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Properties of the invariant measure are numerically investigated in 1D chains of diffusively coupled maps. The 

coarse-grained fractal dimension is carefully computed in various embedding spaces, observing an extremely slow conver- 

gence towards the asymptotic value. This is in contrast with previous simulations, where the analysis of an insufficient 

number of points led the authors to underestimate the increase of fractal dimension with increasing the dimension of the 

embedding space. Orthogonal decomposition is also performed confirming that the slow convergence is intrinsically related 

to local nonlinear properties of the invariant measure. Finally, the Kaplan-Yorke conjecture is tested for short chains, 

showing that, despite the noninvertibility of the dynamical system, a good agreement is found between Lyapunov dimension 

and information dimension. 

1. Introduction 

Low-dimensional chaos is a fairly well under- 
stood topic [l]. In particular, it is well known that 
the invariant measure associated with a strange 
attractor can be exhaustively characterized by 
means of a multifractal formalism [2]. However, 
many results refer to the simplest possible case: 
two-dimensional maps with an expanding and a 
contracting direction. The understanding is 
already less satisfactory when passing to a three- 
dimensional phase space with a 2D stable mani- 
fold. In such a case it is not even clear whether 
the attractor is fractal along only one direction, as 
often conjectured [3]. If this were the case, multi- 
fractality would play a negligible role in high 
dimensional attractors. On the other side we can 
ask ourselves if, in the limit of infinite-dimen- 
sional systems (thermodynamic limit), the invari- 
ant distribution can be described in terms of new 
scaling relations, because of the spatial homo- 
geneity of fully developed spatio-temporal chaos. 

The basic ideas, so far developed, rely upon 
the concept of limit spectrum of Lyapunov expo- 
nents and density of dimensions: two straightfor- 
ward generalizations of well known indicators, 
introduced to describe low-dimensional chaos. Let 
us define them for a system with discrete space 
(i> and time (t) variables. There is numerical and 
preliminary analytical evidence of the existence 
of a limit spectrum, 

A(a) = fiJ%h(cTZ,Z), (1.1) 

where A( j = ol, I> is the jth largest Lyapunov 
characteristic exponent for a lattice with I sites 
[4]. The existence of such a limit immediately 
leads to conjecture that the dimension D(Z) is an 
extensive quantity, so that the density of dimen- 
sion p = D(Z)/Z is independent of I. The mean- 
ing of this last relation is that, loosely speaking, 
the dynamics of a very long chain can be inter- 
preted as that of many juxtaposed independent 
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pieces of large enough length L. By pushing for fully developed spatio-temporal chaos) it fol- 

farther on this argument, Grassberger [5] was lows that the distribution of V,(i) values taken at 

led to conjecture that a finite portion of an in the same time t, in different sites i, is the same as 

principle infinite chain exhibits a dimension the distribution of values taken in the same site 

equal to pL (<L) for L large enough. More at different times. The distance d,(i, t’, t”), be- 

precisely, by calling xi the state variable, and tween two sequences V,,(i), V,,.(i) in an embed- 

building an L-dimensional vector V,(i) = ding space of dimension L, is nothing but the 

cx;, x;+‘, . . . , x;+- > for each site i, it is ex- distance between the projections in a suitable 

pected that the y’s fill the space with an invari- L-dimensional subspace of the original points (i.e. 

ant measure of dimension equal to p,L (the with all variables taken into account). In other 

subscript s indicates that the embedding space is words, the dimension D(L) of a sub-chain of 

constructed with reference to spatial depen- length L is the dimension of the projection of a 

dence). As a consequence it should be possible to suitable p, Z-dimensional subset onto a (generic) 

distinguish a truly random noise (where DC L) = subspace of dimension L. As p,l > L, we must in 

L) from a deterministic signal arising from an general expect D(L) = L, except for very excep- 

extended system. tional cases. 

The same conjecture has been extended to the 

time domain [5, 61 by constructing vectors y(t) = 

(~:,~:+,,...J:+,_, > (i.e. by using a standard 

temporal embedding procedure). In this latter 

case let us remark the difference with respect to 

low-dimensional chaos where D(L) converges, 

for increasing L, to some finite value which is 

interpreted as the dimension of an underlying 

attractor. In the present case, instead, no satura- 

tion is expected, but the growth rate of D(L) is 

again conjectured to be strictly smaller than one 

for extended systems. In ref. [6] an attempt has 

been made to express the temporal dimension 

density pt in terms of dynamical invariant indica- 

tors. 

More recently, preliminary simulations have 

been presented [7] showing that some of the 

relations conjectured in refs. [5, 61 are not en- 

tirely correct, as they are essentially based on 

finite-size estimations of fractal dimensions. It is 

our aim to show here that careful estimates of 

fractal dimension in chains of coupled maps indi- 

cate that both spatial and temporal embedding 

lead to a dimension coinciding with that of the 

embedding space (as for random signals) pro- 

vided that a sufficiently large number of points 

has been used. We can see this by following a 

genera1 argument. Assuming that the dynamics of 

the map lattice is mixing (this is reasonably true 

Nevertheless, behind this seemingly obvious 

conclusion, we have numerically observed the less 

trivia1 fact that the resolution one needs to reach 

in order to observe the saturated asymptotic value 

diverges in the thermodynamic limit L --) 00. Ac- 

cordingly, in some sense, we can recover the 

conclusions reported in refs. [5, 61, by claiming 

that the coarse-grained (i.e. finite resolution) di- 

mension grows linearly with L, with a slope 

strictly smaller than 1. However, the problem of 

characterizing the invariant measure of a map 

lattice is now more cumbersome as the depen- 

dence on two relevant scaling parameters must be 

simultaneously taken into account. In section 3 

we discuss this problem and introduce some very 

preliminary conjecture. 

