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Introduction (I)

Splay States

These states represent collective modes emerging in networks of fully coupled nonlinear
oscillators.

all the oscillations have the same wave-form X ;

their phases are "splayed" apart over the unit circle

The state xk of the single oscillator can be written as

xk(t) = X(t + kT/N) = Acos(ωt + 2πk/N) ; ω = 2π/T ; k = 1, . . . , N

N = number of oscillators

T = period of the collective oscillation

X = common wave form
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Introduction (II)

Splay states have been numerically and theoretically studied in

Josephson junctions array (Strogatz-Mirollo, PRE , 1993)

globally coupled Ginzburg-Landau equations (Hakim-Rappel, PRE, 1992)

globally coupled laser model (Rappel, PRE, 1994)

fully pulse-coupled neuronal networks (Abbott-van Vreesvijk, PRE, 1993)

Splay states have been observed experimentally in

multimode laser systems (Wiesenfeld et al., PRL, 1990)

electronic circuits (Ashwin et al., Nonlinearity, 1990)

Nowdays Relevance for Neural Networks

LIF + Dynamic Synapses - Plasticity (Bressloff, PRE, 1999)

More realistic neuronal models (Brunel-Hansel, Neural Comp., 2006)
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Introduction (III)

Watanabe & Strogatz (Physica D - 1994) have demonstrated for a system of N identical
phase oscillators with local force fields represented by single harmonic function

θ̇j = f + g cos θj + h sin θj j = 1, . . . , N ;

where θj ∈ [0 : 2π] and f ,g and h are functions of {θk} periodic in each argument, that
the splay states are characterized by N − 3 neutrally stable directions. The functions
f ,g, h represent common fields determined by all the oscillators.

This result extends also to systems where the phase oscillators are coupled to some
external dynamical variable Q, e.g this is the case of a Josephson junction arrays:

θ̇j + sin θj + Q̇ = Ib j = 1, . . . , N ;(1)

LQ̈ + RQ̇ + C−1Q = 1
N

PN
k=1 θ̇k(2)

in this case the above N+2 set of equations can be reduced via a nonlinear
transformation to a five-dimensional system.
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Summary

Network of pulse-coupled identical neurons with generic force field
(Leaky Integrate-and-Fire (LIF) models representing a special case)

stability properties of states with uniform spiking rate (Splay States)

LIF model F (x) = a − x

The network dynamics can be rewritten as an Event Driven Map

The stability of the Splay State reduces to a fixed point stability analysis

The Floquet spectrum can be analyzed in two limiting case:
Short (SWs) and Long Wavelengths (LWs) (analogy with Extended Systems)

In finite networks, approximations O(1/N4) are needed to reproduce the splay
state Floquet spectrum, that scales as 1/N2

Generic force field F (x)

For continuous F , the SW Floquet spectrum scales faster than 1/N2

For discontinuous F , the stability/instability of the SW spectrum is determined by
the sign of the difference [F (1) − F (0)]
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The Model

The dynamics of the membrane potential xi(t) of the i–th neuron is given by

ẋi = F (xi) + gE(t) , xi ∈ (−∞, 1), Θ = 1, xR = 0, i = 1, . . . , N

F (x) is periodic in [0 : 1] - for LIF neurons F (x) = a − x

single neurons are in the repetitive firing regime (F (x) > 0)

g is the coupling - excitatory (g > 0) or inhibitory (g < 0)

Pulse Coupling Scheme

each emitted pulse has the shape Es(t) = α2

N
te−αt

the field E(t) is due to the (linear) super-position of all the past pulses

the field evolution (in between consecutive spikes) is given by

Ë(t) + 2αĖ(t) + α2E(t) = 0

the effect of a pulse emitted at time t0 is

Ė(t+0 ) = Ė(t−0 ) + α2/N
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Event-driven map(I)

By integrating the field equations between successive pulses, one can rewrite the
evolution of the field E(t) as a discrete time map:

E(n + 1) = E(n)e−ατ(n) + NQ(n)τ(n)e−ατ(n)

Q(n + 1) = Q(n)e−ατ(n) +
α2

N2

where τ(n) is the interspike time interval (ISI) and Q := (αE + Ė)/N .

