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Abstract

We analyze the response of the Hodgkin–Huxley neuron to a large number of uncorrelated stochastic inhibitory and excitatory post-

synaptic spike trains. In order to clarify the various mechanisms responsible for noise-induced spike triggering we examine the model in

its silent regime. We report the coexistence of two distinct coherence resonances: the first one at low noise is due to the stimulation of

correlated subthreshold oscillations; the second one at intermediate noise variances is instead related to the regularization of the emitted

spike trains.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In the last decades a large number of studies have been
devoted to the characterization of the response of simple
and more elaborated neuronal models under the influence
of a large variety of stochastic inputs [6,10,26]. One of the
main reasons justifying the interest of neuroscientists for
this subject resides in the observation that in vivo
neocortical neurons are subjected to a constant bombard-
ment of excitatory and inhibitory post-synaptic potentials
(EPSPs and IPSPs), somehow resembling a background
noise [3].

Among the many proposed biophysical models the
Hodgkin–Huxley (HH) model [8] can still be considered
as a reasonably valid framework for exploring the main
features of neural dynamics [15]. In order to understand the
origin of the variability observed in the distribution of
spikes emitted by cortical neurons [23] the response of the
HH model has recently been studied under the influence of

additive noise [1,20,25] and subjected to trains of post-
synaptic potentials [2,7,20,25].
One of the most interesting phenomena observed

experimentally and numerically for excitable neuronal
systems driven by noise is coherence resonance (CR)
[5,17]: it refers to the regularization of noise-induced
oscillations occurring for finite (not zero) noise intensity
in the absence of any external injected signal (for a
comprehensive review see [12]). Evidences of CR have been
reported experimentally for the cat’s spinal and cortical
neural ensembles [14] and theoretically for various neuro-
nal models [12]. In particular, CR has been observed for
the HH model [11,27], but these results mainly refer to
additive continuous noise.
Our aim is to perform a detailed analysis of the response

of the HH model in the silent regime when it is subjected to
many (hundreds or thousands) stochastic trains of post-
synaptic potentials (PSPs) per emitted spike (i.e., the
system is in the so-called high-input regime [3,23]).
The different mechanisms responsible for noise-induced

neuronal firing are analyzed in terms of statistical
indicators (interspike-interval distributions and their first
moments) as well as of dynamical indicators (autocorrela-
tion functions). The analysis of the correlation time
reveals a CR associated to the stimulations of coherent
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subthreshold oscillations around the rest state. This new
type of CR coexists with standard CR related to the
regularization of spike sequences [12].

2. Model and methods

The HH model describes the dynamical evolution of the
membrane potential V ðtÞ. It can be written as

C
dV

dt
¼ gNam3hðENa � V Þ þ gK n4ðEK � V Þ

þ gLðEL � V Þ þ IðtÞ, ð1Þ

where IðtÞ represents the synaptic current and the evolution
of the gating variables X ¼ m; n; h is ruled by three
ordinary differential equations of the form dX=dt ¼

aX ðV Þð1� X Þ � bX ðV ÞX . The parameters entering in
Eq. (1) and the expressions of the nonlinear functions
aX ðV Þ and bX ðV Þ are reported in [13].

In this study we consider the response of the single HH
model to Ne (resp. Ni) uncorrelated trains of EPSPs (resp.
IPSPs) with NeðNiÞ ranging from 10 to 10,000. By
following Refs. [2,4], each PSP is schematized as an
instantaneous variation of the membrane potential by a
positive (resp. negative) amount DV for excitatory (resp.
inhibitory) synapses. The amplitude of each voltage kick is
assumed to be 0.5mV, i.e., reasonably small ð� 7%Þ with
respect to the distance between the ‘‘threshold’’ for spike
initiation for rapid EPSPs and the resting potential
ð� 627mVÞ estimated for the HH model [16,26]. More-
over, amplitudes � 0:5mV are comparable with average
EPSPs experimentally measured for pyramidal neurons in
the visual cortex of rats [10]. This amounts to exciting the
neuron (1) with an impulsive current

IðtÞ ¼ Q
XNe

k¼1

X
l

dðt� tl
kÞ �

XNi

m¼1

X
n

dðt� tn
mÞ

" #
, (2)

where tl
k (resp. tn

m) are the arrival times of the EPSPs (resp.
IPSPs) and Q ¼ CDV is the charge associated to each kick.
In order to mimic the inputs received by cortical neurons,
for each afferent (excitatory and inhibitory) synapse the
time interval distribution between PSP inputs is chosen to
be Poissonian with an average frequency n0 ¼ 100Hz [23]. 1

