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Stellate nerve with giant axon

Stellate ganglion

Figure 4.1. Anatomical location of the giant axon of the squid. Drawing by Tom
Inoué.

4.2.2 Measurement of the Transmembrane Potential

The large diameter of the axon (as large as 1000 µm) makes it possible to
insert an axial electrode directly into the axon (Figure 4.2A). By placing
another electrode in the fluid in the bath outside of the axon (Figure 4.2B),
the voltage difference across the axonal membrane (the transmembrane
potential or transmembrane voltage) can be measured. One can also
stimulate the axon to fire by injecting a current pulse with another set of
extracellular electrodes (Figure 4.2B), producing an action potential that
will propagate down the axon. This action potential can then be recorded
with the intracellular electrode (Figure 4.2C). Note the afterhyperpolar-
ization following the action potential. One can even roll the cytoplasm out
of the axon, cannulate the axon, and replace the cytoplasm with fluid of
a known composition (Figure 4.3). When the fluid has an ionic composi-
tion close enough to that of the cytoplasm, the action potential resembles
that recorded in the intact axon (Figure 4.2D). The cannulated, internally
perfused axon is the basic preparation that allowed electrophysiologists to
sort out the ionic basis of the action potential fifty years ago.

The advantage of the large size of the invertebrate axon is appreciated
when one contrasts it with a mammalian neuron from the central nervous
system (Figure 4.4). These neurons have axons that are very small; indeed,
the soma of the neuron in Figure 4.4, which is much larger than the axon,
is only on the order of 10 µm in diameter.

4.3 Basic Electrophysiology

4.3.1 Ionic Basis of the Action Potential

Figure 4.5 shows an action potential in the Hodgkin–Huxley model of the
squid axon. This is a four-dimensional system of ordinary differential equa-
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Summary

Brief introduction of the HH model
Characterization of the stochastic stimulation protocol
Analysis of the neuronal responses for different noise levels
Looking for coherence in the neuronal response
Influence of correlations on the coherent response
Conclusions and open problems
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The neuron in brief

A neuron in the brain cortex has many (∼ 10, 000) synap-
tic connections, but not all active. The neuron receives
300 − 1, 000 postsynaptic inputs of amplitude ∼ 0.5 − 1 mV
at a frequency ∼ 100 Hz, it responds each 10 − 40 inputs
by emitting an action potential of duration 1 − 2 msec and
amplitude ∼ 100 mV.
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The Hodgkin-Huxley model
The HH model reproduces the time evolution of the
membrane potential and of the ionic currents measured
experimentally for a giant squid axon.Hodgkin Huxley
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Membrane Depolarization

Na+ enters inside the cell

Membrane Repolarization

K+ leaves the cell
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Figure 4.2. (A) Giant axon of the squid with internal electrode. Panel A from
Hodgkin and Keynes (1956). (B) Axon with intracellularly placed electrode,
ground electrode, and pair of stimulus electrodes. Panel B from Hille (2001).
(C) Action potential recorded from intact axon. Panel C from Baker, Hodgkin,
and Shaw (1961). (D) Action potential recorded from perfused axon. Panel D
from Baker, Hodgkin, and Shaw (1961).
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Figure 4.3. Cannulated, perfused giant axon of the squid. From Nicholls, Martin,
Wallace, and Fuchs (2001).

tions that describes the three main currents underlying the action potential
in the squid axon. Figure 4.5 also shows the time course of the conductance
of the two major currents during the action potential. The fast inward
sodium current (INa) is the current responsible for generating the upstroke
of the action potential, while the potassium current (IK) repolarizes the
membrane. The leakage current (IL), which is not shown in Figure 4.5, is
much smaller than the two other currents. One should be aware that other
neurons can have many more currents than the three used in the classic
Hodgkin–Huxley description.

4.3.2 Single-Channel Recording

The two major currents mentioned above (INa and IK) are currents that
pass across the cellular membrane through two different types of channels

C = 1µF/cm2 - Membrane capacitance
V - Membrane Potential (mV)
Ij - Ionic channel currents (µA/cm2)

CV̇ =
∑

j

Ij+Isyn = −gNam3h(V −VNa)−gKn4(V−VK)−gL(V −VL)+Isyn

ẋ = αx − x(αx + βx) x = n, m, h gating variables

αx = αx(V ) and βx = βx(V ) are highly nonlinear functions.
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Constant Current Synaptic Input Isyn = Idc

and VNa , VK , Vl are the corresponding reversal potentials;
m` , h` , n` and tm , th , tn represent the saturation values
and the relaxation times of the gating variables. Detailed
values of parameters can be found in @11–13#. In this study
we take the external stimulus to be time independent dc cur-
rent Iext(t)5Idc which serves as a bifurcation parameter of
the system.

