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Using a combination of analytical and numerical techniques, we show that chaos in globally coupled

identical dynamical systems, whether dissipative or Hamiltonian, is both extensive and subextensive: their

spectrum of Lyapunov exponents is asymptotically flat (thus extensive) at the value �0 given by a single

unit forced by the mean field, but sandwiched between subextensive bands containing typically OðlogNÞ
exponents whose values vary as � ’ �1 þ c= logN with �1 � �0.
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Dynamical systems made of many coupled units with
long-range or global coupling are models of numerous
important situations in physics and beyond, ranging from
the synchronization of oscillators and neural networks to
gravitational systems, plasma, and hydrodynamics [1,2].
Their properties can be quite remarkable: for instance,
globally coupled dissipative systems can give rise to
collective chaos, where macroscopic variables show in-
cessant irregular behavior due to nontrivial correlations
between local units [3]. Their Hamiltonian counterparts,
in the microcanonical ensemble, are now well known to
show negative specific heat, long-lived quasistationary
states, all features ultimately related to their nonadditiv-
ity [1]. Their unusual properties make these systems
deceptively close to simple mean-field approximations
and less well understood than systems with short-range
interactions.

Particularly unclear is the status of the chaos. For sys-
tems with short-range interactions, Ruelle [4] conjectured
extensivity of chaos, arguing that a sufficiently large spatial
domain can be divided into small, practically independent
subsystems with similar dynamic properties. Extensivity is
customarily probed by studying the finite-size scaling

properties of Lyapunov exponents (LEs). When LEs �ðiÞ,
arranged in descending order and plotted as functions of
ði� 1

2Þ=N, collapse onto a single asymptotic spectrum for

large-enough system sizes N, chaos is deemed extensive.
This has been observed repeatedly in locally coupled sys-
tems [5] (at least in the absence of collective modes, which
are nonextensive [6]), but there is, in our view, no solid
evidence or argument for or against the extensivity of
chaos in long-range or globally coupled systems, even
with the system sizes reachable numerically today (see,
e.g., Fig. 2(a) below).

Yet, a naive argument suggests extensivity in this
latter case: for identical units submitted to the same

self-consistent forcing, the influence of a given unit on
the mean field vanishes in the thermodynamic limit and
hence the LEs should all take the same value (hereafter �0),
a trivial realization of extensivity. But this is strictly true
only if the N ! 1 limit is taken first, which may be
misleading when dealing with LEs, as they are essentially
infinite-time averages. In fact, the Lyapunov spectra of
finite-size globally coupled systems always remain far
from being flat [see again Fig. 2(a)].
For the paradigmatic and much-studied Hamiltonian

mean-field (HMF) model [7,8], the situation is similarly
confusing: the naive argument above gives all LEs at zero,
whereas a calculation by Firpo yielded a positive largest
exponent at any finite N, with a well-defined N ! 1 limit
[9]. A theoretical formulation as a quantum many-body
problem mentioned the possibility of a vanishing fraction
of nonzero exponents [10], but numerical results have
produced contradictory results [8,11].
In this Letter, we show that chaos is not fully extensive

in systems of globally coupled identical units. Rather, their
Lyapunov spectra, in the large-size limit, converge to flat
extensive regions where the LEs do take the value �0 given
by the single unit forced by the mean field, but these
regions are bordered by subextensive layers containing
exponents taking different values. In particular, we provide
a theoretical analysis and numerical evidence showing that

the largest LE �ð1Þ converges as �ð1Þ ’ �1 þ c= logN to an
asymptotic value �1 > �0. Our numerical analysis reveals
that the subextensive boundary layers contain OðlogNÞ
Lyapunov modes and that their LEs take the same asymp-
totic value �1.
We first study N globally coupled dissipative maps

xtþ1
j ¼ fðytjÞ; ytj ¼ ð1� "Þxtj þ

"

N

XN
j0¼1

xtj0 ; (1)
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with j ¼ 1; . . . ; N, time t, coupling constant ", and a
chaotic local map fðxÞ, which is chosen here to be one-
dimensional for the sake of simplicity. If fðxÞ shows suffi-
ciently strong mixing, its Jacobian may be approximated
by a random multiplier. The tangent-space dynamics of
Eq. (1) is then simplified as

vtþ1
j ¼ �t

j

�
ð1� "Þvt

j þ
"

N

XN
j0¼1

vt
j0

�
; (2)

with independent identically distributed random numbers
�t

j, unless the coupling " is too strong to regard f0ðytjÞ
as independent. The mean-field forcing argument amounts
to ignoring the global-coupling term in Eq. (2), which
is then reduced to the biased Brownian motion of a
particle of coordinate logjvt

jj with average velocity

�0 � hlogjð1� "Þ�t
jji and diffusion coefficient D �

hðlogjð1� "Þ�t
jj � �0Þ2i, where �0 is the mean-field LE.

