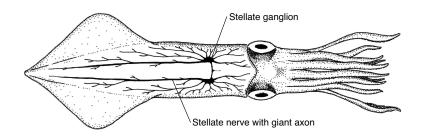
Response of single neuronal models to uncorrelated and correlated stochastic inputs

S. Luccioli, Th. Kreuz, & A. Torcini

Istituto dei Sistemi Complessi - Firenze - Italy



Main motivations

- A neuron in the brain cortex is subject to a continuous synaptic bombardament of inputs, resembling a background noise
 (A. Destexhe, M. Rudolph, D. Paré Nature Reviews Neuroscience 2003)
- Inputs are mainly originating from the cortex itself, the statistical properties of the neural response (input) can be (roughly) summarized as
 - Frequency range 0 200 Hz;
 - Distribution of interspike interval : approximately Poissonian;
 - Spike rate modulations (5 -10 msec)

(M.N. Shadlen & W.T. Newsome, J. Neuroscience - 1998)

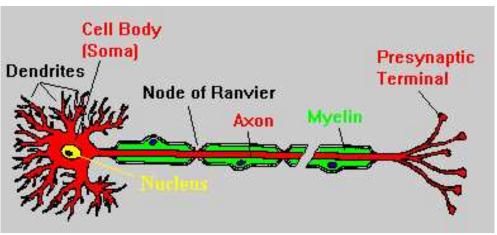
Neurons in the cortex, due to the high connectivity, can receive inputs from the same axon: correlation via common drive; correlations are important for information processing. (E. Salinas & T.J. Sejnowski, J. Neuroscience - 2000)

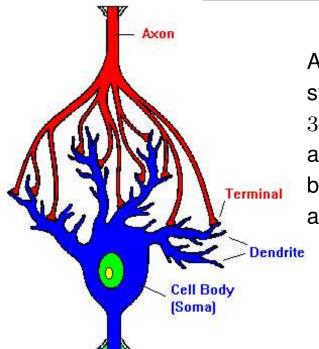
How do noise and correlated inputs influence the response of single neurons?

Summary

- Brief introduction of the HH model
- Characterization of the stochastic stimulation protocol
- Analysis of the neuronal responses for different noise levels
- Looking for coherence in the neuronal response
- Influence of correlations on the coherent response
- Conclusions

The neuron in brief

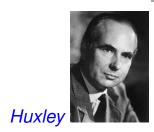




A neuron in the brain cortex has many ($\sim 5,000-60,000$) synaptic connections, but not all active. The neuron receives 300-1,000 postsynaptic inputs of amplitude $\sim 0.5-1$ mV at a frequency ~ 100 Hz, it responds each 10-40 inputs by emitting an action potential of duration 1-2 msec and amplitude ~ 100 mV.

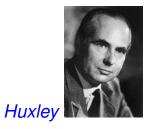
Hodgkin

The HH model reproduces the time evolution of the membrane potential and of the ionic currents measured experimentally for a giant squid axon.

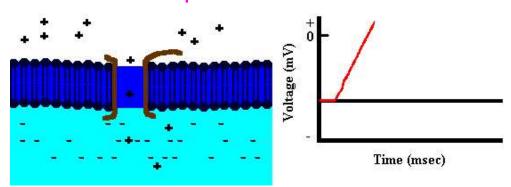


Hodgkin

The HH model reproduces the time evolution of the membrane potential and of the ionic currents measured experimentally for a giant squid axon.

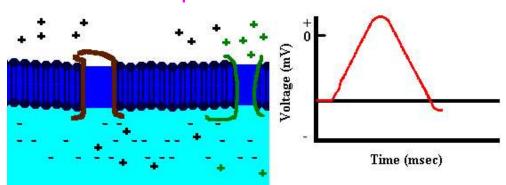


Membrane Depolarization



 Na^+ enters inside the cell

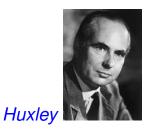
Membrane Repolarization

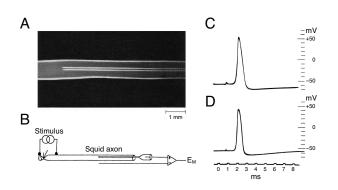


 K^+ leaves the cell

Hodgkin

The HH model reproduces the time evolution of the membrane potential and of the ionic currents measured experimentally for a giant squid axon.