In section 2 we present the numerical simula- 

tions by discussing various tricks to decrease the 

finite-size effects and to speed up the comparison 

of relative distances. It is important to mention 

that we have also performed a change of vari- 

ables, by recurring to the orthogonal decomposi- 

tion, to check the stability of our results (section 

4). In section 5 we compare our analysis with 

previous papers, presenting an alternative inter- 

pretation of the numerical results and substanti- 

ating the criticisms outlined in this introduction. 

As all of our numerical analyses refer to coupled 

logistic maps, that is to a noninvertible dynamics, 
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we have also performed some computations in 
short length chains to test the Kaplan-Yorke 
conjecture, which is not necessarily expected to 
hold. Our results indicate that if there is any 
difference between the Lyapunov dimension and 
information dimension, it stays finite for increas- 
ing length I (section 6). 

2. Numerical simulations 

We have iterated the standard model of a 1D 
lattice of coupled logistic maps [S], 

x;, , = a - ( Y:)2. (2.1) 

where 

y; = ;,,y f(l-&)X;+;&X;+’ (2.2) 

schematizes a diffusive coupling. The parameter E 
controlling the strength of the coupling, is bound 
between 0 (uncoupled case) and 1 (two indepen- 
dent space-time lattices). Periodic boundary con- 
ditions (i.e. x:’ = xl, _x: =x:+ ‘) have always been 
used throughout our paper, unless explicitly stated 
otherwise. 

0.04 

p(x) 

0.00 

Fig. 1. Invariant probability distribution P(x) for a chain of 

coupled logistic maps with E = fi and a = 2 (full curve) com- 

pared with the probability distribution of the single map 

(dashed curve). 

The fractal dimension has been computed by 
means of the nearest-neighbour method [9] which 
is based on the comparison of a randomly chosen 
reference point with an increasing number n of 
data points (randomly chosen too). The logarithm 
of the distance of the k th nearest neighbour for 
different n-values is then averaged over m dif- 
ferent reference points to decrease the statistical 
error as much as possible. Therefore, the number 
II of data points controls the length scale (larger 
IZ values yield smaller distances), while the num- 
ber m of reference points controls the statistical 
error on the distance 6(k, n). From the scaling 
behaviour of the distance with II (6(k,n) = 

(k/n)-“D [9], h w ere D is the information di- 
mension), it follows that 

Dcg= -(dlnn/dln6) (2.3) 

can be interpreted as a coarse-grained dimension. 
All of our numerical simulations refer to the 

case E = f and a = 2, where the dynamics of the 
single map is at the Ulam point with invariant 

measure P(X) = l/2&? characterized by 
two square root singularities at the extrema of 
the invariant interval L-2,2]. For comparison we 
have plotted in fig. 1 the invariant single site 
distribution for the chain of maps, where only 
one singularity is present on the right, deriving 
from the existence of a quadratic maximum in the 
map. Indeed, assuming a flat distribution around 
the preimage of the maximum of eq. (2.1), a 
singularity with exponent ,B, = - i is necessarily 
generated around x = 2. A careful numerical 
analysis around the minimum value x = - 2 shows 
that P(X) goes instead to zero with a scaling 
exponent & = $. This remarkable difference with 
respect to the single-map case (where pZ = - i is 
found) can be qualitatively explained. In fact, the 
minimum value x = -2 is reached at time t + 1 if 
and only if a sequence of three maxima is ob- 
served at time t. Assuming xi to be independent 
of X:+1, and using the local linearity of the map 
around x = 2 with an expansion coefficient 4, it 
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follows that 

(ax)‘+P’z = [ fyx = 2)+6x]” s (~Sx)““t~J, 

from which an exponent pi = 4 is found, explain- 

ing the convergence to zero of P(x). In fact, one 

can easily see that the contribution coming from 

the mass remaining around the minimum value 

x = -2 is negligible. The difference between a’, 

and the actual value p2 = i is presumably to be 

attributed to correlations between nearby sites. 

The relevant point emerging from the analysis 

of the invariant measure is the occurrence of a 

spike around x = 2. Such a singularity does not 

affect any generalized dimension D, with 4 

strictly smaller than 2, as shown in ref. [lo]. In 

particular it does not affect the information di- 

mension computed with the nearest-neighbour 

algorithm. However, this is rigorously true only in 

the limit of infinite resolution. Since numerical 

simulations allow one to investigate only a limited 

range of distances, and such a range becomes 

increasingly small for increasing dimension, it is 

crucial to smooth out as much as possible the 

localized peaks in the distribution heavily affect- 

ing DCp. Therefore, we have performed a change 

of coordinates (with a singularity at the upper 

edge) from x to z, such that the z-probability 

density Q(z) was constant. Such a change of 

variable does not affect the asymptotic value of 

the information dimension. 