The synaptic current represents the sum of the current
inputs from all synapses connected to the other neurons. This
synaptic current is found to be noisy @14#, which we model
as an additive noise from an Ornstein-Uhlenbeck process:

td
dIsyn

dt 52Isyn1A2Dj~ t !, ~3!

where j(t) is Gaussian white noise, and D and td are the
intensity and the correlation time of the synaptic noise, re-
spectively. In numerical simulations we take td52 msec.
Numerical integration of Eq. ~1! has been done using the
fourth order Runge-Kutta method and the exponentially cor-
related synaptic noise in Eq. ~3! using the method of Fox
et al. @15# with the integration time step Dt50.02 msec.

Let us consider first the bifurcations in the system ~1! in
the absence of noise (D50). The bifurcation diagram for the
membrane potential V as a function of Idc is shown in Fig. 1
@16–19#. The birth of limit cycles occurs at Idc5Ic
'6.2 mA/cm2 due to the saddle-node bifurcation of peri-
odic orbits. The unstable part of the periodic orbits dies at
Idc5Ih'9.8 mA/cm2 through the inverse Hopf bifurcation.
Thus in the parameter region Idc,Ic the fixed point is the
global attractor of the system, while for Ic,Idc,Ih the sys-
tem possesses two coexisting stable attractors, the fixed point
and the limit cycle. The dependence of the firing rate as a
function of Idc is shown in the inset of Fig. 1.

The focus of interest is the parameter region near the on-
set of the saddle-node bifurcation of periodic orbits. In our
numerical experiments, we use three subthreshold values of
dc currents of Idc55.0, 5.5, and 6.0 mA/cm2. With noise
taken into account, the system either fluctuates around the
fixed point or makes an excursion into the region of the limit
cycle, inducing the trains of periodic oscillations of the
membrane potentials. The time series of the membrane po-
tential V for four different values of noise intensity for Idc
56.0 mA/cm2 are shown in Fig. 2. For small noise inten-
sity @Fig. 2~a!# the system spends most of its time fluctuating
around the rest potential V rest5265 mV, and displays trains
of a few short periodic oscillations, characteristic of the so-
called ‘‘rigid excitation.’’ This rigid excitation appears when
the system in the subthreshold regime spends more time in
the narrow corridorlike neighborhood of the remnants of the
limit cycles due to the tangential nature of the saddle-node
bifurcation of limit cycles @20#. The noise-controlled time

FIG. 1. Bifurcation diagram of a Hodgkin-Huxley neuron under
dc current. Here Idc is the bifurcation parameter and V is the mem-
brane potential of the limit states. A solid line represents the stable
fixed point, filled and unfilled circles represent membrane potentials
of stable and unstable limit cycles, respectively. Inset: The fre-
quency f of the stable limit cycle for the Hodgkin-Huxley neuron as
a function of Idc . The dotted line is for increasing Idc and the solid
line for decreasing Idc .

FIG. 2. Time series of the membrane potential
V for Idc56 mA/cm2 for various noise intensity:
~a! D51, ~b! D55, ~c! D510, and ~d! D520.
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High-input regime
Instead of a constant current Idc, we consider NE excitatory (EPSP) and NI inhibitory
postsynaptic inputs (IPSP), each corresponding to a voltage kick ∆V = 0.5 mV.

These inputs originate from neurons emitting Poissonian spike trains with frequency
ν = 100 Hz.
This amounts to one excitatory (resp. inhibitory) Poissonian spike train with frequency
νE = Ne × ν ∼ 104 − 105 Hz (resp. νI = NI × ν) for Ne ∼ NI ∼ 100 − 1, 000.
Firstly independent inputs are considered , and then also the effect of correlations
among the inputs is analyzed.
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High-input regime
Instead of a constant current Idc, we consider NE excitatory (EPSP) and NI inhibitory
postsynaptic inputs (IPSP), each corresponding to a voltage kick ∆V = 0.5 mV.
These inputs originate from neurons emitting Poissonian spike trains with frequency
ν = 100 Hz.
This amounts to one excitatory (resp. inhibitory) Poissonian spike train with frequency
νE = Ne × ν ∼ 104 − 105 Hz (resp. νI = NI × ν) for Ne ∼ NI ∼ 100 − 1, 000.
Firstly independent inputs are considered , and then also the effect of correlations
among the inputs is analyzed.

