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The phase-turbulen@T) regime for the one-dimensional complex Ginzburg-Landau equé€GgsLE) is
carefully studied, in the limit of large systems and long integration times, using an efficient integration scheme.
Particular attention is paid to solutions with a nonzero phase gradient. For fixed control parameters, solutions
with conserved average phase gradiergxist only for|v| less than some upper limit. The transition from
phase to defect turbulence happens when this limit becomes zero. A Lyapunov analysis shows that the system
becomes less and less chaotic for increasing values of the phase gradient. For high values of the phase gradient
a family of nonchaotic solutions of the CGLE is found. These solutions consist of spatially periodic or
aperiodic waves traveling with constant velocity. They typically have incommensurate velocities for phase and
amplitude propagation, showing thereby a type of quasiperiodic behavior. The main features of these traveling
wave solutions can be explained through a modified Kuramoto-Sivashinsky equation that rules the phase
dynamics of the CGLE in the PT phase. The latter explains also the behavior of the maximal Lyapunov
exponents of chaotic solutionsS1063-651X97)08604-2

PACS numbses): 05.45+b, 47.27.Cn, 47.27.Eq

I. INTRODUCTION Equation(1) admits plane-wave solutions of the form
The complex Ginzburg-Landau equatit®BGLE) plays a Ao(x,t) = V1—KZexli (kx—Qot)], 2

fundamental role in the study of spatially extended systems. 5

It describes the dynamics of a generic spatially extended syy¥here  Qo=—cs+(c;+cg)k®.  Below the so-called

tem that undergoes a Hopf bifurcation from a stationary to arfenjamin-Feir(BF) line defined byc;=1/c, these solutions

oscillatory state. Sufficiently close to the bifurcation point,are linearly stable providedk?<(1—c;c3)/[2(1+c5)

any such system can be described by the CGLEFor a  +1—c;c¢3] [11]. Outside this “Benjamin-Feir band,” one

review of experimental systems described by the CGLE sebas an Eckhaus instability against long-wavelength modes.

[2]. Slightly below the BF line one finds multistability; i.e., the
In the present paper we discuss only the CGLE in ondinal solution depends on the initial conditiop¥d. Above it,

spatial dimension. Even though this lacks important featurese., for csc;>1, all plane-wave modes are unstable. The

of the CGLE in higher dimensions, it displays a variety of latter is the region we are interested in.

chaotic and stationary regimes for different values of control For generianot necessarily periodicsolutions, theaver-

parameters. Recently, Shraimeinal.[3] and Chatd4] have  agephase gradient is defined as

provided a careful description of these regimes. In particular,

four different chaotic states have been identified: the phase- b= Edexa w(x.t) &)

turbulent(PT), the defect-turbulenDT), the bichaotic, and LJo XA

the spatiotemporal intermittent regirfé]. The fundamental

states are the PT and the DT regimes. The bichaotic state ighereL is the system sizéwe assume periodic boundary

characterized by the fact that PT or DT chaos can arisezonditionsA(x+L,t)=A(x,t) throughout this paper, unless

depending on the initial conditions — while DT chaos or stated differently. The PT phase is defined as that regime

stable(periodig solutions can appear in the intermittent re- wherev is conserveds5]. It is encountered just above the BF

gion. The PT and DT phases have been the object of severihe (i.e., forc;>1/c;). It is a state where the chaotic behav-

detailed studie§3,5-9. ior of the field is essentially ruled by the phase dynamics.
Let us write the one-dimensional CGLE as The amplitude, always bounded away from zero for ).
to make sense, shows small fluctuations.
A= (1+ic))Ay+A—(1—icy)|Al?A, (1) This is different in the DT regime in which the amplitude-

dynamics becomes essentj8l5,6]. Large amplitude oscil-
where the parameters, and c; are real positive numbers, lations are observed in this phase, which occasionally drive
while A(x,t)=p(x,t)exdig(xt)] is a complex field of am- p(x,t) down to zero. Events where this happens are called
plitude p and phasey. Equation(1) reduces in the limit defects. At a defect, the phase is of course no longer defined,
(cq,¢c3)—(,») to the integrable nonlinear Schiinger and the appearance of a defect implies that the phase differ-
equation, an equation well known to admit soliton-like solu-ence (x+ €,t) — (X— €,t) jumps by =27. Thusv is no
tions [10]. In the opposite limit, ¢;,c3)—(0,0), the real longer conserved.
Ginzburg-Landau equation will be recovered, an equation The transition from the PT to the DT regime happens at a
related to symmetry-breaking instabilities of nonoscillatoryline L, in the (c;,c3) plane. To locate this transition pre-
type[1]. cisely[3,9], one needs some order parameter that allows one
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to distinguish the two phases. Several parameters have beerponentially, and the exponent will depend on the maximal
proposed recently: the density of defects, the phase and amyapunov exponent: roughly we expect&A(t)~eC“2t,
plitude correlation lengths, and the Kaplan-Yorke dimensionyherec is the constant in th©(+3) correction in Eq(6).
[7-9]. The first-order parameter introduced to identify the Solving the nonlinear evolutiog"™ is easy, by consider-

