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ABSTRACT

We present a detailed analysis of the dynamical regimes observed in a balanced network of identical quadratic integrate-and-fire neurons
with sparse connectivity for homogeneous and heterogeneous in-degree distributions. Depending on the parameter values, either an asyn-
chronous regime or periodic oscillations spontaneously emerge. Numerical simulations are compared with a mean-field model based on a
self-consistent Fokker–Planck equation (FPE). The FPE reproduces quite well the asynchronous dynamics in the homogeneous case by either
assuming a Poissonian or renewal distribution for the incoming spike trains. An exact self-consistent solution for the mean firing rate obtained
in the limit of infinite in-degree allows identifying balanced regimes that can be either mean- or fluctuation-driven. A low-dimensional reduc-
tion of the FPE in terms of circular cumulants is also considered. Two cumulants suffice to reproduce the transition scenario observed in the
network. The emergence of periodic collective oscillations is well captured both in the homogeneous and heterogeneous setups by the mean-
field models upon tuning either the connectivity or the input DC current. In the heterogeneous situation, we analyze also the role of structural
heterogeneity.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0075751

The balance of excitation and inhibition represents a crucial
aspect of brain dynamics explaining the highly irregular fluctu-
ations observed in several parts of the brain. The identification of
macroscopic phases emerging spontaneously in balanced neural
networks is particularly relevant in neuroscience since classify-
ing them and establishing their robustness (generality) can help
to understand and control brain functions. Focusing on pulse-
coupled quadratic integrate-and-fire neurons, we illustrate and
describe in a quantitative way the asynchronous dynamics and the
emergence of collective oscillations. Our main assumption is that
the spontaneous current fluctuations emerging in the network
due to the sparseness of the connections can be assimilated to

(white) noise whose amplitude is determined self-consistently.
In this way, the dimensionality of the collective dynamics is
“reduced” to that of a nonlinear Fokker–Planck equation, and
quite an effective reduction to a few degrees of freedom is also
implemented.

I. INTRODUCTION

The emergence of collective oscillations (COs) in complex
systems has been extensively studied in the last 50 years from
an experimental as well as a theoretical point of view.1 Statistical
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mechanics and nonlinear dynamics approaches have been employed
to describe networks of heterogeneous oscillators.2–7 Furthermore,
exact analytic reduction methodologies have been developed, which
allow for passing from infinite-dimensional dynamics to a few
macroscopic variables in some homogeneous8 and heterogeneous9

globally coupled networks of phase oscillators.
In the last few years, these reduction techniques have been

extended to globally coupled spiking neural networks either as
heterogeneous10,11 or homogeneous,12 thus opening new perspec-
tives for the study of large ensembles of spiking neurons and for the
understanding of the mechanisms underlying brain rhythms.13 The
reduction methodologies have been usually limited to globally cou-
pled systems in the absence of either noise or spatial disorder; only
recently, they have been extended to noisy systems14,15 and sparse
neural networks.16,17

Cortical neurons are subject to a continuous barrage from
thousands of pre-synaptic neurons, a stimulation that is intuitively
expected to induce almost constant depolarization of the neurons
and, therefore, a regular firing activity. However, cortical neurons
fire irregularly at a low rate.18 This apparent contradiction can
be solved in the so-called balanced network, where the current is
affected by strong statistical fluctuations as a result of approximately
equal strength of excitatory and inhibitory synaptic drives.19 Bal-
ance can be achieved both in excitatory–inhibitory networks and in
a single inhibitory population subject to an external DC current.19,20

Balanced asynchronous irregular dynamics has been experimentally
reported both in vivo and in vitro.21–23 A balance of excitation and
inhibition appears to be crucial also for the emergence of cortical
oscillations and in brain rhythms.24–26

Asynchronous states characterized by an irregular stationary
activity have been reported in balanced neural networks com-
posed of either excitatory–inihibitory populations19,27–30 or a purely
inhibitory population subject to a constant excitatory drive.20,31

Instances of collective dynamics characterized by more or less
coherent activity have also been evidenced in balanced excita-
tory–inhibitory networks19,30,32–34 as well as in purely inhibitory
ones.16,35,36 In particular, in Ref. 16, the authors developed a mean-
field (MF) formulation for a sparse balanced inhibitory network
of quadratic integrate-and-fire (QIF) neurons37 based on the low-
dimensional reduction methodology introduced in Ref. 11. The
idea was to map the disorder due to the randomly distributed
connections onto a quenched random distribution of the synap-
tic couplings, neglecting the current fluctuations present in sparse
networks.35 However, this MF approach failed to reproduce the
emergence of COs observed in the direct numerical simulations
of the network, implicitly pointing to the essential role of endoge-
nous fluctuations in sustaining the collective behavior. Motivated
by this failure, in this article, we revisit various MF approaches
to capture the transition from asynchronous dynamics to COs in
sparse balanced inhibitory QIF networks with homogeneous and
heterogeneous degrees distributions.

In particular, we approximate the dynamics of the sparse QIF
network in terms of a (nonlinear) Fokker–Planck equation (FPE),
based on the assumption of a self-consistent irregular neural activity.
The FPE is then handled in two different ways. The first approach
is based on a phase representation of the neuron variable (θ-
neuron model37), followed by an expansion in Fourier modes. In

heterogeneous networks, the distribution of in-degrees must also
be included. However, under the assumption of a Lorentzian dis-
tribution, this variability can be included into the Fokker–Planck
formulation without further increasing the computational complex-
ity. The second approach is based on the expansion of the probability
density into circular cumulants.14,38 This method is quite effec-
tive since a few cumulants (actually two) provide a fairly accurate
representation of the network dynamics, including the onset of COs.

This article is organized as follows. In Sec. II, we define the
network model and introduce the relevant microscopic and macro-
scopic indicators employed to characterize the dynamical evolution.
Section III is devoted to the introduction of the various mean-
field approaches: namely, the Fokker–Planck formulation for the
membrane potentials and the corresponding phase variables, the
low-dimensional reduction methods based on the Ott–Antonsen
ansatz and the circular cumulant approximation, and finally the
direct integration of the corresponding Langevin formulation. The
results for the random networks with homogeneous and hetero-
geneous in-degree distributions are reported in Secs. IV and V,
respectively. More precisely, Sec. IV contains a detailed description
of asynchronous and oscillatory regimes observed in homogeneous
networks. In particular, we derive analytically a self-consistent solu-
tion for the average firing rate in the asynchronous case that allows
one to discuss the nature of the balanced regimes found for both
finite in-degree and in the limit of infinitely large in-degrees. Fur-
thermore, for the asynchronous regime, we also provide a detailed
description obtained within a Fokker–Planck approach and with a
circular cumulant approximation, starting from the scaling analy-
sis of the firing rate for a vanishingly small external current. The
linear-stability analysis of the asynchronous regimes is performed
in Subsection IV B, obtaining fairly good estimates for the onset
of COs, as testified by the comparison with direct numerical sim-
ulations reported in Subsection IV C. In this latter subsection, we
analyze also the scaling of the fundamental observables characteriz-
ing COs for large in-degrees. Section V is focused on the emergence
of collective dynamical behavior in heterogeneous sparse networks.
The role of various control parameters is explored: input current,
average in-degree, and the level of structural heterogeneity. Finally,
a summary of the main achievements is reported in Sec. VI together
with a brief discussion of the open problems. The Appendix contains
the mathematical aspects preventing a self-consistent estimation of
the average firing rate in heterogeneous networks.

II. METHODS

A. The network model

We consider N inhibitory pulse-coupled QIF neurons37

arranged in a random sparse balanced network. The membrane
potential of each neuron evolves according to the equation

V̇i(t) = I + V2
i (t)− J

N
∑

j=1

∑

n

εjiδ(t − t(n)j ), (1)

where I is an external DC current, encompassing the effect of dis-
tal excitatory inputs and of the internal neural excitability.39 The last
term is the inhibitory synaptic current, J being the synaptic coupling.
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The synaptic current is the linear superposition of all the instanta-
neous inhibitory postsynaptic potentials (IPSPs) s(t) = δ(t) received

by the neuron i from its pre-synaptic neurons, while t(n)j is the nth
spike time of the neuron j, and εji is the adjacency matrix of the
network. In particular, εji = 1 (0) if a connection from node j to i
exists (or not) and ki =

∑

j εji is the number of pre-synaptic neurons

connected to neuron i, i.e., its in-degree.
Whenever the membrane potential Vi reaches infinity, a spike

is emitted and Vi is reset to −∞. In the absence of synaptic cou-
pling, the QIF model displays excitable dynamics for I < 0, while
for positive DC currents, it behaves as an oscillator with period
T0 = π/

√
I.

In order to compare numerical simulations with a recent MF
theory,11,16,40 we consider sparse networks where the in-degrees ki

are extracted from a Lorentzian distribution,

L(k) = 1k

π[(k − K)2 +12
k]

, (2)

peaked at K and with a half-width at half-maximum (HWHM) 1k.
The parameter1k measures the degree of structural heterogeneity in
the network, and analogously to Erdös–Renyi networks, we assume

the HWHM to scale as 1k = 10

√
K. In the numerical simulations,

we have truncated the distribution to avoid negative in-degrees or
in-degrees larger than the network size N. We have verified that the
probability to go out of the boundaries, during the generation of
the distribution of the in-degrees, is always small (below 3%): the
associated deviations affect only marginally the observed agreement
between MF theory and numerical simulations.

