
Supplemental Material on
“A reduction methodology for fluctuation driven population dynamics”

Denis S. Goldobin,1, 2 Matteo di Volo,3 and Alessandro Torcini3, 4, 5, ∗

1Institute of Continuous Media Mechanics, Ural Branch of RAS, Acad. Korolev street 1, 614013 Perm, Russia
2Department of Theoretical Physics, Perm State University, Bukirev street 15, 614990 Perm, Russia
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CHARACTERISTIC FUNCTION AND PSEUDO-CUMULANTS

Here we report in full details the derivation of the model (10) , already outlined in the Letter, in terms of the
characteristic function and of the associated pseudo-cumulants. In particular, the characteristic function for Vx is
defined as

Fx(k) = 〈eikVx〉 = P.V.

∫ +∞

−∞
eikV w(V, t|x) dV ,

which for a Lorentzian distribution becomes :

P.V.

∫ +∞

−∞
eikV

ax
π[a2

x + (V − vx)2]
dV = eikvx−ax|k| .

In order to derive the FPE in the Fourier space, let us proceed with a more rigourous definition of the characteristic
function, namely

Fx ≡ lim
ε→+0

〈eikVx−ε|Vx|〉 .

Therefore by virtue of the FPE (Eq. (3) in the Letter) the time derivative of the characteristic function takes the form

∂tFx = lim
ε→+0

P.V.

+∞∫
−∞

eikVx−ε|Vx| ∂wx

∂t
dVx = − lim

ε→+0
P.V.

+∞∫
−∞

eikVx−ε|Vx| ∂

∂Vx

(
(Ix + V 2

x )wx − σ2
x

∂

∂Vx
wx

)
dVx

= − lim
ε→+0

lim
B→+∞

B∫
−B

eikVx−ε|Vx| ∂

∂Vx

(
(Ix + V 2

x )wx − σ2
x

∂

∂Vx
wx

)
dVx .

Performing a partial integration, we obtain

∂tFx = − lim
ε→+0

lim
B→+∞

eikVx−ε|Vx|qx(Vx)
∣∣∣B
−B
−

B∫
−B

∂eikVx−ε|Vx|

∂Vx
qx(Vx)dVx

 , (1)

where the probability flux for the x-subpopulation is defined as

qx = (Ix + V 2
x )wx − σ2

x

∂wx

∂Vx
.

As the membrane potential, once it reaches the threshold +B, is reset to −B this sets a boundary condition on the
flux, namely qx(B) = qx(−B) for B → +∞; therefore,

eikB−εBqx(B)− e−ikB−εBqx(−B) = 2ie−εB sin kB qx(B)
B→+∞−→ 0

and the first term in Eq. (1) will vanish, thus the time derivative of the characteristic function is simply given by

∂tFx = lim
ε→+0

lim
B→+∞

B∫
−B

ikeikVx−ε|Vx|
(

(Ix + V 2
x )wx − σ2

x

∂wx

∂Vx

)
dVx .

Hence, after performing one more partial integration for the remaining Vx-derivative term, we obtain

∂tFx = lim
ε→+0

P.V.

+∞∫
−∞

eikVx−ε|Vx|
[
ik
(
Ix + V 2

x

)
wx − σ2

xk
2wx

]
dVx

= ik

IxFx + lim
ε→+0

P.V.

+∞∫
−∞

eikVx−ε|Vx|V 2
xwxdVx

− σ2
xk

2Fx (2)
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and finally

∂tFx = ik[IxFx − ∂2
kFx]− σ2

xk
2Fx , (3)

which is Eq. (4) in the Letter.
Under the assumption that Fx(k, t) is an analytic function of the parameters x one can calculate the average

characteristic function for the population F (k, t) =
∫

dη
∫

dJFx(k, t)g(η)h(J) and the corresponding FPE via the
residue theorem, with the caution that different contours have to be chosen for positive (upper half-planes of complex
η and J) and negative k (lower half-planes). Hence, the FPE is given by

∂tF = ik
[
H0F − ∂2

kF
]
− |k|D0F − S2

0k
2F , (4)

where H0 = I0 + η0 + J0r, D0 = ∆η + ∆Jr and S2
0 = σ2(η0 + i∆ηk/|k|, J0 + i∆Jk/|k|) = NR + iNI .

