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Disturbance propagation in chaotic extended systems with long-range coupling
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Propagation of initially localized perturbations is investigated in chaotic coupled map lattices with long-
range couplings decaying as a power of the distance. The initial perturbation propagates exponentially fast
along the lattice, with a rate given by the ratio of the maximal Lyapunov exponent and the power of the
coupling. A complementary description in terms of a suitable comoving Lyapunov exponent is also given.
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Propagation of fronts in spatially extended systems is a In order to mimic a spatially extended system with long-
topic of wide interest, in several scientific contexts includingrange interaction, we introduce the CML modl&6]
fluid dynamics, dendritic growth, directional solidification,
liquid crystals, chemical reactions, flame propagation, and u(x,t+1)="f@(x,t)), D
epidemic spreadinffl—4]. In one spatial dimension, partial
differential equation$2], coupled map lattice6CML’s) [5]  where the indicex labels the sites of a chain of length

and cellular automat@6] models have been studied. The andt is the discrete time variable. The functid(x) is a
fronts were either separating stable and unstable steady stai@saotic map of the interval, and

[7-9], or regular and chaotic regiof$0,11].
A similar phenomenon is the propagation of disturbances.
in fully chaotic states of CML'§12,13 and of the complex U(Xt)=(1—g)u(x,H)+e o >
Ginzburg-Landau equatiofl4]. When the spatial coupling
is local, e.g., for CML with nearest-neighbor interactions
two distinct regimes have been found to characterize the d
namics of frontd12]. In the first regime, the velocity of the
propagating front is calculated in the framework of a linear
analysis, while in the second the value of the velocity is
determinated by the full nonlinear evolution of the system.
For a particular class of models, a transition between the two c(a)
regimes has been observed when a parameter is drid W(X)= —7, 3
The scenario is not expected to be different for couplings x|
extending to more than two neighbors, since this affects only . o
the limit velocity of propagatiofi15]. where a>1 7to 7|1n'sure that the r?ormallzapon consta'nt
If more general spatial couplings are considered, even thﬁ(“):[EyM “]" " is bounded. Obviously, this constant is
very definition of a velocity can be nontrivial. For example, independent ofl. in the thermodynamic limit.— . For
epidemic models in one dimension exhibit a finite propaga®— +, model (2) reduces to the usual nearest-neighbors
tion speed if the spatial couplinge. the infection ratede- ~ CML [5]. Notice that, at variance with the model of Ref.
cays exponentially or fastdB]. The same result for some [16], the long-range coupling is not introduced as a pertur-
CML models is reported in Ref16], where it was observed bation of the nearest-neighbors CML. _
that the time for a localized disturbance to overcome a 10 Study the propagation of localized disturbances in sys-
threshold value at a certain distaricom the initially per- ~ t8m (2), let us consider two chaotic trajectorig(x,t)} and
turbed site grows linearly with if the coupling is local or {v(X,t)} generated by starting initial conditions, which differ
exponentially decaying, while is almost independent tfr ~ Only around a single sitg=0. More precisely, we assume
couplings decaying with power lawgiith exponent not too thatu(x,O) is a typical chaotic state, obtained after all tran-
large, indicating that the velocity is “infinite.” sients have died out, and(x,0)=u(x,0)+uo(x), where
This Rapid Communication focuses on the study of disUo(X) is & function localized around the origin.
turbance propagation in systems with long-range coupling, !f only linear mechanisms of propagation are present
whose strength decays as a power law in space. The spil2,13, we can assume that the evolution of
tiotemporal evolution of an initially localized perturbation of du(x,t)=u(x,t)—v(x,t) is ruled by the linearized dynamics
a chaotic state is studied theoretically and numerically. The

w(x—yju(y,t), (2

<|x—y|sAL

'where A =(L—1)/2 (L is assumed to be ogldAs usual,
yrSeriodic boundary conditions are consideredl(x,t)
=u(x=L,t). The coupling constant is bounded between 0
and 1, and we consider the coupling strength to decay in
space as

perturbation is found to spread exponentially fast along the Su(x,t+1)y=m(x,t)| (1—g)du(x,t)

lattice, and an expression for the corresponding rate is given.

