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We revisit the dynamics of a prototypical model of balanced activity in networks of spiking neurons.
A detailed investigation of the thermodynamic limit for fixed density of connections (massive cou-
pling) shows that, when inhibition prevails, the asymptotic regime is not asynchronous but rather
characterized by a self-sustained irregular, macroscopic (collective) dynamics. So long as the con-
nectivity is massive, this regime is found in many different setups: leaky as well as quadratic
integrate-and-fire neurons; large and small coupling strength; and weak and strong external currents.
Published by AIP Publishing. https://doi.org/10.1063/1.5049902

Dynamical regimes where excitation and inhibition almost
balance each other are considered very important in com-
putational neuroscience, since they are generically accom-
panied by strong microscopic fluctuations such as those
experimentally observed in the resting state of the mam-
malian brain. While much is known on the balanced
regime in the context of binary neurons and in networks
of rate models, much less is known in the more realis-
tic case of spiking neural networks. So far, most of the
research activity on spiking neurons was restricted to
diluted networks, with the goal of providing a detailed
description of the underlying asynchronous regime. In
this paper, we show that, contrary to the current expecta-
tions, even in the presence of a 10% dilution, the collective
dynamics exhibited is characterized by a sizeable syn-
chronization. The analysis of a suitable order parameter
reveals that the macroscopic dynamics is highly irregu-
lar and remains such in the thermodynamic limit (i.e., for
infinitely many neurons). The underlying form of synchro-
nization is thereby different from the collectively regu-
lar dynamics observed in systems such as the Kuramoto
model.

In spite of the many studies carried out in the last decade,
a general theory of the dynamics of large ensembles of oscil-
lators is still lacking even for relatively simple setups where
the single units are assumed to be one-dimensional phase
oscillators.1 A whole variety of phases has been indeed dis-
covered which interpolate between the fully synchronous
and the asynchronous regime, including chimera states, self-
consistent partial synchrony, not to speak of various clustered
states.2–5

Even though real systems are composed of a finite num-
ber of elements, we know from statistical mechanics that a

meaningful identification of the different regimes can be made
only in the thermodynamic limit, i.e., for an ideally infinite
number of elements. In the case of dynamical systems defined
on regular lattices with short range interactions, taking the
limit is straightforward: it is just the matter of considering
infinitely extended lattices. In networks with long-range inter-
actions, the question is less obvious.6 Since the interaction
grows with the system size, the coupling strength must be
inversely proportional to the number of connections to avoid
unphysical divergencies. Systems like the Kuramoto model
belong to this class.2 In setups where the average coupling
contribution is negligible, the coupling strength is instead
assumed to scale as the inverse of the square root of the
connectivity. Spin glasses are the most prominent physical
systems where this latter scheme is adopted.7,8

The characterization of the balanced regime represents
another such setup9 encountered in computational neuro-
science. A theory of balanced states has been developed in
ensembles of neurons characterized by a coarse-grained vari-
able: their firing-rate.10–15 However, it is still unclear whether
the resulting scenario is truly representative of what can be
observed in more realistic setups.

In fact, increasing attention has been progressively
devoted to simple models of excitatory and inhibitory spiking
neurons, such as leaky (LIF) or quadratic (QIF) integrate-
and-fire neurons with the goal of mimicking the cortical
activity.16–20 The most detailed theoretical analysis of spik-
ing neurons has been proposed by Brunel,21 who derived
and solved a (self-consistent) Fokker-Planck equation for the
probability density of membrane potentials in a network of
LIF neurons. The theory was developed by assuming a finite
sparse connectivity, so that the thermodynamic limit is implic-
itly taken by letting the number of neurons diverge. As the
resulting scenario—an asynchronous regime and two kinds
of synchronous activity—does not fully match the one found
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in rate models, several numerical studies have been performed
to investigate the role of ingredients such as the synaptic time
scale or the network connectivity.11–14,22 The overall result is
the evidence of some features which seem to conflict with the
hypothesis of a widespread existence of a single “standard”
asynchronous dynamics. For instance, Ostojic claims the exis-
tence of two different regimes that can be detected upon
increasing the coupling strength.23 Even though this state-
ment has been challenged by Engelken et al.,24 who maintain
that a single, standard, asynchronous regime does exist, the
qualitative features of the spiking activity need to be better
understood.

