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Studies of phase turbulence in the one-dimensional complex Ginzburg-Landau equation
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The phase-turbulent~PT! regime for the one-dimensional complex Ginzburg-Landau equation~CGLE! is
carefully studied, in the limit of large systems and long integration times, using an efficient integration scheme.
Particular attention is paid to solutions with a nonzero phase gradient. For fixed control parameters, solutions
with conserved average phase gradientn exist only for unu less than some upper limit. The transition from
phase to defect turbulence happens when this limit becomes zero. A Lyapunov analysis shows that the system
becomes less and less chaotic for increasing values of the phase gradient. For high values of the phase gradient
a family of nonchaotic solutions of the CGLE is found. These solutions consist of spatially periodic or
aperiodic waves traveling with constant velocity. They typically have incommensurate velocities for phase and
amplitude propagation, showing thereby a type of quasiperiodic behavior. The main features of these traveling
wave solutions can be explained through a modified Kuramoto-Sivashinsky equation that rules the phase
dynamics of the CGLE in the PT phase. The latter explains also the behavior of the maximal Lyapunov
exponents of chaotic solutions.@S1063-651X~97!08604-2#

PACS number~s!: 05.45.1b, 47.27.Cn, 47.27.Eq
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I. INTRODUCTION

The complex Ginzburg-Landau equation~CGLE! plays a
fundamental role in the study of spatially extended syste
It describes the dynamics of a generic spatially extended
tem that undergoes a Hopf bifurcation from a stationary to
oscillatory state. Sufficiently close to the bifurcation poi
any such system can be described by the CGLE@1#. For a
review of experimental systems described by the CGLE
@2#.

In the present paper we discuss only the CGLE in o
spatial dimension. Even though this lacks important featu
of the CGLE in higher dimensions, it displays a variety
chaotic and stationary regimes for different values of con
parameters. Recently, Shraimanet al. @3# and Chate´ @4# have
provided a careful description of these regimes. In particu
four different chaotic states have been identified: the pha
turbulent~PT!, the defect-turbulent~DT!, the bichaotic, and
the spatiotemporal intermittent regime@4#. The fundamental
states are the PT and the DT regimes. The bichaotic sta
characterized by the fact that PT or DT chaos can ar
depending on the initial conditions — while DT chaos
stable~periodic! solutions can appear in the intermittent r
gion. The PT and DT phases have been the object of sev
detailed studies@3,5–9#.

Let us write the one-dimensional CGLE as

At5~11 ic1!Axx1A2~12 ic3!uAu2A, ~1!

where the parametersc1 and c3 are real positive numbers
while A(x,t)5r(x,t)exp@ic(x,t)# is a complex field of am-
plitude r and phasec. Equation ~1! reduces in the limit
(c1 ,c3)→(`,`) to the integrable nonlinear Schro¨dinger
equation, an equation well known to admit soliton-like so
tions @10#. In the opposite limit, (c1 ,c3)→(0,0), the real
Ginzburg-Landau equation will be recovered, an equat
related to symmetry-breaking instabilities of nonoscillato
type @1#.
551063-651X/97/55~5!/5073~9!/$10.00
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Equation~1! admits plane-wave solutions of the form

A0~x,t !5A12k2exp@ i ~kx2V0t !#, ~2!

where V052c31(c11c3)k
2. Below the so-called

Benjamin-Feir~BF! line defined byc351/c1 these solutions
are linearly stable providedk2,(12c1c3)/@2(11c3

2)
112c1c3# @11#. Outside this ‘‘Benjamin-Feir band,’’ one
has an Eckhaus instability against long-wavelength mod
Slightly below the BF line one finds multistability; i.e., th
final solution depends on the initial conditions@4#. Above it,
i.e., for c3c1.1, all plane-wave modes are unstable. T
latter is the region we are interested in.

For generic~not necessarily periodic! solutions, theaver-
agephase gradient is defined as

n5
1

LE0
L

dx]xc~x,t !, ~3!

whereL is the system size~we assume periodic boundar
conditionsA(x1L,t)5A(x,t) throughout this paper, unles
stated differently!. The PT phase is defined as that regim
wheren is conserved@5#. It is encountered just above the B
line ~i.e., forc3.1/c1). It is a state where the chaotic beha
ior of the field is essentially ruled by the phase dynami
The amplitude, always bounded away from zero for Eq.~3!
to make sense, shows small fluctuations.