two phases is the defect dens&b{ [3] Its value is>0 in the |ng amp”tude and phase Separate|y_ We first find
DT regime, while it vanishes when approaching the PT

phase[3,9]. Presenting other suitable order parameters will p;(x,t+r)=[e""p](x,t)={e 2T lp(x,t)?—1]+1} 2
be one of the aims of the present paper. (€]
In the PT regime, all observables depend of course on the ) o )
value of v, as ergodicity is broken in this phase. Neverthe-Inserting this into the equatlorj for the phase, the latter can
less, in the literature only few studies have been devoted t8!SO be solved exactly to obtain
solutions withvy#0 [12,13. Filling this gap is the second AN
goal of the present paper. It will be shown that most observ- vt n=[e" Ty
ables depend indeed rather strongly and systematically on = (x,0)+ Ca{ 7+ In[ p(X,1)/ p1(X,t+ 7)]}.
V.
Since our study is mostly numerical, we need an efficient ©

integratipn routine. We found that a scheme, similar to buty ontrivial problem appears only for the solutiefit of the
more efficient than the one introduced Itb], gave excellent |inaar part since this is nonlocal. It is only here that our

results. This_ scheme is introduced in the next section a”glgorithm deviates from previous applications of the leap
—20. In these papers, the solu-

trgnsition from phase to defect turbulence is investigateqiOn of the nonlocal part was performed in Fourier space.
with the help of an order parameter. A Lyapunov analysis fofryis means that two Fourier transformations have to be per-

the solutions withw+0 is reported in Sec. IV together with omed for each integration step. It leads to what will be

a detailed characterization of the observed stable solution§a||ed the pseudospectral method in the following. In spite of

In Sec. V itis shown how a modified Kuramoto-Sivashinskyne speed of fast Fourier transforFT) algorithms, it can
equation for the phase is able to reproduce the main featur% quite time consuming. It can also lead to intolerable
of the dynamics of the considered solutions of the CGLE 4 ,nd-off errors. which was the main reasor{ 1] to per-

Our results are summerized in Sec. VI. form this step by integrating with the Greens function/of

More precisely, let us denote b¢(x,t) the solution of
II. INTEGRATION SCHEME

The algorithm applied in this work is an operator splitting KIn=LK (10

scheme similar to the well known “leap frog” algorithm for \yjth initial conditionK (x,0)= 8(x). For the present case it is
ordinary differential equationfthis should not be confused  gjmp|y

with the “staggered leap frog’[14] for partial differential

equationg PDE’s)]. This algorithm is based on the fact that B 5

the dynamics consists of two independent terms, one nonlin- K(x,7)= \ﬁe‘ﬁr" [cog Bix?)—isin(Bix?)] (11
ear but local and the other nonlocal but linear, each of which 7

by itself can be easily integrated. In the present case, this; —n_ip— ; -1

splitting is chosen as With f=,—i fi=[47(1+icq)] ™. Then

IA ef’A x,t=JdK ,TAX—E,1). 12
R - NA+CA @ [e™"Al(x,t) EK(&,T)A(X=E,1) (12
_ SinceK(&,7) can be computed numerically and stored once
with at the beginning, the algorithm essentially involves one con-
2 volution for each time step.
NA=A—(1—ics)|A?A, LA:(l+iCl)(9_2_ (5) In practice, space has of course to be discretized as well.
d Let us denotéA;(t) =A(iA,t), whereA is the resolution of

) ] the spatial grid. The most straightforward approdaked
For awfg‘ta” time step r, the formal solution jngeed in[15]) would seem to start from Eq12), with the
Alt)=e A(0) of Eq. (4) is then approximated by integral simply replaced by a finite sum over the central site

means of the Trotter formula plus its 2N nearest neighbors, which would lead to
e(J\/+ L)7_— e,A/T/ZGLteNT/2+ O( ,7_3)_ (6) N
o [e“Ali(D~ 2 K(jA, DA (1), (13
For a finite timet=n7,n>1, we can lump togethen—1 j=-N

half steps and arrive at o _ ) o
But this is not the optimal discrete approximation to Eg.