A second important reduction of finite-size ef- 

fects can be achieved by decreasing the edge 

effects. In the literature, some papers have ap- 

peared which deal with this problem [ll]. They 

mainly refer to “trivial” edges like those of a 

hypercube S in case of a uniform invariant mea- 

sure. In such a case, the average density in a 

sphere of radius 6, centered around a point dis- 

tant r from the S-edge, turns out to be obviously 

underestimated as long as 6 > r. This, in turn, 

leads to an underestimation of the dimension. 

The offset becomes more and more relevant for 

increasing dimensions, as already discussed in ref. 

[12]. However, it is possible to reduce it by simply 

changing the topology of the L-dimensional phase 

space. By identifying opposite edges, the hyper- 

cube is transformed into a torus TL: a mapping 

which, while leaving the dimension unchanged, 

removes all the empty regions responsible of the 

underestimation effect. Such a trick can be easily 

implemented on a computer, especially when 

working with integer numbers. By using for in- 

stance 27000 points in a six-dimensional space 

(averaging over 3000 reference points, and look- 

ing at the 20th nearest neighbour), we have ob- 

tained D = 6 with an error around 0.1, to be 

compared with the underestimation D = 5.47 ob- 

tained from the original data points. 

Obviously, this idea proves to be very effective 

in the case of independent and equally dis- 

tributed variables, since all empty regions are 

removed. It is expected to be less powerful in the 

case of coupled maps, where correlations both 

induce nonuniformities in the probability distri- 

bution and open gaps, which can, in principle, 

cause either under- or over-estimations of the 

dimension. The relevance of edge-effects is con- 

firmed by the analysis of the two-dimensional 

distribution P(x, y) for two adjacent sites X, y. 

Its support covers only a subset of the allowed 

square, as seen from fig. 2, where exponentially 

separated contour lines of P(x, y> are plotted. In 

order to further increase the accuracy of our 

simulations, we have performed another change 

of variables, by expanding such a support to the 

whole square. Obviously, we still expect edge 

effects to arise because of third and higher order 

correlations, yielding empty regions in higher di- 

mensional spaces. 

The last trick regards the implementation of 

the numerical algorithm. We have extended to 

the nearest-neighbour approach, the method pro- 

posed by Theiler [13] for the Grassberger- 

Procaccia algorithm [14]. The main idea is to 

introduce a coarse grained fixed size partition in 

the space of minimum embedding dimension L,i, 

we work with. It allows us to organize the points 

into hypercubes (or boxes). This can be done very 
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Fig. 2. Exponentially separated contour lines of the probabil- 

ity distribution P(x, y) on two adjacent sites (same parameter 

values as in fig. 1). 

efficiently by creating a vector of pointers, where 
each element is the index of another point falling 
in the same box (if there is one). Now, if one uses 
the maximum norm and is interested in distances 
smaller than the size of the grid, it is sufficient to 
compare each point with those ones falling in the 
same, or in a neighbouring box (for any embed- 
ding dimension L > Lmin). In this way the major- 
ity of large distances are not computed a priori, 
thus saving a lot of CPU-time. However, because 
of the consequent speed in the execution of this 
code, one encounters another bottleneck due to 
storage limitations. It is no longer possible to 
store simultaneously all the points in the central 
memory, so that one is forced to proceed in terms 
of blocks, each one separately randomized and 
fitted in the grid. 

The above discussed method is more effective 
for grids of small size, as many pairs of points are 
automatically discarded. However, we are faced 
with the difficulty of generating a large number of 
points in order to have sufficient statistics. An- 
other way to cut a priori a larger number of 
distances requires to choose Lmin as large as 
possible, at the expense of decreasing the number 

of embedding dimensions simultaneously pro- 
cessed. With our computer (HP-8351 a reasonable 
compromise has been achieved by fixing Lmin = 5, 
as the standard approach allowed us a complete 
analysis for smaller dimensions. Finally, we have 
split each linear dimension into eight parts, thus 
dividing the points into 215 different boxes. 

The results for the behaviour of the 10th neigh- 
bour are summarized in fig. 3 for different em- 
bedding dimensions L (namely, 3, 4, 5, 6, 7, and 
9) averaged over 45 000 reference points. As the 
improved algorithm allows us to determine Dcg 
only at relatively small distances, we have also 
reported the outcome of the standard algorithm 
(which allowed us to arrive at 2.7 x 10h points, 
compared with 10’ points reached with Theiler’s 
algorithm). As a check, we have also monitored, 
during the simulation, the 4th and 30th neigh- 
bour, obtaining very similar results. Notice that, 
notwithstanding the choice of a different norm 
(sum of absolute values and maximum for the 
standard and improved algorithm, respectively) 
the curves essentially agree in the overlapping 
region. The only exception is represented by the 
case L = 9, as the outcome of the new program is 
affected by the following defect. As long as the 
distance of the kth (10th in the present case> 
neighbour is greater than the grid size, it is over- 
estimated, as many points have been discarded 
during the computation. As a consequence, if n is 
not sufficiently large, we have to expect an under- 
estimation of Dcg, as observed in the case L = 9 
for small IZ’s. 