From this viewpoint, the full system (2) can be seen as N
interacting Brownian particles. Assume now that the
Lyapunov vector ½vt

1; . . . ; v
t
N� is sufficiently localized,

which is indeed the case except when it is associated
with collective behavior [6]. In this case, its largest
component vt

M dominates the coupling term in Eq. (2).
Thus, the Brownian particles logjvt

jj diffuse freely as long

as jð1� "Þvt
jj � jð"=NÞvt

Mj, otherwise the coupling term

takes effect, keeping any jð1� "Þvt
jj larger than

jð"=NÞvt
Mj. In other words, the N Brownian particles

logjvt
jj diffuse within a box of size log½Nð1� "Þ="�,

whose right end corresponds to the rightmost particle,
while the other end pulls all the particles left behind. The

first LE �ð1Þ is then simply given as the average velocity of
this box. This process is described by the following

Fokker-Planck equation in a frame moving at velocity �ð1Þ:

@

@t
Pðu; tÞ ¼ � @

@u
½ð�0 � �ð1ÞÞP� þD

2

@2P

@u2
; (3)

where u is the coordinate in this frame and the particle
distribution function Pðu; tÞ is confined, roughly, in 0 �
u � umax � log½Nð1� "Þ="�. For large N, its stationary
solution can be approximated by the one in the limit

umax ! 1, PsðuÞ ¼ ð2��ð1Þ=DÞ expð�2��ð1Þu=DÞ with

��ð1Þ � �ð1Þ � �0. Further, by the definition of the box,
there should be Oð1Þ particles near its right end umax,
which implies

R1
umax

PsðuÞdu ¼ c1=N with a constant

c1 �Oð1Þ. This yields our central result for the first LE:

��ð1Þ ¼ �ð1Þ � �0 ¼ D

2

�
1þ c2

logN

�
þO

�
1

log2N

�
; (4)

with c2 � log½"=ð1� "Þc1�. The probability distribution

P ðvÞ for the vector components vj is P ðvÞ ¼ PsðlogvÞ�
ðdu=dvÞ � v�2�c2= logN , whose exponent is smaller than
�1 and thus consistent with our assumption of localization

of the Lyapunov vector. A similar result holds for the last

LE: ��ðNÞ � �ðNÞ � �0 ’ �ðD=2Þð1þ c02= logNÞ with
another coefficient c02.
These results are confirmed in Fig. 1 by direct simula-

tions of the random multiplier (RM) model (2) and of
globally coupled maps (GCM) (1) [12].
For the RM model, we used " ¼ 0:1 and �t

j ¼
� exp½�t

j=ð1� "Þ� with random signs (here ‘‘þ’’ with

probability 0.6) and �t
j drawn from the centered Gaussian

with variance a2, which gives �0 ¼ 0 and D ¼ a2.
Quantitative agreement is found with Eq. (4) for the first
LE and its counterpart for the last LE [Figs. 1(a) and 1(c)].
For our GCM system, we chose skewed-tent maps

fðxÞ ¼ bx [bðx� 1Þ=ð1� bÞ] if 0 � x � 1=b [1=b<
x � 1] coupled with strength " ¼ 0:02. The results in
Fig. 1(b) demonstrate again the logarithmic size depen-

dence of ��ð1Þ and ��ðNÞ. Their asymptotic values are not
symmetric anymore [Fig. 1(b)], but the deviation fromD=2
remains small [Fig. 1(c)]. In addition, we note that here �0

depends residually on N through changes in the invariant
measure. This effect is, however, so weak that in practice
we observe the same logarithmic law for the first and last

LEs, �ð1Þ and �ðNÞ.
Let us summarize our results so far: The first and last

LEs remain distinct from the mean-field forcing LE �0 in
the N ! 1 limit. They are shifted by an amount ��
controlled by D, or the amplitude of the fluctuations in
the Jacobian, and the coupling strength " is only involved
in the logarithmic finite-size corrections [13].
We now investigate the full Lyapunov spectrum of our

systems. As seen above, it cannot be entirely flat at �0

asymptotically. However, for finite-size systems,
Lyapunov spectra become flatter for larger sizes under the

conventional rescaling �ðiÞ vs h � ði� 1
2Þ=N [Fig. 2(a)]. In
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FIG. 1 (color online). Size dependence of the first and last LEs
[12]. (a),(b) ��ð1Þ and j��ðNÞj against 1= logN for the RM model
with a ¼ 1 (a) and for the skewed-tent GCM with b ¼ 4 (b).
Dashed lines indicate linear fits to the data. (c) Estimated value

