strengths ðG0\1Þ a different network

dynamics sets in. The ISI is no-longer constant and the
resulting pattern keeps slowly changing (e.g., see Fig. 1).
We accordingly call this dynamical regime Unlocked Phase

(UP). The phase variables corresponding to the different
neurons evolve like independent random walks, despite the
dynamics is characterized by a negative maximum Lyapu-
nov exponent. One can understand the new scenario by
observing that the increased (inhibitory) coupling strength
destabilizes (or just makes disappear) an increasing number
of periodic spiking sequences. Accordingly, we observe a
continuous rearrangement of the ordering, until one of the
remaining stable sequences is reached. It is certainly
desirable to understand the rules of this pruning of
periodic solutions, but we first prefer to concentrate our
efforts on the statistical characterization of the transient
regime, since the irregularity of the evolution can neither be
traced back to an exponential separation of orbits, nor to
the action of an external noise source. We start by
computing the normalized autocorrelation function of the
ISIs, tisiðnÞ, of the single neurons,

CisiðnÞ ¼
htisiðn

0Þtisiðn
0 þ nÞi � htisii

2

ht2isii � htisii
2

,
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Fig. 2. The normalized autocorrelation Cisi of the tisi during transient for

a single neuron vs. the integer delay for N ¼ 1000;G0 ¼ 2. The inset shows

the corresponding distribution PðtisiÞ that exhibits an exponential decay.
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Fig. 1. Firing pattern during the transient in the UP

ðG0 ¼ 2;N ¼ 200; rp ¼ 0:05Þ. q denotes the index of the firing neuron.
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where h�i denotes the average over the time index n0. Cisi

(see Fig. 2) clearly exhibits an exponential decay, while the
corresponding ISI distribution (see the inset in the same
figure) exhibits an exponential tail that is typical of Poisson
processes [10] and testifies to the absence of correlations at
long times.

It is also important to test the stationarity of the UP.
By computing the coefficient of variation, CVðnÞ (the
standard deviation normalized to the mean value) of
the ISI in different windows, it can be seen that while
CVðnÞ slowly decreases towards 0 in the LP (indicating
a convergence towards an ordered state), it remains
constant in the UP [12] although the asymptotic value
is quite small. For instance, we find that CV � 0:03 for
G0 ¼ 1:6 in contrast to values around 1, typically found
for randomly spiking neurons in the cortex [9]. This can
be due to the smallness of the disorder that is considered
in the network. However, it is also interesting to notice
that even in the present context for a different setup
(i.e., under the action of a periodic input) a much
wider distribution can be found as discussed in the next
section.

3. Response to a periodic signal

An interesting question is whether the emergence of long
irregular transients in the presence of multiple periodic
attractors allows performing neurocomputational tasks. As
a first test in this direction we study the effect of a periodic
signal on a subset N 0 of the N neurons. The signal is
assumed to be an equispaced spike train with an excitatory
action on the receiving neurons. The dynamics of the
unforced N �N 0 neurons is still given by Eq. (1), while the
remaining N 0 neurons are subject to the extra excitatory
synaptic input,

I e ¼ �ðvi0 þ weÞGe

XMe

n¼1

dðt� tðnÞe Þ; (2)

where we is the reversal potential, Ge represents the
coupling constant and Me counts the external spikes
received up to the time t. The ISI of the excitatory post-
synaptic potentials (PSPs) is assumed to be constant (i.e.,
tðnþ1Þe � tðnÞe � Te). Thus the effective signal strength is given
by the ratio Ge=T e.
Due to the excitatory nature of the PSP, the firing rate of

the N 0 neurons increases, and this, in turn, gives rise to an
increased inhibitory activity in the network. Thus the
activity of the N �N 0 ‘‘background’’ neurons that do not
partake in the excitatory input should diminish compared
to the subset N 0. In Fig.3 we present results for a system of
N ¼ 500 neurons in the UP ðG0 ¼ 1:8Þ. The input signal is
switched on during the time interval t 2 ½25:9; 31:8�;
otherwise the network evolves freely according to Eq. (1).
For the PSP input trains, we have taken the values
we ¼ �8, T e ¼ 10�3 and Ge ¼ 2:2� 10�4, i.e., Ge=T e ¼