The stochastic input can be characterized in terms of the
average and the variance of the net spike count within a
temporal window DT

NðDTÞ ¼
XNe

k¼1

nE
k ðDTÞ �

XNi

m¼1

nI
mðDTÞ, (3)

where nE
k ðDTÞ (resp. nI

mðDTÞ) represents the number of
afferent EPSPs (resp. IPSPs) received from neuron k (resp.
m) in the interval DT . In the high input regime, by
assuming uncorrelated input spike trains, NðDTÞ follows a

Gaussian distribution (cf. Ref. [13]), with average and
variance derivable within the shot noise formalism as

hNðDTÞi ¼ ðNe �NiÞDTn0 (4)

and

Var½NðDTÞ� ¼ ðNe þNiÞDTn0 ¼ s2DTn0. (5)

The parameter s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNe þNiÞ

p
measures the standard

deviation of the stochastic input process.
The average current stimulating the neuron is given by

Ī ¼
CDVhNðDTÞi

DT
¼ CDVn0ðNe �NiÞ. (6)

Ī represents the bifurcation parameter ruling the dynamics
of the deterministic HH model; for ĪoISN ’ 6:27mA=cm2

the model is in the silent regime, i.e., in the absence of noise
the dynamics is attracted towards a stable fixed point and
the neuron does not fire. However, since the fixed point is a
focus the relaxation towards the rest state occurs
via damped oscillations (subthreshold oscillations) [19].
Periodic firing is observed for the HH model only above
ISN and it is associated to frequencies in the range
50280Hz.
We have verified that in the high input regime the

response of the neuron (for fixed n0) is determined once
fixed Ī and s, therefore it does not depend separately on Ne

and Ni, but only on their difference ðNe �NiÞ / Ī and sum
ðNe þNiÞ / s2 [13].
In order to characterize the output of the neuron and to

examine the coherence effects in the response we have
employed the following indicators: the distribution of the
output interspike intervals PISIðtÞ and its first moments; the
coefficient of variation of the output interpike intervals
distribution (PISIðtÞ) defined as R ¼ SISI=AISI, where AISI is
the average and SISI the standard deviation of the PISIðtÞ

(for a perfectly periodic response we have R ¼ 0 and R ¼ 1
for Poissonian output); the normalized autocorrelation
function CðtÞ for the membrane potential and the correla-
tion time [17] defined as

tc ¼

Z 1
0

C2ðtÞdt. (7)

CR is usually identified by a minimum (resp. a
maximum) in the coefficient of variation R (resp. in tc)
occurring at finite noise variance [12].

3. Results

The HH neuron subjected to stochastic input exhibits a
noise-induced (irregular) spiking behavior with an average
firing rate nout ¼ 1=AISI. For fixed Ī the firing rate increases
with the standard deviation of the noise (cf. Fig. 1).
The noise-induced firing activity becomes more and

more pronounced by approaching the repetitive firing
bifurcation ISN for the deterministic HH. The HH model is
a type II neuron, therefore the onset of oscillation at I ’

ISN is associated with a finite frequency ð’ 50HzÞ;
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1It should be stressed that the model here analyzed is driven by

impulsive post-synaptic currents and it should not be confused with

conductance-driven models [20,25].
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however, in the presence of noise, arbitrarily low spike
rates can be observed even in the silent regime.

3.1. Response of the HH model in the low and high noise

limit

Let us now examine more in detail the origin of noise-
induced spiking in the low and high noise limits. For low
noise we observe the coexistence of multi-peaks and an
exponential tail in the PISIðtÞ (cf. Fig. 2). As explained in
the following the multi-peak structure is related to the
relaxation dynamics of the membrane potential V ðtÞ

following a spike emission, while the exponential tail is
associated with noise-induced activation processes.

To understand better the first mechanism we have
studied the evolution of V ðtÞ following a step current of
amplitude Ī , i.e.,

IðtÞ ¼
0 if tp0;

Ī if t40:

�
(8)

As shown in Fig. 2 (dashed line) V ðtÞ exhibits one spike
followed by damped oscillations. This suggests that the
probability of eliciting a second spike is enhanced in
correspondence the maxima of the relaxation oscillations,
where V ðtÞ is nearest to the firing threshold. Moreover, it is
possible to show that the period Tnl of the first oscillation
has a clear nonlinear origin, while the period of successives
oscillations T l can be explained by a linear stability
analysis around the fixed point. Indeed we have verified
that the first peak (T fp) observed in the distribution PISIðtÞ

(continuous curve in Fig. 2) is related to Tnl, while the
successives peaks in the PISIðtÞ correspond to the linear
oscillations of period T l [13].