For the LIF model also the differential equations for the membrane potentials can be
exactly integrated

xi(n + 1) = [xi(n) − a]e−τ(n) + a + gF (n) = [xi(n) − xq(n)]e−τ(n) + 1 i = 1, . . . , N

with τ(n) = ln
h

xq(n)−a

1−gF (n)−a

i

where F (n) = F [E(n), Q(n), τ(n)] and the index q labels

the neuron closest to threshold at time n.
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Event-driven map(II)

In a networks of identical neurons the order of the potential xi is preserved, therefore it
is convenient :

to order the variables xi;

to introduce a comoving frame j(n) = i − n Mod N ;

in this framework the label of the closest-to-threshold neuron is always 1 and that
of the firing neuron is N .

The dynamics of the membrane potentials for the LIF model becomes simply:

xj−1(n + 1) = [xj(n) − x1(n)]e−τ(n) + 1 j = 1, . . . , N − 1 ,

with the boundary condition xN = 0 and τ(n) = ln
h

x1(n)−a
1−gF (n)−a

i

.

A network of N identical neurons is described by N + 1 equations
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Splay state - LIF

In this framework, the periodic splay state reduces to the following fixed point:

τ(n) ≡
T

N

E(n) ≡ Ẽ , Q(n) ≡ Q̃

x̃j−1 = x̃je−T/N + 1 − x̃1e−T/N

where T is the time between two consecutive spike emissions of the same neuron.

A simple calculation yields,

Q̃ =
α2

N2

“

1 − e−αT/N
”

−1
, Ẽ = TQ̃

“

eαT/N − 1
”

−1
.

and the period at the leading order (N ≫ 1 ) is given by

T = ln

»

aT + g

(a − 1)T + g

–
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Stability of the splay state

In the limit of vanishing coupling g ≡ 0 the Floquet (multipliers) spectrum is
composed of two parts:

µk = exp(iϕk), where ϕk = 2πk
N

, k = 1, . . . , N − 1

µN = µN+1 = exp(−αT/N) .

The last two exponents concern the dynamics of the coupling field E(t), whose
decay is ruled by the time scale α−1

As soon as the coupling is present the Floquet
multipliers take the general form

µk = eiϕk eT (λk+iωk)/N

ϕk = 2πk
N

, k = 1, . . . , N − 1

µN = eT (λN+iωN )/N

µN+1 = eT (λN+1+iωN+1)/N

where, λk and ωk are the real and imaginary
parts of the Floquet exponents. -1.0 -0.5 0.0 0.5 1.0

Re{µκ}

-1.0

-0.5

0.0

0.5

1.0
Im{µk}
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Analogy with extended systems

The “phase” ϕk = 2πk
N

plays the same role as the wavenumber for the stability analysis
of spatially extended systems: the Floquet exponent λk characterizes the stability of the
k−th mode

If at least one λk > 0 the splay state is unstable

If all the λk < 0 the splay state is stable

If the maximal λk = 0 the state is marginally stable

We can identify two relevant limits for the stability analysis:

the modes with ϕk ∼ 0 mod(2π) corresponding to ||µk − 1|| ∼ N−1

Long Wavelengths (LWs)

the modes with finite ϕk corresponding to ||µk − 1|| ∼ O(1)

Short Wavelengths (SWs)

For the LIF model the implicit expression of the Floquet spectrum is

A(eT − 1)µN−1
k = −

“

A(eT − 1) + eτ
” eτ−T − µN−1

k

1 − µkeτ
+ eτ 1 − µN−1

k

1 − µk

where A = A(τ, x̄1, Ē, Ē)
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Infinite Network – LIF

Post-synaptic potentials with finite pulse-width 1/α and large network sizes (N )

N → ∞ Limit

The instabilities of the LW-modes determine the stability domain of the splay state,
this corresponds to the Abbott-van Vreeswijk mean field analysis (PRE 1993)

The spectrum associated to the SW-modes is fully degenerate

ωk ≡ 0 λk ≡ 0

The splay state is always unstable for
inhibitory coupling

For excitatory coupling there is a criti-
cal line in the (g, α)-plane dividing un-
stable from marginally stable regions

0 0.2 0.4 0.6 0.8 1
g
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Finite Network – LIF

In finite networks,

Splay state are strictly stable;

the maximum Floquet exponent
approaches zero from below as 1/N2
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For the LIF model it is possible to write the exact event driven map, but for other neuronal
models perturbative expansion are needed to derive the map evolution.