0:22. The input is applied to the first 50 neurons (given the
equivalence on average among all neurons, the choice of
the label is totally irrelevant); accordingly N 0=N ¼ 0:1. By
looking at the firing pattern shown in Fig. 3(a), one can
clearly notice the effect of the excitatory input from the
significantly increased firing frequency of the driven
neurons, while, simultaneously, the activity of the undriven
background neurons diminishes. Not surprisingly, the
pattern of the N 0 neurons is much more regular than the
spike pattern of the background. This is better seen by
looking at the ISI’s, t0isi, of the driven neurons in Fig. 3(b).
Indeed, soon after the input has been switched on the t0isi
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Fig. 3. (a) Firing pattern for G0 ¼ 1:8;N ¼ 500; q denotes the index of the

firing neuron. The excitatory input was applied to neurons i ¼ 1; . . . ; 50
for t 2 ½25:9; 31:8�. To enhance visibility only the first 200 neurons are

shown. (b) The tisi of the respective firing neuron. With the applied signal

the tisi of the receiving neurons lock to t0isi ¼ 0:43.
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rapidly decrease towards 0.43 with small fluctuations
o2%. Once the signal has been switched off, the system
rapidly returns to the initial irregular pattern after the
neurons have been reset.

When the input signal is on, the forced neurons behave
almost periodically with a period t0isibT e. The small
fluctuations are due to the inhibitory action of the
background neurons. However, the negative Lyapunov
exponent ensures stability with respect to small perturba-
tions and thereby guarantees a robust synchronization of
the subset. The N 0 neurons somehow resemble the ‘‘active’’
population of cells that respond to a certain stimulus by
firing with an increased rate.

On the other hand, the ISIs of the background are more
irregular than in the freely evolving network as revealed by
the strongly enhanced fluctuations. In order to perform a
more accurate description of their behavior, we have
switched on the input for longer times, so as to be able to
determine the probability distribution of the intervals tisi in
the stationary regime. It turns out that different back-
ground neurons show substantial differences in their firing
rate, htisii

�1. In Fig. 4(a) the distribution of htisii is shown,
which can be fitted for intermediate values by a power-law
decay with an exponent � 3. However, the tail shows
significant deviations from the power-law, which suggests a
decomposition of the background neurons into different
classes. In order to get a deeper insight into this
phenomenon, we have examined the distribution of single
neuron CV’s for different system sizes keeping N 0=N ¼ 0:1
(see Fig. 4(b)). As a matter of fact, this characterization of
the firing processes reveals a bimodal distribution. The
peak seen at smaller values is reminiscent of the behavior of
the freely evolving network: we can claim that such
neurons are almost unaffected by the input signal. On the
other hand, the neurons with CV ’ 1 exhibit a Poissonian
ISI distribution with a much more pronounced exponential
tail. The different behavior of background neurons can be
understood by examining for each neuron the number of
intact incoming links from forced neurons, that after a
normalization with N 0 yields the local connectivity
rcon 2 ½0; 1�. A large value of rcon implies an enhanced
inhibition of the respective neuron. We collected neurons
that share the same value of rcon and computed the
corresponding average CV that we denote as hCVis .
Indeed, the results in Fig. 4(c) show that with increasing
rcon there is a transition-like behavior of hCVis , asit rapidly
increases from values around 0.05 to values around 1.