The second firing mechanism responsible for the
exponential tail in the PISIðtÞ is due to the competition
between two effects, on one side the tendency of the
dynamics to relax towards its stable fixed point and on the

other side noise fluctuations that instead lead the system
towards the firing threshold. In this framework the
dynamics of V ðtÞ can be described as the overdamped
dynamics of a particle in a potential well under the
influence of thermal fluctuations [9] and the average firing
time, or activation time Ta, can be expressed in terms of the
Kramers expression [9] for sufficiently small noise:

Ta / eW=s2 , (9)

where s2 plays the role of an effective temperature and W

of an energy barrier. For s2oW , i.e., in the low noise limit,
the dynamics can be characterized as an activation process:
PISIðtÞ resembles a Poissonian distribution with R � 1. For
s24W , i.e., in the high noise limit, the multi-peak structure
and the exponential tail disappear and PISIðtÞ reduces to an
inverse Gaussian corresponding to the distribution of the
first passage times for a diffusive process plus drift [26].
As a further indicator we have estimated the spike

triggered average potential (STAP) [18], which gives the
average shape of V ðtÞ preceding the emission of a spike, for
sufficiently long ISIs and for small s. As shown in Fig. 3,
V ðtÞ oscillates with period � T l before firing; therefore the
emission of a spike (for long ISIs) is triggered by the
excitation of linear subthreshold oscillations around the
fixed point. Thus, the HH neuron nearby the rest state acts
as a sort of selective filter since it responds (by emitting a
spike) with higher probability when it is stimulated with a
specific input frequency (� 1=T l ¼ 61288Hz for
0pĪpISN). This result agrees with the analysis of [27]
where it has been shown that a silent HH neuron subjected
to a sinusoidal current optimally resonates when forced
with a frequency linearly correlated with 1=T l.
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Fig. 1. Silent regime: average firing rate nout as a function of s for

increasing values of Ī (from the bottom to the top Ī ¼ �1; 0; 1; 2;
3; 4; 5; 6:15mA=cm2).
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Fig. 2. PISIðtÞ obtained for the stochastic input (2) with s ¼ 4:6
(continuous curve) and the relaxation dynamics of the membrane

potential V ðtÞ following a step current stimulation (dashed line). The

position of the output spike has been shifted to t ¼ 0 and the action

potential has been rescaled to better reveal the relaxation oscillations. In

the inset the exponential tail due to the activation mechanism is shown.

The data refer to Ī ¼ 6:15mA=cm2.
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3.2. Coherent response of the Hodgkin–Huxley neuron

In the silent regime we have found the coexistence of two
CRs: one is related to the regularization of the emitted
spike trains at intermediate noise levels and has previously
been reported in [11,27]; the second one, observed for the
first time, occurs at very low noise and is associated to the
coherence of subthreshold oscillations.

The first CR can be explained by noticing that the
dynamics of excitable systems can be characterized in terms
of two characteristic times [17]: an activation time Ta,
representing the time needed to excite the system, and an
excursion time Te, indicating the duration of the spike (i.e.,
the time spent in the excited state). An ISI is given by the
sum of these two times and therefore R can be (formally)
expressed as the sum of two parts depending separately on
Ta and Te. These two contributions vary in an opposite
way when the noise is increased and the competition of
these two tendencies leads to the maximal coherence
(associated to a minimum in R) for finite noise [12,17].
So there is an initial range of s-values where by increasing
the noise the spike emission is facilitated (Ta reduces
accordingly to Eq. (9)) and this renders the response of the
neuron more and more regular. On the other side at high s-
values the response becomes again more irregular, because
the noise induces firing even during the relative refractory
period thus modifying even the duration Te of the spike
itself. To summarize, the activation process responsible
for firing is gradually substituted by a diffusive process
with drift and at the transition from one mechanism to the
other a regularization of the output signal is observed. As
shown in Fig. 4, for different values of Ī , both the
coefficient of variation R and the signal correlation time
tc were able to identify clearly the first kind of coherence in
the silent regime. We can also see that tc increases and R

decreases when Ī ! ISN, i.e., the coherence of the emitted

spike trains increases by approaching the repetitive firing
regime.
The second kind of resonance could only be detected by