of ��ð1Þ
1 ¼ limN!1��ð1Þ for the RM model and our GCM with

varying a and b, respectively, plotted against D=2. The diffusion
constant D is obtained by D ¼ a2 for the RM model and

numerically measured for the GCM. Dashed line: ��ð1Þ1 ¼
D=2 as predicted in Eq. (4).
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the RMmodel, a closer look at the ‘‘bulk’’ LEs with fixed h

reveals an asymptotic power-law decay ��ðhÞ �
�ðiÞ � �0 � 1=

ffiffiffiffi
N

p
toward the mean-field forcing value

�0 ¼ 0 [Fig. 2(b)]. This scaling is only reached for large-
enough sizes and sooner near the middle of the spectrum, as

shown clearly by rescaled spectra ��
ffiffiffiffi
N

p
[Fig. 2(c)]:

they collapse very well within a central region ½heðNÞ;
1� heðNÞ�, with heðNÞ decreasing toward zero as 1=N
[Fig. 2(c) arrows and Fig. 2(d)]. Thus, in the infinite-size
limit, the Lyapunov spectrumof theRMmodel is indeed flat
at �0, but sandwiched between two subextensive bands of
LE taking different values [14].

That he � 1=N [Fig. 2(d)] implies that the number of
nonextensive LEs increases slower than any power of N.
We now show that it actually grows logarithmically with
N. With fixed indices i, these LEs at size N seem to obey

Eq. (4), �ðiÞ
N ’ �ðiÞ1 þ cðiÞ= logN [Fig. 3(a)], but the esti-

mated �ðiÞ1 increase with i (dashed lines), at odds with the
monotonicity of the Lyapunov spectrum. This is better seen

when plotting ð�ðiÞ
2N log2N � �ðiÞ

N logNÞ= log2 as estimates

for �ðiÞ1 [inset of Fig. 3(a)], where �ðiÞ1 is found to be larger

than �ð1Þ1 within the nonextensive region 1� i& ie�heN.
Instead, if we rescale the index logarithmically as h0 �
ði� 1Þ=ði0 þ logNÞ, with i0 adjusted here for the LEs to
show the 1= logN law, the asymptotic LEs �1ðh0Þ do not
increase with h0 anymore, but stay constant in the nonex-
tensive region except near the threshold [Fig. 3(b), left of
the dashed line]. This indicates that all the nonextensive
LEs converge to the same value as the first LE and that their
number increases logarithmically with N. The same
conclusion is reached for our GCM system [Figs. 3(c)

and 3(d)], though we could not compute all the nonexten-
sive LEs within a reasonable time [12]. In short, we find
that OðNÞ extensive LEs are sandwiched by two subexten-
sive bands at both ends of the spectrum, each of which
consists of OðlogNÞ LEs with asymptotic values shifted
approximately by D=2 from �0.
We now show that our results also extend to the HMF

model, and thus probably also to other globally coupled
Hamiltonian models. Defined by the Hamiltonian H ¼
1
2

P
jp

2
j þ 1

2N

P
j;j0 ½1� cosð�j � �j0 Þ�, the HMF model is

intensely studied mostly because its infinite-size limit dis-
plays an abundance of nontrivial solutions which appear
as so-called quasistationary states at finite N [7,8].
Contradictory results exist about the nature of chaos in
this model [8,11], even in its reference ‘‘equilibrium’’ state.
The motion of a single particle is given by €�j ¼
�M sinð�j ��Þ, whereMei� � 1

N

P
je

i�j is the mean field

which is nonzero in the (equilibrium) ferromagnetic phase
present for energy density U < 3

4 . Here the naive argument

yields �0 ¼ 0 because a single particle forced by a constant
mean field cannot be chaotic.
We were able to extend the argument leading to Eq. (4)

to the HMF model (details will appear elsewhere [15]): At
finite N, the mean field fluctuates and the energy of a
particle diffuses, so that it eventually visits the surround-
ings of UM ¼ 1þM, the unstable maximum of the mean-
field potential. There, it experiences a chaotic kick, and this
produces a finite diffusion coefficient D for the logarithm
of the tangent-space amplitudes. Taking these effects into
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FIG. 3 (color online). Left subextensive band of the Lyapunov
spectrum for the RM model with a ¼ 1 (a),(b) and for the
skewed-tent GCM with b ¼ 4 (c),(d) [12]. (a) �ðiÞ vs 1= logN
for i ¼ 1; 4; 16. Dashed lines indicate linear fits to the data.