Finally, the DC current and the synaptic coupling are assumed
to scale as

I = i0
√

K, J = g0/
√

K, (3)

as it is usually done in order to ensure a self-sustained balanced state
for sufficiently large in-degrees.16,19,20,27,28,31

The network dynamics is integrated by employing a standard
Euler scheme with an integration time step1t = 1 × 10−4.

B. Indicators

To characterize the collective dynamics, we measure the mean

membrane potential v(t) =
∑N

i=1 Vi(t)/N = 〈V〉 and the instanta-
neous population firing rate ν(t) corresponding to the number of
spikes emitted per unit of time and per neuron.

In order to measure the level of coherence in the network
dynamics, a commonly used order parameter is41

ρ2 ≡ 〈V〉2 − 〈V〉2

〈V2 − V
2〉

, (4)

where the overbar denotes a time average, while the angular brackets
denote an ensemble average. In practice, ρ is the rescaled ampli-
tude of the standard deviation of the mean membrane potential
v = 〈V〉. When all neurons behave in exactly the same way (perfect
synchronization), the numerator and the denominator are equal to
one another and ρ = 1. If instead, they are independent as in an

asynchronous regime, ρ ∝ 1/
√

N due to the central limit theorem.
In order to estimate the amplitude of collective oscillations, we

will employ also the standard deviation 6ν of the population firing
rate ν(t).

To estimate the level of synchronization among the neurons,
we can map the membrane potentials onto phase variables, via the
standard transformation from QIF to the θ-neuron model,37 namely,

Vi = tan

(

θi

2

)

with θi ∈ [−π : π]. (5)

The degree of synchronization can now be quantified by the modu-
lus | · | of the complex Kuramoto order parameter,42

z1 = 1

N

N
∑

i=1

eiθi . (6)

In completely desynchronized phases, z1 ≈ z(0)1 + const/
√

N, where

the nonzero constant z(0)1 arises due to the inhomogeneity of the
phase rotation of theta-neurons,43 while partial (full) synchroniza-

tion corresponds to |z(0)1 | < |z1| < 1 (|z1| = 1).
Two parameters are typically used to characterize the micro-

scopic activity: the average inter-spike interval (ISI) (or, equiva-
lently, the firing rate) and the coefficient of variation cvi, i.e., the
ratio between the standard deviation and the mean of the ISIs of
the spike train emitted by the ith neuron. Sometimes, the average
coefficient of variation, CV =

∑

i cvi/N, is considered.
Time averages and fluctuations are usually estimated on time

intervals Ts ' 6000 after discarding a transient Tt ' 1000.

III. MEAN-FIELD APPROACHES

At a MF level, we approximate the evolution of a generic
neuron with the following stochastic equation:

V̇ = V2 + Ag(t)+ σg(t)ξg(t), (7)

where

Ag(t) =
√

K
[

i0 − gν(t)
]

(8)

accounts for the input current and the average effect of the coupling,
assumed to be proportional to the in-degree k ({g} = {g0k/K}) and
to the overall firing rate ν,

ν(t) = 1

N

N
∑

j=1

∑

n

δ(t − t(n)j ). (9)

The stochastic term accounts for the statistical fluctuations due to
the differences among the signals emitted by the sending neurons.
More precisely, ξg is a δ-correlated Gaussian noise with zero mean
and unitary variance. The noise amplitude σg(t) is, instead, typically
estimated by assuming that the single spike trains are independent
Poisson processes,32

σg(t) =
√

g0gν(t). (10)

This assumption is reasonably well verified if the network is suffi-
ciently sparse; see Ref. 44 for an analysis referring to an inhibitory
heterogeneous leaky integrate-and-fire (LIF) network. More in gen-
eral, the variance of the current fluctuations is given by σ 2

g (t)

= Fg0gν(t), where F is the Fano factor, measuring the ratio
between the variance of the spike count and its average.45,46 For a
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stationary renewal process, F = (CV)2, where CV is the coefficient
of variation of the spike train.45 Therefore, at a first level of approxi-
mation, the effect of non-Poissonian distributions can be taken into
account by expressing the amplitude of the current fluctuations as

σ (R)g (t) = CV
√

g0gν(t), (11)

where the superscript (R) denotes the renewal approximation. For a
comparison of Poisson with renewal approximation for the dynam-
ics of a sparse excitatory–inhibitory LIF network, see Ref. 29.

Finally, heterogenous networks are simulated by assuming
Lorentzian distribution L(g) of the coupling strengths, peaked at g0

with HWHM1g = 0/
√

K, where 0 = 10g0.

A. Fokker–Planck formulation

The Langevin equation (7) for the dynamics of the membrane
potential of the sub-population with effective coupling g is equiv-
alent to a Fokker–Planck equation describing the evolution of the
probability distribution Pg(V, t),

∂tPg(V, t) = −∂V[(V2 + Ag(t))Pg(V, t)] + Dg(t)∂
2
V2Pg(V, t), (12)

where

Dg =
σ 2

g

2
= g0gν

2
. (13)

This can be rewritten as a continuity equation,

∂Pg(V, t)

∂t
= − ∂

∂V
Fg(V, t), (14)

where Fg(V, t) represents the flux,

Fg(V, t) = (V2 + Ag)Pg(V, t)− Dg

∂Pg

∂V
, (15)

accompanied by the boundary condition

ν(t) =
∫

dgFg(V = +∞, t)L(g) =
∫

dgνg(t)L(g), (16)

where ν is the mean firing rate, while νg(t) refers to the g-sub-
population.

In order to solve the FPE, we map the membrane potential onto
a phase variable via the transformation (5). The new PDF reads as

Rg(θ) = Pg(V)
dV

dθ
, where

dV

dθ
= 1

2 cos2 (θ/2)
, (17)

and the FPE (12) can be rewritten as

∂tRg(θ , t) = −∂θ
[

ψ0(θ)Rg(θ , t)− Z0(θ)∂θRg(θ , t)
]

, (18)

where

ψ0(θ) = (1 − cos(θ))+ (Ag + Dg sin(θ))(1 + cos(θ)),

Z0(θ) = Dg(1 + cos(θ))2.
(19)

Finally,

Qg(θ , t) = ψ0(θ)Rg(θ , t)− Z0(θ)∂θRg(θ , t) (20)

represents the flux in the new coordinates. The flux at the threshold
θ = π is linked to the firing rate by the self-consistency condition

∫

dgQg(π , t)L(g) = 2

∫

dgRg(π , t)L(g) = ν(t). (21)

Since we are now dealing with a phase variable, it is natural to
express the PDF in Fourier space,

Rg(θ , t) = 1

2π

[

1 +
∞

∑

m=1

(

am(g, t)e−imθ + c.c.
)

]

. (22)

The associated Kuramoto–Daido order parameters47 for the popula-
tion synchronization are given by

zm(t) =
∫

dg am(g, t) L(g), (23)

while the equations for the various modes are

ȧm = m

[

i(Ag + 1)am + i

2
(Ag − 1)(am−1 + am+1)

]

− Dg

[

3m2

2
am +

(

m2 − m

2

)

am−1 +
(

m2 + m

2

)

am+1

+ m(m − 1)

4
am−2 +m(m + 1)

4
am+2

]

, (24)

where, by definition, a0 = 1, a−m = a∗
m and for notation simplicity,

we set am = am(g, t) and ȧ = ∂ta.
Since g is distributed according to a Lorentzian law, the het-

erogeneity can be exactly taken into account by averaging over the
parameter g. By rewriting the distribution as

L(g) = 1

2i

[

1

(g − g0)− i1g

− 1

(g − g0)+ i1g

]

, (25)

we observe that it has two complex poles at g = g0 ± i1g. Therefore,
by invoking Cauchy’s residue theorem, one can estimate explicitly
the Kuramoto–Daido order parameters as

zm(t) =
∫

dgam(g, t)L(g) = am(g0 − i1g, t), (26)

and by averaging Eq. (24) over the g-distribution, one can find also
the dynamical equations ruling the evolution of these quantities,

żm = m

[

(iAg0 + i − ν0)zm + 1

2
(iAg0 − i − ν0)(zm−1 + zm+1)

]

− Dg0

(

1 −
i1g

g0

)[

3m2

2
zm +

(

m2 − m

2

)

zm−1

+
(

m2 + m

2

)

zm+1 + m(m − 1)

4
zm−2 + m(m + 1)

4
zm+2

]

.

(27)

As shown in Ref. 11, the population firing rate ν and the
mean membrane potential v can be expanded in terms of the
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Kuramoto–Daido order parameters, as follows:

W ≡ πν + iv = 1 − 2

∞
∑

k=1

(−1)k+1z∗
k . (28)

Specifically, the firing rate ν can be obtained directly in terms of the
Kuramoto–Daido order parameters by employing Eqs. (21)–(23).

A similar FPE formulation in Fourier space has been reported
in Ref. 15 for a QIF network subject to an exogenous additive noise.

B. Ott–Antonsen ansatz

If one neglects fluctuations (i.e., setting Dg0 = 0), the
Ott–Antonsen (OA) manifold zm = (z1)

m is invariant and
attractive,9,48 and Eq. (27) reduces to

2ż1 = (iAg0 − ν0)[1 + z1]
2 − i[1 − z1]

2, (29)

while Eq. (28) becomes the conformal transformation,11

z1 = 1 − W∗

1 + W∗ , (30)

which relates directly the Kuramoto order parameter with the
macroscopic observables v(t) and ν(t) describing the network
dynamics.

The application of this transformation to (29) leads to the two
following ODEs for v(t) and ν(t):16

ν̇ = ν(2v + 0/π), v̇ = v2 +
√

K(i0 − g0ν)− (πν)2. (31)

These MF equations for positive i0 admit an unique stable solu-
tion for any parameter choice: a focus.16 This contrasts with the
direct numerical simulations, which instead reveal the emergence of
periodic COs for sufficiently large median in-degree K. Hence, we
conclude that fluctuations must be included in the MF formulation
if we want to reproduce the macroscopic dynamics.