$$C=1\mu F/cm^2$$
 - Membrane capacitance

- V Membrane Potential (mV)
- I_i Ionic channel currents $(\mu A/cm^2)$
- g_j Maximal ionic conductances (mS/cm^2)
- V_i Ionic reversal potentials (mV)

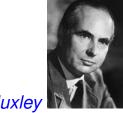
$$C\dot{V} = \sum_{j} I_{j} + I_{syn} = -g_{Na}m^{3}h(V - V_{Na}) - g_{K}n^{4}(V - V_{K}) - g_{L}(V - V_{L}) + I_{syn}$$

$$\dot{x} = \alpha_x - x(\alpha_x + \beta_x)$$
 $x = n, m, h$ gating variables

 $\alpha_x = \alpha_x(V)$ and $\beta_x = \beta_x(V)$ are highly nonlinear functions.

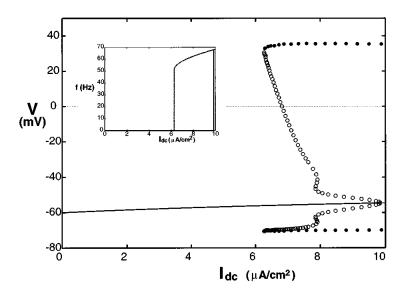
Hodgkin

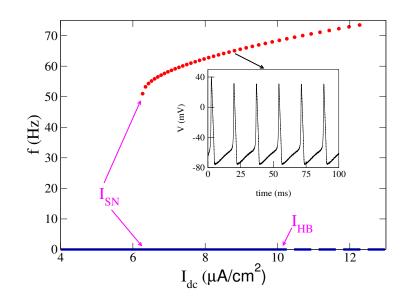
The HH model reproduces the time evolution of the membrane potential and of the ionic currents measured experimentally for a giant squid axon.



Huxley

Constant Current Synaptic Input $I_{syn} = I_{dc}$





Instead of a constant current I_{dc} , we consider N_E excitatory (EPSP) and N_I inhibitory postsynaptic inputs (IPSP), each corresponding to a voltage kick $\Delta V = 0.5$ mV.

- Instead of a constant current I_{dc} , we consider N_E excitatory (EPSP) and N_I inhibitory postsynaptic inputs (IPSP), each corresponding to a voltage kick $\Delta V = 0.5$ mV.
- These inputs originate from neurons emitting Poissonian spike trains with frequency $\nu = 100 \text{ Hz}$.

- Instead of a constant current I_{dc} , we consider N_E excitatory (EPSP) and N_I inhibitory postsynaptic inputs (IPSP), each corresponding to a voltage kick $\Delta V = 0.5 \text{ mV}$.
- These inputs originate from neurons emitting Poissonian spike trains with frequency $\nu = 100 \text{ Hz}$.
- This amounts to one excitatory (resp. inhibitory) Poissonian spike train with frequency $\nu_E=N_e\times \nu\sim 10^4-10^5$ Hz (resp. $\nu_I=N_I\times \nu$) for $N_e\sim N_I\sim 100-1,000$.

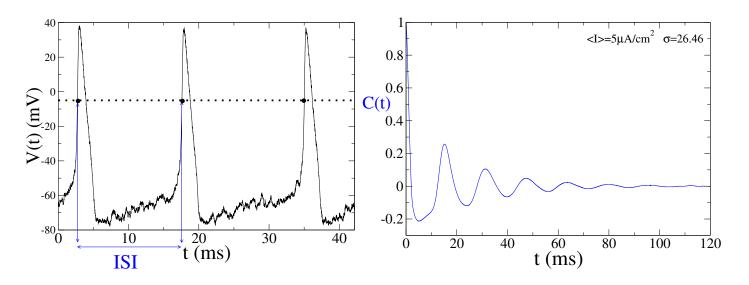
- Instead of a constant current I_{dc} , we consider N_E excitatory (EPSP) and N_I inhibitory postsynaptic inputs (IPSP), each corresponding to a voltage kick $\Delta V = 0.5 \text{ mV}$.
- These inputs originate from neurons emitting Poissonian spike trains with frequency $\nu = 100 \text{ Hz}$.
- This amounts to one excitatory (resp. inhibitory) Poissonian spike train with frequency $\nu_E = N_e \times \nu \sim 10^4 10^5$ Hz (resp. $\nu_I = N_I \times \nu$) for $N_e \sim N_I \sim 100 1,000$.
- Firstly independent inputs are considered, and then also the effect of correlations among the inputs is analyzed.