For the logarithm of the characteristic function, F (k) = eΦ(k), one obtains the following evolution equation

∂tΦ = ik[H0 − ∂2
kΦ− (∂kΦ)2]− |k|D0 − S2

0k
2 . (5)

In this context the Lorentzian Ansatz amounts to set ΦL = ikv − a|k| [1], by substituting ΦL in (5) for S0 = 0 one
gets

v̇ = H0 + v2 − a2 ,

ȧ = 2av +D0 , (6)

which coincides with the two dimensional mean-field model found in [2] with r = a/π.
In order to consider deviations from the Lorentzian distribution, we analyse the following general polynomial form

for Φ :

Φ = −a|k|+ ikv −
∞∑
n=2

qn|k|n + ipn|k|n−1k

n
. (7)

The terms entering in the above expression are dictated by the symmetry of the characteristic function Fx(k) for
real-valued Vx, which is invariant for a change of sign of k joined to the complex conjugation. For this characteristic
function neither moments, nor cumulats can be determined [3].

Hence, we can choose the notation in the form which would be most optimal for our consideration. Specifically, we
introduce Ψ = k∂kΦ,

Ψ = −(asign(k)− iv)k − (q2 + ip2sign(k))k2 − (q3sign(k) + ip3)k3 − . . . . (8)

Please notice that

Ψ(−k) = Ψ∗(k) [as well as Φ(−k) = Φ∗(k)] . (9)

In this context Eq. (5) becomes

∂tΨ = ikH0 − |k|D0 − ik∂k
(
k∂k

Ψ

k
+

Ψ2

k

)
− 2S2

0k
2 . (10)

It is now convenient to introduce the pseudo-cumulants, defined as follows:

W1 ≡ a− iv , Wn ≡ qn + ipn . (11)

From Eq. (10) we can thus obtain the evolution equation for the pseudo-cumulants Wm, namely

Ẇm = (D0 − iH0)δ1m + 2(NR + iNI)δ2m + im
(
−mWm+1 +

∑m

n=1
WnWm+1−n

)
, (12)

where for simplicity we have assumed k > 0 and employed the property (9). Moreover, we have omitted the kδ(k)
contribution, since it vanishes.

The evolution of the first two pseudo-cumulant reads as:

Ẇ1 = D0 − iH0 − iW2 + iW 2
1 , (13)

Ẇ2 = 2(NR + iNI) + 4i(−W3 +W2W1) . (14)
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Or equivalently

ṙ = (∆η + ∆Jr + p2)/π + 2rv , (15a)

v̇ = I0 + η0 + J0r − π2r2 + v2 + q2 , (15b)

q̇2 = 2NR + 4(p3 + q2v − πp2r) , (15c)

ṗ2 = 2NI + 4(−q3 + πq2r + p2v) , (15d)

which is Eq. (10) in the Letter.

FIRING RATE AND MEAN MEMBRANE POTENTIAL FOR PERTURBED LORENTZIAN
DISTRIBUTIONS

In the following we will demonstrate that the definitions of the firing rate r and of the mean membrane potential
v in terms of the PDF w(V, t), namely:

r = lim
V→∞

V 2w(V, t) and v = P.V.

∫ +∞

−∞
V w(V, t) dV ,

obtained in [2] for a Lorentzian distribution, are not modified even by including in the PDF the correction terms
{qn, pn} .