This is different in the DT regime in which the amplitude
dynamics becomes essential@3,5,6#. Large amplitude oscil-
lations are observed in this phase, which occasionally d
r(x,t) down to zero. Events where this happens are ca
defects. At a defect, the phase is of course no longer defi
and the appearance of a defect implies that the phase di
encec(x1e,t)2c(x2e,t) jumps by62p. Thus n is no
longer conserved.

The transition from the PT to the DT regime happens a
line L1 in the (c1 ,c3) plane. To locate this transition pre
cisely @3,9#, one needs some order parameter that allows
5073 © 1997 The American Physical Society
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5074 55TORCINI, FRAUENKRON, AND GRASSBERGER
to distinguish the two phases. Several parameters have
proposed recently: the density of defects, the phase and
plitude correlation lengths, and the Kaplan-Yorke dimens
@7–9#. The first-order parameter introduced to identify t
two phases is the defect densitydD @3#. Its value is.0 in the
DT regime, while it vanishes when approaching the
phase@3,9#. Presenting other suitable order parameters w
be one of the aims of the present paper.

In the PT regime, all observables depend of course on
value ofn, as ergodicity is broken in this phase. Neverth
less, in the literature only few studies have been devote
solutions withnÞ0 @12,13#. Filling this gap is the second
goal of the present paper. It will be shown that most obse
ables depend indeed rather strongly and systematically
n.

Since our study is mostly numerical, we need an effici
integration routine. We found that a scheme, similar to
more efficient than the one introduced in@15#, gave excellent
results. This scheme is introduced in the next section
compared with the usual pseudospectral codes. In Sec. II
transition from phase to defect turbulence is investiga
with the help of an order parameter. A Lyapunov analysis
the solutions withnÞ0 is reported in Sec. IV together wit
a detailed characterization of the observed stable soluti
In Sec. V it is shown how a modified Kuramoto-Sivashins
equation for the phase is able to reproduce the main feat
of the dynamics of the considered solutions of the CGL
Our results are summerized in Sec. VI.

II. INTEGRATION SCHEME

The algorithm applied in this work is an operator splittin
scheme similar to the well known ‘‘leap frog’’ algorithm fo
ordinary differential equations@this should not be confuse
with the ‘‘staggered leap frog’’@14# for partial differential
equations~PDE’s!#. This algorithm is based on the fact th
the dynamics consists of two independent terms, one non
ear but local and the other nonlocal but linear, each of wh
by itself can be easily integrated. In the present case,
splitting is chosen as

]A

]t
5NA1LA ~4!

with

NA5A2~12 ic3!uAu2A, LA5~11 ic1!
]2A

]x2
. ~5!

For a small time step t, the formal solution
A(t)5e(N1L)tA(0) of Eq. ~4! is then approximated by
means of the Trotter formula

e~N1L!t5eNt/2eLteNt/21O~t3!. ~6!

For a finite timet5nt,n@1, we can lump togethern21
half steps and arrive at

e~N1L!t'eNt/2@eLteNt#n21eLteNt/2. ~7!

Notice that we refrain from giving here a formal error es
mate. For a chaotic system, the error will of course incre
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exponentially, and the exponent will depend on the maxim
Lyapunov exponentl: roughly we expectdA(t);eclt2t,
wherec is the constant in theO(t3) correction in Eq.~6!.

Solving the nonlinear evolutioneNt is easy, by consider-
ing amplitude and phase separately. We first find

r1~x,t1t![@eNtr#~x,t !5$e22t@1/r~x,t !221#11%21/2.
~8!

Inserting this into the equation for the phase, the latter
also be solved exactly to obtain

c1~x,t1t![@eNtc#~x,t !

5c~x,0!1c3$t1 ln@r~x,t !/r1~x,t1t!#%.

~9!

A nontrivial problem appears only for the solutioneLt of the
linear part since this is nonlocal. It is only here that o
algorithm deviates from previous applications of the le
frog algorithm to PDE’s@16–20#. In these papers, the solu
tion of the nonlocal part was performed in Fourier spa
This means that two Fourier transformations have to be p
formed for each integration step. It leads to what will
called the pseudospectral method in the following. In spite
the speed of fast Fourier transform~FFT! algorithms, it can
be quite time consuming. It can also lead to intolera
round-off errors, which was the main reason in@15# to per-
form this step by integrating with the Greens function ofL.
More precisely, let us denote byK(x,t) the solution of

]K/]t5LK ~10!

with initial conditionK(x,0)5d(x). For the present case it i
simply

K~x,t!5Ab

p
e2brx

2
@cos~b ix

2!2 isin~b ix
2!# ~11!

with b5b r2 ib i5@4t(11 ic1)#
21. Then

@eLtA#~x,t !5E djK~j,t!A~x2j,t !. ~12!

