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Disturbance propagation in chaotic extended systems with long-range coupling
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Propagation of initially localized perturbations is investigated in chaotic coupled map lattices with long-
range couplings decaying as a power of the distance. The initial perturbation propagates exponentially fast
along the lattice, with a rate given by the ratio of the maximal Lyapunov exponent and the power of the
coupling. A complementary description in terms of a suitable comoving Lyapunov exponent is also given.
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Propagation of fronts in spatially extended systems i
topic of wide interest, in several scientific contexts includi
fluid dynamics, dendritic growth, directional solidificatio
liquid crystals, chemical reactions, flame propagation, a
epidemic spreading@1–4#. In one spatial dimension, partia
differential equations@2#, coupled map lattices~CML’s! @5#
and cellular automata@6# models have been studied. Th
fronts were either separating stable and unstable steady s
@7–9#, or regular and chaotic regions@10,11#.

A similar phenomenon is the propagation of disturban
in fully chaotic states of CML’s@12,13# and of the complex
Ginzburg-Landau equation@14#. When the spatial coupling
is local, e.g., for CML with nearest-neighbor interaction
two distinct regimes have been found to characterize the
namics of fronts@12#. In the first regime, the velocity of the
propagating front is calculated in the framework of a line
analysis, while in the second the value of the velocity
determinated by the full nonlinear evolution of the syste
For a particular class of models, a transition between the
regimes has been observed when a parameter is varied@12#.
The scenario is not expected to be different for couplin
extending to more than two neighbors, since this affects o
the limit velocity of propagation@15#.

If more general spatial couplings are considered, even
very definition of a velocity can be nontrivial. For examp
epidemic models in one dimension exhibit a finite propa
tion speed if the spatial coupling~i.e. the infection rate! de-
cays exponentially or faster@3#. The same result for som
CML models is reported in Ref.@16#, where it was observed
that the time for a localized disturbance to overcome
threshold value at a certain distancel from the initially per-
turbed site grows linearly withl if the coupling is local or
exponentially decaying, while is almost independent ofl for
couplings decaying with power laws~with exponent not too
large!, indicating that the velocity is ‘‘infinite.’’

This Rapid Communication focuses on the study of d
turbance propagation in systems with long-range coupl
whose strength decays as a power law in space. The
tiotemporal evolution of an initially localized perturbation
a chaotic state is studied theoretically and numerically. T
perturbation is found to spread exponentially fast along
lattice, and an expression for the corresponding rate is gi
A comoving Lyapunov analysis confirms that the predicti
is indeed correct.
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In order to mimic a spatially extended system with lon
range interaction, we introduce the CML model@16#

u~x,t11!5 f „ũ~x,t !…, ~1!

where the indicesx labels the sites of a chain of lengthL,
and t is the discrete time variable. The functionf (x) is a
chaotic map of the interval, and

ũ~x,t !5~12«!u~x,t !1« (
0,ux2yu<DL

w~x2y!u~y,t !, ~2!

whereDL5(L21)/2 (L is assumed to be odd!. As usual,
periodic boundary conditions are consideredu(x,t)
5u(x6L,t). The coupling constant« is bounded between 0
and 1, and we consider the coupling strength to decay
space as

w~x!5
c~a!

uxua
, ~3!

where a.1 to insure that the normalization consta
c(a)5@(yuyu2a#21 is bounded. Obviously, this constant
independent ofL in the thermodynamic limitL→`. For
a→1`, model ~2! reduces to the usual nearest-neighb
CML @5#. Notice that, at variance with the model of Re
@16#, the long-range coupling is not introduced as a pert
bation of the nearest-neighbors CML.

To study the propagation of localized disturbances in s
tem ~2!, let us consider two chaotic trajectores$u(x,t)% and
$v(x,t)% generated by starting initial conditions, which diffe
only around a single sitex50. More precisely, we assum
that u(x,0) is a typical chaotic state, obtained after all tra
sients have died out, andv(x,0)5u(x,0)1u0(x), where
u0(x) is a function localized around the origin.

If only linear mechanisms of propagation are prese
@12,13#, we can assume that the evolution
du(x,t)5u(x,t)2v(x,t) is ruled by the linearized dynamic

du~x,t11!5m~x,t !F ~12«!du~x,t !