The probability density for the membrane potentials w(V, t) is related to the characteristic function F (k) via the
follwoing anti-Fourier transform

w(V, t) = (2π)−1

∫ +∞

−∞
F (k) e−ikV dk

with F (k) = eΦ(k). By considering the deviations of Φ(k) from the Lorentzian distribution up to the second order in
k, we have

2π w(V, t) =

∫ +∞

−∞
eikv−a|k|−q2

k2

2 −ip2
k|k|
2 e−ikV dk

≈
∫ +∞

−∞
e−iky−a|k|

(
1− q2

k2

2
− ip2

k|k|
2

)
dk

=

∫ +∞

−∞

(
1 +

q2

2

[
(1− θ) ∂

2

∂y2
− θ ∂

2

∂a2

]
− p2

2

∂2

∂y∂a

)
e−iky−a|k|dk ,

where y = V − v and θ is an arbitrary parameter. Thus one can rewrite

w(y, t) ≈
(

1 +
q2

2

[
(1− θ) ∂

2

∂y2
− θ ∂

2

∂a2

]
− p2

2

∂2

∂y∂a

)
a

π(a2 + y2)
. (16)

From the expression above, it is evident that q2 and p2, as well as the higher-order corrections, do not modify the
firing rate definition reported in [2] for the Lorentzian distribution, indeed

r = lim
V→∞

V 2w(V, t) =
a

π
.

Let us now estimate the mean membrane potential by employing the PDF (16), where we set the arbitrary parameter
θ to zero without loss of generality, namely

w(V, t) =

(
1 +

q2

2

∂2

∂V 2
− p2

2

∂2

∂V ∂a
+ . . .

)
w0(V, t) , (17)

where w0(V, t) = π−1a/[a2 + (V − v)2] . The mean membrane potential is given by

〈V 〉 = P.V.

∫ +∞

−∞
V w(V, t) dV = P.V.

∫ +∞

−∞

(
V w0 −

q2

2

∂w0

∂V
+
p2

2

∂w0

∂a
+ . . .

)
dV

= v − q2

2

∫ +∞

−∞

∂w0

∂V
dV +

p2

2

∂

∂a

∫ +∞

−∞
w0dV + . . .

= v − q2

2
w0|+∞−∞ +

p2

2

∂ 1

∂a
+ · · · = v . (18)
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All the higher-order corrections entering in w(V, t), denoted by (. . . ) in (18), have the form of higher-order derivatives
of w0 with respect to V and a; therefore they yield a zero contribution to the estimation of 〈V 〉. Thus, Eq. (18) is
correct not only to the 2nd order, but also for higher orders of accuracy. We can see that the interpretation of the
macroscopic variables a = πr and v = 〈V 〉 in terms of the firing rate and of the mean membrane potential entering
in Eq. (12) or Eqs. (15a)–(15d) remains exact even away from the Lorentzian distribution.

SMALLNESS HIERARCHY OF THE PSEUDO-CUMULANTS

Eq. (12) for m > 1 can be recast in the following form

Ẇm>1 = 2m(v + iπr)Wm + 2(NR + iNI)δ2m + im
(
−mWm+1 +

∑m−1

n=2
WnWm+1−n

)
, (19)

where Wm is present only in the first term of the right-hand side of the latter equation.

Let us now understand the average evolution of Wm, m > 1. In particular, by dividing Eq. (15a) by r and averaging
over time, one finds that

〈v〉t = − 1

2π

(
∆η〈r−1〉t + 〈p2r

−1〉t + ∆J

)
, (20)

where 〈. . . 〉t denotes the average over time and where we have employed the fact that the time-average of the time-
derivative of a bounded process is zero, i.e. 〈 d

dt ln r〉t = 0. Since r(t) can be only positive, 〈v〉t will be strictly negative
for a heterogeneous population (with ∆η 6= 0 and/or ∆J 6= 0) in the case of nonlarge deviations from the Lorentzian
distribution, i.e., when p2 is sufficiently small. In particular, for asynchronous states v = 〈v〉t, hence, Eq. (20) yields
a relaxation dynamics for Wm under forcing by Wm+1 and W1, . . . ,Wm−1; by continuity, this dissipative dynamics
holds also for oscillatory regimes which are not far from the stationary states.