The estimate of the coarse-grained dimension 
is affected by two different kinds of error due to 
the average over a finite number m of reference 
points, and to the usage of a finite number of 
nearest neighbours. The amplitude of the first 
kind of error can be inferred from the size of the 
fluctuations exhibited by Deg. For an estimate of 
the second kind of error see fig. 6 below. 

At embedding dimensions L = 3, 4 and 5, a 
saturation of Dcg to a value coinciding with the 
space dimension is clearly observed. For L = 6, 
Dcg arrives at most at 5.7, but no evidence of 
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convergence to an asymptotic value is revealed, 

so that this value still appears as an underestima- 

tion. It is instructive to notice that the various 

tricks adopted to obtain the result plotted in fig. 3 

for L = 6 lead to an increase of D,, of about 1.5 

with respect to the straightforward application of 

the nearest-neighbour method (for the same 

number of points). This indicates the relevance of 

finite size corrections. Therefore, we are quite 

confident that the lack of convergence observed 

for L = 6 is mainly due to higher order edge 

effects that we could not eliminate. The cases 

L = 7 and 9 confirm the increasing difficulty to 

reach the asymptotic value for increasing L. The 

difference between the embedding dimension and 

the largest observed D,, is still around 1.8 for 

L = 9, but again no evidence of convergence is 

exhibited. Therefore, our conclusions point in the 

direction of suggesting that the equality DC L) = L 

holds, indicating that the results shown in refs. [5, 

61 follow from the choice of a finite and constant 

number of data points. 

For completeness, we have investigated the 

temporal embedding case as well, proceeding ex- 

actly in the same way as for the spatial case. 

Namely, we have changed the variable x to make 

the single-site invariant measure uniform. Then 

we have extended the two-dimensional domain to 

the whole square and changed the space topol- 

ogy. In this case, it is possible to derive analytical 

approximations to the support of the 2D distribu- 

tion (see ref. [7]). The results are plotted in fig. 4. 

They are very similar to those for spatial embed- 

ding displayed in fig. 3. 

estimate the dimension must be increased when 

looking at sets of increasing dimension, or to 

some intrinsic property of the invariant measure. 

In ref. [6], the authors tried to link the fractal 

structure with dynamical invariants like Lyapunov 

exponents, generalizing the ideas behind the 

Kaplan-Yorke conjecture in finite dimensional 

attractors. In section 5 we present some objec- 

tions to their arguments. For the moment we 

start with an empirical approach. From the the- 

ory of multifractal sets, we can reasonably assume 

that the average mass p = k/n in a box of radius 

E (we recall that k being the neighbour-order, 

can also be interpreted as the number of points 

in the box) behaves as 

p == UFD( 1 + he”L-‘)) (3.1) 

where D is the information dimension and 

D(1 + c) describes the leading scaling behaviour 

of corrections. Such exponents should correspond 

to the two largest eigenvalues of a suitable opera- 

tor. Although in the present case we have not 

enough elements to verify this hypothesis, it is at 

least reasonable to conjecture that eq. (3.1) holds 

for the invariant measures we are looking at, 

From the definition of coarse-grained dimension 

D,, given in (2.2) and from the relation between 

p and n we can write 

D, _ dlwp 
LB dlog& (3.2) 

(F plays the role of 6 in eq. (2.2)). From eq(3.1) 

we obtain 

3. Interpretation 

An important question about the numerical 

results discussed in the previous section concerns 

the justification of the observed slow conver- 

gence. In particular we would like to discover 

whether the underestimation is essentially due to 

the trivial fact that the number of points used to 

D,,=D[l+(l+c)b~‘.~], (3.3) 

where we have retained the leading terms in the 

series expansion. As our simulations refer to the 

nearest-neighbour method, where the scaling pa- 

rameter is the number of points n = E-~, eq. 
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Fig. 3. Coarse grained dimension from spatial embedding technique as a function of the decimal logarithm of the number of points 

for the 10th nearest neighbour, averaged over 45000 reference points. Dashed curves refer to the improved method, full ones to 

the standard algorithm. 

(3.3) can be rephrased as 

D,,(L,n) =I,[1 + (1 +c)!W-c], (3.4) 

where we have substituted D with L, as the 
asymptotic dimension coincides with that of the 

embedding space. Practically, we expect higher 
order correction terms to be present in eq. (3.1), 
so that eq. (3.4) is only approximately valid. In 
particular, whenever the observed Dcg is far from 
asymptotic, only a qualitative agreement can be 
expected. By fitting the numerical results (par- 
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Fig. 4. Same as in fig. 3. referred to temporal embedding. 

tially presented in figs. 3, 4) with expression (3.4), 

where b and c are the only free parameters, we 

can extrapolate the minimum number of points 

n* needed to observe D,, = (1 -f)L, 

(3.4) for L = 7, spatial embedding, and the 10th 

neighbour, compared with numerical data. The 

good agreement indicates that the functional 

choice made in eq. (3.4) is very reasonable. More- 

over, despite the large uncertainty associated with 

n*= - 
i 

b(c + 1) 

1 

I” 
(3.5) 

the extrapolation of n* for L = 8, 9, the results 

f ’ for the parameters b, c are very stable. Practi- 

cally, there are no differences with respect to the 

In fig. 5 we report the result of the fit with eq. estimates obtained in ref. 171 with fewer data. 
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6.0 
1 

Fig. 5. DCp versus log,,,n for the 10th neighbour, L = 7 from 

spatial embedding. Numerical results (continuous line) are 

compared with the fit (dashed curve). 