e(N+ﬁ>t%eNT/Z[eﬁteNf]nfleﬁteNﬂZI 7) (12). To obtain a more precise one, we first notice that since
e“"A is a linear operator symmetric under translations and
Notice that we refrain from giving here a formal error esti- reflectionsx— —x, we can write any lattice approximation
mate. For a chaotic system, the error will of course increasef it as
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N

(AL~ KA (DAL (D], (19 "
i=0 B A
with unknown coefficient ;. Next we observe that we can 10° F re o
decomposeé\(x,t) into Fourier modes. Let us assume that a v g '
good approximation is obtained by a superposition of 107 | \\‘H
2N+1 modese*®* with k=—N, ... N, and « some yet S 4=10
unspecified positive constant. We then can determine the © 10 | " ——o
K; such that it gives the exact evolution on these modes. A 107"
straightforward calculation shows that this implies
100 A=0.5
N = ]
Ko+ 2,-21 KjcogjAka)=e~ (I+ieute’yk=0, . N, 107 ¢ R %

(15
FIG. 1. Mean square errors due to space discretization and trun-
Finally, the value ofa is chosen such that thke, norm  cation of the convolution for our algorithitsymbols, and due to
{|Ko|?+ 23~ 0|K{|2¥? of K is minimal. With this choice, Space discretization for a time splitting pseudospectral ¢odkd
we hopefuIJIy mirJ1imize the effect of the neglected modes. lines). The dashed line shows the errors due to the time discretiza-
In the limit N—co, the optimal set of Fourier modes are tion (they are the same for both algorithms, and independent of the
those witha=2m/A, and the above scheme should give spatial discretization All the data refer to C1= 3.5, ¢3=0.9,
denical resulsup 0 round-of errorsas th pseudospe- 0% STANC1024, The resuls o or gt e epers
tral r_nethod .Obta".]ed by .applylng a discrete FF e EA. &imulations were done with double precision, whence the roundoff
and integrating it in Fourier space. Thus the error committe L ors are at-10- 25
in our method with finiteN cannot be smaller than the error '
committed by the FFT method, and it should tend towards 'ﬁarger than~

60. Due to the large time discretization error,
for N—oo,

. . ... we could indeed safely us¢= 10. (iii) The FFT code needs
In order to compare the precision of our algorithm with 5 cpy time per mesh point that increases logarithmically
that of the pseudospectral code, we have evaluated the Me@Rn the numbel/A of mesh points, while our algorithm is
Square errors accumulated during a fixed total integr""tior(]—zssentially linear ilN. Using the FFT'routine CO6ECF of the
time T=1 for different values of the spatial resolutidnand NAG library, the ratio between the CPU times needed by our

of the numbemN of cqnvolunon channels. In all simulations Igorithm and the pseudospectral one was R/ZH(L/A).
reported below, the time step and the parameter of the CGL or typical simulations reported in this paper

have beenr=0.05,¢,=3.5, andc=0.9. The erors have (\_1q) —1024-4096A =1/2), this ratio is~0.25-0.3.
been estlmatgd by measuring the dlgtahnd_z norm) be- Thus our algorithm is indeed considerably faster than the
tween an orbit obtained by the algorithm to be tegt4dst seudospectral one

orbit”) and a reference orbit obtained by the pseudospectrfﬁ '

method. In order to reduce statistical fluctuations, the referl—II ORDER PARAMETERS AND THE PT-DT TRANSITION
ence orbit was integrated for a timeT, the test orbit was : i

synchronized to it periodically at timest=mT, To obtain configurations with nonvanishing we used
m=1,2,..., and thedistances building up during the inter- several different initial conditions. A first choice was
vals mT<t<(m+1)T were averaged over. _

For estimating the error due to time discretization, we A(t=0)=€e"+(r, +ipy), (16)

used a reference orbit with the sameas the test orbit, but ] o _
with four times smallerr. This error is the same for our With r and p, random numbers uniformly distributed in
algorithm and for a standard pseudospectral code. It is indi—0.-1,0.1. Notice that the randomness is needed to break
cated in Fig. 1 by a dashed line. To estimate the space di§Patial translation invariance. Another ansatz was
cretization error, the reference orbit had the samlut half v ivkAd+s

the value ofA (and, in effect,N=<). Results concerning Adt=0)=e “P(0), (a7

space discretization errors are reported in Fig. 1 for diﬁeren&vherepk(O) was uniformly distributed i10.2,1.2, ands,
A and differentN. From these data we can draw the follow- €[—0.01,0.01. Finally, in a third type of initial condition

ing conclusions(i) For all studied values of andA, the e introduced also long range correlations in the amplitude,
time discretization had a much bigger effect than space dis-

cretization. We could of course have used a smaller value of p(0)=0.9%,_1(0)+0qy, Oxe[—0.050.09. (18)