4. Conclusions and perspectives

We have studied a diluted inhibitory network of pulse-
coupled neurons that is dynamically stable in the whole
parameter range considered. The dynamical stability,
determined by a negative Lyapunov exponent, ensures
the existence of asymptotic periodic attractors. By varying
the coupling strength G0, a desynchronization transition is
found: for G0\1:2 the dynamics is governed by chaotic-like

transients whose duration grows exponentially with the
system size. The transients have good stationarity proper-
ties and they are characterized by irregular firing sequences
with an exponentially tailed ISI distribution. Such a
behavior is usually attributed to dynamically unstable
chaotic networks, e.g., with balanced excitatory and
inhibitory activity [11]. With the help of mean field
arguments, the basic mechanism of the desynchronization
can be identified: the dropout of input due to a pruned link
which leads to irregular changes of the neurons position in
the firing sequence. Thus, we expect the effect to emerge in
a wider class of models (e.g. inhibitory networks with small
fractions of excitatory links). Preliminary simulations have
further shown the effect to persist in the presence of
delayed interaction.
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Fig. 4. (a) The stationary distribution of the ‘‘background’’ htisii for the

same parameter values as in Fig. 3 (circles). The solid line is a fit with a

power-law with exponent 3. (b) The stationary distribution of the CV of

single neurons belonging to the ‘‘background’’ for different system sizes

(N 0=N ¼ 0:1). (c) The average hCVis as a function of the connectivity rcon
for different system sizes ðN 0=N ¼ 0:1Þ.
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We want to point out that only under the peculiar
conditions of SC it is possible to reconcile linear stability
with an unpredictable, chaotic evolution: as soon as the
system size is sufficiently large, the periodic attractor is
practically unreachable and the erratic transient dynamics
is the only accessible information from the system. These
findings could be of some relevance in connection with the
recent experimental results of Mazor and Laurent [7], who
pointed out that odor discrimination is better performed by
projection neurons in the locust antennal lobe during
transient dynamical phases preceding stable states.
In biological systems, the effect of noise has to be taken

into account. In the present case this could manifest itself
as external background noise or as internal fluctuations
such as synaptic failures. For small enough noise ampli-
tudes, the linear stability of the considered system ensures
robustness of the presented behavior. We have shown this
by synchronizing a subset of the neurons, where the
irregular activity of the other neurons can be seen as weak
background noise. In the case of larger noise, one has to
consider two cases. In the desynchronized phase ðG0\1:2Þ
the noise amplifies the already present irregularities which
renders the convergence towards a periodic attractor
impossible. For what concerns the locked phase
ðG0t1:2Þ, we found that finite perturbations switch
the dynamics between the different periodic attractors.
However, a detailed investigation of noise effects is still in
progress.
The observed mechanisms provided by SC should be

present in a dynamical model of a system which is expected
to reliably perform universal computations. Indeed, thanks
to its asympotic stability, the SC regime is found to be
naturally stable with respect to external perturbations. On
the other hand, the long and stationary transient ensures
that the system can explore an extremely rich variety of
configurations.
This gives rise to the challenging question, whether it is

possible to address the various periodic states in a
reproducible way by properly chosen inputs. In this spirit
a study of the properties of the considered dynamics
including external drives (information input) is of high
interest. As a first test, we have demonstrated that it is
possible to lock by external periodic signals a relatively
small subset of neurons onto a periodic attractor while the
rest (background) of the network performs an irregular
activity. Interestingly, the background decomposes into
two classes with respect to the CV of the single neuron ISI
distribution, where one class is characterized by a CV close
to unity. All of these remarks indicate that the locked
as well as the desynchronized phase of our model may
contain ingredients of direct interest for applications to
neurosciences.
Finally, we wish to emphasize that from a conceptual

point of view, it is remarkable that SC has been found in a
continuous-time autonomous dynamical system such as
model (1). After its discovery in space- and time-discrete
models (coupled map lattices) [8], the only known case of a
continuous-time dynamical model exhibiting SC is a chain
of periodically forced Duffing oscillators [1]. In fact, an
autonomous dynamical system depending on a continuous
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time variable is expected to be marginally stable, i.e.,
L ¼ 0. Such a statement can be made rigorous as soon as
the interactions which determine the dynamics of such a
system are assumed to be smooth, differentiable functions
of its variables. This is not the case of our model, which is
certainly continuous in time but incorporates strong
nonlinear, i.e., non-smooth, properties due to the threshold
mechanism ruling firing events. It is this constituent
property, typical of neural dynamics, which essentially
turns the continuous time dynamics to a map-like
behavior, thus rendering possible the emergence of SC.
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