Let us explicitly consider the dynamics of the equations (19) for m = 2, 3, 4, namely:

Ẇ2 = 4(v + iπr)W2 − i4W3 + 2(NR + iNI) , (21)

Ẇ3 = 6(v + iπr)W3 + i3W 2
2 − i9W4 , (22)

Ẇ4 = 8(v + iπr)W4 + i8W2W3 − i16W5 , (23)

. . . .

Let us first see how the attractivity of the Lorentzian distribution in the absence of noise follows from these equations.
For NR = NI = 0, we consider a small deviation from the Lorentzian distribution such that |Wn| < Cεn−1, where
C is some positive constant and ε � 1 is a smallness parameter. In this case, from Eq. (21) one observes that
W2 tends to ∼ W3, while from Eq. (22), W3 →∼ W 2

2 . Here W4 is neglected as for the initial conditions one finds
|W 2

2 | ∼ ε2 � |W4| ∼ ε3 and below we will see that similar relation remains valid over time. Therefore, W2 →∼ W 2
2 ,

which means that W2(t → +∞) → 0. Further, from Eq. (23), W4 →∼ W2W3 ∼ W 3
2 → 0. Here W5 is neglected as

for the initial conditions one finds |W2W3| ∼ ε3 � |W5| ∼ ε4. In the course of evolution W4 tends to ∼ W 3
2 , while

W3 tends to ∼ W 2
2 , one can similarly show that W5 →∼ W 4

2 , and so forth. Hierarchy Wn ∼ Wn−1
2 is similar to

Wn ∼ εn−1 and allows us to neglect W4 in Ẇ3, W5 in Ẇ4, and so forth, not only for the initial stage of the dynamics,
but also at a later time. Thus, in the absence of noise, the system tends to a state W1 6= 0, Wm>1 = 0 (at least from
a small but finite vicinity of this state). This tells us that the Lorentzian distribution is an attractive solution in this
case.

In the presence of noise, by assuming that |NR+ iNI | ∼ σ2, a similar analysis of Eqs. (21)–(23) yields |W2| →∼ σ2,
|W3| →∼ |W 2

2 | ∼ σ4, . . . ,

|Wm| →∼ σ2(m−1) .

The above scaling is well confirmed by the data reported in Fig. 1. Therefore, a two-element truncation (13)–(14) of
the infinite equation chain (12) is well justified as a first significant correction to the Lorentzian distribution dynamics.
Presumably, this might also hold for some regimes in homogeneous populations (where ∆η = ∆J = 0), even thought
the heuristic explanation we provide here heavily relays on the positivity of (∆η〈r−1〉t + ∆J) in Eq. (20).
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FIG. 1. Modulus of the pseudo-cumulants |Wn| versus the noise variance σ2 for n ranging from 1 to 5 from top to bottom.
The pseudo-cumulants are estimated by integrating Eq. (10) in the Letter with extended precision (30 digits) and by limiting
the sum to the first 100 elements. Other parameters: I0 = 0.1, η0 = −1, J0 = 1, ∆η = 0.1, and ∆J = 0.1.

CONVENTIONAL AND PSEUDO- CUMULANTS

The relationships between conventional and pseudo- cumulants

Let us discuss the relationships existing between conventional and pseudo-cumulant representations. The character-
istic function F (k) and its logarithm Φ(k) of any real-valued random variable V must obey the symmetry properties
F (k) = F ∗(−k) and Φ(k) = Φ∗(−k). Hence, the expression (7) for the function Φ(k) in terms of pseudo-cumulants is
the most general one respecting such symmetry

Φ(k) = −
∞∑
n=1

qn|k|n + ipn|k|n−1k

n
;

where we set q1 = a and p1 = −v.
Thus, the pseudo-cumulants can be expressed as derivative of Φ(k), as follows :