7 (or a largerA) to avoid this, but our choices were moti-

vated by previous simulationg3,4,7,9. Nevertheless, we All these initial conditions give consistent final results: in
propose that future simulations should use finer time and/othe regime identified as phase turbulent by previous authors,
coarser space gridéi) The convergence of the spatial trun- v is indeed conserved for sufficiently small initial values.
cation errors withN is quite fast. Typically, the error is less However, for each paird;,c3) there exists an upper limit
than twice the error of the FFT code fol=20. This is in v, above which defects arise in the system, leading finally
contrast to the scheme ¢15], whereN had to be chosen to a phase gradient<wv,,. Therefore, defects will arise also
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30 , . . general theory of continuous phase transitions we would in

i general not expect a linear behavior of the order parameter as
P(p) i the transition is approached. Thus we should be suspicious
that the linearity seen in Fig. 3 might give way to a power
law for very smallyy, .

In order to understand this better and to characterize bet-
ter the transition between phase and defect turbuléate
ways concentrating on the valug= 3.5, which we assume
to be a generic point on the lirg), we performed several
simulations with high statistics. For each value @f we

4 performed~50-70 simulations withv>v,, and with inde-
2 'n‘ pendent initial conditions, and followed them fer10 000
time units(some simulations were followed even forl0®
time unit9, unless a defect is found — in which casds
decreased and the simulation is repeated. We carefully

FIG. 2. Probability distributiorP(p) for c;=0.6,c,=3.5 and  checked thaiy did not depend on the system size by using
for three different values o¥: 0.015 (solid line), 0.046 (dotted  Systems withL ranging from 1024 to 4096. Nevertheless, the
line), and 0.098dashed ling present simulations did not show any significant deviation

from linearity in the dependence of, oncs, and our best fit
in the PT regime, provided that the valuewfs sufficiently  is
high. The distributionP(p) of the amplitude in the statisti-
cally stationary state becomes in general wider with increas- vy=—(0.74£0.0)c3+0.57=0.01. (19
ing v, as shown in Fig. 2. In particular, the lower limit
pmin Of its support decreases with But it seems that this From this we can estimate the critical value ©f to be
decrease is discontinuous, so that, cannot be used as a c3 =0.76=0.03. Notice that the linearity ofy, agrees with a
good order parametépur conclusion has been drawn from mean field description, since the critical exponent for the
the analysis of more than the 3 curves reported in BigA  order parameter in cases without spontaneous symmetry
pointed out in[12], we expect that the appearance of defectdreaking is 1.

20

10 |

Lo T

for solutions withv>wy,, in the PT regime, and for solu- Previous estimates af} (for the same value of,) were
tions with v=0, in the DT regime, will be due to the same all made by approaching the transition from the DT side. The
mechanism. We will come back to this point later. defect densitys, was measured ifi3,9] by counting how

The dependence of), on c; is plotted in Fig. 3 for often the total phase differena®j(t) = (X+L,t) — (X,1)
c,=3.5. This fixed value ot,; was chosen for ease of com- changed when going fromto t+ 7. Assuming a scaling law
parison with previous studies. We see an almost linear desy~(c;—c3)¢, the authors of[3] found c3=0.77 and
crease, and,, reaches zero exactly at the ling which  @=2. In contrast,c’ =0.74 anda=6.8 was found in[9]
marks the onset of DTthis was also seen if12]). using a much higher statisti¢ieration times up to 10units,

Thus ), can be used as order parameters to characterize=4096 against. =1024 in[3]). As mentioned in9], the
the transition from phase to amplitude turbulence. From thQ/ery |arge value ofw Suggests that the data presumab|y do

not follow a power law. Indeed, another extrapolation was
0.4 . : also tried in[9], which gavec}=0.70. Thus our result
quoted above is in good agreement with previous estimates,
in view of the latter's uncertainties.