SinceK(j,t) can be computed numerically and stored on
at the beginning, the algorithm essentially involves one c
volution for each time step.

In practice, space has of course to be discretized as w
Let us denoteAi(t)5A( iD,t), whereD is the resolution of
the spatial grid. The most straightforward approach~used
indeed in@15#! would seem to start from Eq.~12!, with the
integral simply replaced by a finite sum over the central s
plus its 2N nearest neighbors, which would lead to

@eLtA# i~ t !' (
j52N

N

K~ jD,t!Ai2 j~ t !. ~13!

But this is not the optimal discrete approximation to E
~12!. To obtain a more precise one, we first notice that sin
eLtA is a linear operator symmetric under translations a
reflectionsx→2x, we can write any lattice approximatio
of it as
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@eLtA# i~ t !'(
j50

N

K j@Ai2 j~ t !1Ai1 j~ t !#, ~14!

with unknown coefficientsKj . Next we observe that we ca
decomposeA(x,t) into Fourier modes. Let us assume tha
good approximation is obtained by a superposition
2N11 modeseikax with k52N, . . . ,N, anda some yet
unspecified positive constant. We then can determine
Kj such that it gives the exact evolution on these modes
straightforward calculation shows that this implies

K012(
j51

N

K jcos~ jDka!5e2~11 ic1!tk2a2;k50, . . . ,N.

~15!

Finally, the value ofa is chosen such that theL2 norm
$uK0u212( j.0uKj u2%1/2 of K is minimal. With this choice,
we hopefully minimize the effect of the neglected modes

In the limit N→`, the optimal set of Fourier modes a
those witha52p/D, and the above scheme should gi
identical results~up to round-off errors! as the pseudospec
tral method obtained by applying a discrete FFT toAt5LA
and integrating it in Fourier space. Thus the error commit
in our method with finiteN cannot be smaller than the erro
committed by the FFT method, and it should tend toward
for N→`.

In order to compare the precision of our algorithm w
that of the pseudospectral code, we have evaluated the m
square errors accumulated during a fixed total integra
timeT51 for different values of the spatial resolutionD and
of the numberN of convolution channels. In all simulation
reported below, the time step and the parameter of the CG
have beent50.05, c153.5, andc350.9. The errors have
been estimated by measuring the distance~in L2 norm! be-
tween an orbit obtained by the algorithm to be tested~‘‘test
orbit’’ ! and a reference orbit obtained by the pseudospec
method. In order to reduce statistical fluctuations, the re
ence orbit was integrated for a time@T, the test orbit was
synchronized to it periodically at times t5mT,
m51,2, . . . , and thedistances building up during the inte
valsmT,t,(m11)T were averaged over.

For estimating the error due to time discretization,
used a reference orbit with the sameD as the test orbit, bu
with four times smallert. This error is the same for ou
algorithm and for a standard pseudospectral code. It is i
cated in Fig. 1 by a dashed line. To estimate the space
cretization error, the reference orbit had the samet, but half
the value ofD ~and, in effect,N5`). Results concerning
space discretization errors are reported in Fig. 1 for differ
D and differentN. From these data we can draw the follow
ing conclusions:~i! For all studied values oft andD, the
time discretization had a much bigger effect than space
cretization. We could of course have used a smaller valu
t ~or a largerD) to avoid this, but our choices were mot
vated by previous simulations@3,4,7,9#. Nevertheless, we
propose that future simulations should use finer time an
coarser space grids.~ii ! The convergence of the spatial tru
cation errors withN is quite fast. Typically, the error is les
than twice the error of the FFT code forN>20. This is in
contrast to the scheme of@15#, whereN had to be chosen
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larger than'60. Due to the large time discretization erro
we could indeed safely useN510. ~iii ! The FFT code needs
a CPU time per mesh point that increases logarithmica
with the numberL/D of mesh points, while our algorithm is
essentially linear inN. Using the FFT routine C06ECF of th
NAG library, the ratio between the CPU times needed by
algorithm and the pseudospectral one was 0.24N/ ln(L/D).
For typical simulations reported in this pap
(N510,L5102424096,D51/2), this ratio is'0.2520.3.
Thus our algorithm is indeed considerably faster than
pseudospectral one.