In order to have a more objective indicator 

(n* depends on the order of the neighbour con- 

sidered in the analysis), we passed from the num- 

ber of points n* to the critical distance F*, by 

integrating eq. (3.4), 

E=Kn- ‘/‘*[l + (1 +c)bn-‘I”““, (3.6) 

where K is the integration constant to be deter- 

mined with a further fit, n-‘jL yields the 

expected asymptotic behaviour, and the last mul- 

tiplicative factor controls the finite size correc- 

tions. We can determine a*, by substituting eq. 

(3.51 in eq. (3.6) 

(3.7) 

E* represents the maximum average distance one 

can reach still observing the asymptotic scaling 

behaviour with accuracy f. In fig. 6 we have 

plotted log F* versus L, for all neighbour orders 

computed in our simulations (i.e. 4, 10 and 30) 

and with f = 0.03. The results in fig. 6 indicate a 

2.0 T 
2 4 b 8 

L 

1 

lb 

Fig. 6. Logarithm of the critical distance E* required to 

observe the asymptotic value of the fractal dimension versus 

the dimension of the embedding space L. Full, dashed and 

dotted curves refer to the 4th, 10th and 30th neighbour, 

respectively. 

fast decrease of log E* for increasing L. How- 

ever, it is almost impossible to understand 

whether the asymptotic behavior is linear or 

faster. In principle, one should go to higher em- 

bedding dimensions, but the extrapolations would 

become less and less reliable. The difference 

among the three curves in fig. 6 is a qualitative 

measure of the error (E* should in fact be inde- 

pendent of k) which is rather large already for 

L = 9. The only way to keep the error under 

control, is to increase the number of points. How- 

ever, this alternative soon becomes unfeasible: in 

order to reach DCg = 8.7 for L = 9, one needs 

10” points. As a consequence, from our simula- 

tions, we cannot exclude the existence of 

quadratic effects. 

A possible explanation of or results can still be 

based on trivial edge effects which have not been 

completely removed. In fact, it is important to 

study their scaling dependence on L. We present 

a calculation in the case of a hypersphere. The 

results should not vary significantly for different 

but not too strange geometries. This seems to be 

the case as the estimated dimension D coincides 

with the dimension of the embedding space. Let 
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R, r be the radii of the sphere, respectively of the 

generic ball used to estimate the local probability 

density, which we assume to be uniform, for 

simplicity. The fraction p of balls (randomly cho- 

sen), whose mass is affected by the presence of 

empty regions, is obviously given by the fractional 

volume of the sphere contained between the radii 

R - r and R. For r +c R we obtain 

p =L(r/R). (3.8) 

The fraction p has to be kept constant for in- 

creasing L values, if we want to keep the under- 

estimation error under control. As a result, the 

range of distances one has to reach to fulfil this 

condition goes to zero as p/L. Hence, contrary 

to what is usually believed, we see that already in 

this naive case, with uniform distribution, the 

number of points must grow faster than exponen- 

tially in L, namely 

N= (L/p)‘*. (3.9) 

Let us recall the standard argument used to de- 

termine the minimum number of points required 

to estimate a given dimension value. Assuming 

that the distance among points along any direc- 

tion has to be smaller than a given fraction g of 

the actual size of the attractor, we must at least 

generate N = g-l- points to fullfil such a condi- 

tion along all directions. Ruelle and Eckmann 

have been able to prove that such a limit can 

be reduced to N = g-‘*/* in the case of 

Grassberger-Procaccia algorithm, noticing the 

peculiarity of that method [15]. Indeed, the 

counting procedure is formally equivalent to com- 

puting all distances from a single fictitious refer- 

ence point around which the distributions seen 

from any reference point, are rigidly shifted and 

overlapped. As a result, we have an “equivalent” 

number of points around the fictitious reference 

one which is half of the square of the number of 

effective available points, thus accounting for the 

square root factor found in ref. [151. However, eq. 

(3.9) indicates that a more dangerous problem 

can arise from the border of the support of the 

probability density. 

Coming back to our simulations, the factor-10 

increase of the minimal resolution, when passing 

from L = 4, to L = 9, cannot be entirely ex- 

plained by the edge effect which accounts only for 

a factor f (see eq. (3.8)). A plausible explanation 

is that the thickness of the invariant set (pro- 

jected onto an L-dimensional space) becomes 

smaller and smaller along some directions for 

increasing L. We investigate this point in the 

next section, by introducing suitable global coor- 

dinates by means of the orthogonal decomposi- 

tion. 