To obtain an independent estimateodf and of an even-
tual scaling exponent governing the approach from the DT
side, we performed simulatiofwith »=0) for several val-
uescs=cj . In these simulations we did not measure actual
0.2 1 defects butnear defects. More precisely, we made histo-
grams ofP(p) similar to the one shown in Fig. 2. A number
of such histograms are shown in Figlakttually, the quantity
shown in Fig. 4 isP(p)/(2mp), i.e., the two-dimensional
density. We see much wider distributions than in Fig. 2,
reflecting again the higher degree of chaos #er0. From
these histograms we can estimate the probabilities

Vi

0.0 ' :
0.3 0.5 0.7

Cy

P
W(p)=f dxP(x) (20
FIG. 3. Maximal phase gradiem, as a function of the param- 0
etercy (asteriskg The solid line represents a linear fit for the . ) .
data. For each reported value, we have considered from 50 to 70 0 have an amplitude<p. We did this for several values of
distinct initial conditions withv> 1, , corresponding to a total in- P, and plotted the results agains{—c3 in a log-log plot
tegration time ranging frorh= 600 000 tot= 10’ (see Fig. 5 We see a decent scaling law i€}
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10’ . : tion of local phase gradientsy,,. should decay as
P(p)/2p - P(vi00) ~ V,;f (here we assume that,,.,~1/p for large
4 g Vo), iN qualitative agreement with observations[B]. As
I ) 1 pointed out in3,9], the creation of a defect can be similar to
a noise-induced widening of an attractor. This would natu-
] rally lead to a defect density that decreases exponentially
) with ¢z [22]. But we believe that the phenomenon looks
/ more like an(interior) crisis[24]. It is known that crises can
/ 1 lead to power laws with very large expone[2§] or even to
/ i characteristic time scales that increase faster than(@my
B! versg power of the distance from the critical poir#t6]. But
i it seems that little is known about crises in spatially extended
systemg27]. The simplest possibility would be that for each
00 o5 0 pair (c,,v) there is a critical circléA|=p*. Once this circle
P is penetrated, the orbit can come arbitrarily close to the ori-
gin, and a defect can develop. Unfortunately, we do not see
FIG. 4. Probability distribution®(p) similar to those shown in  any hint for such a circle in our data. The next simple sce-
Fig. 2, but fory=0, divided by 2rp, and shown on a logarithmic nario would be that there is a rotationally and translationally
scale. For all curveg;=3.5. From bottom to top, the values of jnyariant set of torjp=p* (x,¢) (each of which individually
C3 are 0.74, 0.746, 0.75, 0.752, 0.755, 0.758, 0.761, 0.765, 0.74s not symmetriy;, such that a defect can appear as soon as

0.783, 0.8, 0.82, 0.85, and 0.9. Except possibly for the lowest, alfhe solution is inside any one of these tori. We see no way
curves are in the DT regime. The simulations closestjovere  how to test this scenario.

done withL=4096 and extended over2x 10° time units.

IV. LYAPUNOV ANALYSIS AND STABLE SOLUTIONS
=0.734+0.007 (which we take as our best estimateadf),

with an exponent=6.3. Our results confirm that the simula- 10 measure the degree of “chaos” of the solutions with
tions performed if9] should be considered definitely more »# 0 in the PT regime, we measured the maximal Lyapunov
reliable than those reported if8]. This large exponent €Xponent. In ordgr to estimate., we have considered the
might, however, suggest that the data should not be ddinearized expression of Eql),

scribed by a power law at d9]. In that case, the true value B . . 2 o

of c3 could be considerably smaller and close to the “alter- Vi=(1+icy) Vit V= (1-icg) (2JAIV + ATV, (21)
native” value 0.70 found if9]. Thus the agreement with

previous simulations and with E¢L9) is as good as can be whereV(x,t) is a complex field an&/* indicates its conju-

expected in view of these uncertainties. gate. The exponent is given by the expression
In Fig. 4 it is seen thap,;, [the lower limit of the support

of P(p)] does not approach zero continuously as ~IN[M(t)/M(0)]

c3—Cj —e. Instead, asc; approachex} from below, it A=lim -1 (22
seems thap,,, jumps abruptly to 021,23. On the other o

hand, the two-dimensional densi(p)/(27p) seems to be

flat atp=0, for all c3>c} . As a consequence, the distribu- where M(t)=fdx|V(x,t)|25||V||t2. Following the evolu-

tion of V(x,t) in the tangent spadgiven by Eq.(21)] and
estimating the growth raté(t)/M(0) over a sufficiently
_1 . long time a realistic estimation of can be obtained. It

10 should be noticed that in order to avoid numerical problems
the fieldV has been renormalized /|| =1 after each time

107 intervalt=25. We measured for several values of; and
for severalv values in the interva[O,vy]. Our data are

107 shown in Fig. 6 forc;=0.35,0.40,0.60, and 0.70. They were
obtained from single trajectories spanning between
1.5x 10° and 6x 10° time units. This time systematic differ-

107 1 ences were seen between different initial conditjoms used
again Eqgs(16) and(17)], indicating broken ergodicity even