III. ORDER PARAMETERS AND THE PT-DT TRANSITION

To obtain configurations with nonvanishingn, we used
several different initial conditions. A first choice was

Ak~ t50!5einkD1~r k1 ipk!, ~16!

with r k and pk random numbers uniformly distributed i
@20.1,0.1#. Notice that the randomness is needed to bre
spatial translation invariance. Another ansatz was

Ak~ t50!5einkD1skrk~0!, ~17!

whererk(0) was uniformly distributed in@0.2,1.2#, andsk
P@20.01,0.01#. Finally, in a third type of initial condition
we introduced also long range correlations in the amplitu

rk~0!50.95rk21~0!1qk , qkP@20.05,0.05#. ~18!

All these initial conditions give consistent final results:
the regime identified as phase turbulent by previous auth
n is indeed conserved for sufficiently small initial value
However, for each pair (c1 ,c3) there exists an upper limi
nM above which defects arise in the system, leading fina
to a phase gradientn<nM . Therefore, defects will arise als

FIG. 1. Mean square errors due to space discretization and t
cation of the convolution for our algorithm~symbols!, and due to
space discretization for a time splitting pseudospectral code~solid
lines!. The dashed line shows the errors due to the time discret
tion ~they are the same for both algorithms, and independent of
spatial discretization!. All the data refer toc153.5, c350.9,
t50.05, andN51024. The results for our algorithm are reporte
for several values of the number of convolution channelsN. The
simulations were done with double precision, whence the round
errors are at;10215.
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in the PT regime, provided that the value ofn is sufficiently
high. The distributionP(r) of the amplitude in the statisti
cally stationary state becomes in general wider with incre
ing n, as shown in Fig. 2. In particular, the lower lim
rmin of its support decreases withn. But it seems that this
decrease is discontinuous, so thatrmin cannot be used as
good order parameter~our conclusion has been drawn fro
the analysis of more than the 3 curves reported in Fig. 2!. As
pointed out in@12#, we expect that the appearance of defe
for solutions withn.nM , in the PT regime, and for solu
tions with n50, in the DT regime, will be due to the sam
mechanism. We will come back to this point later.

The dependence ofnM on c3 is plotted in Fig. 3 for
c153.5. This fixed value ofc1 was chosen for ease of com
parison with previous studies. We see an almost linear
crease, andnM reaches zero exactly at the lineL1 which
marks the onset of DT~this was also seen in@12#!.

ThusnM can be used as order parameters to characte
the transition from phase to amplitude turbulence. From

FIG. 2. Probability distributionP(r) for c350.6, c153.5 and
for three different values ofn: 0.015 ~solid line!, 0.046 ~dotted
line!, and 0.098~dashed line!.

FIG. 3. Maximal phase gradientnM as a function of the param
eterc3 ~asterisks!. The solid line represents a linear fit for thenM

data. For each reportedc3 value, we have considered from 50 to 7
distinct initial conditions withn.nM , corresponding to a total in
tegration time ranging fromt5600 000 tot5106.
s-

s

e-

ze
e

general theory of continuous phase transitions we would
general not expect a linear behavior of the order paramete
the transition is approached. Thus we should be suspic
that the linearity seen in Fig. 3 might give way to a pow
law for very smallnM .

In order to understand this better and to characterize
ter the transition between phase and defect turbulence~al-
ways concentrating on the valuec153.5, which we assume
to be a generic point on the lineL1), we performed severa
simulations with high statistics. For each value ofc3 we
performed;50–70 simulations withn.nM and with inde-
pendent initial conditions, and followed them for>10 000
time units~some simulations were followed even for.105

time units!, unless a defect is found — in which casen is
decreased and the simulation is repeated. We caref
checked thatnM did not depend on the system size by usi
systems withL ranging from 1024 to 4096. Nevertheless, t
present simulations did not show any significant deviat
from linearity in the dependence ofnM onc3, and our best fit
is

nM.2~0.7460.01!c310.5760.01. ~19!

From this we can estimate the critical value ofc3 to be
c3*50.7660.03. Notice that the linearity ofnM agrees with a
mean field description, since the critical exponent for t
order parameter in cases without spontaneous symm
breaking is 1.

Previous estimates ofc3* ~for the same value ofc1) were
all made by approaching the transition from the DT side. T
defect densitydD was measured in@3,9# by counting how
often the total phase differencedc(t)5c(x1L,t)2c(x,t)
changed when going fromt to t1t. Assuming a scaling law
dD;(c32c3* )

a, the authors of@3# found c3*.0.77 and
a.2. In contrast,c3*50.74 anda.6.8 was found in@9#
using a much higher statistics~iteration times up to 107 units,
L54096 againstL51024 in @3#!. As mentioned in@9#, the
very large value ofa suggests that the data presumably
not follow a power law. Indeed, another extrapolation w
also tried in @9#, which gavec3*50.70. Thus our result
quoted above is in good agreement with previous estima
in view of the latter’s uncertainties.