In spite of this intrinsic weakness, the frequency of the damped
oscillations exhibited by Eq. (31) is very close to the frequency fCO

of the sustained COs observed in network simulations over a wide
range of parameter values.16

C. Circular cumulant approximation

In the presence of weak noise, one can go beyond the OA
ansatz, expanding the PDF into the so-called circular cumulants
(CCs).14,38

In Ref. 14, it was noticed that the Kuramoto–Daido order
parameters

zm =
∫

dg

∫

dθRg(θ , t)L(g)eimθ = 〈eimθ 〉 (32)

are the moments of the observable eiθ , which can be determined via
the moment-generating function

F(η) = 〈exp (ηeiθ )〉 ≡
∞

∑

m=0

zm

ηm

m!
. (33)

Given F(η), one can obtain the CCs κm from the cumulant-
generating function14

9(η) = η∂η ln F(η) ≡
∞

∑

m=0

κmη
m. (34)

By combining Eqs. (33) and (34), one can relate zm with κm,

κm = zm

(m − 1)!
−

m−1
∑

n=1

κnzm−n

(m − n)!
. (35)

Notice that the CC κm are scaled differently from the conventional
cumulants, which would yield κ ′

m = (m − 1)!κm.14 The first two CCs
are, therefore, given by

κ1 = z1, κ2 = z2 − z2
1. (36)

Whenever the OA ansatz holds, i.e., when the manifold
zm = zm

1 is attractive, the generating functions can be simply
expressed as

F(η) = eηz1 , 9(η) = ηz1,

where κ1 = z1 is the only non-zero CC.
In general, when the OA manifold is not attractive, all CCs

are nonzero. However, in Ref. 14, it was found that their ampli-
tude decreases exponentially with their order, κm ∝ Dm−1

g0
, where

Dg0 is the noise intensity. Therefore, it makes sense to restrict the
expansion to the first two CCs in the weak-noise limit. Under this
approximation, the Kuramoto–Daido order parameters are simply
given by

zm = zm
1 + κ2z

m−2
1

m(m − 1)

2
. (37)

The second addendum on the r.h.s. can be interpreted as a correc-
tion to the OA manifold due to the noise.

The 2CC approximation for the FPE (27) [correct up to order
o(Dg0)] reads as

ż1 = z1(iAg0 + i − 0ν)+ H(1 + κ2 + z2
1)

−
Dg0

2

(

1 − i
1g

g0

)

(1 + z1)
3, (38)

κ̇2 = 2(iAg0 + i − 0ν)κ2 + 4Hz1κ2 − Dg0

(

1 − i
1g

g0

)

×
(

1

2
(1 + z1)

4 + 6(1 + z1)
2κ2

)

, (39)

where

H = 1

2

[

i(Ag0 − 1)− 0ν
]

.

The firing rate ν and the mean membrane potential v can be
obtained from Eq. (28) by restricting the sum to the first two CCs,

W∗=πν − iv = 1 − z1

1 + z1

+ 2κ2

(1 + z1)
3
; (40)

this is a generalization of the conformal transformation (30) to a
situation where the OA ansatz is no longer valid.
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D. Annealed network

In the homogeneous case (10 = 0), we performed direct
numerical simulations of the Langevin equations (7) and (8). In
particular, we considered Nann uncoupled neurons whose mem-
brane potential follows the stochastic differential equation (7).
Their dynamical evolution is obtained by employing a standard
Euler–Maruyama scheme with an integration time step dt = 5
× 10−5 and by estimating self-consistently the population firing rate
ν(t) appearing in (7). Specifically, the rate ν(t) at time t is estimated
by counting the spikes emitted by the Nann neurons in the preced-
ing time interval of duration 1t = 0.01. The advantage of these
simulations with respect to the integration of the FPE is that they
do not suffer numerical instabilities at any large in-degree values.
This approach has been employed to study the dependence of COs’
features on the median in-degree K, as shown in Fig. 12.

IV. HOMOGENEOUS CASE

We now restrict our analysis to the homogeneous case, where
the in-degree is equal to K for all the neurons; i.e., gj = g0∀j
and 1g = 10 = 0. Fluctuations are still expected since each neu-
ron receives inputs from a different randomly chosen set of K
pre-synaptic neurons.32 In Subsection IV A, we examine the asyn-
chronous regime, while Subsection IV B is devoted to the corre-
sponding linear stability, while the emergence of COs is discussed
in Sec. IV C.

A. Asynchronous state

In this subsection, we consider the asynchronous regime, corre-
sponding to a stationary solution of the FPE. In this context, we first
derive an exact self-consistent expression for the firing rate, then,
we solve the stationary FPE in Fourier space to obtain the corre-
sponding PDF, and as a last issue, we discuss the validity of the 2CC
approximation.

1. Self-consistent solution for the average firing rate

The stationary firing rate νg0 of a sub-population with effective
coupling g0 is simply given by the flux (15) and can be determined
by solving the linear differential equation

νg0 = (Ag0 + V2)Pg0 − Dg0

∂Pg0

∂V
.

The stationary PDF Pg0(V) can be derived by employing the method
of variation of the constants, namely,

Pg0(V) =
νg0

Dg0

∫ +∞

V

dU e
− Ag0

Dg0
(U−V)− U3−V3

3Dg0 .

Hence, the firing rate νg0 can be obtained by normalizing the PDF
Pg0(V) (see Refs. 49 and 50),

1 =
∫ +∞

−∞
dV Pg0(V) =

νg0

√
π

√

Dg0

∫ +∞

0

dy
√

y
e

−Ag0 y− y3

12
Dg0 . (41)

The integrals appearing in (41) can be analytically estimated,
leading to

νg0 = D1/3
g0

R(ξ)

=























−9Dg0/(4π
2Ag0)

I2
1
3

(χ−)+ I2

− 1
3

(χ−)+ I 1
3
(χ−) I− 1

3
(χ−)

, Ag0 < 0,

9Dg0/(4π
2Ag0)

J2
1
3

(χ+)+ J2

− 1
3

(χ+)− J 1
3
(χ+) J− 1

3
(χ+)

, Ag0 > 0,

(42)

where ξ = Ag0/D
2/3
g0

, χ± = 2(±ξ)3/2/3, while Jn and In are the nth

order Bessel function of the first kind and the modified one, respec-
tively. In practice, the two expressions for positive and negative Ag0

are the analytic continuation of one another, but we prefer to keep
an explicit formulation with real values in order to avoid incorrect
choices of these two-sheet analytic functions.51

Now, by recalling that Dg0 = g2
0νg0/2, one can turn Eq. (42) into

an equation linking νg with ξ ,

νg0(ξ) = g0√
2

[R(ξ)]3/2. (43)

Self-consistency is finally imposed by rewriting Eq. (8) as

ξ =
(

2

g2
0νg0(ξ)

)2/3 √
K

[

i0 − g0νg0(ξ)
]

. (44)

This equation allows determining the unknown ξ , which, in turn,
allows finding the firing rate from (43).

In Fig. 1(a), we report Ag0 vs the input current i0. Ag0/
√

K rep-
resents the unbalance: the deviation of the firing rate νg0 from the
balanced regime i0/g0. Upon increasing K, Ag0(i0) stays finite and
converges to a limiting shape (see the different curves). Thus, we can
conclude that when K → ∞, perfect balance is eventually attained.
Interestingly, there exists a special current i∗, whose corresponding
state is perfectly balanced for any K value. Its value can be identified
from Eq. (44) by imposing the condition ξ = 0,

i∗ = g2
0√
2

[R(0)]3/2 = 9g2
0√
2

(

0(2/3)

2π

)3

= 0.0637 . . . g2
0 (45)

(we have made use of the definition of the Bessel functions). For
i0 > i∗, the asynchronous state becomes increasingly mean-driven,
indicating that the inhibitory feedback due to the coupling is less
able to counterbalance the excitatory external current. For i0 < i∗,
the dynamics is instead fluctuation-driven. In this case, we observe
that Ag0 has a non-monotonic behavior, with a minimum at i0 ≈
0.02. This is expected since for i0 → 0, the value of Ag0 must vanish
since also νg0 tends to zero.

Much less obvious is that for low K, asynchronous states seem
to exist for negative currents. However, as argued in Sec. VI, there
are strong reasons to disbelieve that the white noise assumption is
valid in such a circumstance. Hence, we do not further comment on
this feature.

In Fig. 1(c), we explore the dependence of Ag0 on the synap-
tic coupling for i0 = 0.01. We see that the dynamics is fluctuation-
(mean-) driven for large (small) g0. This is not only reasonable (since
the coupling is inhibitory) but also agrees with the results reported
in Ref. 52.
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FIG. 1. (a) Ag0
vs i0 for a homogeneous network (10 = 0) for K = 10, 30, 100, 1000 (solid lines from left to right on the bottom left of the panel) and for K = ∞ (dashed

line). The solution is calculated in a parametric form (44). The red circle corresponds to the balanced solution i∗ [Eq. (45)]. (b) Ag0
vs νg0 for K = ∞: the solid line is the

exact result, and the dashed one corresponds to the 2CC approximation. In the inset, the exact solution is shown as circles and the 2CC approximation as squares, while

the solid line refers to a fitting of the exact data with −Ag0
∝ ν

2/3
g0

ln νg0 and the dashed one to a fitting of the 2CC solution with −Ag0
∝ ν

2/3
g0

. (c) Ag0
vs g0; the dashed line

refers to K = ∞, while the solid ones to K = 10, 30, 100, 1000 (from left to right on the upper left of the panel). In panel (a) and (b), g0 = 1, while in panel (c), i0 = 0.01.