10° for fixed v. The estimated error bars for eachare smaller
than the observed discrepancies, moreover, the probability
distributionsP(p), corresponding to different initial condi-

107" - tions, show noticeable differences. Thus there seem to be

0.01 ) 0.10 several coexisting attractors, with slightly different values of

\. This complicates the situation of course, and it might be
FIG. 5. Log-log plot showing the probabilities to find an ampli- responsible for the slight nonmonotonicities seen in Fig. 6.
tude<p againstc;—0.734. Each curve corresponds to a fixed value ~ Apart from these, the most evident feature seen in Fig. 6
of p, with p=m/20 for themth curve from the bottom. is the strong decrease af with v. Indeed, it seems that in
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0.00 0.05 0.10 0.00 0.04 0.08
v 0.8 ‘ ‘ ‘
100 200 0 400

FIG. 6. Maximal Lyapunov exponents vs the phase gradient
v for c3=0.35(a), c3=0.40(b), c3=0.6 (c), andc3=0.7 (d). Two FIG. 8. Amplitudep(x) for c;=0.5 and for various values of
different sets of initial conditions are considered: Etg) (aster-  the phase gradient 0 (a), 0.01(b), 0.04(c), 0.09(d), and 0.18€).
isks) and Eq.(17) (circles. The data have been obtained for system
sizes L=1024 and 2048 and for integration times-150 000 solution shown in Figs. @ and 9e)], interrupted by
—600000. For each reported value @f, the maximal estimated “faults” in which the amplitude is nearly constant and the
error is 4<10°° (a), 8% 10°° (b), 6X 1074 (c), and 8< 104 (d). phase decreases |inear|y_

We have observed such nonchaotic solutions for all

general\—0 for v—wy . This decrease is seen even more_< 5 whenv— »,, . They can all be expressed in the form
clearly if averages are taken over several initial conditions,

as is done in Fig. 7 foc;=0.5. In this figure A was aver- A(x,t)=h(x—vt)e!(»~ e, (23
aged over 15-35 trajectories for each value 19f with .
t=10° for each trajectory. whereh(&)=p(&)e' % is in general complex and periodic

The progressive ordering of the states with increasing with periodL. Notice that also its phase is periodic, so that
can be directly seen when plotting snapshots of individual in Eq. (23) is the total average phase gradient. We found
solutions. A sequence of such snapshots is shown in Figs. Both solutions that are periodic with peridd(forced upon
(amplitude$ and 9(phases While the configurations seem them by the periodic boundary conditioand solutions with
chaotic for smallv, they are more and more regular for smaller periodas, e.g., in Figs.@) and 9e)]. It is natural to
largerv, and finally become periodic far~wv,,. While itis  assume that the former would lead to spatially aperiodic so-
not surprising that the measurédwas zero for Figs. @  lutions for L—. The periodic solutions can be considered
and 9e), it is surprising that the same is also true for Figs.as Bloch waves where the periodicity is, however, self-
8(d) and 9d). Roughly, the latter solution can be describedgenerated and not imposed by some external potential.

as a sequence of periodic “patche$8ach similar to the Correspondingly, amplitude and phase can be expressed
as
1.0
2.0
a
0.0 N
-1.0 T T T b
ol W\J\/\/\/J\/\-/\/\A/v
-15
-2.5

0.4

0.2

e N\/\A/V\N\/W
-20 r E

0.0 —f— ¥
0.0 0.1 v 0.2 -3.0 R
. -05 | \
FIG. 7. Maximal Lyapunov exponen{a.) for c;=0.5, plotted
againstyv. Each value has been obtained by averaging over many 15 s =0 w0 200
initial conditions (from 15 to 35 and over an integration time X

t=100 000 for each trajectory. The considered system size is
L=1024. FIG. 9. Same as Fig. 8, but for the phaséx).
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p(X)=p(&), (X )=to(§) —wt+vx. (24

where é=x—vt. While the motion of the amplitude is a
simple shift with velocityv, the evolution of the phase is
more complicated. At fixed, i.e., in a coordinate frame
moving with velocityv, the phase increases linearly with
dyldt|;=vv—w. But there is no fixed phase velocity, i.e.,
there is no frame in which the phase is strictly constant. It
fluctuates around a constant value in a frame moving with
velocity (v ) = w/ v, which is thus theaveragephase veloc-
ity. Typically, we found thab and(v,) are not commensu-
rate. Thus solutions of the type of E@3) display a type of
quasiperiodic motion. Similar waves have been found previ-
ously in[28,12.

