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Complex Systems

A possible definition

Complex systems are those composed of a large number of interacting elements, so that

the collective behaviour of those elements goes far beyond the simple sum of the

individual behaviours.

schools of fishes

swarm of birds
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A simple element

Interesting collective motions arise also for simpler elements than a bird, let us consider

the most regular object one can imagine: a clock !!!

Galileo Gailei was the first who had the idea to exploit the reg-

ularity of pendulum oscillations to realize a clock, however was

the Dutch scientist Christian Huygens to realize it in 1656.

The first clock had an error less than 1 minute per day, an

incredible good accuracy at the time.

The regular oscillations of a pendulum can be described mathematically by only one

variable describing the pendulum position : a phase variable θ.
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Synchronization of Two Clocks

Christiaan Huygens reported the first observation of synchronization:

"... It is quite worth noting that when we suspended two clocks

so constructed from two hooks imbedded in the same wooden

beam, the motions of each pendulum in opposite swings were

so much in agreement that they never receded the least bit

from each other and the sound of each was always heard

simultaneously. Further, if this agreement was disturbed by

some interference, it reestablished itself in a short time. For a

long time I was amazed at this unexpected result, but after a

careful examination finally found that the cause of this is due to

the motion of the beam, even though this is hardly perceptible."

Antiphase Synchronization

This problem is still nowdays studied:

Bennett, Schatz, Rockwood, Wiesenfeld,

"Huygens Clocks", Proc. R. Soc. Lond. A, vol. 458 (2002), pp. 563 - 579.
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Phase Model I
Many physical, chemical, biological systems exhibit Rhytmic Oscillations

A.T Winfree, The geometry of biological time (2001)

G. Buzsaki, Rhythms of the Brain (2006)

A system exhibiting a stable periodic motion γ is called an Os-

cillator, we will study synchronization properties of these sys-

tems.

The motion can be characterized by the time t from the last

crossing tn of a certain point x0 on the orbit, and a phase can

be introduced as

θ =
t− tn

tn+1 − tn
2π 0 ≤ θ ≤ 2π

the dynamics on the orbit can now be rewritten simply as θ̇ = ω0 where ω0 is the

natural frequency of the oscillation.

Information on the amplitude oscillation (on the radius of the orbit) is lost, but not on its

phase.
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Phase Model II
θ̇ = ω0 λ = 0 (Phase is Marginally Stable)

Ȧ = −η(A−A0) λ = −η (Amplitude (radius) is

Stable)

Since the amplitude (radius) is stable it is difficult to modify it with small

perturbations

The phase is at the edge between stability and instability small perturbations (due

to external forcing or coupling) can induce large modifications of the phase

Thus with a small forcing it is possible to adjust the phase and the frequency of the

oscillations, without altering the amplitude:
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Everyone likes to synchronize

Tout le monde aime synchroniser

Les Lucioles

Danseurs et Danseuses

et aussi . . . les oscillateurs
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Collective synchronization

Populations of biological oscillators can spontaneously synchronize to oscillate with a

common frequency, despite a distribution of different natural frequencies among the

population

swarms of fireflies flash in synchrony;

crickets chirp in unison;

groups of women whose menstrual cycles synchronize.

Summary

The Kuramoto Model

The Millennium Bridge

Neuronal Synchronization

Chimera States

Exact Reduction Methods
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Kuramoto Model
N coupled phase oscillators with different frequencies ωk

Frequencies distributed according to g(ω)

dθk

dt
= ωk +

k

N

N
∑

j=1

sin(θj − θk)

The coupling is rescaled by N to avoid divergence of the forcing term in the

thermodynamic limit (N → ∞)
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Synchronization Parameter

Mean Field Variables Amplitude R and Phase Θ

Z = ReiΘ =
1

N

N
∑

k=1

eiθk

R = |Z| is a Synchronization Indicator

if θk = θj ∀j, k System Fully Synchronized R ≡ 1

if θk are equally distributed on the circle

Desynchronized System R ≃ 1√
N

If some oscillator are frequency locked R 6= 0

The Kuramoto model can be rewritten as

dθk

dt
= ωk + kR sin(Θ− θk)

each oscillator is forced by the Self-Consistent Mean Field Z

FILM
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Synchronization Transition

We observe a continuous transition from the incoherent to the coherent regime at kc,

Incoherence: all the oscillators run at their natural frequencies (k < kc and R ∼ 0)

Partial Locking: some of the oscillators are locked, while the others drifts at

different frequencies (k > kc and R 6= 0)

Complete Locking : all the oscillators are locked , the phase difference between

any two oscillators is constant in time (k >> kc and R ∼ 1)
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Millennium Bridge

Crowd Synchrony on the Millennium Bridge

Strogatz, Abrams, Mc Robie, Eckhardt, Ott Nature, 438 (2005) 43

When the London Millennium Bridge opened on June 10, 2000, soon after the crowd

streamed on the bridge, the bridge begins to oscillate from side to side (to wobble):

many pedestrians synchronize spontaneously their steps with the bridge’s vibrations,

amplifying them. The synchronized steps of the people caused such heavy oscillations

that the bridge had to close down until dampers were put in 2 years later.