A perturbative expansion correct to order
O(1/N) cannot account for such deviations

In the present case, even approximations
correct up to order O(1/N2) give wrong
results

First and second-order approximation
schemes yeld an unstable splay state
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Finite Network – LIF

Since event-driven maps are usually employed to simulate pulse-coupled networks,
extreme care should be employed in performing 1/N perturbative expansion of the
original models

A perturbative expansion O(1/N2) of the
Floquet matrix is sufficient to well reproduce
the Floquet spectrum

λk∗N
2 =

gα2

12T 2
(eT−2+e−T )

»

1 +
6

(cos φk − 1)

–

Instead, in order to get the spectrum with the
same accuracy event driven maps should in-
clude terms up to O(1/N4)
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2

Appr. Event Driven Map O(1/N
4
)

Exact Event Driven Map
equation (*)
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Generic Force Field

For a generic force field F (x), the dynamics of the membrane potential xi(t) of the i–th
neuron is given by

ẋi = F (xi) + gE(t) , xi ∈ (−∞, 1), Θ = 1, xR = 0, i = 1, . . . , N

For F (x) = sin(2πx + α) the stability of the splay state is characterized by exactly
N − 3 zero Floquet exponents and 5 not zero exponents;

For F (x) = a − x the splay state is stable, but the Floquet exponents scale as
1/N2, this is in general true for the SWs modes

What can we say about the splay state stability for generic F (x) ?

To numerically address this problem we consider event driven maps obtained via a
O(1/N4) expansion of the original model.

This approximate approach allows us to determine the splay state and to evaluate its
stability properties.
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Harmonic Force Field

F (x) are now C∞[0 : 1]
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Continuous Force Field

F (x) have discontinuous first derivative

0 1 2 3
ϕk

10
-6

10
-4

10
-2

10
0

10
2

10
4

|λ
k|x

N
4

N=100
N=200
N=400

0 1 2 3
ϕk

0

0.05

0.1

λ kxN
4

F (x) = 1.3 − x(x − 1) with g = 0.4

and α = 6

The exponents associated to SW
modes vanish faster than 1/N2

(apparently 1/N4)

the splay state is unstable: the LW
modes determine its stability
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The exponents associated to SW
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(apparently 1/N3)

for finite N the splay state is stable
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Discontinuous Force Field (I)
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[F (1) − F (0)] > 0

The part of the Floquet spectrum corresponding to SW modes scale as 1/N2

The splay state is unstable for finite N due to SW instabilities

The asymptotic stability is determined by the LWs modes
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Discontinuous Force Field (II)
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The part of the Floquet spectrum corresponding to SW modes scale as 1/N2

The SW modes are stable for finite N

The asymptotic and finite N stability are determined by the LWs modes

This situation is analogous to the leaky integrate-and-fire case
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Conclusions (I)

The stability of splay states for the leaky integrate-and-fire model can be
addressed by reducing a globally coupled ODE model to event-driven maps;

An analytical analysis of the Jacobian reveals that the eigenvalue spectrum is
made of three components

1. long wavelengths eigenmodes, which can be found also within a mean-field
approach (Abbott - van Vreeswijk);

2. short wavelengths eigenmodes;

3. isolated eigenvalues, signaling the existence of strong instabilities

The stability of large networks of neurons coupled via narrow pulses depends
crucially on the ratio between the interspike interval and the pulse width, thus the
dynamical stability of these models demands for more refined analysis than mean
field.

[ R. Zillmer, R.Livi, A. Politi & AT PRE 76 (2007) 046102]
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Conclusions (II)

The stability of splay states for a Generic Force Field F (x) can be captured by
writing event-driven maps correct at least up to order O(1/N4).