While time-dependent simulations are needed to verify
the stability of these solutions, th&ikistencecan be checked

much more easily. Indeed, they are obtained by solving an F|G..10. Amplitude_so from the direct simulation of the CGLE
rdinarv differential ion f (solid linee and obtained through Eq(26) (dashed ling (a)
ordinary differential equation fan(¢), c3=0.7 and v=0.06; (b) c3=0.7 and v=0; (c) c;=0.4 and
v=0.26;(d) c3=0.4 andv=0.03.

(1+icy)hg+[2iv(1+icy) +v]h,
+[1-v?(1+icy)+iw]h—(1—ics)|h|?h=0. (25

p(x,)=\[1—a(x,H]*+[csa(x,t)]* (26)

with q(x,t) ={c,d2¢(x,t) +[d,(x,1)1?}/2, and the phase
We should notice that foc;=0.6 the picture changes satisfies
slightly: A still decreases withy, but nonchaotic solutions are
no longer observed.
Another way to simulate regular solutions with periodic g+ Q5 i + QP () 2+ QY st Q52 ththys=0,
h(¢) is to use small systems whekeis equal to its period.
To obtain arbitrary values o, we have to use in this case
twisted boundary conditions p(x+L)=p(x),¥(x+L)
= (X)+ 6 with a twist 6= vL. By means of such simula- Where Q=c;c3—1, Q)= (c,+cy), QP =ci(1+c))/2,
tions we checked again the existence of soluti@®. We  andQ$’=2c;(1+c%). Notice that the latter is just the KSE
checked also that there was an upper limitiothat agreed —except for the last term.
roughly with v, , though its precise value dependedlgras In order to verify if Eqs.(27) and (26) well approximate
one might have expected: depending on its precise value, ¢he dynamics of the CGLE in the PT regime, two checks
integer number of waves will fit int&. with more or less have been performed. As a first test, we have evaluated
ease. p(x,t) by means of Eq(26) in the whole PT regime and for
several values of. A comparison with the amplitudes ob-
tained directly from the integration always shows satisfac-
V. A MODIFIED KURAMOTO-SIVASHINSKY EQUATION tory results; see Fig. 10. Notice that this is even true for the
extremal valueg;=0.4 and 0.7, i.e., for two parameter val-
The behavior ok as a function ofv and the origin of the yes that are near to the BF line and to the line
observed nonchaotic solutions can be explained in the frame- As a second check, we have derived from &) expres-
work of the modified Kuramoto-Sivashinsky equation sjons for the amplitude velocity and the frequency as-
(MKSE) derived in[6,29]. For completeness, let us recall the sociated to the nonchaotic solutiof@3). We first observe
main assumptions in deriving the Kuramoto-Sivashinskythat the ansat#23) leads to
equation(KSE) [5,30] and its modification.
It is well known that just above the BF line the amplitude
is nearly constant, and its dynamics is essentially ruled by 0=—Px)—vPy(E), (X, )=yi(&), (28
the phase behavidd]. More precisely, the KSE is obtained
by making two main assumptions: firgi(x,t) is obtained
by adding a small perturbation to the spatially constant soluwhere primes indicate derivatives with respecétex—ut.
tion, A(x,t)=e 2+ u(x,t); and second,u(x,t) is a We then substitute this int@7) and integrate over aX. Due
“slaved” function of (x,t) and its spatial derivatives. to the periodic boundary condition some terms drop out and
In deriving the MKSE we just replace the first assumptionothers can be simplified, leaving us with
by making a perturbation around the plane-wave solution
given in Eq.(2). After a tedious and nontrivial calculation 2)/r a2 2))0 a2
[6] one finds that the amplitude is given by =00+ Q57 ((#0)%) — Q37 ((¥0)°), (29)
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TABLE I. Amplitude velocityv and the frequencw of non- VI. CONCLUDING REMARKS

chaotic solution$see Eq( 23)] for several values of; andv. The ) . . .
first numbers in columns 3 and 4 were obtained from E2@. and In this paper an integration scheme has been introduced

(30), while the directly measured values are given in parenthesesthat is faster than the usual pseudospectral code at compa-
rable accuracy. It has been successfully employed to study