- Instead of a constant current I_{dc} , we consider N_E excitatory (EPSP) and N_I inhibitory postsynaptic inputs (IPSP), each corresponding to a voltage kick $\Delta V = 0.5 \text{ mV}$.
- These inputs originate from neurons emitting Poissonian spike trains with frequency $\nu = 100 \text{ Hz}$.
- This amounts to one excitatory (resp. inhibitory) Poissonian spike train with frequency $\nu_E=N_e\times \nu\sim 10^4-10^5$ Hz (resp. $\nu_I=N_I\times \nu$) for $N_e\sim N_I\sim 100-1,000$.
- Firstly independent inputs are considered, and then also the effect of correlations among the inputs is analyzed.

At these frequencies the net input spike count within a temporal window ΔT (≥ 1 msec) is essentially Gaussian distributed and it can be characterized by its average $\mu = \nu (N_E - N_I) \Delta T$ and variance $V = \nu (N_E + N_I) \Delta T = \nu \sigma^2 \Delta T$.

The response of the neuron is examined for fixed average input current $\bar{I} = C\Delta V \nu (N_E - N_I)$ by varying only σ and therefore the standard deviation of the noise.

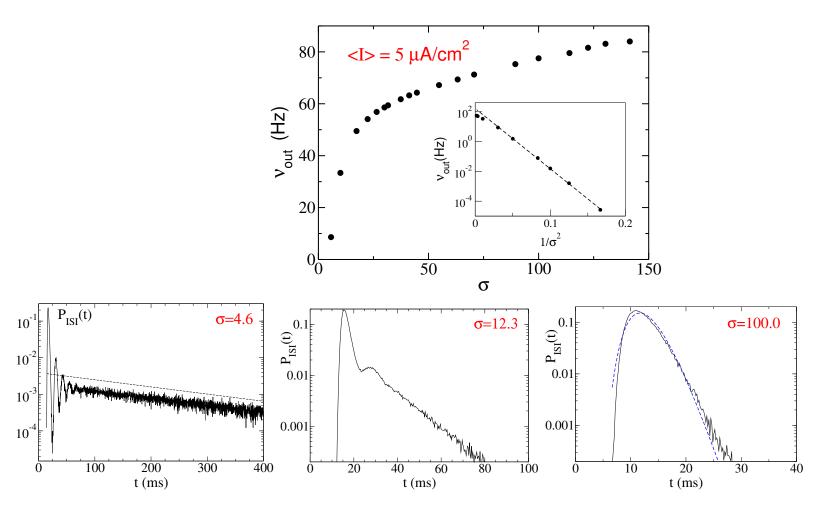
Statistical and dynamical indicators



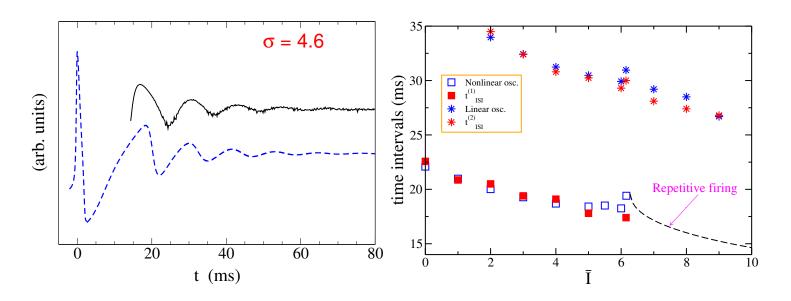
- **■** ISI distribution $\rightarrow P_{ISI}(t)$;

- Conditional entropies (not discussed here)

The HH neuron is in the silent state, i.e. the average input current \bar{I} is smaller than I_{SN} .



Spikes triggered by relaxation oscillations



The neuronal spiking is enhanced in correspondence of the maxima of the relaxation oscillations following a spike emission.

The first oscillation has a nonlinear origin, while the period of the subsequent ones can be obtained via a linear analysis around the stable fixed point solution (focus).