A comoving Lyapunov analysis confirms that the prediction +e _

is indeed correct. O<\x2y|SAL w(x—y)su(y,t)|, (4
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wherem(x,t)=f’(U(x,t)) is the local multiplier along the 20
assigned trajectory. This hypothesis is justified at least for
large distances |%|>1) where the disturbance is small.
Moreover, its validity has also been numerically checked by
comparing the evolution given by Ed4) with that of
u(x,t)—v(x,t). As a matter of fact, nonlinear effects, i.e.,
saturation of the perturbation growth, are present only in the
central part of the disturbance.

We now consider the spatial shape of the leading edge of
the front and its temporal evolution in the lintit> for the

10

In<Idu(x,t)|>
(=]

ideal case of an infinite latticeL(=~). As a starting point, -10
we make the ansatz that for|>1,
d(X,1) . ‘ ‘
Su(x,t)= , 5 -20
=T © T 2 Z ® Inx

with ¢(x,t) weakly dependent or. Inserting Eq.(5) into

Eq. (4), we obtain tude (| su(x,t)|) vs Inx at three different times for coupled tent

d(x,t+1) d(X,1) maps witha=2, L=5001, ance = 3. From bottom to top the three
—|X|ﬁ =m(x,t)| (1—¢) | |B solid curves correspond tb=20, 40, and 60, respectively. The
dashed line has a slope 2.

FIG. 1. Plot of the logarithm of the average disturbance ampli-

t
Te> wix— y>¢|(y|ﬁ). ©)

y#X

A
r(t)~exp<Et) =exp(S(B)t) (11
Due to the long-range coupling we can assume that, as a first
approximation, a mean field description holds. This amounts

to neglecting the spatial fluctuations éfx,t), and replacing ©f {2, where the value of thg parameter depends on the
m(x,t) with its averagee, where \ is the (maxima) initial shape of the disturbance. From the above-reported ar-

Lyapunov exponent. Equatid) is then split into two equa- guments it is clear that, if the perturbation decays initially as

tions, one for the time evolution Ug(X)~|x| 2, with B<a, then its profile will be preserved
during the time evolution. For more general initial conditions
p(t+1)=erg(t), (7)  the selectegB can be determined by means of the following

. . argument. Let us considery(x) to be a superposition of

and one for the spatial profile several profiles, each one decayingxs #, but with differ-

1 wW(x—y) ent B<a. In the linear approximation, each one of these
TR —F - (8) components will propagate independently with a different

XIP g7 1yl rate S(B). On the basis of general argumef®3, we expect

that[for ug(x) sufficiently localized the profile with slowest

Moreover, at least fox>-1, the sum appearing in E() can n_grovvth rateS(«) =N/« will be selected. These results are
n

be approximated by neglecting the small terms coming fro

decaying tails, i.e., by extending the sum only between 1 a ; .
x—1y(fo% symmetry Xeasons vg\]/e can also Zonsioﬂe’rO) outhnﬁ)[%]?u] and fccj)rﬁthe corr;)plex Gr:nzbhurg-LIandfal;] e;qua—
. . -2/ tion [14], the main difference being that the tails of the front
;Ii')t\ed?pait:]atll Shr?dﬁ?i (Efthe front is thus conserved in time if theare exponential for the latter case.
ed-paint co 0 We numerically tested the above predictions for a lattice
1 c(a) of coupled tent mapisf (z) = 1—2|z|], with several values of
F~o< ‘. W (9 the coupling constant and chain lengths ranging from
y=x L=1001 to 20 001. In particular, we considered a single-site
is satisfied forx large enough. Since the leading contribu- Perturbationue(x) = 6,0, where s, , is the usual Kroneker
tions to the sum came from the extrema, and can be estflelta. We computed the time evolution &ii(x,t) according
mated to be of ordeix| # and|x| ¢, Eq.(9) is fulfilled for to Eq. (4), and averaged it over different reference trajecto-
B=<a. By combining this result with that of Eq(7), we ries. As shown in Fig. 1, the perturbation profile decays on
obtain the expression for the asymptotic behavior of the front':“’er"’“?Je a$x| " “, while growing exponentially in time. We