Finally, we derive some approximate analytic expressions, use-
ful both to establish the scaling behavior for small currents and to
compare with the CC approximation discussed in Sec. IV A 3. Let
us start plotting R vs ξ in Fig. 2 (see the solid black curve): it van-
ishes for ξ → −∞, while it diverges for ξ → ∞. By recalling that
ν ' R2/3 [see Eq. (43)], the same conclusion holds for ν, meaning
that a small firing rate corresponds to a very negative ξ , while ν � 1
corresponds to large and positive ξ . In these two limits, the following
asymptotic formulas hold:

R(ξ) ≈







√
−ξ
π

exp
(

− 4(−ξ)3/2
3

)

, ξ � −1,
√
ξ

π
, ξ � 1.

(46)

FIG. 2. The function R(ξ) vs ξ for the g-sub-population of QIF neurons. Black
solid line: the exact expression (42). Red dashed lines: the asymptotic approxi-
mation (46).

They can be obtained by substituting in (42) the following asymp-
totic formulas for the Bessel functions at large values of the argu-

ment: Jα(χ) =
√

2
πz

cos(χ − απ/2 − π/4) and Iα(χ) =
√

1
2πz

eχ .

The upper expression in (46) is basically the Kramers escape rate
for the overdamped dynamics of a particle in a potential well of
height ∝ (−Ag0)

3/2.50 The lower expression refers to the activity of
an isolated supra-threshold QIF neuron. The validity of the two
expressions can be appreciated in Fig. 2 (see the two red dashed
curves).

For ξ � −1 (i.e., for small current i0), Eq. (43) implies

νg0 ≈ g0(−ξ)3/4

21/2π 3/2
exp[−2(−ξ)3/2]. (47)

Upon taking the logarithm of both sides and neglecting the
prefactor of the exponential term,

ln νg0 ' −2(−ξ)3/2. (48)

This equation allows eliminating ξ from Eq. (44), obtaining

i0 = g0νg0 −
ν2/3

g0√
K

[

ln(1/νg0)

2

]2/3

. (49)

This equation is valid in the limit of a small i0, as it is clearly
appreciable from the inset of Fig. 1(b).

2. Fourier space representation of the FPE

The asynchronous state is identified by a stationary PDF, which
can be obtained by solving the FPE (24) in Fourier space, truncating
the hierarchy at some order M. In this case, the Kuramoto–Daido
order parameters coincide with the coefficients of the Fourier expan-
sion of the PDF; i.e., zm ≡ am(g0).

In practice, we have solved iteratively the linear (in the coef-
ficients am and a∗

m) system (24), accompanied by the nonlinear
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FIG. 3. Modulus of the Fourier coefficients am. The blue dashed curve cor-
responds to the exponential decay law with exponent −0.564. Parameters:
i0 = 0.006, g0 = 1,10 = 0, and K = 40.

consistency condition

ν(0) = 2R(0)(π) = 1 +
∑∞

m=1 (−1)m+1(a(0)m + a(0)m

∗
)

π
, (50)

where the superscript (0)means that we refer to the stationary state.
The Fourier spectrum of coefficients is shown in Fig. 3 for a certain
choice of parameter values; the amplitude |am| decays exponentially
with m with an exponent approaching ' −0.564 for sufficiently
large m. Hence, the truncation to M = 64 Fourier modes is very
accurate since it amounts to neglecting terms O(10−12), and indeed,
we do not observe any appreciable difference by increasing M.

In Fig. 4, we display the stationary PDF for three different
in-degrees (K = 20, 40, and 80). The blue dotted lines have been
obtained by simulating a network of N = 16 000 neurons. We have
verified that finite-size corrections are negligible. Moreover, we
found that an average over 20 neurons suffices to reproduce the
PDF of the whole ensemble. The red solid and green dashed curves
have been obtained by solving the FPE equation under the Pois-
son [Eq. (10)], respective renewal [Eq. (11)] approximation for the
synaptic-current fluctuations σg.

The two MF theoretical curves reproduce fairly well the numer-
ical results. The main differences concern the peak of R(0)(θ): the
theoretical distributions are slightly shifted to the left, although the
shift reduces upon increasing K, as expected for a MF theory. On
the other hand, the PDF tail is captured quite well and so is the aver-
age firing rate ν(0) = 2R(0)(π), as reported in Table I. The renewal
approximation (under the assumption of CV = 0.8 as observed in
the numerical simulations) reveals a better agreement with the direct
simulations.

3. Expansion of the FPE in CCs

We now consider the expansion in CCs. As expected,
κ1 ' O(1), while the higher-order CCs decrease exponentially,

FIG. 4. Stationary PDFs R(0) vs the angle θ estimated numerically from the
network simulations (blue dotted line) and theoretically from the FPE truncated
at M = 64 by estimating the current fluctuations within the Poisson approxima-
tion Eq. (10) (red solid line) and within the renewal approximation [Eq. (11)] with
CV = 0.8 (green dashed line). From top to bottom, K = 20, 40, and 80. The
numerical data are obtained for a network of size N = 16 000 and by averaging
over 20 different neurons. Parameters: i0 = 0.006, g0 = 1, and10 = 0.

κm ' e−β(K)m [see Fig. 5(a), where κm is plotted for a few differ-
ent connectivities]. The dependence on K is rather weak and can
be appreciated in panel (b), where β is plotted vs K. The depen-

dence is fitted very well by the empirical law β ≈ A0

[

1 − 1

2
√

K

]

with

A0 = 2.457. This result implies that κm stays finite for any m in the
limit K → ∞, thus confirming that the self-generated noise is still
relevant in perfectly balanced states.

In Ref. 14, it was found for the Kuramoto model that
β = − ln Dg0 . Here, estimating Dg0 from Eq. (13), with ν(0) obtained
from the stationary solution of the FPE, we find the slower depen-
dence β ≈ 0.598 − 0.321 ln Dg0 .

TABLE I. Average population firing rate vs the in-degree K for asynchronous dynam-

ics. The second column reports 〈ν〉 as estimated by averaging the activity of a

network of N= 16 000 neurons; the average is performed over all neurons and in

time. The third and fourth columns report the firing rate obtained from the station-

ary PDF, namely, ν(0) = 2 R(0)(π ). More precisely, the third (fourth) row displays the

MF results obtained from the self-consistent solution of the stationary equation (24)

for M= 64 under the Poisson approximation (within the renewal approximation with

CV = 0.8). The fifth column refers to the 2CC approximation: the population firing rate

νg0 has been estimated using the expression (40). Parameters i0 = 0.006, g0 = 1, and

10 = 0.

K 〈ν〉 ν(0) ν(0) νg0

FPE(P) FPE(R) 2 CCs
20 0.0114 0.0138 0.0110 0.0129
40 0.0100 0.0112 0.0094 0.0105
80 0.0089 0.0096 0.0084 0.0089

Chaos 32, 023120 (2022); doi: 10.1063/5.0075751 32, 023120-8

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 5. (a) Circular cumulants κm as a function of their degree m for different values of the median in-degree K: K = 40 (black circles), K = 80 (red squares), K = 160
(green diamonds), K = 320 (blue pluses), K = 640 (magenta crosses), and K = 1280 (violet asterisks). The violet solid line refers to an exponential fitting κm ' e−βm

of the data for K = 80, the exponent β = 2.3 in this case. (b) Dependence of the exponent β vs K. The blue dashed line refers to a fitting β ≈ A0

[

1 − 1

2
√
K

]

, where

A0 = 2.457. The cumulants are estimated from the stationary solution a
(0)
m of the FPE equation (24) with M = 64. Parameters: i0 = 0.006, g0 = 1, and10 = 0.

Altogether, the fast decrease of the higher-order CCs suggests
that the first two cumulants should suffice to reproduce the observed
phenomenology. Let us test more in detail the correctness of the
2CC approximation, with reference to the stationary solution. The

asynchronous state z(0)1 , κ (0)2 is obtained by looking for the station-

ary solution of Eqs. (38) and (39), where Ag0 =
√

K
[

i0 − g0νg0

]

and
Dg0 = g2

0νg0/2, while the firing rate is determined by imposing the
self-consistent condition [see Eq. (40)]

νg0 = 1

π
Re

{[

1 − z(0)1

1 + z(0)1

+ 2κ (0)2

(1 + z(0)1 )
3

]}

. (51)

The data reported in Table I show that the 2CC approximation (last
column) is in good agreement with the direct numerical simulations.

The quality of the 2CC approximation can be further appre-
ciated from Fig. 1(b) where we report Ag0 vs νg0 , and we compare
the exact solution (solid line) with the 2CC approximation (dashed
line). The approximation captures reasonably well the behavior of
Ag0 over the whole range and is particularly accurate for large νg0 .
In the inset, |Ag0 | is reported for small νg0 ; in this range, the exact
solution scales as |Ag0 | ' ν2/3

g0
ln νg0 , as previously noticed, while the

2CC approximation gives scaling |Ag0 | ' ν2/3
g0

, without logarithmic
corrections.