Wn =
−1

(n− 1)!

dnΦ(k = 0)

dkn
for k > 0, W ∗n =

−(−1)n

(n− 1)!

dnΦ(k = 0)

dkn
for k < 0, (24)

where W ∗n = qn − ipn is the complex conjugate of Wn.
However, the expression (7) does not guarantee the existence of conventional cumulants and moments. The existence

of the n-th moment Mn = 〈V n〉 requires that the PDF w(V ) will decay faster than 1/|V |n+1 for V → ±∞. If the n-th
moment is finite, the derivative dn

dknF (k = 0) = inMn exists and is continuous (as well as all lower-order derivatives).

The finiteness of dn

dknF (k = 0) forbids the existence of all the terms |k|2m−1 with odd (2m − 1) ≤ n and |k|2m−1k
with even 2m ≤ n, meaning that only smooth terms k2m−1 and k2m are present up to the n-th power (the kn-term
included). Therefore, in this case we will have

Kl =

{
− (l−1)!pl

il
, for odd l ≤ n ;

− (l−1)!ql
il

, for even l ≤ n ;
(25)

where Kl is the l-th order conventional cumulant, defined from the expansion Φ(k) =
∑∞
n=1Kn

(ik)n

n! .
To summarize, if the distribution w(V ) decays as 1/|V |n+1+α with 0 < α ≤ 1 then we have the following situation.

The expansion of Φ(k) contains for the orders up to l ≤ n only the conventional-cumulant part, K1+...+Kl(ik)l/l!+...,
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and the pseudo-cumulants are purely real (imaginary) for even (odd) l in agreement with (25). For the orders l > n,
conventional moments and cumulants diverge and the pseudo-cumulants Wl have generally both the real ql and
imaginary pl parts given by (24).

In particular, if the distribution w(V ) decays faster that any power law (e.g., exponentially fast) then all the
moments are finite and all pseudo-cumulants have only the conventional-cumulant part.

Geometric interpretation of the second pseudo-cumulant

The small-k behavior of the characteristic function F (k), which is the Fourier transform of the PDF w(V ), represents
the large-scale properties of w(V ). In particular, the leading part of the expansion reads as

Φ(k) = lnF (k) = −a|k|+ ikv − q2
k2

2
− ip2

k|k|
2

+ . . . ,

where the terms ∼ k characterize the ‘Lorentzian’ profile of the distribution; while the second order terms ∼ k2

represent the leading corrections to the distribution for large V .
In particular, q2 = Re(W2) can be interpreted as an analogue of the kurtosis for distorted Gaussian distributions.

Indeed, Eq. (17) reads as w = w0 + q2

(
3a

π[a2+(V−v)2]2 −
4a

π[a2+(V−v)2]3

)
− p2

2
∂2w0

∂V ∂a + . . . and q2 > 0 implies an increase

of the deviations from w0 at large |V |.
The p2-term is odd in k and therefore represents the asymmetry in w(V ) between V and −V ; this is derived from

the fact that F (−k) = 〈eik(−V )〉. Moreover, from Eq. (16) one can see, that the median of the distribution w(V )
is not affected by the p2-term. This can be easily shown by evoking the expression for w(V ) reported in (17) and
by noticing that, according to the definition of a median, the integral of the Lorentzian distribution w0(V ) over the
half-axis V ∈ [v; +∞) equals 1/2. Indeed, the following integral vanishes∫ +∞

v

∂2

∂V ∂a
w0(V ) dV =

∂

∂a
w0(V )

∣∣∣∣+∞
v

=
∂

∂a

1

2
= 0 .

Hence, the integral of w(V ) over the half-axis V ∈ [v; +∞) is still 1/2 and not modified by the p2-term. Similarly

the median is not affected by the q2-term, as
∫ +∞
v

∂2

∂V 2w0(V ) dV = ∂
∂V w0(V )

∣∣+∞
v

= 0. Therefore, v remains the
median of the distribution. Thus, p2 = Im(W2) measures the asymmetry of w(V ) for a fixed median value given by
v = −Im(W1) and therefore it can be interpreted as the skewness of the distorted distribution.