Inset: �ðiÞ
1 � ð�ðiÞ

2N log2N � �ðiÞ
N logNÞ= log2 vs i for N ¼

256; 512; . . . ; 8192 (see text). The horizontal and vertical dashed

lines indicate �ð1Þ1 and a threshold index value estimated from he,
respectively. (b) Same plot as the inset of (a) but with rescaled
indices h0 � ði� 1Þ=ði0 þ logNÞ with i0 ¼ 15. (c),(d) Same
plots as the inset of (a) and (b) for the GCM with N ¼
512; 1024; . . . ; 16 384, and i0 ¼ 5.
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FIG. 2 (color online). Full Lyapunov spectrum for the RM
model with a ¼ 1 [12]. (a) Spectra for different sizes (arrows:
increasing N) for the RM model (main panel, N ¼
128; 256; 512; . . . ) and for the skewed-tent GCM with b ¼ 4
(inset, N ¼ 32; 128; 512; . . . ). (b) j��j vs N at fixed values of h.
Dashed lines: j��j � 1=

ffiffiffiffi
N

p
. (c) Same data as in main panel

of (a) in rescaled coordinate from N ¼ 128 (main panel, inner-
most curve) to N ¼ 16 384 (inset, outermost curve). Arrows
indicate the positions heðNÞ at which spectra of size N and 2N
start to collapse. (d) heðNÞ vs N. Dashed line: heðNÞ � 1=N.
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account, we obtain a strictly positive asymptotic first LE
with, again, 1= logN corrections, which we numerically
confirm in Fig. 4(a). The full Lyapunov spectrum, on the
other hand, gets flatter for larger N and we observed the

emergence of the ��ðhÞ � 1=
ffiffiffiffi
N

p
scaling [Fig. 4(b)], but

we are currently unable to study the larger systems, in
order to overcome finite-size effects to obtain clear evi-
dence of OðlogNÞ subextensive LEs. Nevertheless, it is
already clear from Fig. 4(b) that the h domain where the

1=
ffiffiffiffi
N

p
scaling holds widens with N, suggesting a flat

(zero-valued) extensive part with a subextensive, possibly
logarithmic, band of positive LEs.

We finally examine the influence of collective chaos on
our results, an important generic case for dissipative glob-
ally coupled systems [3]. Lyapunov spectra then contain
modes governing the macroscopic dynamics, whose asso-
ciated covariant Lyapunov vectors are delocalized [6].
In the case of globally coupled limit-cycle oscillators,
_Wj ¼ Wj � ð1 þ ic2ÞjWjj2Wj þ Kð1 þ ic1ÞðhWi � WjÞ,
with complex variables Wj, hWi � 1

N

P
jWj, c1 ¼ �2:0,

c2 ¼ 3:0, and K ¼ 0:47, the largest LE is such a collective
mode [6]. Here we see that it does not obey Eq. (4) for N
large enough while the following, ‘‘noncollective’’ LEs do
[Fig. 4(d)]. This result comforts the general picture of the
macroscopic modes being present but asymptotically de-
coupled from the other ones in Lyapunov spectra, whether
in the bulk or in the subextensive layers.

Our findings recall the importance of the order of limits
in systems with long-range interactions: For the ferromag-
netic phase of the HMF model for instance, considering

directly the infinite-size system (the Vlasov equation [8]),
one misses the fact that residual but influential chaos
remains in the N ! 1 limit, even though the bulk expo-
nents vanish asymptotically. The Lyapunov modes in the
subextensive layers capture ‘‘extreme events’’ in phase
space, much like the largest LE in locally coupled systems
[16,17]. For the HMF case, this is particularly clear since,
whereas the covariant vectors for bulk LEs are carried by
typical oscillators, the first Lyapunov vector is localized on
those oscillators currently in the vicinity of the separatrix,
the most unstable part of (local) phase space [Fig. 4(c)].
Even though they are in logarithmic numbers and localized
on special regions of phase space, the Lyapunov modes of
the subextensive layers may have an important impact on
macroscopic properties, such as the thermodynamic en-
tropy of Hamiltonian systems [18].
In summary, we have shown that microscopic chaos in

systems made of N globally coupled dynamical units ex-
hibits a rather peculiar form of extensivity: their Lyapunov
spectrum �ðhÞ is asymptotically flat, thus ‘‘trivially’’ ex-
tensive, but sandwiched between subextensive bands with
LEs taking different values. In the presence of macroscopic
dynamics, the corresponding collective Lyapunov modes
are just superimposed on this structure. The bulk LEs

converge as �ðhÞ ’ �0 þ const=
ffiffiffiffi
N

p
to the value �0 given

by a single dynamical unit forced by the mean field. In
contrast, the subextensive layers contain OðlogNÞ LEs
whose values vary as � ’ �1 þ const= logN with �1 �
�0. Investigating further the genericity of our results and

providing a theoretical basis to the 1=
ffiffiffiffi
N

p
scaling of bulk

LEs and the logN size of subextensive bands are important
tasks left for future study.
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