Collective synchronization was responsible for the wobbling of the bridge
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Millennium Bridge

The experiment by Arup

Groups of people of increasing number walk together along the bridge until it begins to

wobble, there is a critical number of people
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Millennium Bridge
The Model

The left/rigth walking cycle of each pedestrian

is seen as an oscillator θi with his own

frequency ωi forced by the bridge oscillations;

The lateral motion X of the bridge is

schematized as a weakly damped harmonic

oscillator driven by the collective motion of the

pedestrians.

M
d2X

dt2
+ B

dX

dt
+KX = G

N
∑

i=1

sin θi where X = A sinψ

where M , B and K are the mass, the damping and the stifness associated to the lateral

motion of the bridge and G is the maximal force exerted by a pedestrian

dθi

dt
= ωi + CA sin(ψ − θi + α)

where C is the sensitivity of the pedestrian to bridge vibration, to be fitted
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Millennium Bridge
The Simulation Result

The simulations have been performed by

employing realistic values for the parameters,

apart C which has been fitted to the

experimental data by Arup

The simulation start with bridge at rest and

N = 50 pedestrians on the bridge

The number of pedestians is increased by 10

at each step

Bernard Feldman, a writer for Physics Today, however, believes Strogatz is wrong: since

the frequency of the lateral oscillation of bridges is around 0.5 Hz whereas the average

frequency of walking is 1.0 Hz (2 steps per second). Therefore it is unlikely that

synchronized footsteps could have intensified the wobbling of the Millennium Bridge.
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Neuronal Synchronization

Neurons in the cortex usually fire in an asynchronous and sparse way, high level of

synchronization are usually sign of functional brain disorder, e.g. Epilepsy .

EEG displaying a seizure measured during an epileptic event.

Epilepsy is not exactly rare 1% of the worldwide population is affected, it is important to

understand the mechanisms behind it
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Neuronal Synchronization

Neuronal synchronization seems a key aspect

Single neuron firing during an epileptic event.
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Neuronal Synchronization

Neuronal synchronization can have positive effects. the phenomenon of slow wave sleep

has been related to memory consolidation during the sleep.

Slow wave oscillations in the cortex

At EEG level, the slow oscillation appears as periodic alterations of positive and negative

waves :

1. During EEG depth-positivity, cortical neurons remain in silent state.

2. During EEG depth-negativity cortical neurons fire action potentials.

It was shown that during slow-wave sleep neocortical and thalamic neurons display

phase synchronization.
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Chimera

La Chimera d’Arezzo

Etruscan Art - Museo Nazionale di Archeologia (Firenze)

In Greek mythology, Chimera was a monstrous fire-breathing female creature of Lycia in

Asia Minor, composed of the parts of multiple animals: upon the body of a male lion with

a tail that terminated in a snake’s head, the head of a goat arose on her back at the

center of her spine (Wikipedia)
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Chimeras in Oscillator

Populations

Let us consider two oscillator populations {θa} and {θb} made of identical oscillators,

where each oscillator is coupled to equally to all the others in its group, and less strongly

to those of the other group

dθai
dt

= ω +
µ

N

N
∑

j=1

sin(θaj − θai − α) +
ν

N

N
∑

j=1

sin(θbj − θai − α) µ > ν

Simulations of the 2 populations reveals two different dynamical behaviours

Synchronized state r = 1

A Chimera State: one population is synchronized and the other not

The oscillators are identical and symmetrically coupled : the

Chimera State emerges from a spontaneous symmetry breaking

Abrams, Mirollo, Strogatz, Wiley,

Phys. Rev. Lett 101 (2008) 084103
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Unihemispheric sleep

Unihemispheric slow-wave sleep is the ability to sleep with one half of the brain while the

other half remains alert. In contrast to normal sleep where both eyes are shut and both

halves of the brain show reduced consciousness.

Among mammals, unihemispheric sleep is restricted to aquatic species (e.g. cetaceans).