In the specific case of QIFs, the integrals over V are defined as the principal value ones and the mean value of V
can be calculated also for a distribution with Lorentzian tails. Thus, here one can speak not only of the median—this
interpretation will be valid universally—but also of the mean value; as one can see from Eq. (18), the p2-term does
not shift the population-mean value 〈V 〉.

A REFERENCE SCALE FOR THE NOISE

Let us reconsider the MF equations (15), in particular equation (15a) divided by r and averaged over time yields〈
d

dt
ln r

〉
t

=

〈
∆η

πr

〉
t

+
∆J

π
+ 2〈v〉t +

〈 p2

πr

〉
t
.

As we have already mentioned 〈 d
dt ln r〉t = 0 and r is always positive, therefore for p2 � 1, one finds 〈v〉t < 0.

To clarify the relevance of the noise term, one can rewrite Eqs. (15c)–(15d) as

q̇2 = −4(−v)q2 − 4πrp2 + 2NR + 4p3 , (26a)

ṗ2 = +4πrq2 − 4(−v)p2 + 2NI − 4q3 . (26b)

The latter system yields on average a linearly decaying dynamics with average decay rate −4〈v〉t plus a counterclock-
wise rotation on the plane (q2, p2) with instantaneous angular velocity 4πr and with constant driving terms given
by 2NR and 2NI plus small (q3, p3) corrections. Therefore, the effect of noise is fundamental in order to obtain
non-vanishing values for the terms q2 and p2.
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Indeed, this becomes evident in the stationary case, where by neglecting (q3, p3) in Eqs. (26), one obtains

q̄2 = −NRv̄ +NIπr̄
2(v̄2 + π2r̄2)

, p̄2 =
NRπr̄ −NI v̄
2(v̄2 + π2r̄2)

. (27)

In the case of globally coupled network with additive noise of amplitude σ, where NR = σ2 and NI = 0, the terms
(q̄2, p̄2) are directly proportional to the noise variance σ2, as already shown in Fig. 1 (c-d) in the Letter.

An estimation of a reference value for the noise strength can be obtained by considering the effect of the stationary
terms (27) on the evolution of the firing rate and of the mean membrane potential given by Eqs. (15a)–(15b). In this
case we can give a clear physical interpretation of the stationary corrections q̄2 and p̄2. They can be interpreted as a
measure of an additional source of heterogeneity in the system induced by the noise. To be more precise, q̄2 (p̄2) can be
considered as a modification of the mean input current in (15b) (of the width of the distribution of the heterogeneities
in (15c)) and therefore it should be compared with the median of the effective input current I0 + η0 + J0r (with the
HWHM of the effective input currents ∆η + ∆Jr) appearing in the same equation.

A first reference value for the noise strenght (N ∗R,N ∗I ) can be estimated from (15a) by setting |p̄2| = ∆η + ∆J r̄0,
thus obtaining

|N ∗Rπr̄0 −N ∗I v̄0| = 4π|v̄0|r̄0(v̄2
0 + π2r̄2

0) , (28)

where v̄0 and r̄0 are the time-independent solution of Eqs. (15a)–(15b) for NR = NI = 0.
From (15b) a second reference scale for the noise (N ∗∗R ,N ∗∗I ) can be derived by setting |q̄2| = |I0 + η0 + J0r̄0|, thus

obtaining

|N ∗∗R v̄0 +N ∗∗I πr̄0| = |N ∗Rπr̄0 −N ∗I v̄0|
|I0 + η0 + J0r̄0|

2π|v̄0|r̄0
. (29)

The solution of the above equation, which would define the second scale, is proportional to the solution of (28)
which will set (N ∗R,N ∗I ) , therefore it is justified to consider only the latter ones as the reference values for the noise
amplitude. In the following we will estimate this reference noise for the specific cases considered in the Letter.

