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Main motivations

A neuron in the brain cortex is subject to a continuous synaptic bombardament of
inputs, resembling a background noise
(A. Destexhe, M. Rudolph, D. Paré - Nature Reviews - Neuroscience - 2003)

Inputs are mainly originating from the cortex itself, the statistical properties of the
neural response (input) can be (roughly) summarized as

Frequency range 0 − 200 Hz;

Distribution of interspike interval : approximately Poissonian;

Spike rate modulations (5 − 10 msec)

(M.N. Shadlen & W.T. Newsome, J. Neuroscience - 1998)

Neurons in the cortex, due to the high connectivity, can receive correlated inputs:
correlations seem to be important for information processing. (level of attention )
(E. Salinas & T.J. Sejnowski, J. Neuroscience - 2000)

How do noise and correlated inputs influence the response of single neurons ?
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Summary

Brief introduction of the HH model

Characterization of the stochastic stimulation protocol

Analysis of the neuronal responses for different noise levels

Looking for coherence in the neuronal response

Influence of correlations on the coherent response

Conclusions
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The Hodgkin-Huxley model

The HH model reproduces the time evolution of the
membrane potential and of the ionic currents measured
experimentally for a giant squid axon.Hodgkin Huxley
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The Hodgkin-Huxley model

The HH model reproduces the time evolution of the
membrane potential and of the ionic currents measured
experimentally for a giant squid axon.Hodgkin Huxley
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C = 1µF/cm2 - Membrane capacitance
V - Membrane Potential (mV )
Ij - Ionic channel currents (µA/cm2)
gj - Maximal ionic conductances (mS/cm2)
Vj - Ionic reversal potentials (mV )

CV̇ =
X

j

Ij + Isyn = −gNam3h(V − VNa) − gKn4(V − VK) − gL(V − VL) + Isyn

ẋ = αx − x(αx + βx) x = n, m, h gating variables

αx = αx(V ) and βx = βx(V ) are highly nonlinear functions.
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High-input regime

Instead of a constant current Idc, we consider NE excitatory (EPSP) and NI inhibitory
postsynaptic inputs (IPSP), each corresponding to a voltage kick ∆V = 0.5 mV.

These inputs originate from uncorrelated neurons emitting Poissonian spike trains with
frequency ν = 100 Hz.

This amounts to one excitatory (resp. inhibitory) Poissonian spike train with frequency
νE = Ne × ν ∼ 104 − 105 Hz (resp. νI = NI × ν) for Ne ∼ NI ∼ 100 − 1, 000.

Firstly independent inputs are considered , and then also the effect of correlations
among the inputs is analyzed.
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High-input regime

Instead of a constant current Idc, we consider NE excitatory (EPSP) and NI inhibitory
postsynaptic inputs (IPSP), each corresponding to a voltage kick ∆V = 0.5 mV.

These inputs originate from uncorrelated neurons emitting Poissonian spike trains with
frequency ν = 100 Hz.

This amounts to one excitatory (resp. inhibitory) Poissonian spike train with frequency
νE = Ne × ν ∼ 104 − 105 Hz (resp. νI = NI × ν) for Ne ∼ NI ∼ 100 − 1, 000.

Firstly independent inputs are considered , and then also the effect of correlations
among the inputs is analyzed.

For these frequencies the net input spike count within a temporal window ∆T (≥ 1 msec) is
essentially Gaussian distributed and it can be characterized by

average µ = ν(NE − NI )∆T ; variance V = ν(NE + NI )∆T = νσ2∆T

The response of the neuron is examined for fixed average input current

Ī = C∆V ν(NE − NI)

by varying only the standard deviation of the noise σ
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Statistical and dynamical indicators
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ISI distribution → PISI (t);

CV =
Std(ISI)
〈ISI〉

→ coefficient of variation of the ISIs:

Poissonian distribution → CV = 1

regular sequence → CV = 0;

τc =
R ∞
0 C2(t)dt → correlation time,

C(τ) =
〈V (t+τ)V (t)〉−〈V 〉2

〈V 2〉−〈V 〉2
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Response of the silent neuron

The HH neuron is in the silent state, i.e. the average input current Ī is smaller than ISN .
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Response of the silent neuron

Firing activated by noise
Two mechanisms compete:

the HH dynamics tends to relax towards the rest state;

noise fluctuations lead the system towards an excitation threshold.

