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• introduction
• globally pulse coupled integrate-and-fire neurons
• dilution (broken links)→ long irregular transients ∼ exp(αN)
• properties of transients



Single neuron

• neuronal signals are short electrical pulses: spikes or action potentials resp.
• intracellular: incoming spike modifies membran potential

Hodgkin-Huxley (1952): Semirealistic model for the dynamics of the membran poten-
tial by taking into account Na+, K+, and a leak current. Dynamics of ion channels highly
nonlinear.
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Leaky integrate-and-fire approximation

Linear integration combined with reset = formal spike event
In networks: at reset a delta-like pulse is sent to other neurons

Equation for membran potential v , with threshold Θ and reset R :

τ v̇ = −(v− vr)+ I = − ∂

∂v
Φ(v) , Φ(v) = (v− vr− I)2/2 , v ∈ [R,Θ]
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Information coding

Real neurons have complex structure and behave not as reliable as the mathematical
models
Typical spike train:

• single neuron in vitro: variability of response to constant input
• neurons in vivo ⇒ highly fluctuating input: neurons can produce very precise re-

sponse (Mainen, Sejnowsky, 1995)

rate coding? time coding? mixing of both?

reliable more info, fast
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Real neuronal networks

• density in cortex: > 104 neurons per mm3

• layered structure (slices) of highly connected neurons
• single tasks or memories spread over wide areas (binding problem)
• connection between neurons via synapses:

exciting (input rises potential), inhibiting (input lowers potential)
• neuromodulators change response to given input (drugs)
• plasticity: adaption (learning) by alterations of synaptic strength or connectivity
• high connectivity leads to very irregular activity of single neurons
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Modelling neuronal networks

Networks of simple components which mimick real neurons
⇒ allow effective theoretical and numerical analysis
Different topologies: globally all to all coupling, small world, scale free network, layered
structure

Hopfield network:

• neurons as interacting “spins” σi =±1 :

σi(t +1) = sign

[
∑

j
Ji jσ j(t)

]
• stored memory as stationary states
• for symmetric Ji j = J ji detailed balance ⇒ point attractors

e.g. Ji j = SiS j ⇒ σi = Si fixed point (memorized pattern)
• asymmetric Ji j : periodic states and long “chaotic” attractors
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Networks of integrate-and-fire neurons

Equation for membran potential v j :

v̇ j = I− v j−
N

∑
i=1

∞

∑
k=1

G ji w(v j)α(t− t(k)i ) , v ∈ [R,Θ]

• more realistic behavior e.g. global oscillations, irregular firing, self sustained activ-
ity, effects of noise

• mean-field analysis of network activity in the limit of
1. homogeneous global coupling (each neuron receives same input)
2. sparse asymmetric coupling (inputs of different neurons uncorrelated)

Irregular activity induced by noise and/or asymmetric couplings (frozen disorder)
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Pulse-coupled integrate-and-fire neurons

System of N identical all to all pulse-coupled neurons:

v̇ j = I− v j−
N

∑
i=1,(6= j)

∞

∑
k=1

G0
N

(v j +E)δ(t− t(k)i ) , v ∈ [R,Θ]

• suprathreshold current I
• inhibitory coupling ⇒ no simultaneous firings

simple mean-field approach for the rate T−1
mf :

v̇ j = I− v j−G0(v j +E)T−1
mf

⇒ self-consistent solution for period Tmf
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Dynamics of homogeneous system

v̇ j = I− v j−
N

∑
i=1,(6= j)

∞

∑
k=1

G0
N

(v j +E)δ(t− t(k)i )
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Discrete time map for the pulse-coupled model

v̇ j = I− v j−
N

∑
i=1,(6= j)

∞

∑
k=1

G0
N

(v j +E)δ(t− t(k)i ) , v ∈ [R,Θ]

Explicit solution between firings, time-interval (isi) between two firings as discrete time
step
⇒ map for residual time ti of neuron i to reach threshold (ti ≡ lnΓi) :

neuron q closest to threshold: Γq = min
j
{Γ j} , isi = tq = lnΓq

map for quiet neurons: Γi(n+1) = e−G0/N Γi(n)
Γq(n)

+
(

1− e−G0/N
) I +E

I−Θ

reset of firing neuron: Γq(n+1) =
I−R
I−Θ

time-step: t = t + tq
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Long irregular transients

Transients grow exponentially with system size ⇒ relevant states for large systems

• long irregular transients ∼ exp(αN) in linearly stable CMLs (“stable chaos”, Politi,
Livi et al.)