Globally coupled network with extrinsic noise

For the globally coupled network with addtive noise we have (NR = σ2,NI = 0), therefore the reference noise
strenght σ∗ is given by

σ2
∗ = 4|v̄0|(v̄2

0 + π2r̄2
0) , (30)

and the second noise scale σ∗∗ is obtained from (29)

σ2
∗∗ = σ2

∗
|I0 + η0 + J0r̄0|

2v̄2
0

; (31)

which confirms that we can limit to consider as a scale for the noise σ∗, since the second noise variance value is
proportional to the first one.

Let us restrict our analysis to ∆η = 0, where v̄0 = −∆J

2π , and r̄0 =
J0+
√
J2
0+4π2(I0+η0)+∆2

J

2π2 . In this case we have an
explicit expression for the reference noise scale, i.e.

σ2
∗
∣∣
∆η=0

=
∆J

π3

(
2π2(I0 + η0) + ∆2

J + J2
0 + J0

√
J2

0 + 4π2(I0 + η0) + ∆2
J

)
. (32)

In particular, for the parameters employed in Fig. 1 (a-e) in the Letter, i.e. I0 = 0.0001, η0 = 0, J0 = −0.1, ∆J = 0.1,
one obtains σ∗ ≈ 0.00458, while for those employed in Fig. 1 (f-g) in the Letter, i.e. I0 = 0.38, η0 = 0 J0 = −6.3,
∆J = 0.01, one finds σ∗ ≈ 0.014. In Fig. 1 of the Letter we have employed the above values σ∗ to rescale the noise
amplitudes as σ̃ = σ/σ∗. The correctness of the choice of this reference values is confirmed from the fact that in the
asynchronous state, analysed in Fig. 1 (a-b), the deviations from the MPR results (magenta dashed lines) become
evident for σ̃ ' O(1).
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Sparse networks exhibiting endogenous fluctuations

For the sparse deterministic network under the Poissonian approximation for the input spike trains, we can write

NR =
J2
0 r

2K and NI = −∆0NR, with ∆J = ∆0|J0|. In this case, the reference scale for the noise is simply given by

N ∗R =
4πr̄0|v̄0|(v̄2

0 + π2r̄2
0)

πr̄0 + ∆0v̄0
, (33)

since NI is directly proportional to NR.

Once more we consider the case ∆η = 0, where we have an explicit expression for the mean membrane potential

v̄0 = −J0∆0

2π and for the firing rate r̄0 =
J0+
√
J2
0+4π2(I0+η0)+J2

0∆2
0

2π2 . More specifically, for the parameters employed
in Fig. 2 in the Letter, namely K = 5000, ∆0 = 0.01 and η = 0, we obtain for a large coupling value J0 = −5
N ∗R ' 0.00039 for I0 = 0.19 as in panel (b) and N ∗R ' 0.002311 for I0 = 0.50 as in panel (c). In these two specific
cases, we measured the corresponding average firing rates and from these values we have obtained an estimate of the
average NR and of the corresponding rescaled noise amplitude ÑR = NR/N ∗R. In particular, for J0 = −5 we found
ÑR ' 0.27 (ÑR ' 0.11) for the case reported in panel (b) (panel (c)). This difference in the ÑR-values explains why
for corresponding synaptic coupling the quantitative agreement between network simulations and MF results is worst
in panel (b).

NOISY HOMOGENEOUS POPULATIONS

The Ott-Antonsen approach [4], as well as the MPR mean-field model [2], have been derived for heterogeneous de-
terministic systems and it is known that the corresponding reduced manifolds are no more attractive for homogeneous
populations [5].