The dynamics of V (t) resembles the overdamped dynamics of a particle in a potential well
under the influence of thermal fluctuations, and the firing times can be expressed in terms of
the Kramers expression (for sufficiently small noise)

ta ∝ eWS/σ2

the time distribution is Poissonian (CV = 1).
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Response of the silent neuron

High noise limit
The effect of noise fluctuations on the neuron dynamics is twofold:

a constant current Ī driving the system;

a stochastic term with zero average.

The dynamics of V (t) can therefore be described in terms of a Langevin process with a drift
and the distribution of the first passage times is given by the inverse Gaussian distribution:

f(t) =
α

p

2πβt3
e
−

(t−α)2

2βt

In this case the coefficient of variation should
be given by

CV ∝
σ

(Ī + I0)
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Coherence resonance

Coherence of the emitted spike trains
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In the silent and bistable regime (I < 8µA/cm2):

by increasing σ the firing rate increases, the spike train becomes more regular
(Activation Process);

the maximal coherence is reached for a optimal σ-value;

for higher noise amplitudes the noise influence even the duration of the single spike,
the response becomes again more irregular (Brownian motion + drift).

A. Pikovsky & J. Kurths, PRL 78, 775 (1997) B. Lindner et al., Phys Rep. 392 (2004) 321-424
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Coherence resonance
Coherence of the subthreshold oscillations

1 10 100
σ

0.5

1

1.5

2

τ
c
 (ms)

I= 4 µA/cm
2

0 5 10 15 20 25 30
t (ms)

-0.5

0

0.5

1

σ=2.9
σ=4.5
σ=9.7

C(t)

Period of
subthreshold
oscillations

t
(1)

ISI

A second coherence resonance is revealed by analyzing the correlations of the potential:

for σ < 3 almost no spikes are emitted, but the increase of noise leads to more and
more regular subthreshold oscillations;

for σ > 3 the statistics of the emitted spikes is no more negligible and this decorrelates
the signal;

for σ > 10 the dynamics is dominated by sequences of spikes and a second peak
occurs related to the regularization of the spike trains.

S. Luccioli. T. Kreuz, A.T. Phys. Rev. E (2006)
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The FitzHugh-Nagumo Model

The FitzHugh-Nagumo (FHN) model is a two dimensional ”simplification” of the HH model:

V̇ = φ(V −
V 3

3
− W ) ;

Ẇ = V + a0 − I(t)

where V is a voltage-like variable, W is a recovery variable and a is the bifurcation
parameter.

For φ = 100 the silent regime is observed for a0 > 1, while at a0 < 1 one has periodic firing.

I(t) = ∆W0

» Ne
X

k=1

X

l

δ(t − tlk) −
Ni
X

m=1

X

n

δ(t − tnm)

–

We examine the FHN model subject to NE (resp. NI ) trains of excitatory (resp. inhibitory)
post-synaptic potentials, in the balanced case (i.e. for NE = NI ≡ N ) where < I >≡ 0 for
a0 = 1.05 and ∆W0 = 0.0014.
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Correlations via shared inputs

The degree of correlation among different synapses ρ is given by the average fraction
of synapses delivering kicks at the same time;

Correlations ONLY among either excitatory or inhibitory inputs are considered in the
balanced case NE = NI ≡ N ;

The superposition of N correlated (ρ) Poissonian spike trains with rate ν0 gives rise to
a sequence of kicks of variable amplitude (binomially distributed) and with ISIs
Poissonian distributed with rate νx = ν0/ρ;

The uncorrelated excitatory (resp. inhibitory) inputs are small kicks delivered at high
rate νU = Nν0 (this is an almost continuous background);

The correlated inhibitory (resp. excitatory) inputs are large amplitude events delivered
at a much lower rate νx << νU ;
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Correlations via shared inputs

The degree of correlation among different synapses ρ is given by the average fraction
of synapses delivering kicks at the same time;

Correlations ONLY among either excitatory or inhibitory inputs are considered in the
balanced case NE = NI ≡ N ;

The superposition of N correlated (ρ) Poissonian spike trains with rate ν0 gives rise to
a sequence of kicks of variable amplitude (binomially distributed) and with ISIs
Poissonian distributed with rate νx = ν0/ρ;

The uncorrelated excitatory (resp. inhibitory) inputs are small kicks delivered at high
rate νU = Nν0 (this is an almost continuous background);