Finally, we have investigated the weak-current limit, assuming

i0 = iw

K
(52)

equivalent to I = iw/
√

K. The scaling analysis carried out at the end
of Sec. IV A 1 implies that the last term in Eq. (49) is negligible
and accordingly that ν − g0 ' i0 ' O(1/K). Moreover, it is easily

seen that

1ν = νg0g0 − i0 ' (ln K)2/3

K7/6
. (53)

Separately, we have determined the firing rate predicted by the
2CCs model from the stationary solution of Eq. (39). The results
for iw = 7.7 are presented in Fig. 6, where we see that 1ν scales
very accurately as K−7/6, the higher-order corrections being of 1/K2

FIG. 6. Deviation1ν from perfect balance vs the connectivity K estimated from
the stationary solutions of Eq. (39) within the 2CC approximation under the

assumption that the external current is I = 7.7/
√
K (filled black circles). The

red dashed line corresponds to a fitting to the data of the type1ν = 3.08 K−7/6

+ 168 K−2.
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type. Once again, we can conclude that the 2CC model is able to
capture the leading behavior but fails to reproduce the logarithmic
correction. This is quite good for such a simple model.

B. Linear stability of the asynchronous state

1. Fokker–Planck formulation

The stability of the asynchronous state can be assessed by
linearizing Eq. (24) around the stationary solution {a(0)m },

δȧm = m

[

(iA(0)
g0

+ i)δam + 1

2
(iA(0)

g0
− i)(δam−1 + δam+1)

]

+ imδAg0

[

a(0)m + a(0)m−1 + a(0)m+1

2

]

− D(0)
g0

[

3m2

2
δam +

(

m2 − m

2

)

δam−1 +
(

m2 + m

2

)

δam+1

+ m(m − 1)

4
δam−2 + m(m + 1)

4
δam+2

]

− δDg0

[

3m2

2
a(0)m +

(

m2 − m

2

)

a(0)m−1 +
(

m2 + m

2

)

a(0)m+1

+ m(m − 1)

4
a(0)m−2 + m(m + 1)

4
a(0)m+2

]

, (54)

where A(0)
g0

and D(0)
g0

are determined by inserting the firing rate as

from Eq. (50) so that

δAg0 = −
√

Kg0δν, δDg0 = g2
0

2
δν, (55)

δν = 1

π

∞
∑

m=1

(−1)m+1(δam + δa∗
m). (56)

The system (54) has been solved by employing the usual ansatz
δa(t) = eiλktδa(0) and truncating the hierarchy at order M so that
δa = (δa1, δa2, . . . , δaM) is an M-dimensional vector. Hence, the
problem amounts to diagonalizing an M × M real matrix.

The resulting spectra for a Poissonian noise are displayed in
Fig. 7. Each spectrum is composed of pairs of complex-conjugate
eigenvalues (the matrix is real) and, therefore, symmetric with
respect to the axis Im(λ) = 0. The spectra reported in panel (a) are
obtained for K = 40, but different numbers of Fourier modes (cir-
cles, pluses, diamonds, and crosses correspond to M = 32, 45, 64,
and 90, respectively). There, we recognize three different branches:
an almost horizontal, vertical, and a tilted one. Only along the
last one, we see an overlap of the different spectra, indicating
that they correspond to “true” eigenvalues of the full (infinite-
dimensional) problem. The other two branches vary significantly
with M. Although not visible with this resolution, all eigenvalues
have a strictly negative real part, meaning that the asynchronous
state is stable. A clearer view of the spurious exponents is pre-
sented in Fig. 7(b), where the eigenvalues are suitably rescaled. The
good overlap indicates that the real parts increase linearly with M,
while the imaginary components decrease as 1/M3/2. Altogether,
this means that the corresponding directions are increasingly stable

FIG. 7. Real and imaginary part of the eigenvalues {λk} of the asynchronous
state for i0 = 0.006, g0 = 1 in a homogeneous network. (a) Data refer to K = 40
and different truncations of the Fokker–Planck equation in Fourier space, namely,
M = 32 (black circles), M = 45 (red pluses), M = 64 (blue diamonds), and
M = 90 (green crosses). Only a fraction of the exponents are represented. (b)
Same data as in panel (a) after a suitable rescaling to show theM-dependence of
the spurious exponents. (c) The most relevant exponents for three different con-
nectivities: K = 80 (red circles), K = 160 (blue circles), and K = 1600 (green
circles).

and, therefore, harmless in dynamical simulations. The change of
stability can be appreciated in Fig. 7(c), where we plot the relevant
part of the spectrum for three different K values: 80 (red circles), 160
(blue crosses), and 1280 (green triangles). In the last case, a pair of
complex-conjugate eigenvalues has crossed the y axis, indicating the
occurrence of a Hopf bifurcation. Here, performing quasi-adiabatic
simulations of the FPE by varying K, we have verified that the
transition is super-critical.

The linear-stability analysis also allows determining the eigen-
vectors. In particular, it is instructive to estimate the first two e1 and
e2, as they identify the manifold over which the periodic oscillations
unwind. Since they are complex conjugated, it suffices to focus on
the real and imaginary parts separately. Via inverse Fourier trans-
form (in order to obtain the representation in θ-space), we obtain
the two functions reported in Fig. 8 (see the orange and blue solid
lines). As expected, since they can be seen as perturbations of the
probability density, they have zero average. Moreover, they closely
resemble the first and second derivative of the PDF R0(θ) (see the
green and red dashed lines). Similar findings have been reported in
Ref. 53 for globally coupled noisy logistic maps, where it has been
shown that the jth covariant Lyapunov vector54,55 associated with the
mean-field description of the coupled map network essentially coin-
cides with the jth derivative of the PDF of the map variables, unless
j is too large.

2. 2CCs analysis

Here, we discuss the linear stability of the asynchronous state
with reference to the 2CC approximation. The evolution equation
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FIG. 8. Relevant perturbations of the stationary PDF R(0)(θ), which contribute to
its periodic oscillations (orange and blue solid lines). The green dashed line refers
to dR(0)(θ)/dθ and the red dashed line to d2R(0)(θ)/dθ 2 reported in arbitrary
units. Parameters as in Fig. 7.

in tangent space is obtained by linearizing Eq. (39),

δż1 = δz1(iAg0 + i)+ iz(0)1 δAg0 + δH(1 + κ
(0)
2 + (z(0)1 )

2
)

+ H(0)(δκ2 + 2z(0)1 δz1)− δDg0

[

(1 + z(0)1 )
3

2

]

− 3

2
Dg0

[

δz1(1 + z(0)1 )
2
]

, (57)

δκ̇2 = 2(iAg0 + i)δκ2 + 2iδAg0κ
(0)
2 + 4δHz1κ2

+ 4H(0)(δz1κ
(0)
2 + z(0)1 δκ2)

− δDg0

[

1

2
(1 + z(0)1 )

4 + 6κ (0)2 (1 + z(0)1 )
2
]

− Dg0

[

2(1+z(0)1 )δz1

(

(

1+z(0)1

)2

+ 6κ (0)2

)

+6δκ2

(

1+z(0)1

)2
]

,

(58)

where

H(0) = 1

2

[

i(Ag0 − 1)
]

.

Upon then differentiating the definitions of Ag, Dg, and H, we
obtain

δAg0 = −
√

Kg0δν, δDg0 = g2
0

2
δν, δH = iδAg0/2,

δν = 2

π
Re

{[

− δz1

(1 + z(0)1 )
2

+ δκ2

(1 + z(0)1 )
3

− 3κ (0)2 δz1

(1 + z(0)1 )
4

]} (59)

so that the set of Eqs. (57) and (58) can be explicitly expressed in
terms of the infinitesimal perturbations (δz1, δκ2).

For i0 = 0.006 and g0 = 1, a Hopf bifurcation is detected for
KHB ' 54. The bifurcation is subcritical, meaning that the oscil-
lations persist also below K(c), actually until KSN ' 35 where they
disappear via a saddle-node bifurcation of limit cycles. In Sec. IV C,
this scenario is compared with the other approaches.

C. Collective oscillations

In this subsection, we first analyze the emergence of COs
by comparing numerical results with the predictions of the
Fokker–Planck formulation and of the 2CC approximation. The sec-
ond part of the subsection is devoted to a full characterization of the
oscillatory regime in the large in-degree limit.

1. Emergence of oscillations

As mentioned in Subsection IV B, the instability of the asyn-
chronous state leads to periodic COs via a super-critical Hopf
bifurcation. In Fig. 9, we report in the plane (i0, K) the transition
lines separating the asynchronous states from COs obtained within
the Poissonian approximation (black dashed line) and the renewal
approximation with CV = 0.8 (orange dashed line). For sufficiently
large i0 > i∗, when the dynamics is balanced but mean-driven, the
two curves coincide and the statistics of the spike trains seem to
be irrelevant. However, for low currents, the transition occurs for
Poissonian statistics at larger K with respect to the renewal approxi-
mation. This is consistent with the fact that the spike trains are more
irregular in the Poissonian case, and therefore, the collective effects
emerge for larger K.

FIG. 9. Phase diagram as a function of the mean connectivity K and the DC cur-
rent i0. The black (orange) dashed line shows the super-critical Hopf bifurcation
line estimated from the stability analyses of the fixed point in the Fokker–Planck
model with M = 128 modes under the Poissonian (renewal with CV = 0.8)
approximation. The red dashed vertical line corresponds to the critical current
i∗ (??) separating the fluctuation from the mean-driven regimes, as reported in
Fig. ??(a). The green vertical line refers to the parameter cut analyzed in Fig. 6,
while the green dot corresponds to the transition point observed in direct numerical
simulations (for more details, see Fig. 6). Other parameters: g0 = 1 and10 = 0.
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FIG. 10. Order parameter ρ vs the in-degree K for different network sizes:
N = 2000 (black circles), 4000 (red circles), 8000 (green circles), and 16 000
(blue circles). The two-dotted–dashed vertical violet (dotted–dashed cyan) line
indicates KHB (KSN ) for the sub-critical Hopf (saddle node) bifurcation point
obtained within the 2CC approximation. The inset reports the scaling of ρ vs N for
K = 20, and the red dashed line corresponds to a power law N−1/2. Parameters
as in Fig. 7.