To obtain an independent estimate ofc3* and of an even-
tual scaling exponent governing the approach from the
side, we performed simulations~with n50) for several val-
uesc3>c3* . In these simulations we did not measure act
defects butnear defects. More precisely, we made hist
grams ofP(r) similar to the one shown in Fig. 2. A numbe
of such histograms are shown in Fig. 4@actually, the quantity
shown in Fig. 4 isP(r)/(2pr), i.e., the two-dimensiona
density#. We see much wider distributions than in Fig.
reflecting again the higher degree of chaos forn50. From
these histograms we can estimate the probabilities

w~r!5E
0

r

dxP~x! ~20!

to have an amplitude,r. We did this for several values o
r, and plotted the results againstc32c3* in a log-log plot
~see Fig. 5!. We see a decent scaling law ifc3*
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50.73460.007~which we take as our best estimate ofc3* ),
with an exponent.6.3. Our results confirm that the simula
tions performed in@9# should be considered definitely mo
reliable than those reported in@3#. This large exponen
might, however, suggest that the data should not be
scribed by a power law at all@9#. In that case, the true valu
of c3* could be considerably smaller and close to the ‘‘alt
native’’ value 0.70 found in@9#. Thus the agreement with
previous simulations and with Eq.~19! is as good as can b
expected in view of these uncertainties.

In Fig. 4 it is seen thatrmin @the lower limit of the support
of P(r)# does not approach zero continuously
c3→c3*2e. Instead, asc3 approachesc3* from below, it
seems thatrmin jumps abruptly to 0@21,23#. On the other
hand, the two-dimensional densityP(r)/(2pr) seems to be
flat atr50, for all c3.c3* . As a consequence, the distrib

FIG. 4. Probability distributionsP(r) similar to those shown in
Fig. 2, but forn50, divided by 2pr, and shown on a logarithmic
scale. For all curvesc153.5. From bottom to top, the values o
c3 are 0.74, 0.746, 0.75, 0.752, 0.755, 0.758, 0.761, 0.765, 0
0.783, 0.8, 0.82, 0.85, and 0.9. Except possibly for the lowest
curves are in the DT regime. The simulations closest toc3* were
done withL54096 and extended over.23105 time units.

FIG. 5. Log-log plot showing the probabilities to find an amp
tude,r againstc320.734. Each curve corresponds to a fixed va
of r, with r5m/20 for themth curve from the bottom.
e-

-

tion of local phase gradientsn loc should decay as
P(n loc);n loc

23 ~here we assume thatn loc;1/r for large
n loc), in qualitative agreement with observations in@3#. As
pointed out in@3,9#, the creation of a defect can be similar
a noise-induced widening of an attractor. This would na
rally lead to a defect density that decreases exponent
with c3 @22#. But we believe that the phenomenon loo
more like an~interior! crisis @24#. It is known that crises can
lead to power laws with very large exponents@25# or even to
characteristic time scales that increase faster than any~in-
verse! power of the distance from the critical point@26#. But
it seems that little is known about crises in spatially extend
systems@27#. The simplest possibility would be that for eac
pair (c1,n) there is a critical circleuAu5r* . Once this circle
is penetrated, the orbit can come arbitrarily close to the
gin, and a defect can develop. Unfortunately, we do not
any hint for such a circle in our data. The next simple s
nario would be that there is a rotationally and translationa
invariant set of torir5r* (x,c) ~each of which individually
is not symmetric!, such that a defect can appear as soon
the solution is inside any one of these tori. We see no w
how to test this scenario.

IV. LYAPUNOV ANALYSIS AND STABLE SOLUTIONS

To measure the degree of ‘‘chaos’’ of the solutions w
nÞ0 in the PT regime, we measured the maximal Lyapun
exponentl. In order to estimatel, we have considered th
linearized expression of Eq.~1!,

Vt5~11 ic1!Vxx1V2~12 ic3!~2uAu2V1A2V* !,
~21!

whereV(x,t) is a complex field andV* indicates its conju-
gate. The exponentl is given by the expression

l5 lim
t→`

ln@M ~ t !/M ~0!#

t
, ~22!