Firing activated by noise

Two mechanisms compete:

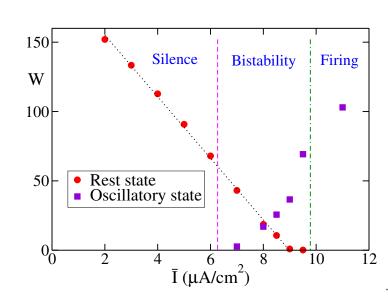
- the HH dynamics tends to relax towards the rest state;
- noise fluctuations lead the system towards an excitation threshold.

The dynamics of V(t) resembles the overdamped dynamics of a particle in a potential well under the influence of thermal fluctuations, and the firing times can be expressed in terms of the Kramers expression (for sufficiently small noise)

$$t_a \propto \mathrm{e}^{W_S/\sigma^2}$$

the time distribution is Poissonian (CV = 1).

- for $\sigma < \sqrt{W_S} \rightarrow$ Activation Process
- for $\sigma > \sqrt{W_S} \rightarrow \text{Diffusive Dynamics}$



High noise limit

The effect of noise fluctuations on the neuron dynamics is twofold:

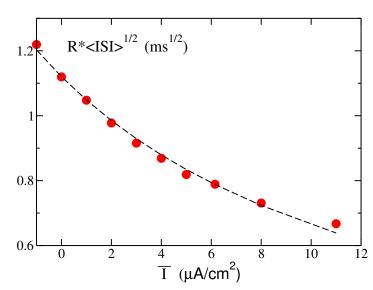
- **\blacksquare** a constant current \bar{I} driving the system;
- a stochastic term with zero average.

The dynamics of V(t) can therefore be described in terms of a Langevin process with a drift and the distribution of the first passage times is given by the inverse Gaussian distribution:

$$f(t) = \frac{\alpha}{\sqrt{2\pi\beta t^3}} e^{-\frac{(t-\alpha)^2}{2\beta t}}$$

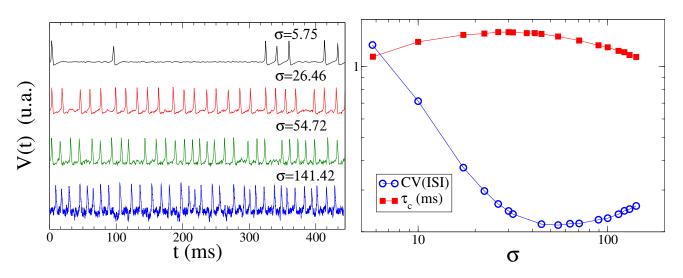
In this case the coefficient of variation should be given by

$$CV \propto \frac{\sigma}{(\bar{I} + I_0)\sqrt{\langle ISI \rangle}}$$



Coherence resonance

Coherence of the emitted spike trains

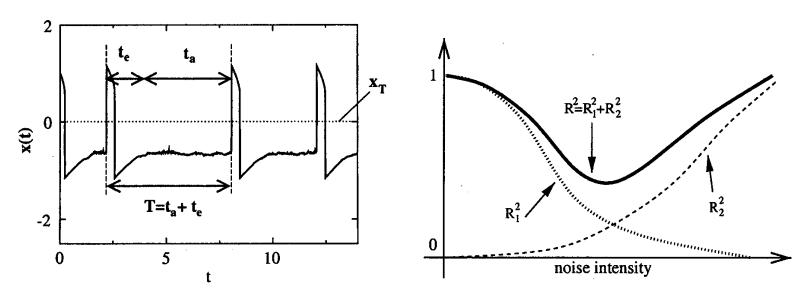


In the silent and bistable regime ($I < 8\mu\text{A/cm}^2$):

- ullet by increasing σ the firing rate increases, the spike train becomes more regular (Activation Process);
- the maximal coherence is reached for a optimal σ -value;
- for higher noise amplitudes the noise influence even the duration of the single spike, the response becomes again more irregular (Brownian motion + drift).