1« (
0,ux2yu<DL

w~x2y!du~y,t !G , ~4!
R3805 © 1997 The American Physical Society
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R3806 55ALESSANDRO TORCINI AND STEFANO LEPRI
wherem(x,t)5 f 8„ũ(x,t)… is the local multiplier along the
assigned trajectory. This hypothesis is justified at least
large distances (uxu@1) where the disturbance is sma
Moreover, its validity has also been numerically checked
comparing the evolution given by Eq.~4! with that of
u(x,t)2v(x,t). As a matter of fact, nonlinear effects, i.e
saturation of the perturbation growth, are present only in
central part of the disturbance.

We now consider the spatial shape of the leading edg
the front and its temporal evolution in the limitt→` for the
ideal case of an infinite lattice (L5`). As a starting point,
we make the ansatz that foruxu@1,

du~x,t !5
f~x,t !

uxub
, ~5!

with f(x,t) weakly dependent onx. Inserting Eq.~5! into
Eq. ~4!, we obtain

f~x,t11!

uxub
5m~x,t !F ~12«!

f~x,t !

uxub

1«(
yÞx

w~x2y!
f~y,t !

uyub G . ~6!

Due to the long-range coupling we can assume that, as a
approximation, a mean field description holds. This amou
to neglecting the spatial fluctuations off(x,t), and replacing
m(x,t) with its averageel, where l is the ~maximal!
Lyapunov exponent. Equation~6! is then split into two equa-
tions, one for the time evolution

f~ t11!5elf~ t !, ~7!

and one for the spatial profile

1

uxub
5(

yÞx

w~x2y!

uyub
. ~8!

Moreover, at least forx@1, the sum appearing in Eq.~8! can
be approximated by neglecting the small terms coming fr
decaying tails, i.e., by extending the sum only between 1
x21 ~for symmetry reasons, we can also considerx.0).
The spatial shape of the front is thus conserved in time if
fixed-point condition

1

xb ' (
0,y,x

c~a!

yb~x2y!a ~9!

is satisfied forx large enough. Since the leading contrib
tions to the sum came from the extrema, and can be e
mated to be of orderuxu2b and uxu2a, Eq. ~9! is fulfilled for
b<a. By combining this result with that of Eq.~7!, we
obtain the expression for the asymptotic behavior of the fr
leading edge:

du~x,t !;
exp~lt !

uxub
. ~10!

Let us define the front positionr (t) as the maximal dis-
tance fromx50 whereudu(x,t)u>u, with u.0 being a pre-
assigned threshold. According to Eq.~10!, r (t) grows expo-
nentially as
r

y

e
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ts

d

e
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t

r ~ t !;expS l

b
t D[exp„S~b!t… ~11!

for t→`, where the value of theb parameter depends on th
initial shape of the disturbance. From the above-reported
guments it is clear that, if the perturbation decays initially
u0(x);uxu2b, with b<a, then its profile will be preserved
during the time evolution. For more general initial conditio
the selectedb can be determined by means of the followin
argument. Let us consideru0(x) to be a superposition o
several profiles, each one decaying asuxu2b, but with differ-
ent b,a. In the linear approximation, each one of the
components will propagate independently with a differe
rateS(b). On the basis of general arguments@8#, we expect
that @for u0(x) sufficiently localized# the profile with slowest
growth rateS(a)5l/a will be selected. These results a
analogous to those found for CML with nearest-neighb
coupling @13# and for the complex Ginzburg-Landau equ
tion @14#, the main difference being that the tails of the fro
are exponential for the latter case.

We numerically tested the above predictions for a latt
of coupled tent maps@ f (z)5122uzu#, with several values of
the coupling constant and chain lengths ranging fr
L51001 to 20 001. In particular, we considered a single-s
perturbationu0(x)5dx,0 , wheredx,y is the usual Kroneker
delta. We computed the time evolution ofdu(x,t) according
to Eq. ~4!, and averaged it over different reference trajec
ries. As shown in Fig. 1, the perturbation profile decays
average asuxu2a, while growing exponentially in time. We
have also verified that an initial disturbance with a decay
profile uxu2b is conserved only forb<a; otherwise a power-
law decay exponenta is always found. Finally, we checke
the validity of Eq.~7! by verifying that, for increasingt, the
local growth rate on the tails ofdu approaches the Lyapuno
exponent.

