Response of the Hodgkin-Huxley
model in the high-input regime

S. Luccioli, Th. Kreuz, & A. Torcini

Istituto dei Sistemi Complessi - Firenze - Italy




© o o o o o

A
f=/n

Summary

Brief introduction of the HH model

Characterization of the stochastic stimulation protocol
Analysis of the neuronal responses for different noise levels
Looking for coherence in the neuronal response

Influence of correlations on the coherent response

Conclusions and open problems



The neuron in brief
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A neuron in the brain cortex has many (~ 10, 000) synap-
tic connections, but not all active. The neuron receives
300 — 1, 000 postsynaptic inputs of amplitude ~ 0.5 — 1 mV
at a frequency ~ 100 Hz, it responds each 10 — 40 inputs
by emitting an action potential of duration 1 — 2 msec and
amplitude ~ 100 mV.
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The Hodgkin-Huxley model

The HH model reproduces the time evolution of the
membrane potential and of the ionic currents measured
Hodgkin  €xperimentally for a giant squid axon.
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The Hodgkin-Huxley model
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Membrane Depolarization

The HH model reproduces the time evolution of the
membrane potential and of the ionic currents measured

experimentally for a giant squid axon. Huxley ING
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The Hodgkin-Huxley model

The HH model reproduces the time evolution of the
membrane potential and of the ionic currents measured
Hodgkin  €XPerimentally for a giant squid axon. Huxley Y

C = 1uF/em? - Membrane capacitance

. .~V - Membrane Potential (mV)

. o - 2
I; - lonic channel currents (uA/cm?)

CV =) Li+lyn = —gnam®h(V—Vya)—gxn*(V—=Vi)—gr(V—=VL)+ILsyn
J
T = oy — x(ag + 0) x=mn,m,h gating variables

a, = o, (V) and G, = [,.(V) are highly nonlinear functions.
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The Hodgkin-Huxley model

The HH model reproduces the time evolution of the
membrane potential and of the ionic currents measured
experimentally for a giant squid axon.

Constant Current Synaptic Input  Ig,, = 4.
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High-input regime
|

Instead of a constant current 1., we consider N excitatory (EPSP) and N inhibitory
postsynaptic inputs (IPSP), each corresponding to a voltage kick AV = 0.5 mV.
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High-input regime

Instead of a constant current 1., we consider N excitatory (EPSP) and N inhibitory
postsynaptic inputs (IPSP), each corresponding to a voltage kick AV = 0.5 mV.

These inputs originate from neurons emitting Poissonian spike trains with frequency
v = 100 Hz.
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High-input regime

Instead of a constant current 1., we consider N excitatory (EPSP) and N inhibitory
postsynaptic inputs (IPSP), each corresponding to a voltage kick AV = 0.5 mV.

These inputs originate from neurons emitting Poissonian spike trains with frequency
v = 100 Hz.

This amounts to one excitatory (resp. inhibitory) Poissonian spike train with frequency
vE = Ne X v ~ 10* — 10° Hz (resp. v; = N1 x v) for Ne ~ N1 ~ 100 — 1, 000.
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High-input regime
-

Instead of a constant current 1., we consider N excitatory (EPSP) and N inhibitory
postsynaptic inputs (IPSP), each corresponding to a voltage kick AV = 0.5 mV.

These inputs originate from neurons emitting Poissonian spike trains with frequency
v = 100 Hz.

This amounts to one excitatory (resp. inhibitory) Poissonian spike train with frequency
vE = Ne X v ~ 10* — 10° Hz (resp. v; = N1 x v) for Ne ~ N1 ~ 100 — 1, 000.

Firstly independent inputs are considered , and then also the effect of correlations
among the inputs is analyzed.



High-input regime
|, -

Instead of a constant current 1., we consider N excitatory (EPSP) and N inhibitory
postsynaptic inputs (IPSP), each corresponding to a voltage kick AV = 0.5 mV.

® These inputs originate from neurons emitting Poissonian spike trains with frequency
v = 100 Hz.

® This amounts to one excitatory (resp. inhibitory) Poissonian spike train with frequency
vE = Ne X v ~ 10* — 10° Hz (resp. v; = N1 x v) for Ne ~ N1 ~ 100 — 1, 000.

® Firstly independent inputs are considered , and then also the effect of correlations
among the inputs is analyzed.