The stability of SW modes for FINITE pulse-coupled networks is determined by the
force field F (x) continuity properties:

1. Continuous Force Fields :

(a) harmonic F (x): the SW exponents identically vanish (W-S)
(b) discontinuous F ′: the SW exponents scale faster than 1/N2

2. Discontinuous F (x) : the SW exponents scale as 1/N2

(a) [F (1) − F (0)] > 0 : Unstable SW modes
(b) [F (1) − F (0)] < 0: Stable SW modes

In the mean-field approach the "spatial discreteness" of the network is neglected:
no SW instabilities can occur.
However, the Abbott-Van Vreeswijk approach is still commonly employed :
Brunel - Hakim, Neural Comp. , 1999

[ M. Calamai, A. Politi & AT, in preparation ]
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Open Problems

For the mathematicians
Our numerical findings should be demonstrated in rigourous
manner;

The degree of continuity of the force field should be linked to the
spectrum characteristics.

For the others

How general is the finite N scaling observed for the splay states
(namely 1/N2) and its origin ?

Is this scaling observable also for other exact solutions of
pulsed-coupled networks, like partially synchronized states ?
[van Vreeswiijk, PRE (1996)]
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Vanishing Pulse-Width (I)

The Abbott - van Vreeswijk mean field analysis does not reproduce the stability
properties of the splay state for δ-like pulses:

The limit N → ∞ and the zero pulse-width limit do not commute

To clarify this issue we introduce a new framework where the pulse-width 1/α is
rescaled with the network size N :

α = βN

The relevant parameter is now β

Now, we deal with two time scales :

a scale of order O(1) for the evolution of the membrane potential;

a scale of order α−1 ∼ N−1 that corresponds to the field relaxation.

For finite β-values

with excitatory coupling (g > 0) the splay state is always unstable

with inhibitory coupling (g < 0) the splay state can be stable for sufficiently
large β
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Vanishing Pulse-Width (II)
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For inhibitory coupling (g < 0) the Floquet spectrum associated to the splay state is well
reproduced by the stability analysis of the Short Wavelenght (SW) Modes.
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Vanishing Pulse-Width (III)

For inhibitory coupling (g < 0) the transition from stable to unstable splay states is well
captured by the instabilities of the π-mode:

λπ = −1 +
1

T
ln

"

1 +
1

a − 1 + 2β2Tg
`

1 + e2βT
´ `

e3βT − 2eβT + e−βT
´

−1

#

The relevant parameter for the transition is
the ratio between the ISI and the pulse-width

βT =
T/N

1/α

Strongly Unstable Regime:
the isolated eigenvalues λN,N+1 ∼ N

crosses the zero axis -2.5 -2 -1.5 -1 -0.5 0
g

0

1
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4

βT STABLE

UNSTABLE

STRONGLY
UNSTABLE
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Failure of the mean field (I)

To derive the mean-field stability analysis for the splay state Abbott-Van Vreeswijk made
the following hypothesis:

the field E(t) = E0 is constant, therefore the period is T = 1/E0;

to describe the state of the population of the oscillators they reformulate the
dynamics as a continuity equation describing a flow of phases (of the oscillators);

they neglect the "spatial discreteness" of the network, no SW instabilities can
occur.

The Abbott-Van Vreeswijk approach is still commonly employed :

Brunel - Hakim, Neural Comp. , 1999
Brunel, J. Comput Neurosci, 2000
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Failure of the mean field (II)
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The reason for the failure of the mean field approach is related to the fact that for Finite
Pulse-Width (constant α) the oscillations of E(t) decreases with N , while for Vanishing
Pulse-Width (constant β) the oscillations are independent of N .
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Conclusions

The stability of splay states can be addressed by reducing a globally coupled ODE
model to event-driven maps, where the discrete time evolution corresponds to
consecutive pulse emission;

An analytical analysis of the Jacobian reveals that the eigenvalues spectrum is
made of three components

1. long wavelengths eigenmodes, which can be found also within a mean-field
approach;

2. short wavelengths eigenmodes;

3. isolated eigenvalues, signaling the existence of strong instabilities

The stability of large networks of neurons coupled via narrow pulses depends
crucially on the ratio between the interspike interval and the pulse width, thus the
dynamical stability of these models demands for more refined analysis than mean
field.
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