We end this section by studying the depen- 

dence of the scaling parameter c on L. In fig. 7, 

l/c is plotted versus L indicating a parabolic 

shape. By substituting this empirical result in eq. 

(3.1), we notice that the relative amplitude of the 

finite-size corrections scales as s~‘~/‘, (recalling 

that D = L and being s the quadratic coefficient 

of the curve in fig. 7). By redefining s*(g) as the 

distance to reach in order to have a finite size 

correction g, we have 

E*(g) =exp[$log(f)]. (3.10) 

20 , 

O/ I I I 

2 4 6 8 
L 

Fig. 7. Inverse of the scaling parameter c (see eq. (3.1)) 

versus L (diamonds). fitted with a parabola (continuous curve). 
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In other words, we find again that the critical 
resolution E* scales exponentially with L, thus 
reinforcing this conjecture. Notice, however, that 
the results presented in fig. 7 are much more 
reliable as they are not based on somehow arbi- 
trary extrapolations as for the results in fig. 6. 
Furthermore, from eq. (3.10), we can see that the 
decay rate -log(g/b>/s* depends on the accu- 
racy g. This is equivalent to saying that the slope 
of the curves in fig. 6 should increase for decreas- 
ing f (analogous to the parameter g>. Measure- 
ments made for several f values are qualitatively 
in agreement with these findings. 

4. Orthogonal decomposition 

So far we have discussed the implementation of 
various tricks to improve the convergence of Dcg 

to the asymptotic value, by always referring to the 
same set of variables. Obviously, the fractal di- 
mension should be independent of the choice of 
coordinates in the limit of infinite resolution. 
However, when working with boxes of finite size, 
the deviations from the asymptotic result might 
heavily depend on the variables chosen to 
parametrize the phase space. Therefore, the de- 
termination of an optimal reference frame can 
play a relevant role in performing accurate di- 
mension estimates. In general, we always expect a 
suitable nonlinear change of variables to exist 
such that the finite-size corrections are negligible. 
Unfortunately, in general, the construction of 
such a set of coordinates can be accomplished 
only a posteriori, after having determined the 
local scaling behaviour around each point. In this 
section, we follow a simpler scheme considering 
only linear changes of coordinates, in the spirit of 
ref. [16, 171. In other words, we discuss the possi- 
bility to unravel the structure of the invariant 
measure in a given embedding space, by express- 
ing each state in terms of suitable global modes 
(like e.g. Fourier modes). To this aim we in- 
troduce the orthogonal decomposition, whose 
meaning is as follows. Starting from a given distri- 

bution in an L-dimensional space (whose center 
of mass is assumed to be in the origin, for simplic- 
ity), we first determine the direction along which 
the average projection of a generic state is maxi- 
mal. By further projecting the distribution onto 
the (L - l)-dimensional subspace, which is or- 
thogonal to the direction just found, we can re- 
peat the procedure determining a second vector, 
and so on until a 1D space is reached. As an 
example, let us consider a uniform distribution in 
a 3D space restricted to an oblique thin sheet. It 
is obvious that for distances larger than the thick- 
ness of the set, the dimension is underestimated. 
There is no way to increase the critical distance 
e* by renormalizing the coordinates. The above 
outlined method allows us to define a new set of 
variables (x, y, z), with z being the direction of 
small thickness. Upon further resealing all of the 
three new variables (i.e. transforming the paral- 
lelepiped into a cube), it is immediately seen that 
one can observe Dcg = 3 already at large dis- 
tances. Such a method proves to be very effective 
in this simple example because of the “linearity” 
of the subspace. More in general, we can expect 
it to work in all cases where nonlinear deviations 
are weak. The implementation of the algorithm 
is quite straightforward, as the new base can 
be determined by diagonalizing the correlation 
operator 

Kj,, =(+JI), (4.1) 

where ( . > indicates time average 1161. More pre- 
cisely, we can write 

L 

x:, = c An,i&,t (4.2) 
k=l 

where 1,5; is the ith component of the kth eigen- 
vector of K,,j. These vectors, altogether, repre- 
sent an orthonormal base. One can also prove 
that 

An,kAn,~) = Ak6k.m, (4.3) 
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where 6,,, is the Kronecker &function and A, is 

the kth eigenvalue of K,,,. Furthermore Ak rep- 

resents the energy of the k th mode C/I;, that is the 

averaged square size of the subset along $i. Such 

a method has been applied very recently to 

various problems of turbulence (Rayleigh- 

BCnard convection, Navier-Stokes equations, 

Kuramoto-Sivashinsky equation) and even to ex- 

perimental data [18]. In ref. [18], the authors 

conjecture that the method is so powerful that it 

might represent a feasible alternative to the ap- 

plication of standard algorithms to compute the 

fractal dimension. In fact, they found a good 

agreement between the correlation exponent 

(computed by means of Grassberger-Procaccia 

algorithm) and the number of modes containing a 

given fraction (arbitrarily chosen equal to 93%) of 

the whole energy. If this were true, it would imply 

that the invariant distribution covers an essen- 

tially linear subspace. We do not aim to discuss 

here such a thesis, rather we are interested in 

applying this method to the embedding proce- 

dure. Therefore we again consider subchains of 

length L (for sake of brevity we investigated 

L = 8 only). Let us first recall that in the case of 

periodic boundary conditions and uniform 

spatio-temporal chaos, orthogonal decomposition 

leads to the well known Fourier modes. This is 

precisely our case, with the only difference that 

periodicity is lost when considering subchains. 