At these frequencies the net input spike count within a temporal window AT (> 1 msec) is
essentially Gaussian distributed and it can be characterized by its average
pw=v(Ngp — Ny)AT andvariance V = v(Ng + Np)AT = vo~ AT,

The response of the neuron is examined for fixed average input current
I = CAVv(Ng — Np) by varying only o and therefore the standard deviation of the noise.
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Statistical and dynamical indicators
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® |S| distribution — Prg7(t);

» v = % —s coefficient of variation of the ISIs:

Poisson distribution — CV = 1 *** regular sequence — CV = 0;

°

Te = [3° C%(t)dt — correlation time, C(1) = <V(tZLVT'3;/_(?&>_2<V>2

°

Conditional entropies (not discussed here)
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Response of the silent neuron

B

he HH neuron is in the silent state, i.e. the average input current I is smaller than Is .
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Response of the silent neuron

Spikes triggered by relaxation oscillations
o 35 ' ' T T ' T
G =46 *
:i r *
) 230F (O Non o £§ -
z II /\/\M’W E " t(” : %
n 1 N~ A *
= | »n ¥ Linear osc. * *
= ! , Tﬁ * t()
=] 1! R4 ‘\ > 251 |
1! ’ ) - S
'e ! ,’ \ /’ ‘\ R o 8
EA IR E
/ :I /’ _% 201 = | - . o Repetitive firing
[ = B EON
1,0 || ~o
T Y T A 15¢ | | ! \T\\\\\:'
0 20 40 60 80 0 . 5 . 1 : : : 5 — 0
t (ms) I

The neuronal spiking is enhanced in correspondence of the maxima of the relaxation
oscillations following a spike emission.

The first oscillation has a nonlinear origin, while the period of the subsequent ones can be
obtained via a linear analysis around the stable fixed point solution (focus).
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Response of the silent neuron

|7 Firing activated by noise T

Two mechanisms compete:

® the HH dynamics tends to relax towards the rest state;
® noise fluctuations lead the system towards an excitation threshold.
The dynamics of V' (t) resembles the overdamped dynamics of a particle in a potential well

under the influence of thermal fluctuations, and the firing times can be expressed in terms of
the Kramers expression (for sufficiently small noise)
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Response of the silent neuron

|7 High noise limit T

The effect of noise fluctuations on the neuron dynamics is twofold:
® a3 constant current I driving the system;
® 3 stochastic term with zero average.

The dynamics of V' (¢) can therefore be described in terms of a Langevin process with a drift
and the distribution of the first passage times is given by the inverse Gaussian distribution:
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Coherence resonance

f Coherence of the emitted spike trains T
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In the silent and bistable regime (I < 8uA/cm?):
® in the beginning the HH neuron response becomes more regular for increasing o;
® the maximal coherence is reached for a finite o-value;

® for higher noise amplitudes the response becomes again more irregular.

A. Pikovsky & J. Kurths, PRL 78, 775 (1997)
E‘Zjﬁ INLS - San Diego, 29/3/06 — p.8/?"



Coherence resonance

¢ noise intensity

The system is characterized by two characteristictimes — ISI =T = t, + te :
® {,=activation time — time needed to excite the system;
® (. =excursion time — duration of the spike (excited state).

The competition of the two effects leads to an intermediate regime of coherence:

2
CV(ISI)? = CV (ta)2 a2y + OV (te)2 <2, = R2(ta) + R3(te)

R?(tq) decreases with o, while R3(t.) increases — minimum in R(IST)



Coherence resonance

Coherence of the subthreshold oscillations
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A second coherence resonance is revealed by analyzing the correlations of the potential:

® for o < 3 almost no spikes are emitted, but the increase of noise leads to more and
more regular subthreshold oscillations;

® for o > 3 the statistics of the emitted spikes is no more negligible and this decorrelates
the signal;

® for o > 10 the dynamics is dominated by sequences of spikes and a second peak
occurs related to the regularization of the spike trains.
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Response to correlated inputs

f Correlations generated via common drive T

In order to generate N g correlated (p) Poissonian spike trains (with rate vq) :

® firstly a long sequence of M ISI's is extracted from a Poissonian distribution with rate
vo/p;

® secondly from this common pool N, = Mp ISI's are randomly extracted Nz times;
® the superposition of the N correlated trains gives rise to a sequence of kicks of
variable amplitude (with averagep N zp AV') and with I1Sls Poissonian distributed with

rate v /p.