In this article, we revisit the activity of a balanced net-
work of spiking neurons and propose a different interpretation
of the regimes that have been observed in simulations of
finite networks. Our approach is based on a thermodynamic
limit, which better preserves the qualitative features observed
in finite systems. All of our studies show that the network
activity is not asynchronous but rather a manifestation of a
collective irregular dynamics (CID), similar to what found
in heterogeneous networks of globally coupled inhibitory
neurons.25

Collective dynamics can be quantified by implementing
the same indicators introduced to measure the degree of syn-
chronization. With the help of an order parameter specifically
designed to characterize neuronal synchrony in large ensem-
bles of neurons,26 we find that CID is an ubiquituous phe-
nomenon, which does not only persist for arbitrary coupling
strength, but also in the absence of delay and refractoriness.
Finally, we find that collective dynamics is not restricted to
LIF neurons but extends at least to QIF neurons as well. All
numerical calculations have been performed by implementing
either an event-driven approach27,28 or Euler’s algorithm.

We start considering an ensemble of N supra-threshold
LIF neurons composed of bN excitatory and (1 − b)N
inhibitory cells, as defined in Refs. 21 and 23. The mem-
brane potential Vi of the ith neuron evolves according to the
equation,

τ V̇i = R(I0 + Ii) − Vi, (1)

where τ = 20 ms is the membrane time constant, RI0 = 24 mV
is an external DC “current,” and RIi is the synaptic current
arising from the mutual coupling

RIi = τJ
∑

n

Gij(n)δ(t − t(j)n − τd), (2)

where J is the coupling strength. The synaptic connections
among the neurons are random, with a constant in-degree K

for each neuron. The matrix elements assume the following
values: Gij = 1 (−g), if the pre-synaptic neuron j is excita-
tory (inhibitory), otherwise Gij = 0. If Vj reaches the threshold

Vth = 20 mV at time t(j)n , two events are triggered: (i) the
membrane potential is reset to Vr = 10 mV and Vj is held
fixed for a refractory period τr = 0.5 ms; (ii) a spike is emit-
ted and received τd = 0.55 ms later by the post-synaptic cells
connected to neuron j. All the other parameters are initially
set as in Ref. 23, namely b = 0.8, K = 1000, g = 5, and
N = 10 000.

We first compute the instantaneous probability density
P(v) of membrane potentials Vi ∈ [v, v + dv] for J = 0.1 mV
and 0.5 mV. The asynchronous regime is by definition char-
acterized by a constant firing rate29 (in the thermodynamic
limit). This implies that the flux of neurons along the v-axis is
independent of both potential and time, i.e., the correspond-
ing probability density P(v) is stationary. From Fig. 1, where
three different snapshots of P(v) are plotted, we notice instead
strong fluctuations, which appear to grow with the coupling
strength J .

Such large fluctuations are inconsistent with the station-
arity of the asynchronous regime. In order to better understand
their nature, it is necessary to take the thermodynamic limit.
This can be done in various ways. In Ref. 21, N is let diverge
to ∞, keeping all other parameters constant. This limit is not
able to capture the fluctuations seen in Fig. 1, which indeed
slowly vanish upon increasing N . In most of the literature
on balanced states,10,12–14 first the limit N → ∞ is taken, and
then the average in-degree K is let diverge under the assump-
tion that the coupling strength J is on the order of O(1/

√
K),

i.e., one can rewrite explicitly J = J /
√

K and RI0 ∝ √
K.