where M (t)5*dxuV(x,t)u2[uuVuu t
2 . Following the evolu-

tion of V(x,t) in the tangent space@given by Eq.~21!# and
estimating the growth rateM (t)/M (0) over a sufficiently
long time a realistic estimation ofl can be obtained. It
should be noticed that in order to avoid numerical proble
the fieldV has been renormalized touuVuu t51 after each time
interval t525. We measuredl for several values ofc3 and
for severaln values in the interval@0,nM#. Our data are
shown in Fig. 6 forc350.35,0.40,0.60, and 0.70. They we
obtained from single trajectories spanning betwe
1.53105 and 63105 time units. This time systematic differ
ences were seen between different initial conditions@we used
again Eqs.~16! and ~17!#, indicating broken ergodicity even
for fixed n. The estimated error bars for eachl are smaller
than the observed discrepancies, moreover, the probab
distributionsP(r), corresponding to different initial condi
tions, show noticeable differences. Thus there seem to
several coexisting attractors, with slightly different values
l. This complicates the situation of course, and it might
responsible for the slight nonmonotonicities seen in Fig.

Apart from these, the most evident feature seen in Fig
is the strong decrease ofl with n. Indeed, it seems that in

7,
ll
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generall→0 for n→nM . This decrease is seen even mo
clearly if averages are taken over several initial conditio
as is done in Fig. 7 forc350.5. In this figure,l was aver-
aged over 15–35 trajectories for each value ofn, with
t5105 for each trajectory.

The progressive ordering of the states with increasinn
can be directly seen when plotting snapshots of individ
solutions. A sequence of such snapshots is shown in Fig
~amplitudes! and 9~phases!. While the configurations seem
chaotic for smalln, they are more and more regular fo
largern, and finally become periodic forn'nM . While it is
not surprising that the measuredl was zero for Figs. 8~e!
and 9~e!, it is surprising that the same is also true for Fig
8~d! and 9~d!. Roughly, the latter solution can be describ
as a sequence of periodic ‘‘patches’’@each similar to the

FIG. 6. Maximal Lyapunov exponentsl vs the phase gradien
n for c350.35 ~a!, c350.40 ~b!, c350.6 ~c!, andc350.7 ~d!. Two
different sets of initial conditions are considered: Eq.~16! ~aster-
isks! and Eq.~17! ~circles!. The data have been obtained for syste
sizes L51024 and 2048 and for integration timest5150 000
2600 000. For each reported value ofc3, the maximal estimated
error is 431025 ~a!, 831025 ~b!, 631024 ~c!, and 831024 ~d!.

FIG. 7. Maximal Lyapunov exponents^l& for c350.5, plotted
againstn. Each value has been obtained by averaging over m
initial conditions ~from 15 to 35! and over an integration time
t5100 000 for each trajectory. The considered system size
L51024.
,

l
. 8

.

solution shown in Figs. 8~e! and 9~e!#, interrupted by
‘‘faults’’ in which the amplitude is nearly constant and th
phase decreases linearly.

We have observed such nonchaotic solutions for
c3<0.5 whenn→nM . They can all be expressed in the for

A~x,t !5h~x2vt !ei ~nx2vt !, ~23!

whereh(j)5r(j)eic0(j) is in general complex and periodi
with periodL. Notice that also its phase is periodic, so th
n in Eq. ~23! is the total average phase gradient. We fou
both solutions that are periodic with periodL ~forced upon
them by the periodic boundary condition! and solutions with
smaller period@as, e.g., in Figs. 8~e! and 9~e!#. It is natural to
assume that the former would lead to spatially aperiodic
lutions for L→`. The periodic solutions can be consider
as Bloch waves where the periodicity is, however, se
generated and not imposed by some external potential.

Correspondingly, amplitude and phase can be expres
as

y

is

FIG. 8. Amplituder(x) for c350.5 and for various values o
the phase gradientn: 0 ~a!, 0.01~b!, 0.04~c!, 0.09~d!, and 0.18~e!.

FIG. 9. Same as Fig. 8, but for the phasef(x).
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r~x,t !5r~j!, c~x,t !5c0~j!2vt1nx. ~24!

where j5x2vt. While the motion of the amplitude is
simple shift with velocityv, the evolution of the phase i
more complicated. At fixedj, i.e., in a coordinate frame
moving with velocity v, the phase increases linearly wi
]c/]tuj5vn2v. But there is no fixed phase velocity, i.e
there is no frame in which the phase is strictly constant
fluctuates around a constant value in a frame moving w
velocity ^vph&5v/n, which is thus theaveragephase veloc-
ity. Typically, we found thatv and^vph& are not commensu
rate. Thus solutions of the type of Eq.~23! display a type of
quasiperiodic motion. Similar waves have been found pre
ously in @28,12#.