Nevertheless, as the boundary conditions are ex- 

pected to become less and less important for long 

chains, the global modes turn out to be very close 

to Fourier modes. 

In a few words, starting from spatial subchains 

of length L = 8, we computed the correlation 

operator and its eigenmodes. After subtracting 

the average state, we have projected the vectors 

onto such a base, separately making uniform the 

distribution of all the eight amplitudes. The re- 

sults of the computation of Dcg in this new space 

are reported in fig. 8. It is clearly seen that a big 

increase with respect to the standard approach is 

observed at small n-values, whereas at larger 11’s 

the new curve is even lower than the previous 

one. This means that at “large” distances the 

D ,:‘; 

,,‘. I 
5.8 ,,,’ 

,: 1 

5.4 I I I 
2 4 6 

Logt0 n 

Fig. 8. Fractal dimension D,, for spatial embedding (L = 8) 

from the distance of the 10th neighhours: in real space (dashed 

line), and after orthogonal decomposition (continuous line). 

invariant measure roughly fills a linear subspace 

(notice however that Dcg still remains well below 

the space dimension). The inversion occurring at 

larger n’s is presumably due to the fact that the 

new results have been obtained without removing 

2D edge effects (the size of such effects is in fact 

comparable with the distance between the two 

curves>. As a consequence we are led to conclude 

that the slow convergence of D,, is intrinsic and 

due to genuine nonlinear effects. 

The method of orthogonal decomposition can 

also be applied to the temporal sequence. In this 

case, it corresponds to the well known singular 

value decomposition introduced in ref. [19]. This 

procedure was introduced to filter out the noise 

present in experimental data. It is implicitly based 

on the assumption that the invariant measure fills 

a linear subspace. Any small deviation from such 

a condition is considered as an experimental arti- 

fact and, therefore, corrected. Except for peculiar 

cases, such a method is not very effective, as 

already pointed out in refs. [12, 201. 

Here, in some sense, we apply this method with 

the opposite goal: expanding the distribution 

along those directions which correspond to small 

thicknesses, in order to increase the observational 
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still yielding D,, = L. Upon substituting in eq. 

(5.31, we have 

& * = exp( -L/pi,) (5.5) 

exhibiting the same exponential law numerically 

found in section 3. The exponent cy is related to 

4, as 

(Y = l/pi,. (5.6) 

Let us now investigate the origin of the decay of 

8:” for increasing i. The addition of one or more 

sites to a chain of length L can be seen as the 

coupling of the original L-dimensional dynamical 

system with a thermal bath. The external noise, 

loosely speaking, dresses the attractor in the di- 

rections previously characterized by zero thick- 

ness. The smallest of such average thicknesses is 

nothing but the critical distance E* one must 

reach to observe D,, = L (in this simplified ap- 

proach the dependence of the exponential rate 

on the accuracy f is missing). By assuming a 

small amplitude of the external noise 5, we can 

linearize around the equilibrium position, thus 

obtaining a typical Langevin equation (we assume 

the time to be a continuous variable, for simplic- 

ity> 

li=hu+.$, (5.7) 

where A is the associated (negative) Lyapunov 

exponent. By also assuming 5 to be delta-corre- 

lated with a diffusion coefficient 9, we find that 

the width of the distribution of u-values is given 

by 6u = d-. The problem is now to find 

the hidden dependence of 6u on L. As the 

Lyapunov exponents are asymptotically indepen- 

dent of the chain length, we have to consider the 

diffusion coefficient 9. The simplest hypothesis 

one can make is that of equal contributions of the 

external noise to the evolution of each degree of 

freedom. This leads to assuming 9 to be in- 

versely proportional to the space dimension L. 
Accordingly, the thickness of the attractor 6u 

should decay as L - ‘j2, a behaviour much slower 

than the observed exponential one. This indicates 

that the hypothesis of the equipartition of the 

thermal noise contribution fails. This point will 

be the subject of future research. 

More recently, Mayer-Kress and Kaneko [6] 

reconsidered the problem of estimating the effect 

of coupling with nearby points onto the dynami- 

cal evolution at a given site, to justify the slow 

increase of the fractal dimension observed for 

increasing the embedding dimension L. How- 

ever, we do not see how it is possible to relate a 

typical dynamical indicator like the growth rate of 

infinitesimal disturbances (evaluated through the 

spectrum of Lyapunov exponents measured in a 

moving reference frame [23]), with a property of 

the (static) invariant measure, like the fractal 

dimension. In the case of the Kaplan-Yorke for- 

mula it was possible to find such a link because of 

the closure of the equations in phase space. Here, 

instead, as we are looking at a subset of the 

space, we always neglect the coupling with the 

remaining degrees of freedom whose effect is 

precisely what we are trying to determine. If one 

is interested in showing the equivalence between 

the dynamical behaviour of an (in principle) infi- 

nite chain and many finite (sufficiently long) 

pieces, the main question to be answered is the 

estimation of the effect of a functional perturba- 

tion of a given set of equations (namely the 

coupling with additional maps), which is not the 

same as studying the effect of a perturbation on 

the initial condition, which is the effect measured 

by the Lyapunov exponents. 