The correlation between two input spike trains originating from neuron 7 and j is measured in
terms of the Pearson correlation coefficient :

< (ng—(ni))(n; —(ny)) >
p_

g2
where n is the number of spikes in a time window A7 and s? its variance.

M.N. Shadlen & W.T. Newsome (1998) — E. Salinas & J. Sejnowski (2000)
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Response to correlated inputs

We have studied the response of the (balanced Ny = N;) Fitz-Hugh Nagumo model in the
silent regime for excitatory (resp. inhibitory) correlated inputs at constant correlation p by
varying the noise variance. The increase of the variance leads to an increase of the average

amplitude for the correlated kicks, while their frequency remains constant.

® Coherence resonance is observed for any excitatory (resp. inhibitory) correlation at
finite noise amplitude.

® An absolute resonance with respect to noise and correlation can be identified.
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Response to correlated inputs

f Strong excitatory correlation T

The coherence phenomenon is now determined only by the kick amplitude and not by the
properties of the asymptotic stochastic processes, since in the present case the output can
be always described as a Poissonian process with a refractory time.

For increasing variance the amplitude of the correlated kicks increases.

1

. . . CV L S o T T
for Variance < Vi — Activation Process \

9o
® for Vi < Variance < Vs
One kick is sufficient to induce a spike emission

® for Vs < Variance
One kick elicits always a spike - T'..  decreases

L Y ol L L
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T -+ Tre f Variance

For Variance > Vo — T = 1/vg, we have a 1 : 1 correspondence between input and output
(apart from the refractory period).
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At large variances the dynamics is again ruled by the the kick amplitude of the correlated
kicks, but at lowervariances the correlated kicks are quite rare and their amplitude is not

Response to correlated inputs

Strong inhibitory correlation

sufficient to influence the dynamics.
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Frequency of the correlated kicks (1p) << Frequency of the uncorrelated kicks (/Nvg)
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for Variance < V1
Activation Process - CV ~ 1

for Vi < Variance < Vs

Dynamics dominated by uncorrelated excitatory
kicks leading the system in the repetitive firing
regime

CV i+

for Variance > Vo
Each kick induces a certain delay in the spike time
of the neuron - A multimodal structure appears in
the ISI distribution
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Summary and perspectives

o .

® Uncorrelated stochastic inputs
® The response of a HH neuron depends only on the average and the variance of
the input, at least in the high input regime;

® atl < Isy the neuronal firing, induced by the stochastic inputs, can be
expressed as an activation process at low variances (o 2), while for large o2 this
process becomes essentially diffusive;

® atlow noise, beside of the exponential tail, the ISI distributions reveal a multimodal
structure due to spiking triggered by relaxation oscillations towards the rest state;

#® coherence resonance can be observed in a large interval of currents in the silent
and bistable regime;

® asecond coherence resonance (associated to subthreshold oscillations) coexists
with the usual one;
® Correlated stochastic inputs
® new mechanisms for the coherence resonance have been reported at high
excitatory and inhibitory correlations;
® coherence effects can be induced by varying only the correlation.
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Summary and perspectives

What to do next ?

® Experiments

#® |sit possible to reveal both kinds of CR with dynamic clamp measurements of
Stellate Cells ?

#® Due to the high degree of erraticity in the response of the Stellate Cells, maybe
CR could be observed without injecting noise in the sytem, but just varying the DC
current.

®» Networks

#® A ssingle HH neuron can fire at different frequencies (when stochastically
stimulated) therefore a network of coupled HH neurons should exhibit coherent
and correlated activities over different time scales. (several rithms)

® How CR will influence network dynamics ?
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Credits
-

® Stefano Luccioli - Msc in Physics (2004-2005)

® Dynamics of realistic single neuronal models

http://www.ino.it/ torcini/neurores.html
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Entropie condizionali

f 55 1JofafoJ1[1]o]1{0Jo]1]o[0o][1]0[0]2]1]2]0
NI |¢;.| ]

0 ) T .
0.10 0.15 0.20
At="finestra" temporale — codifica binaria ("1"/"0") del potenziale di membrana;
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Cny =(1,0,1,...) — "parola"” (o "stato") di lunghezza N;

H(N) = =% tcy1 P(Cn)logy P(Cn), "entropia del blocco N*;
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h(N) = H(N 4+ 1) — H(N), "entropia condizionale" — regolarita, prevedibilita:
(1,0,0,1,0,1,7,...)  h(N+1) < h(N)
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