In this article, we propose to let N and K diverge simul-
taneously, assuming K = cN (this corresponds to assuming
a massive connectivity). A priori, there are two meaningful
setups that can be considered: (W) weak external current,
which corresponds to assume that RI0 is independent of N
(and thereby K); (S) strong external current, i.e., I0 = i0

√
N .

In the (W) setup, the balance must be ensured a priori by
imposing that excitatory and inhibitory fields nearly compen-
sate each other. This is obtained by setting g ≡ g0 + g1/

√
N

with g0 = b/(1 − b) so that the average difference between
the excitation and inhibition is of the same order as statistical
fluctuation. In the (S) setup, there is no need to tune g because
the external current RI0 maintains the balance. In this article,
we show that CID emerges in both setups.

We first report the results for increasing network sizes
for the setup (W), starting from N = 10 000 and including
40 000, 160 000, and 640 000. We set c = 0.1 and g1 = 100,

FIG. 1. Three different instantaneous probability distribu-
tions of the membrane potentials P(v) for N = 10 000 and
J = 0.1 mV (a) and J = 0.5 mV (b). The green dashed line
refers to the reset potential Vr.
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FIG. 2. Average firing rate ν (a,c) and order parameter ρ (b,d)
versus the coupling strength J̄ for different network sizes N :
black circles refer to N = 10 000, green squares to 40 000, red
diamonds to 160 000, and blue crosses to 640 000 [only in (a)
and (b)]. The results refer to the (W) setup for LIF (a,b) and
QIF (c,d). The indicators have been averaged over a time win-
dow of 40 s and over up to seven realizations of the network.
The solid magenta line (a) is obtained by invoking the diffusion
approximation for a noise driven LIF.31

as the resulting model, for N = 10 000, is equivalent to that
in Ref. 23. In Fig. 2(a) we plot the value of the average firing
rate ν versus J̄ = J /

√
1000.30 In order to damp the (small)

sample-to-sample fluctuations, the results are averaged over
seven, three, and two different realizations of the network for
N = 10 000, 40 000, and 160 000, respectively. We observe
a slow but clear convergence to an asymptotic curve in the
entire range of coupling values. Finite-size corrections are
negligible for J̄ up to 0.1 mV, while for stronger coupling,
the larger the network, the stronger is the tendency of the fir-
ing rate to decrease with the system size. Nevertheless, for
N � 160 000, an asymptotic curve is attained, which exhibits
a growth of ν with J̄ for sufficiently large coupling (compare
with the solid full line, obtained by invoking the theoreti-
cal formula for a noise-driven LIF31). Another aspect that is
maintained in the thermodynamic limit is a bursting activity,
characterized by a coefficient of variation larger than 1,32 for
J̄ > 0.3 mV (data not shown).

A typical order parameter that is used to quantify the
strength of collective dynamics is based on the relative ampli-
tude of the macroscopic fluctuations,26

ρ2 ≡ 〈V 〉2 − 〈V 〉2

〈V 2 − V
2〉

, (3)

where 〈·〉 denotes an ensemble average, while the overbar is
a time average. In practice, ρ is the rescaled amplitude of
the standard deviation of the average 〈V 〉. When all neurons
behave in exactly the same way (perfect synchronization), the
numerator and the denominator are equal to one another and
ρ = 1. If instead they are independent, ρ ≈ 1/

√
N . From the

results plotted in Fig. 2(b), we see that the order parameter ρ

is finite in the whole range of the considered coupling. Fur-
thermore, it is substantially independent of N for J̄ < 0.2 mV,
while for larger J̄ , it exhibits a slower convergence to val-
ues � 0.4−0.5. This clearly indicates that the thermodynamic
phase is not a standard asynchronous regime but is rather
characterized by a collective dynamics, also for very small
coupling strengths.