• long irregular transients in asymmetric Hopfield networks, spins - finite number of
states (Crisanti, Sompolinsky, 1988)

• long chaotic transients (positive effective LE, riddled basin) in an excitatory pulse-
coupled network (Zumdieck, Timme, Geisel et al., 2004)

• analytical results for short transients ∼ N to periodic state when coupling is size
independent (Jin, 2002)

Information processing in brain should combine reliability (linear stability) with fast re-
sponse and high information content (complex dynamics)
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Diluted network

v̇ j = I− v j−
N

∑
i=1,(6= j)

∞

∑
k=1

G0
Neff

ε ji (v j +E)δ(t− t(k)i ) , v ∈ [R,Θ]

Links are cut with given probability, ε ji = 1,0
Normalization of coupling strength with the number Neff of active incoming links:
dilution indistinguishable for simple mean-field approach
Negative Lyapunov exponent ⇒ linear stability

For 5% cut links:

• multiple attractors (abolition of degeneracy with respect to exchange of neurons)
• for G0 < 1 short transients ∼ N to periodic state
• for G0 > 1 long stationary transients ∼ exp(αN)
• irregular dynamics during transient (uncorrelated isi-times)
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Long irregular transients to periodic state

length of transient pattern for G0 = 1.5
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Statistics of the transient times

Normalized histogram (random initial conditions) of transient lengths for N = 65 :
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Bifurcation of the periodic state

For G0 ≈ 1.5 onset of double firing or suppression of neurons, resp.
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Variability of inter-spike-times

The CV (=variance/mean) of the neuron isi-times during the transient shows two scal-
ing regimes, depending on the coupling strength G0 :

0,125 0,25 0,5 1 2
G0

0,0001

0,01

1
C

V
N=1000
N=2000
N=3000

15



Finite perturbation growth

Consider evolution of small but finite perturbations of state:

ṽi(t0) = vi(t0)+ εηi , η ∈ [−1,1]

Hamming distance:

DH(t) =
1
N

N

∑
j=1

|ṽ j(t)− v j(t)|

In both regimes (G0 < 1 and G0 > 1):

• for small enough ε∼ 10−5 elimination of perturbation (up to a constant phase shift)
in accordance with the negative Lyapunov exponent

• for ε∼ 0.01 amplification of perturbation, systems end up on different attractors
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Finite perturbation growth

Evolution of the Hamming distance during transient (N = 2000,G0 = 2.1):

perturbation amplitude: ε = 10−5 ε = 10−2

10 10,5 11 11,5 12
tI

0

5e-05

0,0001

D
H

25 50 75 100
n/N

0

0,5

1

1,5

2

D
H

(n
)

17



Finite perturbation: phase diffusion

Time intervals t j, t̃ j between two subsequent firings of the systems:

t tj j+1

.
tj j+1t~ ~

“Phase” difference:

Dp(n) =
n

∑
1

[
t j(n)− t̃ j(n)

]

Evolution of DP(n) during transient (ε∼ 0.01):

• for G0 < 1 ballistic drift (systems have different mean isi-time)
• for G0 > 1 normal diffusion (mixing property of long stationary transient)
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Finite perturbation: phase diffusion

Variance of “Phase” difference DP(n) (average over different i.c.):
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Summary and open work

• network of inhibitory pulse-coupled integrate-and-fire neurons
• negative Lyapunov exponent ⇒ linear stability
• dilution: two regimes depending on the coupling strength G0

1. G0 < 1 : short transients, constant “drift” to periodic state
2. G0 > 1 : long stationary transients ∼ exp(αN) , irregular dynamics
⇒ for large N irregular transients are the relevant stationary states

• other forms of frozen network disorder (e.g. varying Gi j)
• comparison with excitatory networks (Zumdieck, Timme, Geisel et al.)
• relevance of stationary transient for information processing tasks
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