A direct numerical test of Eq.~11! is complicated by the
presence of finite-size effects~see, however, Ref.@17# for
results on a closely related a CML model!. An indirect check

FIG. 1. Plot of the logarithm of the average disturbance am
tude ^udu(x,t)u& vs lnx at three different times for coupled ten

maps witha52, L55001, and«5
1
3 . From bottom to top the three

solid curves correspond tot520, 40, and 60, respectively. Th
dashed line has a slope 2.
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is accomplished by considering a suitably defined comov
Lyapunov exponentL @18#. For a CML with local coupling,
L(v) is defined as the asymptotic growth rate of a dist
bance in a reference frame moving along the ‘‘world line
xv(t)5vt, where v is the frame velocity (uvu<1). This
amounts to assumedu„xv(t),t…;exp„L(v)t…. Within this
scheme, the conditionL(v)50 defines the propagatio
speed of an initially localized disturbance@18,13#.

In the present case, since the long-range coupling lead
exponentially fast propagation@see Eq.~11!#, we define the
comoving Lyapunov exponentL(R) in a reference frame
moving along the ‘‘world line’’xR(t)5@exp(Rt)21#. There-
fore, on the leading edge and for sufficiently long timet, the
relation

du~x,t !;exp„L~R!t…5exp~lt2a lnx! ~12!

should hold. From this equation it is readily seen that
comoving exponent must be a linear function of the rateR,
namely,

L~R!5l2aR. ~13!

Notice that, in analogy with system with local coupling, t
condition L(R)50 gives exactly the growth rat
S(a)5l/a, in agreement with the above prediction.

As before, the finite size of the system prevents the
merical computation ofL for asymptotically large times, a
requested by its very definition. Therefore, we computed
finite-time value

L~R,t !5
1

t K lnUdu~xR~ t !,t !

du~0,0! U L , ~14!

whereR5 lnux11u/t, and ^•& is the average over differen
reference trajectories. As can be easily realized, the max
accessible rate will decrease as lnL/t. Therefore if the itera-
tion time is doubled, the chain length should be increased
a factorL in order to achieve the same maximalR. Due to
the large amount of CPU time required by the iteration, i
thus not feasible to consider system sizes larger than 104, and
the accessible ranges ofR and t values are limited by this
constraint. Nevertheless, the results reported in Fig. 2 c
firm that a linear behaviorL(R,t)5l* (t)2aR is observed
at each time and forR not too small, but with an intercep
l*Þl due to the finite time of observation. Empirically, w
found that this intercept converges according to the r
l* (2nt)2l* (t).const/qn21, for someq.1, so that we
can extrapolate its asymptotic valuel* (`) on the basis of
the available data. Indeed, for the situation reported in Fig
(a5 3

2 and«5 1
3! we have estimated a valuel* (`)50.335,

in excellent agreement with the corresponding Lyapunov
ponentl50.338.
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The deviation from Eq.~13! at small values ofR is due to
transient effects. We have numerically observed that, for
creasingt, the interval ofR values where deviations are ob
served reduces.

In conclusion, we have fully identified the mechanis
that rules the disturbance propagation for systems w
power law long-range couplings. This gives at any posit
in space an exponential increase in time, and a power
falloff with x. The power with which the perturbation de
cays, is, for generic initial conditions equal to the pow
describing the interaction falloff. Moreover, the time need
for the disturbance to propagate with finite amplitude a
given distancel is inversely proportional to the Lyapuno
exponents, and increases logarithmically withl .

As a final remark, we expect that this propagation mec
nism can also be observed for fronts separating stable
unstable steady states, when a power law decay couplin
assumed for the spatial interaction. We hope that this w
will stimulate further studies of front spreading into nonch
otic states of system with long-range coupling, since at
present moment a detailed analysis is still lacking@19#.

We are indebted to P. Grassberger for effective sugg
tions, and a careful reading. We thank R. Livi, A. Pikovsk
A. Politi, and O. Rudzick for useful discussions as well
the ISI Foundation~Torino! and the EU HC&M Network
ERBCHRX-CT940546 for partial support. One of us~A.T.!
gratefully acknowledges the European Community for
research fellowship~No. ERBCHBICT941569! and M.
Frese, who encouraged him to carry on this research.

FIG. 2. The finite-time comoving Lyapunov exponentsL(R,t)
as a function of rateR at time t520, 40, and 80~from bottom to
top!, for coupled tent maps witha5

3
2, L55001, and«5

1
3. The

dashed line represents the asymptotic expressionL(R)5l2
3
2R.
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