The nature of the macroscopic dynamics can be appreci-
ated from the spectrum Sg of the global activity Y(t) (obtained
by summing the signals emitted by all the neurons)—for
different system sizes. In Fig. 3 we plot the rescaled spec-
trum Sg = Sg/N2 [panels (a) and (b) refer to J̄ = 0.2 mV and
J̄ = 0.8 mV, respectively]. The data collapse suggests that the
dynamics remains irregular in the thermodynamic limit, i.e.,
that the fluctuations are not finite-size effects. In fact, an asyn-
chronous regime would have been characterized by a spectral
amplitude Sg of order O(N) rather than O(N2). For both cou-
pling strengths, the spectral density is mostly concentrated in

FIG. 3. Global spike-train spectra Sg(f ) versus the frequency
for J̄ = 0.2 mV (a) and 0.8 mV (b) for LIF in (W) setup. The dif-
ferent lines refer to different system sizes, namely N = 10 000
(black), N = 40 000 (red), and N = 160 000 (blue). The dashed
green lines show the theoretical results obtained by following
Ref. 21.
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two frequency ranges: (i) around f ≈ 1800 Hz, which corre-
sponds to the inverse of the delay and (ii) at low frequencies
in a range that approximately corresponds to the firing rate. A
relative comparison confirms that the collective dynamics is
stronger for larger coupling strengths.

Altogether, the broad-band structure of the spectrum sug-
gests that the nature of the CID is stochastic-like even though
the model is perfectly deterministic. The high-dimensional
character of the neural activity is confirmed by a fractal-
dimension analysis.33,34 To our knowledge, we provide the
first convincing evidence of collective irregular behaviour in
a balanced state. The closest regime is reported in a preprint,35

which deals with a fully coupled rate model.
The persistence of collective dynamics in the thermody-

namic limit in the (W) setup can be understood in the limit
of small connectivity, by revisiting the theory developed by
Brunel21 in the context of highly-diluted networks, under the
implicit assumption that the thermodynamic limit is taken by
letting the number of neurons diverge. The central point is the
evolution equation for the probability P(v, t)

τ
∂P

∂t
= ∂

∂v
[(v − μ)P] + σ 2

2

∂2P

∂v2
+ σ0

√
cτ

∂P

∂v
ζ(t). (4)

This stochastic Fokker-Planck equation was derived in Ref. 21
[see Eq. (32), here rewritten in our notations]; it is valid
so long as the current I can be represented as the sum
of a deterministic contribution μ and a noise of amplitude
σ . Self-consistent formulas for μ and σ can be derived
upon assuming an uncorrelated Poisson activity of the var-
ious neurons, obtaining μ(t) = RI0 + KJτ(b − (1 − b)g)ν

(t − τd) and σ(t) = J
√

τK(b + (1 − b)g2)ν(t − τd) [see Eqs.
(4) and (5) in Ref. 21], where ν(t) is the instantaneous firing
rate at time t.36

The presence of the common noise in Eq. (4) is
due to the sharing of a fraction of afferent neurons. In
the context of Ref. 21, the additive noise is a finite-size
effect, since c = K/N vanishes for N → ∞, while in our

FIG. 4. Mean firing rate ν as a function of the system size N for
J̄ = 0.2 mV (J = J̄

√
1000) for the LIF in (S) setup. The solid line,

ν = (30 − 1742.18/
√

N) Hz, shows the convergence to the expected asymp-
totic value ν = 30 Hz. The inset shows the dependence of the synchronisation
measure ρ on N (the dashed line is a guide for the eyes).

setup it remains finite. More precisely, ζ(t) is a white
noise term—〈ζ(t)ζ(t + T)〉 = δ(T)—while σ0 is the value
of σ corresponding to the constant firing rate ν0 obtained
within the diffusion approximation.31 By inserting our scal-
ing assumptions for K, J , and g, we find that in the ther-
modynamic limit μ(t) = RI0 − J τ