A. Pikovsky & J. Kurths, PRL 78, 775 (1997)

Coherence resonance



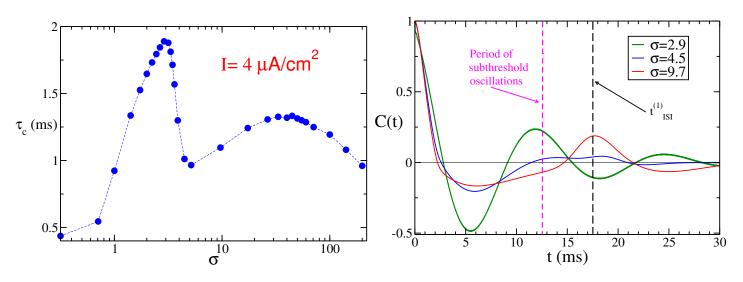
- ullet The system is characterized by two characteristic times $ightarrow ISI \equiv T = t_a + t_e$:
 - **•** t_a =activation time \rightarrow time needed to excite the system;
 - t_e =excursion time \rightarrow duration of the spike (excited state).
- All V(T) can be splitted in two contributions $CV(T)^2 = CV(t_a)^2 \frac{\langle t_a \rangle^2}{\langle T \rangle^2} + CV(t_e)^2 \frac{\langle t_e \rangle^2}{\langle T \rangle^2} = R_1^2(t_a) + R_2^2(t_e)$

 $R_1^2(t_a)$ decreases with σ , while $R_2^2(t_e)$ increases \to minimum in CV(T)

B. Lindner et al., Phys Rep. 392 (2004) 321-424

Coherence resonance

Coherence of the subthreshold oscillations



A second coherence resonance is revealed by analyzing the correlations of the potential:

- for σ < 3 almost no spikes are emitted, but the increase of noise leads to more and more regular subthreshold oscillations;
- for $\sigma > 3$ the statistics of the emitted spikes is no more negligible and this decorrelates the signal;
- for $\sigma > 10$ the dynamics is dominated by sequences of spikes and a second peak occurs related to the regularization of the spike trains.

S. Luccioli. T. Kreuz, A.T. Phys. Rev. E (2006)

The FitzHugh-Nagumo Model

The FitzHugh-Nagumo (FHN) model is a two dimensional "simplification" of the HH model:

$$\dot{V} = \phi(V - \frac{V^3}{3} - W) \qquad ;$$

$$\dot{W} = V + a - I(t)$$

where V is a voltage-like variable, W is a recovery variable and a is the bifurcation parameter.

For $\phi = 100$ the silent regime is observed for a < 1, while at a > 1 one has periodic firing.

$$I(t) = \Delta W_0 \left[\sum_{k=1}^{N_e} \sum_{l} \delta(t - t_k^l) - \sum_{m=1}^{N_i} \sum_{n} \delta(t - t_m^n) \right]$$

We examine the FHN model subject to N_E (resp. N_I) trains of excitatory (resp. inhibitory) post-synaptic potentials, in the balanced case (i.e. for $N_E = N_I \equiv N$) where $< I > \equiv 0$ for a = 1.05 and $\Delta W_0 = 0.0014$.

The FitzHugh-Nagumo Model and correlations only among excitatory or inhibitory inputs are considered in the balanced case $N_E = N_I \equiv N$;

- The FitzHugh-Nagumo Model and correlations only among excitatory or inhibitory inputs are considered in the balanced case $N_E = N_I \equiv N$;
- The superposition of N correlated (ρ) Poissonian spike trains with rate ν_0 gives rise to a sequence of kicks of variable amplitude (binomially distributed) and with ISIs Poissonian distributed with rate ν_0/ρ ;

- The FitzHugh-Nagumo Model and correlations only among excitatory or inhibitory inputs are considered in the balanced case $N_E = N_I \equiv N$;
- The superposition of N correlated (ρ) Poissonian spike trains with rate ν_0 gives rise to a sequence of kicks of variable amplitude (binomially distributed) and with ISIs Poissonian distributed with rate ν_0/ρ ;
- The average input is not influenced by correlations $< I > \equiv 0$, instead the noise variance is $\Delta V^2 \nu_0 [N^2 \rho + N(1 \rho) + N]$;

- The FitzHugh-Nagumo Model and correlations only among excitatory or inhibitory inputs are considered in the balanced case $N_E = N_I \equiv N$;
- The superposition of N correlated (ρ) Poissonian spike trains with rate ν_0 gives rise to a sequence of kicks of variable amplitude (binomially distributed) and with ISIs Poissonian distributed with rate ν_0/ρ ;
- The average input is not influenced by correlations $< I > \equiv 0$, instead the noise variance is $\Delta V^2 \nu_0 [N^2 \rho + N(1-\rho) + N]$;
- For correlated kicks: average amplitude= $\rho N\Delta V$ and average frequency= ν_0/ρ ;