We have directly explored the behavior of the network for
the specific value of i0 = 0.006 < i∗. Detailed numerical results are
reported in Fig. 10, where we plot the order parameter ρ [defined
in Eq. (4)] for increasing in-degrees K and different network sizes,
namely, N = 2000, 4000, 8000, and 16 000. We observe a clear tran-

sition from an asynchronous regime where ρ ∝ 1/
√

N to a collective
behavior characterized by ρ ' const. for sufficiently large N values.
From this finite-size analysis, it emerges that the transition point
K(c) ' 170–180 (shown as a green dot in Fig. 9) is very close to the
theoretical renewal prediction, while the Poisson approximation is
significantly larger.

For completeness, also, the predictions of the 2CC approxima-
tion are reported in Fig. 10 as dotted–dashed vertical lines. In this
case, as already discussed, the Hopf bifurcation is sub-critical: peri-
odic oscillations appear for K = K0

SN ' 35 before the asynchronous
state loses stability at K = K0

HB = 50. The agreement with the direct
numerical simulations is definitely worse, but one should not for-
get that this is a low-dimensional model in a context (homogeneous
network), where the OA manifold is not attractive.

Let us now analyze the COs. In Fig. 11, we report the instanta-
neous firing rate for K = 640. The FPE with Poissonian noise nicely
reproduces the period of the oscillations, although their amplitude is
substantially underestimated. The renewal approach with CV = 0.8
ensures a better representation of the oscillation amplitude, but the
period is slightly longer (blue line in Fig. 11). Finally, the 2CC
approximation overestimates both the amplitude and the period of
the COs (see the green line).

2. Collective oscillations in the limit of large

in-degrees

Finally, we analyze the scaling behavior of the oscillatory
dynamics in the limit of large median in-degree K. Roughly

FIG. 11. Instantaneous firing rate ν(t) vs time. The data refer to network simula-
tions with N = 16 000 (red line), to MF solutions obtained by truncating the FPE
toM = 64 modes for the Poissonian noise (black line) or the renewal approxima-
tion with CV = 0.8 (blue line), as well as to the 2CC approximation (green line).
Parameters as in Fig. 7 and K = 640.

speaking, the frequency fCO of the collective oscillations increases
with K, as well as the average firing rate ν, suggesting increas-
ing deviations from the balanced regime. In fact, we also see that
the instantaneous firing rate oscillates between a maximum, which
increases with K, and a minimum, which decreases, while, simulta-
neously, the width of the peaks shrinks (with reference to Fig. 11, the
peaks become taller and thinner, when K is increased.).

The results of a quantitative analysis are reported in Fig. 12.
They have been obtained by simulating an annealed network of
10 000 neurons. We have preferred to simulate a network, rather
than integrating the FPE, because numerical instabilities make it dif-
ficult to perform reliable simulations for large K. A power-law fit
of the data in panel (b) suggests that fCO ≈ K0.24, very close to the
scaling behavior

fCO ' K1/4, (60)

predicted by the linear-stability analysis of the MF model (31) and
corresponding to the frequency of the damped oscillations toward
the stable MF focus.16,30

More intriguing is the scaling behavior shown in Fig. 12(a) for
the firing rate, ν ≈ K0.26, since it basically coincides with the max-
imum possible rate reachable in the absence of inhibition. In fact,
upon neglecting inhibition, the membrane potential dynamics is
ruled by the equation

V̇ = I + V2 = i0
√

K + V2. (61)

Upon rescaling V as U = V/K1/4 and time as τ = tK1/4, the differ-
ential equation rewrites as

U̇ = i0 + U2. (62)

Since the time (in τ units) for U to travel from −∞ to +∞ is of
order O(1), the ISI in the original time frame is O(K−1/4), which
obviously represents a lower bound for the average ISI. Remarkably,
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FIG. 12. Average (over time) firing rates ν [panel (a)], frequencies of the CO fCO
[panel (b)], heights h of the peak of COs [panel (c)], and the percentage of neurons
emitting a spike in the burst (total number of neurons divided by all neurons Nann)
vs the in-degree K [panel (d)]. The start and end of the burst are calculated as
the period of time during which the population rate ν(t) is larger than a threshold
set equal to 1/4 of the maximum rate in time. Data are obtained by integrating
the annealed mean-field model (described in Subsection III D) with Nann = 104

neurons. Error bars are estimated as the standard deviation over 100 cycles of the
COs. The red line shows a power-law fit Kα , with α = 0.26 in panel (a), α = 0.24
in panel (b), and α = 0.55 in panel (c). Other parameters are i0 = 0.006, g0 = 1,
and10 = 0.

the inhibition, unavoidably induced by the synaptic coupling, does
not alter significantly the scaling of the average firing rate with K.

Numerical simulations suggest that the temporal profile of ν(t)
is significantly different from zero only during tiny time intervals
of duration 1t ≈ K−α , separated by a time interval T = 1/fCO [see
panel (a) in Fig. 13, where the simulations have been performed
by integrating the FPE for K = 4000—please notice the logarith-
mic vertical scale]. By assuming that the height of the peaks scales
as h ≈ Kβ , it follows that the average firing rate scales as

ν ≈ 1t

T
h ≈ Kβ−α+1/4, (63)

where we have inserted the known scaling behavior of the collec-
tive oscillations. Thus, we see that ν can scale as fCO provided that
α = β or, equivalently, that the number of neurons that emit a spike
in a single burst is independent of K, which is precisely the behav-
ior observed in the numerical simulations as shown in Fig. 12(d).
It is important to stress that the neurons taking part in each burst
(around 7% of the total in this case) are not always the same neu-
rons; i.e., the periodic behavior of the collective dynamics does not
imply that the single neurons fire regularly. This is clearly testified
by the large CV value (namely, CV ' 0.8); the neural activity keeps
being irregular in the limit of large K.

Next, we discuss the value of β . At the time of the maxi-
mum rate, Kβ , the (inhibitory) current received by each neuron
is Ic ≈ Kβ+1/2, much larger than the excitatory external current

FIG. 13. In panel (a), we show the firing rate ν in time estimated from the FPE
truncated at M = 128 by estimating the current fluctuations within the Poisson
approximation [Eq. (10)]. In panel (b), we report the PDFs R(θ) vs the angle
θ at different times (see the corresponding dots in the top panel). Parameters:
i0 = 0.006, g0 = 1, K = 4000, and10 = 0.

of order K1/2, which can then be neglected. In such conditions,
each neuron sees a potential −V3/3 + Kβ+1/2V, where the second
term follows from the inhibitory coupling. Hence, we are in the
presence of a deep minimum of the effective potential located in
Vmin ≈ −Kβ/2+1/4 and a maximum in Vmax ≈ +Kβ/2+1/4. All V val-
ues smaller than Vmax are attracted toward the minimum and do not
contribute to the ongoing burst. Those above the maximum, instead,
will unavoidably reach the threshold. The time needed for nearly all
of such neurons to fire is about half of the burst width1t and can be
obtained by integrating the evolution equation

V̇ = V2 − Kβ+1/2 (64)

from an initial condition slightly larger than Vmax up to infinity. It is
easily seen that1t ≈ K−β/2−1/4. It follows that the area of the peak is

A = hδT ≈ Kβ/2−1/4. (65)

Having numerical evidence that A is independent of K, it finally
follows that β = 1/2. This prediction is consistent with the observa-
tions reported in Fig. 12(c), where a fit of the numerical data yields
0.55. Given the presence of statistical fluctuations (the peak height
fluctuates because of the finiteness of the number of neurons) and
the probable presence of deviations due to subleading terms, the
agreement is satisfactory.

We conclude this section with some considerations on the
nature of the oscillatory regime arising in the limit of large K. In
Fig. 13(a), we report the temporal profile of the firing rate ν for a not-
too-large K-value. The vertical logarithmic scale indicates that the
neural activity oscillates between almost silent intervals and short
bursts characterized by a strong activity. This might suggest a nearly
synchronous regime, but this is not the case. In panel (b) of the same
figure, we plot five snapshots of the distribution of the θ angles (this
is preferable to the V representation, as the θ values are bounded).
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There, we see that just before the burst [magenta line in
Fig. 13(b)], the distribution is very broad (please notice the verti-
cal logarithmic scale). Then, it strongly narrows during the peak
(see the snapshots corresponding to cyan, blue, and green lines) as
a consequence of the above-mentioned self-built strongly confining
potential. Simultaneously, the peak is first pushed backward (so long
as inhibition is strong) as shown from the distribution reported as
a cyan line in Fig. 13(b) and then starts drifting forward while it
broadens (see the blue, green, and red lines). Altogether, the man-
ifestation of a narrow peak of the neural activity is the consequence
of an increasingly fast dynamics due to the fact that many membrane
potentials find themselves in a region where their “velocity” is very
large.