√
cg1(1 − b)ν(t − τd) and

σ(t) = J√
bτν(t − τd)/(1 − b), i.e., both parameters remain

finite when the limit N → ∞ is taken. As a result, it makes
sense to use the solution of Eq. (4) as a reference for the
results of our numerical simulations. An analytic expression
for the rescaled power spectrum can be found in Ref. 21 (see
the expression reported at the end of page 204). The result-
ing shape for our parameter values is reported in Fig. 3 [see
the green dashed line in panels (a) and (b)]. A qualitative
agreement is observed for both J̄ = 0.2 mV and J̄ = 0.8 mV,
starting from the presence of a peak in correspondence of
the inverse delay. The similarity between the low-frequency
peaks is less pronounced for the higher coupling strength,
showing that the true dynamics is definitely less regular than
theoretically predicted by the noisy Fokker-Planck equation.
The lack of a quantitative agreement is not a surprise, given
the perturbative character of the noisy term and the assump-
tion of a Poisson statistics that is not generally valid.

A closer agreement would be obtained if we could
relax some of such approximations. A promising approach
is the self-consistent method developed by Lindner and co-
authors,37,38 which provides a more accurate description of
the spiking activity of LIF neurons. Unfortunately, for our
setup above J̄ = 0.05 mV, the method does not converge,39

thus leaving open the question whether it is a technical or
conceptual matter.

We now discuss the strong-current setup (S), with
RI0 = 0.24

√
N mV (i.e., Ri0 = 0.24 mV) and g = 5. In this

case, the balance is attained (at leading order in N) by impos-
ing the condition Ii + I0 = 0. Under the assumption of a con-
stant firing rate, this implies ν = Ri0/(

√
c τJ ((1 − b)g − b)).

The results of simulations for J = 0.2 mV and different val-
ues of N are reported in Fig. 4, where one can see that the
firing rate converges toward the expected asymptotic value
ν = 30 Hz, with a 1/

√
N rate (see the solid line). More impor-

tant is that the order parameter ρ remains finite for increasing
N (see the inset). The presence of strong finite-size correc-
tions prevents us from determining its asymptotic value; it is,
however, clear that ρ does not vanish, indicating that a collec-
tive dynamics emerges also in the presence of strong external
currents.

In order to establish the generality of CID in bal-
anced, massively coupled networks, we have analysed another
model, the QIF, which represents the canonical model for
class I excitability.16,40,41 Its evolution equation reads as

τ θ̇i = (1 + cos θi) + (1 − cos θi)(θ0 + αRIi), (5)

where θi is an adimensional phase-like variable and θth = π

and θr = −π are the threshold and reset value, respectively.
Moreover, θ0 = 0.2, α = 1 mV−1, while RIi is still defined
as in Eq. (2), and all the other parameters are as for the
LIF. As shown in Figs. 2(c) and 2(d), where the firing rate ν

and the order parameter ρ are reported for different coupling
strengths, there is again a clear evidence of synchronization.
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The broadband structure of the corresponding spectra of the
neural activity (data not shown) indicates that the collective
dynamics is stochastic-like.

Finally, we made several other tests, eliminating refrac-
toriness, setting the delay equal to zero and adding noise to the
external current (as in the original Brunel paper21). In all these
cases, ρ remains finite and exhibits an irregular behavior.33

Altogether, we have found that CID emerges in all mas-
sively coupled networks that we have explored. This comes as
a surprise: in other models of massively coupled neuronal sys-
tems, the microscopic chaotic dynamics, which may emerge
in finite systems, disappears in the thermodynamic limit,42,43

while here it does not only survive but contributes to sustain
a macroscopic stochastic-like evolution. This point definitely
needs to be better clarified.