While time-dependent simulations are needed to ve
the stability of these solutions, theirexistencecan be checked
much more easily. Indeed, they are obtained by solving
ordinary differential equation forh(j),

~11 ic1!hjj1@2in~11 ic1!1v#hj

1@12n2~11 ic1!1 iv#h2~12 ic3!uhu2h50. ~25!

We should notice that forc3>0.6 the picture change
slightly: l still decreases withn, but nonchaotic solutions ar
no longer observed.

Another way to simulate regular solutions with period
h(j) is to use small systems whereL is equal to its period.
To obtain arbitrary values ofn, we have to use in this cas
twisted boundary conditions r(x1L)5r(x),c(x1L)
5c(x)1u with a twist u5nL. By means of such simula
tions we checked again the existence of solutions~23!. We
checked also that there was an upper limit onn that agreed
roughly withnM , though its precise value depended onL, as
one might have expected: depending on its precise value
integer number of waves will fit intoL with more or less
ease.

V. A MODIFIED KURAMOTO-SIVASHINSKY EQUATION

The behavior ofl as a function ofn and the origin of the
observed nonchaotic solutions can be explained in the fra
work of the modified Kuramoto-Sivashinsky equatio
~MKSE! derived in@6,29#. For completeness, let us recall th
main assumptions in deriving the Kuramoto-Sivashins
equation~KSE! @5,30# and its modification.

It is well known that just above the BF line the amplitud
is nearly constant, and its dynamics is essentially ruled
the phase behavior@1#. More precisely, the KSE is obtaine
by making two main assumptions: first,A(x,t) is obtained
by adding a small perturbation to the spatially constant so
tion, A(x,t)5e2 iV0t1u(x,t); and second,u(x,t) is a
‘‘slaved’’ function of c(x,t) and its spatial derivatives.

In deriving the MKSE we just replace the first assumpti
by making a perturbation around the plane-wave solut
given in Eq.~2!. After a tedious and nontrivial calculatio
@6# one finds that the amplitude is given by
It
h

i-

y

n

an

e-

y

y

-

n

r~x,t !5A@12q~x,t !#21@c3q~x,t !#2 ~26!

with q(x,t)5$c1]x
2c(x,t)1@]xc(x,t)#

2%/2, and the phase
satisfies

ċ1V2
~1!cxx1V2

~2!~cx!
21V4

~1!cxxxx1V4
~2!cxcxxx50,

~27!

whereV2
(1)5c1c321, V2

(2)5(c11c3), V4
(1)5c1

2(11c3
2)/2,

andV4
(2)52c1(11c3

2). Notice that the latter is just the KSE
except for the last term.

In order to verify if Eqs.~27! and ~26! well approximate
the dynamics of the CGLE in the PT regime, two chec
have been performed. As a first test, we have evalua
r(x,t) by means of Eq.~26! in the whole PT regime and fo
several values ofn. A comparison with the amplitudes ob
tained directly from the integration always shows satisf
tory results; see Fig. 10. Notice that this is even true for
extremal valuesc350.4 and 0.7, i.e., for two parameter va
ues that are near to the BF line and to the lineL1.

As a second check, we have derived from Eq.~27! expres-
sions for the amplitude velocityv and the frequencyv as-
sociated to the nonchaotic solutions~23!. We first observe
that the ansatz~23! leads to

v52ċ~x,t !2vc08~j!, ]xf~x,t !5c08~j!, ~28!

where primes indicate derivatives with respect toj5x2vt.
We then substitute this into~27! and integrate over allx. Due
to the periodic boundary condition some terms drop out a
others can be simplified, leaving us with

v5V01V2
~2!^~c08!2&2V4

~2!^~c09!2&, ~29!

FIG. 10. Amplitudesr from the direct simulation of the CGLE
~solid line! and obtained through Eq.~26! ~dashed line!: ~a!
c350.7 and n50.06; ~b! c350.7 and n50; ~c! c350.4 and
n50.26; ~d! c350.4 andn50.03.
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where brackets indicate spatial averages,^ &5L21*0
Ldx ~a

similar result was derived in@29#, but with the last term
neglected!. To obtain an expression forv we multiply both
sides of~27! by c08(j) before averaging, arriving at

v5
^V2

~2!@~c08!312n~c08!2#1V4
~2!@~c08!2c0-2n~c09!2#&

^~c08!2&
.

~30!

Numerical tests for several parameter values are show
Table I. In all cases the agreement between the meas
values and the right-hand sides of Eqs.~29! and~30! is very
good.