V. HETEROGENEOUS CASE

In this section, we consider the heterogeneous case, assuming
that the in-degrees k are Lorentzian distributed (2) with median K

and HWHM 1k = 10

√
K. As already discussed in Sec. III, while

introducing the Langevin approach, the in-degree disorder can be
treated as quenched disorder of the effective synaptic couplings
g—also Lorentzian distributed. In principle, one could again obtain
an analytic expression for the average firing rate ν by integrating the
expression (42) of the firing rate νg of each specific sub-population
over the distribution of the synaptic couplings,

ν =
∫ +∞

−∞
L(g) νgdg. (66)

FIG. 14. Heterogeneousmodel: order parameter ρ vs10. Symbols refer to direct
simulations of the network for different sizes: N = 4000 (red), 8000 (green), and
16 000 (blue). The vertical magenta dashed (orange dotted) line denotes 1HB

0

corresponding to the super-critical Hopf bifurcation identified from the analysis
of the FPE truncated to M = 64 within a Poissonian (renewal) approximation
where the amplitude of the current fluctuations is given by Eq. (10) [Eq. (11) with
CV = 0.8]. The vertical violet two-dotted–dashed (cyan dotted–dashed) line indi-
cates 1HB

0 (1SN
0 ) for the sub-critical Hopf (saddle node) bifurcation point as

obtainedwithin the 2CC approximation. The data have also been averaged over 20
different network realizations. Other parameters: K = 400, i0 = 0.006, g0 = 1.

However, as explained in the Appendix, despite the distribution
being Lorentzian, we cannot estimate analytically the integral (66)
due to the presence of essential singularities within the integration
contour, which prevent the application of the residue theorem.

Nevertheless, as in the homogeneous case, the Langevin for-
mulation can be mapped onto a FPE in the Fourier space, where
one can get rid of the disorder by invoking Cauchy’s residue
theorem, thereby obtaining the evolution equation (27) for the
Kuramoto–Daido order parameters.

The analysis presented in Sec. IV has shown that COs arise
in homogeneous networks for sufficiently large median in-degrees
K and small external currents i0. By continuity, it is reasonable to
conjecture that the same occurs in networks with moderate het-
erogeneity (this regime has been indeed reported in Ref. 16). In
Fig. 14, we plot the order parameter ρ vs the parameter controlling
the structural disorder 10 [see its definition below Eq. (2)] for dif-
ferent network sizes N. There, we see that the COs observed in the
homogeneous case 10 = 0 persist up to a critical value 1(c)

0 ' 0.40
when the structural disorder becomes so large as to wash out collec-

tive phenomena. Indeed, above 1(c)
0 , ρ scales as 1/N1/2 as expected

for asynchronous dynamics. To better understand the transition, let
us recall that in Ref. 16, the authors noticed that the average coeffi-
cient of variation CV displays a finite value CV ' 0.8 in the region

FIG. 15. Transitions for the heterogeneous model: order parameter ρ vs K
[panel (a)] and vs i0 [panel (b)]. Symbols refer to direct simulations of the network
for different sizes: N = 2000 (black), 5000 (red), 10 000 (green), and 20 000 (vio-
let). In panel (a), the vertical magenta dashed (orange dotted) line denotes KHB

as estimated within a MF approach for the FPE truncated to M = 64 with a Pois-
sonian (renewal) approximation where the amplitude of the current fluctuations is
given by Eq. (10) [Eq. (11) with CV = 0.8]. The vertical violet two-dotted–dashed
(cyan dotted–dashed) line indicates KHB (KSN ) for the sub-critical Hopf (saddle
node) bifurcation point obtained within the 2CC approximation. In panel (b), the
vertical violet dotted–dashed (magenta dashed) line indicates the critical value of
iHB0 at which there is a super-critical Hopf bifurcation as obtained with the 2CC
approximation (with the FPE truncated to M = 64 within a Poissonian approx-
imation). In (b), the data for N = 5000 have not been estimated. Parameters:
K = 1000, i0 = 0.006, g0 = 1, and10 = 0.1 when not differently specified.
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where COs are observable, while it vanishes above 1(c)
0 . This was

explained by conjecturing that for increasing 10 only few neurons,
the ones with in-degrees proximal to the median K can balance their
activity, while the remaining neurons are no longer able to satisfy
the balance conditions, as recently shown in Refs. 56 and 57.

The bifurcation diagram is well reproduced by the linear-
stability analysis of the FPE, which predicts a super-critical Hopf
bifurcation at1HB

0 ' 0.28 (1HB
0 ' 0.43) in the Poissonian (renewal)

approximation: see the magenta dashed line (orange dotted line)
in Fig. 14. The linear-stability analysis of the 2CC approximation
instead predicts a sub-critical Hopf bifurcation, accompanied, as
usual, by a coexistence interval [0.16, 0.24]. 1HB

0 ' 0.24 (see the
double-dotted–dashed violet line) is the critical point, where the
asynchronous regime loses stability, while 1SN

0 ' 0.16 (see the dot-
ted–dashed cyan line) corresponds to the saddle-node bifurcation
where stable COs coalesce with analogous unstable oscillations.
Since direct numerical simulations and the FPE do not show any
evidence of a bistable region close to the critical point, it follows that
this bistability is a spurious effect of the 2CC approximation.

The robustness of COs has been studied also by decreasing
the in-degree K and increasing the input current i0. The results

are shown in Fig. 15 for 10 = 0.1 < 1
(c)
0 . In panel (a), the cur-

rent is set equal to i0 = 0.006. Numerical simulations indicate a
transition to the asynchronous regime at K(c) ' 200 − 250. The
scenario is well captured by the Fokker–Planck analysis, which pre-
dicts a super-critical Hopf bifurcation at KHB ' 343 (KHB ' 210)
within the Poissonian (renewal) approximation. Also, in this case,
the 2CC model predicts a saddle-node bifurcation of the limit cycles
at KSN ' 75 (cyan dotted–dashed line) and a sub-critical Hopf bifur-
cation at KHB ' 150 (violet two-dotted–dashed line). Figure 15(b)

FIG. 16. Time traces of the mean membrane potential v(t) [panels (a) and
(c)] and of the firing rate ν [panels (b) and (d)]. The parameters (K, i0) are
(500, 0.006) in (a) and (b) and (1000, 0.01) in (c) and (d). The red lines always
refer to direct simulations for N = 16 000 (red line). Black (blue) lines correspond
to the integration of the FPE, truncated afterM = 64 Fourier modes for a Poisso-
nian noise (renewal noise with CV = 0.8). Finally, green lines correspond to the
2CC approximation. The structural heterogeneity is10 = 0.1.

refers to K = 1000. In this case, direct numerical simulations, the
FPE, and the 2CC approximation all predict a super-critical bifurca-

tion around i(c)0 ' 0.6 − 0.7.
Finally, in Fig. 16, we report the evolution of the mean mem-

brane potential v(t) and of the population firing rate ν(t) for two
different sets of parameter values. We compare the results of net-
work simulations (red solid lines) with the outcome of the FPE in the
Poissonian (black solid line) and renewal (blue solid line) approxi-
mation, as well as with the behavior of the 2CC model (green solid
lines). The agreement between direct simulations and the results of
the FPE with renewal noise are remarkable, including the shape of
the oscillations. The 2CC approximation works better than in the
homogeneous case, but it still overestimates the amplitudes of the
COs and slightly the period.

On the one hand, we can conclude that the FPE reproduces the
dynamics of heterogeneous networks with a good quantitative accu-
racy. On the other hand, the 2CCs, while being able to capture the
transition from COs to the asynchronous regime, is much less pre-
cise both in terms of shape of the oscillations and the nature of the
transition.

VI. CONCLUSIONS

This article has been devoted to a mean-field characterization
of sparse balanced networks composed of identical QIF neurons
with both homogeneous and heterogeneous in-degree distributions.
The main focus of our analysis has been the spontaneous emer-
gence of coherent or collective fluctuations out of the asynchronous
balanced regime. Collective oscillations are the result of an inter-
nal macroscopic coherence and may, in general, be either regu-
lar or irregular.58–60 They resemble coherent fluctuations observed
across spatial scales in the neocortex.61–63 In the present setup, COs
are strictly periodic and arise even for completely homogeneous
in-degrees.

Somehow similarly to what has previously been done for
integrate-and-fire neurons,32,35,64 the starting point is the formula-
tion of a Langevin equation for the membrane potential, where
the noise is self-consistently determined by assuming that the fluc-
tuations of the input current follow from the superposition of
independent stochastic processes: the single-neuron spiking trains.
Two main assumptions are made while formulating the Langevin
description: Poisson and renewal statistics. The in-degree hetero-
geneity has a twofold effect: it acts as a quenched disorder in the
synaptic couplings and as an additional parameter affecting the
noise amplitude.

The Langevin equations are turned into a family of FPEs
for the evolution of the distributions of the membrane potentials
for each sub-population characterized by a given in-degree. The
Fokker–Planck formulation is twice infinite dimensional: as it deals
with the distribution of membrane potentials and for its depen-
dence on the in-degree connectivity. The latter dependence can be
removed by assuming a Lorentzian distribution of the in-degrees,
in which case the evolution equation reduces to a single FPE, which
depends on the median in-degree and on a parameter controlling the
width of the structural heterogeneity of the distribution (similarly to
what has been done in Ref. 15 for a globally coupled QIF network
subject to external noise terms).
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Altogether, the FPE proves very accurate both in the descrip-
tion of homogeneous and heterogeneous networks. The renewal
approximation is typically more precise than the Poisson approx-
imation. However, stronger deviations are expected for very small
currents and not-too-large connectivity. In such conditions, the
“granularity” of the input signal received by every neuron cannot be
anymore neglected, and the white noise assumption underlying the
FPE should be replaced by shot noise as already done for LIF neu-
rons in Refs. 65 and 66. Future studies will be devoted to this specific
aspect.