- The FitzHugh-Nagumo Model and correlations only among excitatory or inhibitory inputs are considered in the balanced case $N_E = N_I \equiv N$;
- The superposition of N correlated (ρ) Poissonian spike trains with rate ν_0 gives rise to a sequence of kicks of variable amplitude (binomially distributed) and with ISIs Poissonian distributed with rate ν_0/ρ ;
- The average input is not influenced by correlations $< I > \equiv 0$, instead the noise variance is $\Delta V^2 \nu_0 [N^2 \rho + N(1-\rho) + N]$;
- For correlated kicks: average amplitude= $\rho N\Delta V$ and average frequency= ν_0/ρ ;
- For uncorrelated kicks: frequency= $N\nu_0$ and amplitude= ΔV .

- The FitzHugh-Nagumo Model and correlations only among excitatory or inhibitory inputs are considered in the balanced case $N_E = N_I \equiv N$;
- The superposition of N correlated (ρ) Poissonian spike trains with rate ν_0 gives rise to a sequence of kicks of variable amplitude (binomially distributed) and with ISIs Poissonian distributed with rate ν_0/ρ ;
- The average input is not influenced by correlations $< I > \equiv 0$, instead the noise variance is $\Delta V^2 \nu_0 [N^2 \rho + N(1-\rho) + N]$;
- For correlated kicks: average amplitude= $\rho N\Delta V$ and average frequency= ν_0/ρ ;
- For uncorrelated kicks: frequency= $N\nu_0$ and amplitude= ΔV .

The correlation between two input spike trains originating from neuron i and j is measured in terms of the Pearson correlation coefficient :

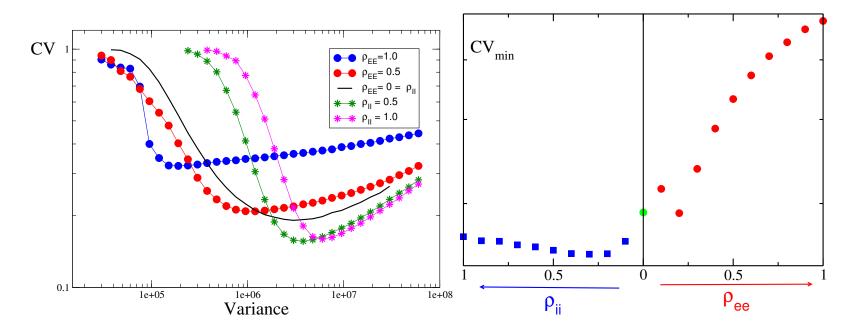
$$\rho = \frac{\langle (n_i - \langle n_i \rangle)(n_j - \langle n_j \rangle) \rangle}{s^2}$$

where n is the number of spikes in a time window ΔT and s^2 its variance.

M.N. Shadlen & W.T. Newsome (1998) – E. Salinas & J. Sejnowski (2000)

We have studied the response of the (balanced $N_E = N_I$) Fitz-Hugh Nagumo model in the silent regime for excitatory (resp. inhibitory) correlated inputs at constant correlation ρ by varying the noise variance.

- Coherence Resonance (CR) is observed for any excitatory (resp. inhibitory) correlation at finite noise amplitude.
- An absolute CR with respect to noise and correlation can be identified.



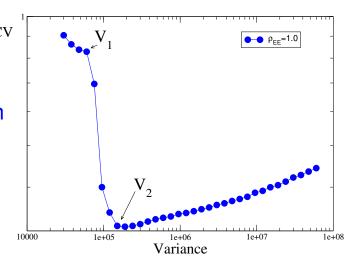
Strong excitatory correlation

The coherence phenomenon is now determined only by the kick amplitude and not by the properties of the asymptotic stochastic processes, since in the present case the output can be always described as a Poissonian process with a refractory time.

For increasing variance (N) the amplitude of the correlated kicks increases, and due to the uncorrelated (inhibitory) input the systems is more and more silent.