At these frequencies the net input spike count within a temporal window ∆T (≥ 1 msec) is
essentially Gaussian distributed and it can be characterized by its average
µ = ν(NE − NI)∆T and variance V = ν(NE + NI)∆T = νσ2∆T .

The response of the neuron is examined for fixed average input current
Ī = C∆V ν(NE − NI) by varying only σ and therefore the standard deviation of the noise.
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Statistical and dynamical indicators
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Poisson distribution → CV = 1 *** regular sequence → CV = 0;
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R ∞
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Response of the silent neuron
The HH neuron is in the silent state, i.e. the average input current Ī is smaller than ISN .
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Response of the silent neuron
Spikes triggered by relaxation oscillations
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The neuronal spiking is enhanced in correspondence of the maxima of the relaxation
oscillations following a spike emission.

The first oscillation has a nonlinear origin, while the period of the subsequent ones can be
obtained via a linear analysis around the stable fixed point solution (focus).
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Response of the silent neuron
Firing activated by noise

Two mechanisms compete:

the HH dynamics tends to relax towards the rest state;
noise fluctuations lead the system towards an excitation threshold.

The dynamics of V (t) resembles the overdamped dynamics of a particle in a potential well
under the influence of thermal fluctuations, and the firing times can be expressed in terms of
the Kramers expression (for sufficiently small noise)

ta ∝ eWS/σ2

the time distribution is Poissonian (CV = 1).
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Response of the silent neuron
High noise limit

The effect of noise fluctuations on the neuron dynamics is twofold:
a constant current Ī driving the system;
a stochastic term with zero average.

The dynamics of V (t) can therefore be described in terms of a Langevin process with a drift
and the distribution of the first passage times is given by the inverse Gaussian distribution:

f(t) =
α

p

2πβt3
e
−

(t−α)2

2βt

In this case the coefficient of variation should
be given by

CV ∝ σ

(Ī + I0)
√

< ISI >
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Coherence resonance
Coherence of the emitted spike trains
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In the silent and bistable regime (I < 8µA/cm2):
in the beginning the HH neuron response becomes more regular for increasing σ;
the maximal coherence is reached for a finite σ-value;
for higher noise amplitudes the response becomes again more irregular.

A. Pikovsky & J. Kurths, PRL 78, 775 (1997)
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Coherence resonance

The system is characterized by two characteristic times → ISI ≡ T = ta + te :
ta=activation time → time needed to excite the system;
te=excursion time → duration of the spike (excited state).

The competition of the two effects leads to an intermediate regime of coherence:

CV (ISI)2 = CV (ta)2 <ta>2

<T>2 + CV (te)2 <te>2

<T>2 = R2
1(ta) + R2

2(te)

R2
1(ta) decreases with σ, while R2

2(te) increases → minimum in R(ISI)
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Coherence resonance
Coherence of the subthreshold oscillations
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A second coherence resonance is revealed by analyzing the correlations of the potential:
for σ < 3 almost no spikes are emitted, but the increase of noise leads to more and
more regular subthreshold oscillations;
for σ > 3 the statistics of the emitted spikes is no more negligible and this decorrelates
the signal;
for σ > 10 the dynamics is dominated by sequences of spikes and a second peak
occurs related to the regularization of the spike trains.
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Response to correlated inputs
Correlations generated via common drive

In order to generate NE correlated (ρ) Poissonian spike trains (with rate ν0) :
firstly a long sequence of M ISI’s is extracted from a Poissonian distribution with rate
ν0/ρ;
secondly from this common pool Nsp = Mρ ISI’s are randomly extracted NE times;
the superposition of the NE correlated trains gives rise to a sequence of kicks of
variable amplitude (with averageρNE∆V ) and with ISIs Poissonian distributed with
rate ν0/ρ.

The correlation between two input spike trains originating from neuron i and j is measured in
terms of the Pearson correlation coefficient :

ρ =
< (ni − 〈ni〉)(nj − 〈nj〉) >

s2

where n is the number of spikes in a time window ∆T and s2 its variance.