The evidence that CID survives in the vanishing coupling
limit could represent the starting point for future progress.
In fact, for J = 0 any distribution P(v) is a marginally sta-
ble solution and can in principle be (de)stabilized by an
arbitrarily small coupling. Such a singular behavior was suc-
cessfully handled to explain the onset of partial synchrony,4

by mapping the ensemble of LIF neurons onto the much
simpler Kuramoto-Daido equation.44,45 Can one hope to
make a similar analysis in the context of the balanced
regime?
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French government under A�MIDEX Grant No. ANR-11-
IDEX-0001-02 (A.T.) and mainly realized at the Max Planck
Institute for the Physics of Complex Systems (Dresden, Ger-
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1A. T. Winfree, The Geometry of Biological Time, 2nd ed., Interdisciplinary
Applied Mathematics Vol. 12 (Springer-Verlag, New York, 2001).

2J. A. Acebrón, L. L. Bonilla, C. J. Pérez Vicente, F. Ritort, and R. Spigler,
Rev. Mod. Phys. 77, 137 (2005).

3M. J. Panaggio and D. M. Abrams, Nonlinearity 28, R67 (2015).
4C. van Vreeswijk, Phys. Rev. E 54, 5522 (1996).
5D. Golomb, D. Hansel, B. Shraiman, and H. Sompolinsky, Phys. Rev. A
45, 3516 (1992).

6Dynamics and Thermodynamics of Systems with Long Range Interac-
tions, Lecture Notes in Physics Vol. 602, edited by T. Dauxois, S.
Ruffo, E. Arimondo, and M. Wilkens (Springer-Verlag, Berlin, Heidelberg,
2002).

7M. Mézard, G. Parisi, and M. Virasoro, Spin Glass Theory and Beyond: An
Introduction to the Replica Method and Its Applications (World Scientific
Publishing Co. Inc., 1987), Vol. 9.

8A. Crisanti and H. Sompolinsky, Phys. Rev. A 37, 4865 (1988).
9H. Sompolinsky, A. Crisanti, and H. J. Sommers, Phys. Rev. Lett. 61, 259
(1988).

10C. van Vreeswijk and H. Sompolinsky, Science 274, 1724 (1996).
11A. Renart, J. de la Rocha, P. Bartho, L. Hollender, N. Parga, A. Reyes, and

K. D. Harris, Science 327, 587 (2010).
12A. Litwin-Kumar and B. Doiron, Nat. Neurosci. 15, 1498 (2012).
13J. Kadmon and H. Sompolinsky, Phys. Rev. X 5, 041030 (2015).
14O. Harish and D. Hansel, PLoS Comput. Biol. 11, e1004266 (2015).
15F. Farkhooi and W. Stannat, Phys. Rev. Lett. 119, 208301 (2017).
16B. S. Gutkin and G. B. Ermentrout, Neural Comput. 10, 1047 (1998).
17A. Rauch, G. La Camera, H.-R. Lüscher, W. Senn, and S. Fusi,

J. Neurophysiol. 90, 1598 (2003).
18R. Jolivet, T. J. Lewis, and W. Gerstner, J. Neurophysiol. 92, 959 (2004).
19R. Jolivet, A. Rauch, H.-R. Lüscher, and W. Gerstner, J. Comput. Neurosci.

21, 35 (2006).
20E. Shlizerman and P. Holmes, Neural Comput. 24, 2078 (2012).
21N. Brunel, J. Comput. Neurosci. 8, 183 (2000).
22R. Rosenbaum and B. Doiron, Phys. Rev. X 4, 021039 (2014).
23S. Ostojic, Nat. Neurosci. 17, 594 (2014).
24R. Engelken, F. Farkhooi, D. Hansel, C. van Vreeswijk, and F. Wolf,

F1000Research 5, 2043 (2016).
25S. Luccioli and A. Politi, Phys. Rev. Lett. 105, 158104 (2010).
26D. Golomb, Scholarpedia 2, 1347 (2007).
27R. Zillmer, R. Livi, A. Politi, and A. Torcini, Phys. Rev. E 74,

036203 (2006).
28M. Rudolph and A. Destexhe, Neurocomputing 70, 1966 (2007).
29W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal Dynamics:

From Single Neurons to Networks and Models of Cognition (Cambridge
University Press, Cambridge, 2014).