Having verified that Eq.~27! gives a good approximation
for the phase dynamics of the CGLE in the whole PT regim
we can now relate our numerical findings to several ot
observations in the literature. This is again based on an
servation by Sakaguchi@29# who noticed that Eq.~27!, once
cx is approximated by its average valuen in the last term,
can be rewritten as an equation fors5cx :

ṡ1V2
~1!sxx12V2

~2!ssx1V4
~1!sxxxx1V3sxxx50, ~31!

with V35nV4
(2) . This is exactly the so-called Kawaha

equation@31,32#, which has been studied numerically@31#
and theoretically@32,33#. Periodic wave trains formed b
pulselike structures have been found in this equation. It
been argued@31# that they are due to the dispersion ter
}sxxx , a conclusion that was confirmed in a careful analy
by Changet al. @33#. These studies confirm also the coexi
ence of chaotic and nonchaotic solutions~depending on the
initial conditions!. Chaotic attractors dominate for small va
ues of the dispersion constantV3, while for increasingV3
periodic attractors prevail. Finally, above a threshold val
only nonchaotic solutions are found. SinceV3}n, our results
about the decrease ofl with increasingn and the appearanc
of wave train solutions forn→nM are fully consistent with
the findings of@33#. Finally, the observation of Changet al.
that stable solutions exist only below a certain threshold
which in our case turns out to ben.0.1 for 0.35<c3<0.5
— explains why no regular solutions were found abo
c350.6: for c3.0.6: the value ofnM is below 0.1.

TABLE I. Amplitude velocity v and the frequencyv of non-
chaotic solutions@see Eq.~ 23!# for several values ofc3 andn. The
first numbers in columns 3 and 4 were obtained from Eqs.~29! and
~30!, while the directly measured values are given in parenthes

c3 n v v

0.35 0.092 0.317~0.317! 0.723~0.726!
0.35 0.184 0.218~0.218! 1.454~1.458!
0.35 0.306 20.021 (20.021! 2.563~2.569!
0.40 0.092 0.365~0.365! 0.731~0.735!
0.40 0.153 0.305~0.305! 1.236~1.241!
0.40 0.282 0.074~0.070! 2.372~2.337!
0.50 0.123 0.428~0.427! 1.256~1.241!
0.50 0.184 0.355~0.341! 1.592~1.650!
0.50 0.245 0.229~0.223! 1.933~1.984!
in
ed

,
r
b-

s

s
-

,

VI. CONCLUDING REMARKS

In this paper an integration scheme has been introdu
that is faster than the usual pseudospectral code at com
rable accuracy. It has been successfully employed to st
the CGLE in the PT regime for large systems (L.1024) and
long integration times (t.105). Although we have not ap-
plied it to other systems than the CGLE, we believe tha
should be useful also for the nonlinear Schro¨dinger equation
and for chemical reaction-diffusion equations.

Particular attention was paid to solutions with nonze
average phase gradientn. For fixed control parameters w
always found a maximal conserved phase gradientnM . It
can be used as an order parameter to characterize th
regime and to describe the transition from phase to de
turbulence: at the transition,nM vanishes with the mean field
exponent. Another order parameter with nonzero values
the DT regime gave the same transition point but anot
exponent that is more similar to exponents found in previo
papers. In contrast, the minimal amplitude values reache
the PT regime do not seem to be useful order parameter
they are discontinuous at the transition.

For small values ofn, the majority of the observed solu
tions are chaotic. But the maximal Lyapunov exponent ty
cally decreases withn, and stable solutions are more fre
quent than chaotic ones nearnM . This can be understood b
assuming that the phase dynamics is ruled by a modi
Kuramoto-Sivashinski equation.

The regular solutions can be either spatially periodic
aperiodic. In both cases they consist of traveling wav
whose amplitude and phase velocities are typically inco
mensurate. These solutions can be considered as genera
Bloch waves with self-generated~periodic or aperiodic!
modulation. For spatially periodic regular solutions these
sults were confirmed by simulations of small systems w
twisted boundary conditions@i.e., periodic amplitudes bu
c(x1L)5c(x)1u#.

During the final write-up of this paper, we became awa
of a paper by Montagne, Hernandez-Garcia, and San Mig
@12# where results similar to those reported in Sec. III ha
been found. The analysis reported in@12# confirms thatnM
can be used as an order parameter in the whole (c1 ,c3) plane
of the CGLE. However, the present paper goes beyond
results of@12# in several aspects. In particular, we have fu
characterized the dynamics of solutions withnÞ0 through
Lyapunov analyses and the identification of a class of n
nonchaotic solutions. Moreover, we demonstrated in de
that traveling wave solutions can be described by a Ka
hara equation for their phase, as had been suggested in@12#.
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