A further simplification is then proposed and explored by
expanding the probability distribution of membrane potentials into
circular cumulants.14 The fast (exponential) decrease of the cumu-
lant amplitude with their order suggests truncating the hierarchy
after two cumulants. The quality of the 2CC approximation has been
tested both for the description of the asynchronous regime and the
onset of COs. Interestingly, the 2CC approximation works reason-
ably well also in homogeneous networks where the Ott–Antonsen
manifold is not attractive. Nonetheless, in some cases, the 2CC
model reproduces incorrectly the nature of the Hopf bifurcation
(sub- instead of super-critical); moreover, the amplitude of the oscil-
lations is substantially larger than in real networks. Anyway, the
value of the 2CC model relies on its low-dimensionality: it should be
appreciated that two variables are able to capture the onset of COs
via a Hopf bifurcation and predict reasonable values for the station-
ary firing rate when the asynchronous regime is stable. In a future
perspective, possible improvements should be explored; in particu-
lar, the inclusion of the third cumulant, although this issue requires
an in-depth analysis: as the amplitude of the cumulants decreases
very rapidly with their order, it is unclear why a third cumulant
should play a relevant role. Recently, a new reduction methodology
has been proposed to address population dynamics in the presence
of extrinsic and endogenous noise sources.17 This approach could
be applied also in the present context; however, the circular cumu-
lant approximation has been preferred due to the higher numerical
stability displayed for the studied cases.

The balanced regime has been invoked as a mechanism
explaining irregular low firing activity in the cortex. It is com-
monly believed that in a balanced asynchronous regime, the sys-
tem operates sub-threshold, where the activity is driven by current
fluctuations.19,32 However, as shown in Ref. 52, this is not the only
possible scenario: both mean- and fluctuation-driven balanced asyn-
chronous regimes can emerge in an excitatory–inhibitory network
dominated by the inhibition drive for finite K. Our analysis con-
firms that both regimes can emerge in a fully inhibitory network
for arbitrarily large connectivity. In particular, fluctuation (mean)
driven balanced dynamics appear for small (large) DC currents as
well as for large (small) inhibitory synaptic coupling. Furthermore,
we have also shown that a perfectly balanced regime can be obtained
by fine-tuning the parameters for any finite in-degree.

For what concerns the regime characterized by the presence of
collective oscillations, the large K-limit proves very interesting since
the dynamics exhibits increasingly strong deviations from a bal-
anced regime. First of all, the frequency of the collective oscillations
diverges as fCO ∝ K1/4, as also suggested by the linear-stability anal-
ysis of the MF solution. Remarkably, the average firing rate scales
in the same way: this is due to the occurrence of the concentration

of the activity in short but very strong bursts. With the help of
numerical observations showing that the percentage of neurons par-
ticipating to the population bursts is independent by K, we have
concluded that the height of the bursts grows as K1/2. It would be
desirable to draw this conclusion in a more rigorous way.

In the heterogeneous case, we examined three different sce-
narios for the emergence of COs: namely, COs can arise at large
K, as well as for sufficiently low structural heterogeneity 10 and
input currents i0. All these transitions are captured both from the
Fokker–Planck formulation as well as from the 2CC approximation,
this at variance with the low-dimensional MF formulation reported
in Ref. 16 that was based on the Ott–Antonsen ansatz and, therefore,
not including the current fluctuations. These results clearly indi-
cate that the role of coherent fluctuations present in the balanced
regime is fundamental for the birth of COs. Therefore, the neurons
should be in the fluctuation driven regime, usually observable at low
i0, and their dynamics should be sufficiently coherent to promote
oscillations at the network level, as it occurs for low10 and large K.
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APPENDIX: RESIDUE THEOREM AND ANALYTIC

SOLUTIONS FOR A HETEROGENEOUS POPULATION

In this appendix, we will demonstrate that the integral (66)
cannot be performed via the residue theorem, as usually expected,
due to the presence of essential singularities within the integration
contour.

Let us clarify the properties of the analytic function
νg = D1/3

g R(ξ) (42), which is expressed in terms of nth order Bessel

functions Jn and In of the first kind and modified, respectively.
Therefore, we should first recall the definition and some properties
of the Bessel functions,

Iα(Z) = i−αJα(iZ) ≡
∞

∑

m=0

(

Z
2

)2m+α

m!0(m + α + 1)
, (A1)
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which possesses the property

Iα(e
inπZ) = eiαnπ Iα(Z), (A2)

where n is an integer. Hence,

I± 1
3
(Z) = I± 1

3

(

|Z|ei(nπ+θ)) = e±i nπ
3 I± 1

3

(

|Z|eiθ
)

, (A3)

where θ ∈ (−π/2;π/2] (for the convenience of computer calcula-
tions).

By employing Eqs. (A1) and (A3), one finds that

I± 1
3
(y3/2) = I± 1

3

(

(−eiπy)
3/2) = I± 1

3
(ei2π e−i π2 (−y)3/2)

= e±i 2π
3 e∓i π6 J± 1

3

(

(−y)3/2
)

= e±i π2 J± 1
3

(

(−y)3/2
)

.

This result tells us that the expression of νg for Ag < 0 [first line
in (42)] can be obtained from the expression for Ag > 0 [second

line in (42)] simply by setting Ag = eiπ (−Ag). Therefore, for the
moment, we can limit our analysis to the case Ag < 0.

Since νg = D1/3
g R(ξ), where ξ = Ag/D

2/3
g , in order to estimate

the integral (66), we should define a closed integration contour in
the complex ξ -plane. This contour is shown in Fig. 17. To apply
the residue theorem, we should identify the poles of the function
R(ξ) ≡ R([3/2]2/3y) with

y ≡
(

2

3Dg

)
2
3

Ag,

where the new variable y is introduced for the brevity of calculations.
We can now rewrite the expression appearing in the denominator in
Eq. (42) for Ag > 0 as

[

J 1
3
(y3/2)

]2 +
[

J− 1
3
(y3/2)

]2 − J 1
3
(y3/2) J− 1

3
(y3/2)

= J 1
3
(y3/2) e−i π3 J 1

3
(eiπy3/2)+ J− 1

3
(y3/2) ei π3 J− 1

3
(eiπy3/2)− J 1

3
(y3/2) J− 1

3
(eiπy3/2)− J 1

3
(eiπy3/2) J− 1

3
(y3/2)

=
[

e−i π6 J 1
3

(

y3/2
)

− ei π6 J− 1
3

(

y3/2
)

]

[

e−i π6 J 1
3

(

(

ei 2π
3 y

)3/2
)

− ei π6 J− 1
3

(

(

ei 2π
3 y

)3/2
)]

=
[

J 1
3

(

(

ei 2π
3 y

)3/2
)

+ J− 1
3

(

(

ei 2π
3 y

)3/2
)][

J 1
3

(

(

e−i 2π
3 y

)3/2
)

+ J− 1
3

(

(

e−i 2π
3 y

)3/2
)]

. (A4)

The expression for the sub-population firing rate νg can be rewritten as

νg = D1/3
g R(ξ) = D1/3

g R([3/2]2/3y) =
9Dg

4π2Ag
[

J 1
3

(

(

ei 2π
3 y

)3/2
)

+ J− 1
3

(

(

ei 2π
3 y

)3/2
)] [

J 1
3

(

(

e−i 2π
3 y

)3/2
)

+ J− 1
3

(

(

e−i 2π
3 y

)3/2
)] , (A5)

which yields (42) for positive and negative Ag.
Thus, the function R(ξ) possesses the two sets of poles

with arg(ξ) = ±2π/3 + 2πn since a multivalent analytic function
[J1/l(z)± J−1/l(z)] =

∑∞
m=0 C1/l,mz2m+1/l ±

∑∞
m=0 C−1/l,mz2m−1/l with

FIG. 17. The closed integration contour (right) on the complex ξ -plane corre-
sponds to the one on the complex g-plane (left). The points A′, B′, C′, and D′

correspond to A, B, C, and D.

positive integer l and real-valued coefficients Cα,m possesses
zeros only for z = ρ and z = eilπρ, where ρ is real positive.67

The sequences of these poles form essential singularities at
ξ = |∞|ei(2πn±π/3), and the integration path runs through it (as we
show below). Hence, the integration contour cannot be closed via
infinity at the upper/lower half-plane of ξ [or y = (2/3)2/3ξ ], and
the residue theorem cannot be employed.

It is now important to find the path on the complex ξ -plane
corresponding to g varying from −∞ to +∞,

ξ =
Ag

D
2/3
g

=
√

K(i0 − gν)
( g0gν

2

)2/3
. (A6)

On the segment CD (see Fig. 17): g > 0; therefore, ξ is real and runs

from +∞ to −∞. On the arc B̆C: ξ = e−i 2
3 arg(g)

√
Ki0/[(g0|g|ν)/2]2/3,

which is an arc at infinity (as |g| → 0), running from |∞|e−i2π/3

to +|∞| (see the arc ˘B′C′ in Fig. 17). On AB: g = eiπ |g| and

ξ = e−i2π/3
√

K(i0 + |g|ν)/[(g0|g|ν)/2]2/3 forms the arc ˘A′B′. On D̆A:

g = |∞|eiα and ξ =
√

K(2/g0)
2/3eiπ (gν)1/3, which is the arc ˘D′A′.

The segment ˘A′B′ passes exactly along the line with the poles,
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arg(x) = −2π/3. Not only the mutual position of these poles and
the integration path needs to be clarified for finite x (the left and
right segments can be on the one side of poles or “envelope” them),
but, more importantly, at infinity, we have an essential singularity at
ξ = |∞|e−i2π/3, and the contribution of its vicinity into the integral
is uncertain. Thus, as announced above, the residue theorem cannot
be employed for this case.
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