30This variable has a one-to-one correspondence with J in Ref. 23.
31R. Capocelli and L. Ricciardi, Kybernetik 8, 214 (1971).
32E. M. Izhikevich, Dynamical Systems in Neuroscience (MIT Press, 2007).
33A. Politi, E. Ullner, A. Torcini, “Collective irregular dynamics in balanced

networks of leaky integrate-and-fire neurons,” Eur. Phys. J. Spec. Top. (in
press); preprint arXiv:1808.03359.

34A. Torcini, A. Politi, G. Puccioni, and G. D’Alessandro, Physica D 53,
85 (1991).

35T. Hayakawa and T. Fukai, preprint arXiv:1711.09621 (2017).
36The above equation must be complemented by suitable b.c. to take into

account refractoriness and the reset.
37B. Dummer, S. Wieland, and B. Lindner, Front. Comput. Neurosci. 8,

104 (2014).
38S. Wieland, D. Bernardi, T. Schwalger, and B. Lindner, Phys. Rev. E 92,

040901 (2015).
39Problems of stability of the method for large inhibition (namely, g = 5)

have been previously reported also by the authors in Ref. 37.
40B. Ermentrout, Scholarpedia 3, 1398 (2008).
41M. Monteforte and F. Wolf, Phys. Rev. Lett. 105, 268104 (2010).
42S. Olmi, R. Livi, A. Politi, and A. Torcini, Phys. Rev. E 81, 046119 (2010).
43L. Tattini, S. Olmi, and A. Torcini, Chaos 22, 023133 (2012).
44H. Daido, Physica D 69, 394 (1993).
45A. Politi and M. Rosenblum, Phys. Rev. E 91, 042916 (2015).

https://doi.org/10.1103/RevModPhys.77.137
https://doi.org/10.1088/0951-7715/28/3/R67
https://doi.org/10.1103/PhysRevE.54.5522
https://doi.org/10.1103/PhysRevA.45.3516
https://doi.org/10.1103/PhysRevA.37.4865
https://doi.org/10.1103/PhysRevLett.61.259
https://doi.org/10.1126/science.274.5293.1724
https://doi.org/10.1126/science.1179850
https://doi.org/10.1038/nn.3220
https://doi.org/10.1103/PhysRevX.5.041030
https://doi.org/10.1371/journal.pcbi.1004266
https://doi.org/10.1103/PhysRevLett.119.208301
https://doi.org/10.1162/089976698300017331
https://doi.org/10.1152/jn.00293.2003
https://doi.org/10.1152/jn.00190.2004
https://doi.org/10.1007/s10827-006-7074-5
https://doi.org/10.1162/NECO{_}a{_}00308
https://doi.org/10.1103/PhysRevX.4.021039
https://doi.org/10.1038/nn.3658
https://doi.org/10.12688/f1000research.9144.1
https://doi.org/10.1103/PhysRevLett.105.158104
https://doi.org/10.4249/scholarpedia.1347
https://doi.org/10.1103/PhysRevE.74.036203
https://doi.org/10.1016/j.neucom.2006.10.138
https://doi.org/10.1007/BF00288750
http://arxiv.org/abs/arXiv:1808.03359
https://doi.org/10.1016/0167-2789(91)90166-7
http://arxiv.org/abs/arXiv:1711.09621
https://doi.org/10.3389/fncom.2014.00104
https://doi.org/10.1103/PhysRevE.92.040901
https://doi.org/10.4249/scholarpedia.1398
https://doi.org/10.1103/PhysRevLett.105.268104
https://doi.org/10.1103/PhysRevE.81.046119
https://doi.org/10.1063/1.4723839
https://doi.org/10.1016/0167-2789(93)90102-7
https://doi.org/10.1103/PhysRevE.91.042916