The correlated inhibitory (resp. excitatory) inputs are large amplitude events delivered
at a much lower rate νx << νU ;

The effect of the uncorrelated inputs lead to a renormalization of the bifurcation
parameter: ā = a0 ± (Nν0∆W0);

The influence of correlated kicks is embodied in noise variance σ2 ≃ ρxν0N2δW 2
0 ;

M.N. Shadlen & W.T. Newsome (1998) – E. Salinas & J. Sejnowski (2000)
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Response to correlated inputs
We have studied the response of the (balanced NE = NI ) Fitz-Hugh Nagumo model in the
silent regime for excitatory (resp. inhibitory) correlated inputs by varying INDEPENDENTLY
correlation ρ and noise variance σ2.

Coherence Resonance (CR) is observed for any excitatory (resp. inhibitory) level of
correlation at finite noise amplitude.

Double Coherence Resonance (DCR) : an absolute CR with respect to noise and
correlation can be identified for excitatory (resp. inhibitory) correlated inputs.
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Response to correlated inputs

CR has been usually observed for uncorrelated inputs with respect to noise intensity
Hu Gang et al., PRL 71, 807 (1993) – A. Pikovsky & J. Kurths, PRL 78, 775 (1997)

A second type of CR has been also observed with respect to the level of correlation :

lasers – Buldú et al, PRE (2001)

digital circuits – Brugioni et al., PRE (2005)

chemical reactions – Beato el al. PRE (2005)

neuronal models – Casado PLA (1997)

The origin of the first CR has been fully explained, while for the the second CR this
remains unclear.
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Response to correlated inputs

Strong excitatory correlation
The coherence phenomenon is now determined only by the kick amplitude and not by the
properties of the asymptotic stochastic processes, since in the present case the output can
be always described as a Poissonian process with a refractory time:

CV = 1 −
Tref

< ISI >

For increasing variance (N ) the amplitude of the correlated kicks increases. and due to the
uncorrelated (inhibitory) input the systems is more and more silent.
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for V ariance < V1 → Activation Process

for V1 < V ariance < V2

1 kick may be sufficient to induce a spike emission

for V2 < V ariance

One kick elicits always a spike - Tref decreases

For V ariance > V2 → < ISI >= ρe/ν0,
1 : 1 synchronization between input and output (apart from the refractory period).
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Response to correlated inputs

Strong inhibitory correlation
At large variances the dynamics is again ruled by the the amplitude of the correlated kicks,
but at lower variances the inhibitory kicks are quite infrequent and their amplitude is not
sufficient to influence the dynamics.
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for V ariance < V1

Silent regime - Activation Process - CV ≃ 1

for V1 < V ariance < V2

Dynamics dominated by uncorrelated excitatory
input leading the system in the repetitive firing
regime

for V ariance > V2

Each inhibitory kick induces a certain delay in the
spike time of the neuron - A multimodal structure
appears in the ISI distribution

Frequency of the correlated kicks (ν0) << Frequency of the uncorrelated kicks (Nν0)
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Response to correlated inputs

Maximal Coherence
Absolute minima of CV corresponding to maximal coherence are observed at finite noise
and correlation for both inhibitory and excitatory case.

The extrema of CVmin indicate the
change in the mechanisms inducing CR,
from amplitude dominated to usual mech-
anisms related to the crossover from acti-
vated to (biased) diffusive processes.

The CVmin associated to inhibitory cor-
relations are lower since the system is
driven in the repetitive firing regime by the
uncorrelated excitatory inputs
ā = a0 − (Nν0∆W0)
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T. Kreuz, S. Luccioli & A.T. PRL (2006)
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Conclusions

Uncorrelated stochastic inputs

The response of a HH neuron depends only on the average and the variance of
the input, at least in the high input regime;

at I < ISN the neuronal firing, induced by the stochastic inputs, can be
expressed as an activation process at low variances (σ2), while for large σ2 this
process becomes essentially diffusive;

coherence resonance can be observed in a large interval of currents in the silent
and bistable regime whenever WS > WO ;

a second coherence resonance (associated to subthreshold oscillations) coexists
with the usual one;

Correlated stochastic inputs

new mechanisms for the coherence resonance have been reported at high
excitatory and inhibitory correlations;

maximal coherence can be induced by an optimal combination of noise and
correlation
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