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Pteroptix Malaccae

Usually, entrainment results in a constant phase angle equal to the difference between pacing frequency and

free-running period as it does in P. cribellata. The mechanism of attaining synchrony by Malaysian firefly Pteroptyx

malaccae is quite different. When the pacer changes, this firefly requires several cycles to reach a steady state. Once

this steady state is achieved, the phase angle difference is near zero irrespective of the pacer period. This can be

explained only by the animal adjusting the period of its oscillator to equal that of the driving oscillator. (experiments by

Hanson, 1987)

A phase model with inertia allows for adaptation of its frequency to the forcing one
B. Ermentrout, Journal of Mathematical Biology 29 , 571 (1991)
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Plan of the Talk

Introduction of the Kuramoto model with inertia

Analogy with the damped oscillator (coexistence of stable periodic and fixed point
solutions)

Mean field theory of the hysteretic transition (Tanaka, Lichtenberg, Oishi 1997 )

Fully coupled network of N oscillators

Existence of clusters of locked oscillators of any size between the hysteretic
curves

Limits of stability of the coherent and incoherent solutions (dependence on
the size N and on the mass m)

Emergence of drifting clusters

Diluted network

Italian high voltage power grid
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The Model

Kuramoto model with inertia

mθ̈i + θ̇i = Ωi +
K

N

X

j

sin(θj − θi)

θi is the instantaneous phase

Ωi is the natural frequency of the i−th oscillator with Gaussian distribution

K is the coupling constant

N is the number of oscillators

By introducing the complex order parameter r(t)eiφ(t) = 1
N

P

j eiθj

mθ̈i + θ̇i = Ωi − Kr sin(θi − φ)

r = 0 asynchronous state, r = 1 synchronized state
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Damped Driven Pendulum

mθ̈i + θ̇i = Ωi − Kr sin(θi)

I = Ωi

Kr

β = 1√
mKr

φ̈ + βφ̇ = I − sin(φ)

For sufficiently large m (small β)

For small Ωi two fixed points are present: a stable node and a saddle.

At larger frequencies Ωi > ΩP = 4
π

q

Kr
m

a limit cycle emerges from the saddle

via a homoclinic bifurcation

Limit cycle and fixed point coexists until Ωi ≡ ΩD = Kr, where a saddle node
bifurcation leads to the disappearence of the two fixed points

For Ωi > ΩD only the oscillating solution is present

For small mass (large β), there is no more coexistence. (Levi et al. 1978)

Rostock 2014 – p. 5



Simulation Protocols

Dynamics of N oscillators

ΩM maximal natural frequency of the locked oscillators

Ω
(I)
P = 4

π

q

Kr
m

Ω
(II)
D = Kr

Protocol I: Increasing K

The system remains desynchronized
until K = K1

c (filled black circles).
ΩM increases with K following ΩI

P .
Ωi are grouped in small clusters
(plateaus).

Protocol II: Decreasing K

The system remains synchronized until
K = K2

c (empty black circles).
ΩM remains stucked to the same value
for a large K interval than it rapidly de-
creases to 0 following ΩII

D .
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Mean Field Theory I

Tanaka et al. (TLO) in [PRL, Physica D (1997)] examined the origin of the hysteretic
transition finding that

by following Protocol I and II there is a group of drifting oscillators and one of
locked oscillators which act separately

locked oscillators are characterized by < θ̇ >= 0

drifting oscillators < θ̇ > 6= 0

Drifting and locked oscillators are separated by a frequency:

Following Protocol I the oscillators with Ωi < ΩP are locked

Following Protocol II the oscillators with Ωi < ΩD are locked

These two groups contribute differently to the total level of synchronization in the
system

r = rL + rD
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Mean Field Theory II

Total level of synchronization in the system: r = rL + rD

For the locked population TLO derived the self-consistent equation

rI,II
L = Kr

Z θP,D

−θP,D

cos2 θg(Kr sin θ)dθ

where θP = sin−1(ΩP

Kr
), θD = sin−1(ΩD

Kr
) = π/2 .