Our approach has been developed for heterogenous noisy populations: an important question is if and when it
can be extended to the case of populations of identical element. This specific point goes beyond the scopes of this
Letter and it will be addressed in a future publication [6]. However,here report preliminary analyses showing that
there are situations where our MF model reproduces perfectly the network dynamics even in completely homogenous
situations. Two examples are shown in Fig. 2 (a-d) for a fully coupled network with additive Gaussian noise for two
different noise amplitudes. In these specific examples the external DC current is initially set to I0 = 2, where the
system reveals an asynchronous dynamics, corresponding to a stable focus in the MF. At a time t = 20 current I0
is increased to a value 4, where the system displays COs, and maintained at such value for a certain time interval
and then restored to the initial value. As evident from the figures, the MF evolution is in perfect agreement with the
network dynamics, apart finite size fluctuations, and it is even able to capture the relaxation oscillations towards the
stable focus at times t > 50.

In Fig. 2 (e) we consider a cut at constant noise amplitude σ = 0.006 in the phase diagram reported in Fig. 1 (e)
of the Letter. In particular, we examine the evolution of the network and MF dynamics by decreasing adiabatically
∆J from an initial finite value (∆J = 0.1) to a vanishingly small value of ∆J , then we increase again adiabatically
the parameter back to the initial value. For the network we can reach ∆J = 0 (the homogeneous case), while the
MF exhibits diverging solutions for ∆J → 0. However, the MF captures the Hopf sub-critical bifurcation from the
asynchronous dynamics to COs at ∆JHB ' 0.0089 (black solid line in Fig. 1 (e) of the Letter) as well as the saddle-
node of limit cycles at ∆JSN ' 0.06255 (red solid line in Fig. 1 (e) of the Letter) displayed also by the network, apart
finite size corrections (as shown in Fig. 2 (e)). Furthermore, the standard deviation of the mean membrane potential
Σv are reasonably well reproduced down to ∆J ' 0.02, i.e. for systems that we can consider de facto as homogenous
due to the quite large value of the median of the synaptic coupling, namely J0 = −6.3. Therefore, it is true that in
this case the MF gives diverging solutions in the homogenous case, however the homogenous solutions are essentially
indistinguishable from the heterogeneous one at ∆J = 0.02, where the MF still gives reasonable results.

From our preliminary analyses [6], it emerges that the homogeneous case is better captured by a MF approach for
not vanishingly small values of the firing rate. This seems consistent with our findings in the present case. Indeed, in
Fig. 2 (c) and (d) the population firing rate is r ' 0.5− 1.0, while for the case reported in Fig. 2 (e) r ' 0.05− 0.08,
i.e. much smaller. A theoretical criterion for the applicability of the MF formulation can be formulate as follows:
if the population-mean firing rate (or other mean fields driving the macroscopic dynamics) as a function of a small
parameter (e.g., the noise intensity) can be represented by a power series, the approach can be safely employed in for
noisy homogenous populations. As an example, if the firing rate follows a law like σn exp(−A/σ2) such a dependence
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FIG. 2. Homogeneous Globally Coupled Network subject to Additive Noise (a-d) Red (black) solid line show the
time course of v (a-c) and r (b-d) of the MF (of the network with N = 10000). Panels (a) and (c) refer to σ = 0.004, panels
(b) and (d) to σ = 0.01. The external current is I0 = 4 for time ∈ [20, 50] and I0 = 2 otherwise, I0 is shown as blue solid line in
panels (c) and (d) after a suitable rescaling. Other parameters: J0 = −0.1 and η0 = ∆J = ∆η = 0. (e) Standard deviation Σv
versus ∆J a noise amplitudes σ = 0.006. Lines (symbols) refer to MF (network) results: solid red (black) lines and right (left)
triangles are obtained by increasing (decreasing) ∆J . Other parameters are as in Fig.1 (f) of the Letter: namely, I0 = 0.38,
J0 = −6.3 and η0 = ∆η = 0.

cannot be represented by its power series, which formally reads as σn(0 + 0 · σ2 + 0 · σ4 + . . . ) [7]. Formal application
of the pseudo-cumulant approach to this case will yield r = 0.
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