- for $Variance < V_1 \rightarrow$ Activation Process
- for $V_1 < Variance < V_2$ 1 kick may be sufficient to induce a spike emission

$$CV = \frac{T}{T + T_{ref}}$$

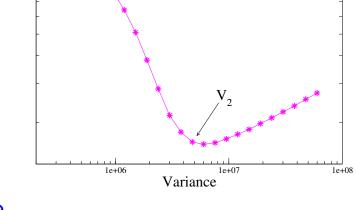


For $Variance > V_2 \rightarrow T = 1/\nu_0$, we have a 1:1 synchronization between input and output (apart from the refractory period).

Strong inhibitory correlation

At large variances the dynamics is again ruled by the the amplitude of the correlated kicks, but at lower variances the inhibitory kicks are quite infrequent and their amplitude is not sufficient to influence the dynamics.

- ullet for $Variance < V_1$ Silent regime - Activation Process - $CV \simeq 1$
- for $V_1 < Variance < V_2$ Dynamics dominated by uncorrelated excitatory input leading the system in the repetitive firing regime
- for $Variance > V_2$ Each inhibitory kick induces a certain delay in the spike time of the neuron - A multimodal structure appears in the ISI distribution



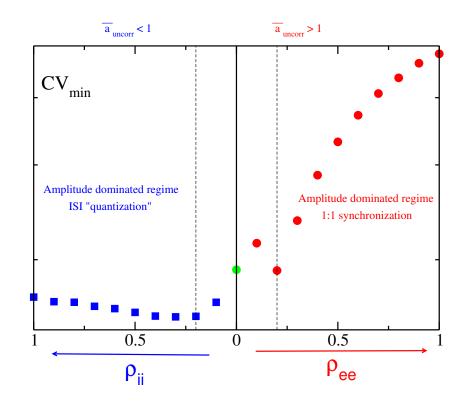
Frequency of the correlated kicks (ν_0) << Frequency of the uncorrelated kicks $(N\nu_0)$

Maximal Coherence

Absolute minima of CV corresponding to maximal coherence are observed at finite noise and correlation for both inhibitory and excitatory case.

The extrema of CV_{min} indicate the change in the mechanisms inducing CR, from amplitude dominated to usual mechanisms related to the crossover from activated to (biased) diffusive processes.

The CV_{min} associated to inhibitory correlations are lower since the system is driven in the repetitive firing regime by the uncorrelated input.



Conclusions

Uncorrelated stochastic inputs

- The response of a HH neuron depends only on the average and the variance of the input, at least in the high input regime;
- at $I < I_{SN}$ the neuronal firing, induced by the stochastic inputs, can be expressed as an activation process at low variances (σ^2), while for large σ^2 this process becomes essentially diffusive;
- at low noise, beside of the exponential tail, the ISI distributions reveal a multimodal structure due to spiking triggered by relaxation oscillations towards the rest state;
- coherence resonance can be observed in a large interval of currents in the silent and bistable regime whenever $W_S > W_O$;
- a second coherence resonance (associated to subthreshold oscillations) coexists with the usual one;

Correlated stochastic inputs

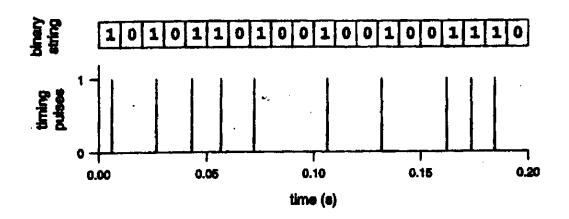
- new mechanisms for the coherence resonance have been reported at high excitatory and inhibitory correlations;
- maximal coherence can be induced by an optimal combination of noise and correlation

Credits

- Stefano Luccioli Msc in Physics (2004-2005)
- Dynamics of realistic single neuronal models

- Thomas Kreuz Marie Curie Fellow (2005-2006)
- Dynamical Entropies in Assemblies of Neurons

Entropie condizionali



- $\triangle t$ ="finestra" temporale \rightarrow *codifica binaria* ("1"/"0") del potenziale di membrana;
- \blacksquare $C_N = (1, 0, 1, ...) \rightarrow$ "parola" (o "stato") di lunghezza N;
- \blacksquare $H(N) = -\sum_{\{C_N\}} P(C_N) \log_2 P(C_N)$, "entropia del blocco N";
- m h(N) = H(N+1) H(N), "entropia condizionale" o regolarità, prevedibilità:

$$(1,0,0,1,0,1,?,...)$$
 $h(N+1) \le h(N)$

$$h_{max}(N) = \log_2 2 = 1.$$