Cs v o v the CGLE in the PT regime for large systenisx1024) and
long integration timest(10°). Although we have not ap-
0.35 0.092 0.3170.317% 0.723(0.726 plied it to other systems than the CGLE, we believe that it
0.35 0.184 0.2180.218 1.454(1.458 should be useful also for the nonlinear Satinger equation
0.35 0.306 —0.021 (-0.02) 2.563(2.569 and for chemical reaction-diffusion equations.
0.40 0.092 0.36%0.369 0.731(0.739 Particular attention was paid to solutions with nonzero
0.40 0.153 0.30%0.309 1.236(1.24) average phase gradient For fixed control parameters we
0.40 0.282 0.0740.070 2.372(2.337) always found a maximal conserved phase gradigpt It
0.50 0.123 0.4280.427 1.256(1.249) can be used as an order parameter to characterize the PT
0.50 0.184 0.35%0.341) 1.592(1.650 regime and to describe the transition from phase to defect
0.50 0.245 0.2290.223 1.933(1.9849 turbulence: at the transitiom,, vanishes with the mean field

exponent. Another order parameter with nonzero values in
the DT regime gave the same transition point but another
where brackets indicate spatial averagess= Lflfgdx (a  exponent that is more similar to exponents found in previous
similar result was derived ifi29], but with the last term papers. In contrast, the minimal amplitude values reached in
neglectedl To obtain an expression far we multiply both ~ the PT regime do not seem to be useful order parameters, as

sides of(27) by (&) before averaging, arriving at they are discontinuous at the tr_an_sition.
For small values o, the majority of the observed solu-

(2)r/.11\3 "2 )/ 1 1N2. m "2 tions are chaotic. But the maximal Lyapunov exponent typi-
(027 1(o)"+20(40) 11 Qa [(¥0)"Y5 — (o ]>_ cally decreases withy, and stable solutions are more fre-
(($0)%) quent than chaotic ones neay; . This can be understood by
(30 assuming that the phase dynamics is ruled by a modified
Kuramoto-Sivashinski equation.
Numerical tests for several parameter values are shown in The regular solutions can be either spatially periodic or
Table I. In all cases the agreement between the measuregberiodic. In both cases they consist of traveling waves
values and the right-hand sides of E¢&9) and(30) is very  whose amplitude and phase velocities are typically incom-
good. mensurate. These solutions can be considered as generalized
Having verified that Eq(27) gives a good approximation Bloch waves with self-generateperiodic or aperiodic
for the phase dynamics of the CGLE in the whole PT regimemodulation. For spatially periodic regular solutions these re-
we can now relate our numerical findings to several othesults were confirmed by simulations of small systems with
observations in the literature. This is again based on an olwisted boundary condition§i.e., periodic amplitudes but
servation by Sakaguch29] who noticed that Eq(27), once  y(x+L) = y(x)+ 6].
i, is approximated by its average valwein the last term, During the final write-up of this paper, we became aware
can be rewritten as an equation &« i, : of a paper by Montagne, Hernandez-Garcia, and San Miguel
[12] where results similar to those reported in Sec. Ill have
s+00s,, + 20255+ QVs, 0+ QaS=0, (31 been found. The analysis reported[_ttQ] confirms thatv,
can be used as an order parameter in the wholecg) plane
of the CGLE. However, the present paper goes beyond the
results of{12] in several aspects. In particular, we have fully

with Q;=vQ). This is exactly the so-called Kawahara
equation[31,32, which has been studied numericall§l]  paracterized the dynamics of solutions with0 through
and theoretically{32,33. Periodic wave trains formed by | ya0,n0y analyses and the identification of a class of new

pulselike structures have been found in this equation. It hag,nchaotic solutions. Moreover, we demonstrated in detail
been argued31] that they are due to the dispersion term 4 yraveling wave solutions can be described by a Kawa-

*S,xx, a conclusion that was confirmed in a careful analysig, 5,4 equation for their phase, as had been suggesfé@]in
by Changet al.[33]. These studies confirm also the coexist-

ence of chaotic and nonchaotic solutigaepending on the
initial conditiong. Chaotic attractors dominate for small val-
ues of the dispersion constaf}t;, while for increasing(l;
periodic attractors prevail. Finally, above a threshold value, We thank M. San Miguel for sending us REf2] prior to
only nonchaotic solutions are found. Sir@ge: v, our results  publication, and U. Feudel, E. Hernandez-Garcia, L. Kramer,
about the decrease mfwith increasingr and the appearance R. Montagne, and A. Politi for very helpful discussions. One
of wave train solutions fow— vy, are fully consistent with of us (A.T.) was supported by the European Community
the findings of[33]. Finally, the observation of Chargf al.  through Grant No. ERBCHBICT941569, and by the Coop-
that stable solutions exist only below a certain threshold —erativa Fontenuova. This work was also supported by the
which in our case turns out to he=0.1 for 0.35sc3<0.5 DFG through the Graduiertenkolleg “Feldtheoretische und
— explains why no regular solutions were found abovenumerische Methoden in der Elementarteilchen- und Statis-
c3=0.6: for c3>0.6: the value ofv), is below 0.1. tischen Physik,” and through SFB 237.
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