nalogous to those found for CML with nearest-neighbors

leading edge: have also verified that an initial disturbance with a decaying
profile|x| ~# is conserved only foB< «; otherwise a power-
exp(At) law decay exponenk is always found. Finally, we checked
ou(x,t)~ x| - (10 the validity of Eq.(7) by verifying that, for increasing, the

local growth rate on the tails afu approaches the Lyapunov
Let us define the front position(t) as the maximal dis- exponent.
tance fromx=0 where| Su(x,t)|= 6, with #>0 being a pre- A direct numerical test of Eq.11) is complicated by the
assigned threshold. According to E40), r(t) grows expo- presence of finite-size effectsee, however, Ref17] for
nentially as results on a closely related a CML mogéhn indirect check
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is accomplished by considering a suitably defined comoving
Lyapunov exponend [18]. For a CML with local coupling,
A(v) is defined as the asymptotic growth rate of a distur-
bance in a reference frame moving along the “world line”

0.3

X,(t)=vt, wherev is the frame velocity |p|<1). This
amounts to assuméu(x,(t),t)~exp(A(v)t). Within this
scheme, the conditiom\(v)=0 defines the propagation
speed of an initially localized disturbanf#8,13.

In the present case, since the long-range coupling leads to

exponentially fast propagatidisee Eq.(11)], we define the
comoving Lyapunov exponemki(R) in a reference frame
moving along the “world line”xg(t) =[ expRtY)—1]. There-
fore, on the leading edge and for sufficiently long titpé¢he
relation

Su(x,t)~exp(A(R)t)=exp A t— alnx) (12

AR

0.10

0.05

0.00
R

should hold. From this equation it is readily seen that the FIG. 2. The finite-time comoving Lyapunov exponent$R,t)

comoving exponent must be a linear function of the Rte
namely,

A(R)=A—aR. (13

Notice that, in analogy with system with local coupling, the

condition A(R)=0 gives exactly the growth rate

S(a)=\/«a, in agreement with the above prediction.

as a function of ratdR at timet=20, 40, and 8Qfrom bottom to
top), for coupled tent maps witle=3, L=5001, ands=3. The
dashed line represents the asymptotic expressidR) =\ — %’R.

The deviation from Eq(13) at small values oR is due to
transient effects. We have numerically observed that, for in-
creasingt, the interval ofR values where deviations are ob-

As before, the finite size of the system prevents the nuserved reduces.

merical computation of\ for asymptotically large times, as

In conclusion, we have fully identified the mechanism

requested by its very definition. Therefore, we computed it¢hat rules the disturbance propagation for systems with

finite-time value
SU(Xg(1),1)

6u(0,0 (149

)

where R=In|x+1|/t, and (-) is the average over different

1
A(R,t)=?<ln

reference trajectories. As can be easily realized, the maxim

accessible rate will decrease a&/ln Therefore if the itera-

tion time is doubled, the chain length should be increased b

a factorL in order to achieve the same maxinfal Due to

the large amount of CPU time required by the iteration, it is

thus not feasible to consider system sizes larger th&nat@i
the accessible ranges B andt values are limited by this

power law long-range couplings. This gives at any position
in space an exponential increase in time, and a power law
falloff with x. The power with which the perturbation de-
cays, is, for generic initial conditions equal to the power
describing the interaction falloff. Moreover, the time needed
for the disturbance to propagate with finite amplitude at a
iven distancd is inversely proportional to the Lyapunov

exponents, and increases logarithmically with

Y As a final remark, we expect that this propagation mecha-

nism can also be observed for fronts separating stable and
unstable steady states, when a power law decay coupling is
assumed for the spatial interaction. We hope that this work
will stimulate further studies of front spreading into noncha-

constraint. Nevertheless, the results reported in Fig. 2 consic states of system with long-range coupling, since at the

firm that a linear behavioA (R,t) =\*(t) — aR is observed
at each time and foR not too small, but with an intercept

A* #\ due to the finite time of observation. Empirically, we

present moment a detailed analysis is still lackit§].
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