6. Short-length chains 

In a discussion of the fractal structure of a 

chain of maps it is worth investigating the validity 

of the Kaplan-Yorke relation. There is no reason 

to expect an agreement between Lyapunov di- 

mension and information dimension in presence 

of a noninvertible dynamics as in the case of the 

logistic maps considered in this paper. In fact, 

invertibility is very crucial in that it guarantees 
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Fig. 10. Dimension density pL, estimated from the Lyapunov spectrum, for chains of tent maps of increasing length I, with (a) 

periodic, (b) antiperiodic and Cc) fixed boundary conditions. 

that an initial partition of the attractor with As direct computations of the fractal dimen- 
nonoverlapping elements is still such after iterat- sion can be performed only for low-dimensional 
ing all the elements. Previous simulations per- attractors, we have first investigated the con- 
formed for the Sinai map [241 indicated that the vergence of the Lyapunov spectrum (for two 
Lyapunov dimension is strictly larger than the different values of the coupling constant E) for 
information dimension as estimated with increasing length of the chain, from L = 2 to 
the nearest-neighbour algorithm. Our numerical L = 100. Large fluctuations of the dimension den- 
analysis has been performed by using tent maps sity pL have been observed up to L = 20 (to be 
(x’ n+l = 1 - 2/y; - i I> to avoid difficulties related compared with L = 50 for logistic maps) due to 
to the presence of singularities in the invariant the presence of several periodic windows. To 
measure. It indicates that if there is any differ- decrease such fluctuations we have changed 
ence it is small and remains finite for increas- boundary conditions choosing antiperiodic (x0 = 
ing L. _xL; xL+1 = --xi) and fixed (x0 =xL =X1 con- 



A. Torcini et al. / Fractal dimension of extended systems 

2.9 - 

& =2.93 
D CL 

2.6 - 

2.7 - 

2.6 - 

a 

2.5 
4 5 6 7 

Log10 n 

4.4 

D OK 
4.3 

4.2 

4.1 

4.0 

3.9 3- 

n, = 4.30 

i;p;--;; 

C 

4 5 6 

hko n 

7 

b 

3.0 3 4 5 6 
hG0 n 

4.8 

4.6 

4. = 5.00 

hJ 
d 

4 5 6 

WI10 n 

Fig. 11. Coarse grained dimension for chains of coupled tent maps with antiperiodic boundary conditions: (a), (b) and (c) refer to 

F = $ and I = 5, 6, and 7, respectively; (d) to F = : and I = 5. All curves are estimated from the distance of the 4th neighbour. 

ditions. The results reported in fig. 10 for F = $ 

both indicate that the oscillations due to periodic 

structures almost disappear and show a conver- 

gence to the same dimension density pL = 0.660 

regardless of the boundary conditions. 

Then, we have estimated the information di- 

mension D with the nearest neighbour method 

for antiperiodic boundary conditions. We have 

again encountered a very slow convergence, forc- 

ing us to consider short chains only. First, we 

have considered three cases where D, is less 

than the length of the chain (E = 5 and I = 5,6,7X 

Then we have analyzed a situation where the sum 

of all Lyapunov exponents is still positive (E = $ 

and I = 9, so that the upper limit to D is given 

by the dimension I of the space considered. The 

numerical results are presented in fig. 11, all 

referring to the 4th neighbour. All of the four 

curves are slightly below the upper bound given 

by the Lyapunov dimension (in the worst case the 

difference is 0.14), but none has reached satura- 

tion, so that we can argue that if there is any 

difference it is very small. More important, it 

seems that such a difference does not increase for 

increasing I. Thus, we can conclude that, despite 

the global noninvertibility of model (2.1), (2.2), 

the asymptotic attractor where the invariant mea- 

sure is sitting on, is presumably characterized by 
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an almost completely invertible dynamics, rein- 
forcing the hypothesis that a chain of logistic 
maps can be effectively used as a simplified model 
to understand spatio-temporal phenomena. 

7. Conclusions 

In this paper we have presented a detailed 
numerical analysis of the fractal properties of the 
invariant measure in the case of a 1D chain 
of diffusively coupled maps. We can conclude 
stating that it is not possible to distinguish a 
stochastic signal from a spatio-temporal chaotic 
behaviour relying on the estimate of dimension in 
suitable embedding spaces. Nevertheless, the slow 
convergence of the coarse-grained dimension in- 
dicates nontrivial properties of the invariant mea- 
sure, whose complete understanding requires 
a strictly local analysis of the phase space. 
We should also mention that use of the 
Grassberger-Procaccia algorithm leads to analo- 
gous results for spatial embedding, whereas it 
leads to incomprehensible oscillations in the tem- 
poral case. Such a further difficulty points in the 
direction that multifractal corrections might play 
a relevant role in determining the asymptotic 
measure, and, in turn, a statistical mechanics 
description in the infinite length limit. 
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