tc. In fact this property is not related to spike emission
(suprathreshold dynamics) but to the behavior of the signal
below the firing threshold. In Fig. 5a the behavior of tc for
Ī ¼ 4mA=cm2 is shown in a wider range of noise with
respect to Fig. 4a. In this range tc exhibits indeed two
maxima: the first and higher maximum at low noise (s � 3)
is related to the coherence of subthreshold oscillations,
while the second one at intermediate noise (s � 33) is due
to the CR just discussed above.
Let us now gain deeper insight about the origin of

these two maxima. For extremely low noise (so3) the
neuron rarely fires, i.e., Ta !1; increasing the noise
the subthreshold oscillations generated by the input kicks
are more and more correlated. For s43 the occurrence of
rare spikes tends to decorrelate the signal leading to a
decrease of tc. With a further increase of the noise V ðtÞ

becomes essentially a sequence of spikes and CðtÞ

represents the correlation between them; a second peak
appears in tc indicating the maximal coherence of the spike
sequence.
To investigate the transition from one to the

other behavior let us analyze the autocorrelation function
of V ðtÞ for increasing value of s, as shown in Fig. 5b.
For s � 3 the autocorrelation function CðtÞ oscillates
with a period � T l (see Section 3.1), while at s � 9:7 the
maxima of CðtÞ correspond to multiples of T fp, i.e., the
first peak of PISIðtÞ. In between these two values there
is a transition where the course of V ðtÞ, initially consisting
of mere subthreshold oscillations, is dominated by
the spikes. The transition is observed for s � 4:5,
where in correspondence to the first oscillation CðtÞ

reveals two maxima, one located at t � T l and another at
t � T fp.
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Fig. 3. Ī ¼ 5mA=cm2 and s ¼ 5:7. STAP preceding the emission of a

spike. At time t ¼ 0 the potential overcomes the spike detection threshold

(fixed at �5mV). STAP has been calculated by averaging only over ISIs
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Fig. 4. Coherence of the emitted spike trains for increasing values of Ī in

the silent regime. (a) tc (from bottom to top Ī ¼ �1; 0; 1; 2; 3; 4; 5mA=cm2).

(b) R (from top to bottom Ī ¼ �1; 0; 1; 2; 3; 4; 5mA=cm2).
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4. Conclusions

We have presented an analysis of the response of the
silent HH model in the high-input regime. In this regime the
HH neuron displays a large variety of dynamical behaviors
and its response is completely determined by the average
and the variance of the stochastic input. Our main result is
the coexistence of two different coherence resonances: the
first one, at intermediate noise levels, associated with the
regularization of the spikes emitted by the neuron; the
second one, at very low noise, related to the coherence of
subthreshold oscillations around the fixed point. The first
one can be revealed using both the ISI coefficent of
variation R and the autocorrelation time of the signal tc.
The second type of resonance, observed for the first time, is
not related to spike emission and can thus only be detected
by means of tc.

Moreover, we have examined the behavior of the HH
neuron for low and high input noise variance. The richness of
the HH dynamics is particularly pronounced for low input
noise where we have found the coexistence of a multimodal
structure and an exponential tail in the PISIðtÞ. The peaks in
the PISIðtÞ suggest that the system, under the influence of
stochastic inputs, can resonate when forced with specific
frequencies: the first peak is associated to frequencies in the g-
range [24] (namely, from 40 to 66Hz for Ī 2 ½0 : 9�mA=cm2),
and the second one to lower frequencies (namely, from 30 to
37Hz for the same interval of currents) [13].
In the silent regime the responsiveness of the single

neuron is enhanced by stochastic stimulations, in particular
the regularity of the emitted spike trains is maximal in
correspondence to an optimal noise level. Moreover, we
expect that a population of such neuronal elements will
have the capability to exhibit coherent and correlated
activity over different time scales (mainly in the g and b-
ranges [24]), a property that is believed to be important for
information encoding for cortical processing [21,22].
Indeed it has been found [27] that for sufficiently strong
synaptic coupling a globally coupled HH network sub-
jected to stochastic inputs reveals a collective synchronized
rhythmic firing in a range of 40–60Hz, induced via CR.
To proceed in the direction of more realistic situations

the present analysis performed for a current-driven model
should be extended by considering conductance-based
synaptic inputs [20,25]. It is surely worth to address this
issue in forthcoming studies, because the response of these
two classes of models to noise fluctuations can sometimes
be even opposite, as shown in [25] for the output firing rate.
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