It is widespread in birds, and may even occur in reptiles. Unihemispheric sleep allows

surfacing to breathe in aquatic mammals and predator detection in birds.

Unihemispheric slow wave sleep is characterized at a macroscopic level (EEG) by slow

collective oscillations in the sleeping hemisphere and by asynchronous activity in the

other hemisphere (broken spatial symmetry) [Rattenborg et al., Neuroscience

& Biobehavioral Reviews (2000)]
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Chimeras are Everywhere

Spontaneous symmetry breaking is a fundamental and universal phenomenon in

complex systems exhibiting collective behavior, such as power grids, neuroscience,

condensed matter systems, optomechanical crystals, or cells communicating via quorum

sensing in microbial populations.

Experimental observations:

opto-electronic devices: Hagerstrom,et al. , Nature Physics (2012).

coupled chemical oscillators: Tinsley et al., Nature Physics (2012);

mechanical oscillator networks: Martens et al., PNAS (2013);

Olmi, Martens, Thutupalli, Torcini, Phys. Rev. E(R) (2015).

electronic nonlinear delayed oscillators: Larger et al., Phys. Rev. Lett. (2013).

as well as theoretical /numerical studies:

I. Omelchenko,et al., Phys. Rev. Lett. (2013); G. Sethia, A. Sen, Phys. Rev. Lett.

(2014); J. Sieber, O. Omel’chenko, M. Wolfrum, Phys. Rev. Lett. (2014); A.

Yeldesbay, A. Pikovsky, M. Rosenblum, Phys. Rev. Lett. (2014).

first evidence of chimeras in neural networks: Olmi, Politi, Torcini, EPL (2010).
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The experiment

Two populations of metronomes (self-sustained oscillator)

Each population: N = 15 identical metronomes (same frequencies) on an

alluminium swing (strong coupling)

The two swings are coupled via 2 tunable springs (weak coupling)

UV fluorescent spots on metronomes and swings

THE VIDEO !

E.A.Martens et al. PNAS , 2013
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Exact Reduction Methods
For N phase oscillators whose dynamics is described by the Kuramoto model :

dθk

dt
= ωk +

k

N

N
∑

j=1

sin(θj − θk) k = 1, . . . , N

the dynamics can be exactly rewritten in terms of few collective variables :

Watanabe - Strogatz Physica D (1994) three variables for any finite N

Ott - Antonsen, Chaos (2008) two variables in the limit N → ∞

These results have been recently extended to

Neural network models by Pazo-Montbrió Phys. Rev X (2014) and (2015)
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Future events

Future events in Cergy-Pontoise on complex systems:

Congrès international - Analytical and numerical insights on the dynamics of

complex neural networks - (2018) Neurosciences et Complexité

Semestre thématique sur la complexité - LABEX MMI-DDE (2017/18)
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Ott-Antonsen Ansatz
For certain systems of globally coupled phase oscillators the infinite dimensional

dynamics is reduced to a flow on a phase space ⇒ low dimensional dynamics

Kuramoto model:

dφi(t)

dt
= ωi +

K

N

N
∑

j=1

sin[φj − φi]

The state of the oscillators system at time t can be described by a continuous

distribution function f(ω, φ, t) (or by fσ(ω, φ, t) with σ = 1, . . . , s), where

∫ 2π

0

f(ω, φ, t)dφ = g(ω) or

∫ 2π

0

fσ(ω, φ, t)dφ = gσ(ω)

and g(ω), gσ(ω) are time independent oscillator frequency distributions.

In the thermodynamic limit the system is described by the density f(ω, φ, t), where

f(ω, φ, t)g(ω)dωdφ gives the fraction of oscillators with natural frequency

between φ and φ+ dφ at time t.
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Ott-Antonsen Ansatz
The Ott-Antonsen Ansatz is

f(ω, φ, t) =
1

2π

[

1 +
∞
∑

n=1

ᾱ(ω, t)neinφ + c.c.

]

f(ω, φ, t) constitutes an invariant manifold that determines the system’s

long-term dynamics;

f(ω, φ, t) obeys the following initial problem

∂f

∂t
+

∂

∂φ
(vf) = 0, r =

∫ 2π

0

dφ

∫ ∞

−∞

dωfeiφ

where v is the r.h.s. of the Kuramoto model eq. and r is the order parameter

Substituting the Ansatz in the initial problem, for integrable g(ω), the order

parameter is simply α evaluated at a (complex) frequency and the system reduces

to 2 ODEs for ρ,Φ, where r = ρe−iΦ

[E. Ott, T. M. Antonsen, CHAOS 18, 037113 (2008)]
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