M.N. Shadlen & W.T. Newsome (1998) – E. Salinas & J. Sejnowski (2000)

INLS - San Diego, 29/3/06 – p.9/??



Response to correlated inputs
We have studied the response of the (balanced NE = NI ) Fitz-Hugh Nagumo model in the
silent regime for excitatory (resp. inhibitory) correlated inputs at constant correlation ρ by
varying the noise variance. The increase of the variance leads to an increase of the average

amplitude for the correlated kicks, while their frequency remains constant.

Coherence resonance is observed for any excitatory (resp. inhibitory) correlation at
finite noise amplitude.
An absolute resonance with respect to noise and correlation can be identified.
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Response to correlated inputs
Strong excitatory correlation

The coherence phenomenon is now determined only by the kick amplitude and not by the
properties of the asymptotic stochastic processes, since in the present case the output can
be always described as a Poissonian process with a refractory time.

For increasing variance the amplitude of the correlated kicks increases.

10000 1e+05 1e+06 1e+07 1e+08
Variance

1

CV  ρEE=1.0V1

V2

for V ariance < V1 → Activation Process
for V1 < V ariance < V2

One kick is sufficient to induce a spike emission
for V2 < V ariance

One kick elicits always a spike - Tref decreases

CV =
T

T + Tref

For V ariance > V2 → T = 1/ν0, we have a 1 : 1 correspondence between input and output
(apart from the refractory period).
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Response to correlated inputs
Strong inhibitory correlation

At large variances the dynamics is again ruled by the the kick amplitude of the correlated
kicks, but at lowervariances the correlated kicks are quite rare and their amplitude is not
sufficient to influence the dynamics.

1e+06 1e+07 1e+08
Variance

1CV  ρII = 1.0
V1

V2

for V ariance < V1

Activation Process - CV ' 1

for V1 < V ariance < V2

Dynamics dominated by uncorrelated excitatory
kicks leading the system in the repetitive firing
regime
for V ariance > V2

Each kick induces a certain delay in the spike time
of the neuron - A multimodal structure appears in
the ISI distribution

Frequency of the correlated kicks (ν0) << Frequency of the uncorrelated kicks (Nν0)
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Summary and perspectives
Uncorrelated stochastic inputs

The response of a HH neuron depends only on the average and the variance of
the input, at least in the high input regime;
at I < ISN the neuronal firing, induced by the stochastic inputs, can be
expressed as an activation process at low variances (σ2), while for large σ2 this
process becomes essentially diffusive;
at low noise, beside of the exponential tail, the ISI distributions reveal a multimodal
structure due to spiking triggered by relaxation oscillations towards the rest state;
coherence resonance can be observed in a large interval of currents in the silent
and bistable regime;
a second coherence resonance (associated to subthreshold oscillations) coexists
with the usual one;

Correlated stochastic inputs

new mechanisms for the coherence resonance have been reported at high
excitatory and inhibitory correlations;
coherence effects can be induced by varying only the correlation.
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Summary and perspectives
What to do next ?

Experiments

Is it possible to reveal both kinds of CR with dynamic clamp measurements of
Stellate Cells ?
Due to the high degree of erraticity in the response of the Stellate Cells, maybe
CR could be observed without injecting noise in the sytem, but just varying the DC
current.

Networks

A single HH neuron can fire at different frequencies (when stochastically
stimulated) therefore a network of coupled HH neurons should exhibit coherent
and correlated activities over different time scales. (several rithms)
How CR will influence network dynamics ?
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Credits

Stefano Luccioli - Msc in Physics (2004-2005)
Dynamics of realistic single neuronal models

Thomas Kreuz - Marie Curie Fellow (2005-2006)
Dynamical Entropies in Assemblies of Neurons

http://www.ino.it/ torcini/neurores.html
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Entropie condizionali

∆t="finestra" temporale → codifica binaria ("1"/"0") del potenziale di membrana;
CN = (1, 0, 1, . . .) → "parola" (o "stato") di lunghezza N;

H(N) = −P

{CN} P (CN ) log2 P (CN ), "entropia del blocco N";

h(N) = H(N + 1) − H(N), "entropia condizionale" → regolarità, prevedibilità:

(1,0,0,1,0,1,?,. . . ) h(N + 1) ≤ h(N)

hmax(N) = log2 2 = 1.
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