For the drifting population the self-consistent equation is

rI,II
D ≃ −mKr

Z ∞

−ΩP,D

1

(mΩ)3
g(Ω)dΩ

The former equation are correct in the limit of sufficiently large masses

Rostock 2014 – p. 8



Hysteretic Behavior

Numerical Results for Fully Coupled Networks (N = 500)

The data obtained by following protocol II are quite well reproduced by the mean
field approximation rII

The mean field extimation rI by TLO does not reproduce the stepwise structure in
protocol I

Clusters of NL locked oscillators of
any size remain stable between rI

and rII

The level of synchronization of these
clusters can be theoretically obtained
by generalizing the theory of TLO to
protocols where ΩM remains constant
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Finite Size Effects

Kc
1 is the transition value from asynchronous to synchronous state

(following Protocol I)

Kc
2 is the transition value from synchronous to asynchronous state

(following Protocol II)

Kc
1 is strongly influenced by the size of the system

Kc
2 does not depend heavily on N
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Finite Size Effects K
c

1

The mean field critical value has been esti-
mated Gupta, Campa, Ruffo (PRE 2014) by
employing a nonlinear Fokker-Planck formu-
lation for the evolution of the single oscillator
distribution ρ(θ, θ̇, Ω, t) for coupled oscilla-
tors with inertia and noise

1

KMF
1

=
πg(0)

2
−

m

2

Z ∞

−∞

g(Ω)dΩ

1 + m2Ω2

where g(Ω) is an unimodal distribution
Acebron et al, PRE (2000)
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1
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1M
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1c

100 1000 10000 1e+05N

1

m=0.8

m=1.0

Slope ~ 0.23

Slope ~ 0.22

We observe the following scaling with the system size N for fixed mass

KMF
1 − Kc

1(N) ∝ N−1/5

this is true for sufficently low masses
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Dependence On the Mass K
c

1

Kc
1 increases with m up to a maximal value and than decreases at larger masses

by increasing N Kc
1 increases and the position of the maximum shifts to larger

masses (finite size effects)
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The following general scaling seems to apply

ξ ≡
KMF

1 − Kc
1(m, N)

KMF
1

= G

„

m

N1/5

«

where KMF
1 ∝ 2m for m > 1
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Dependence On the Mass K
c

2

The TLO approach fails to reproduce the critical coupling for the transition from
asynchronous to synchronous state (i.e., Kc

1), however it gives a good estimate of the
return curve obtained with protocol II from the synchronized to the aynchronous regime
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Kc
2 initially decreases with m then saturates, limited variations with the size N

KTLO
2 is the minimal coupling associated to a partially synchronized state given

by TLO approach for protocol II

KTLO
2 exhibits the same behaviour as Kc

2 , however it slightly understimates the
asymptotic value (see the scale)
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Drifting Clusters I

For larger masses (m=6), the synchronization transition becomes more complex, it
occurs via the emergence of clusters of drifting oscillators.

The partially synchronized state is characterized by the coexistence of

a cluster of locked oscillators with < θ̇ >≃ 0

clusters composed by drifting oscillators with finite average velocities

The effect of these extra clusters is to induce (periodic or quasi-periodic) oscillations in
the temporal evolution of the order parameter.
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Drifting Clusters II

If we compare the evolution of the instantaneous velocities θ̇i for 3 oscillators and r(t)

we observe that

the phase velocities of O2 and O3 display synchronized motion

the phase velocity of O1 oscillates irregularly around zero

the almost periodic oscillations of r(t) are driven by the periodic oscillations of O2

and O3
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Drifting Clusters III

The amplitude of the oscillations of r(t) and the number of oscillators in the drifting
clusters NDC correlates in a linear manner

The oscillations observable in the order parameter are induced by the presence of
large secondary clusters characterized by finite whirling velocities

At smaller masses oscillations in r(t) are present, but reduced in amplitude.
These oscillations are due to finite size effects since no clusters of drifting
oscillators are observed

Blue dashed line ⇒ estimated
mean field value rI by TLO

The mean field theory captures
the average increase of the order
parameter but it does not foresee
the oscillations
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Diluted Network

Constraint 1 : the random matrix is symmetric

Constraint 2 : the in-degree is constant and equal to Nc
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Diluted or fully coupled systems (whenever the coupling is properly rescaled with
the in-degree) display the same phase-diagram

For very small connectivities the transition from hysteretic becomes continuous

By increasing the system size the transition will stay hysteretic for extremely small
percentages of connected (incoming) links
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Diluted Network II

The TLO mean field theory still gives reasonable results (70% of broken links)

All the states between the synchronization curves obtained following Protocol I and
II are reachable and stable
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These states, located in the region between the synchronization curves, are
characterized by a frozen cluster structure, composed by a constant NL

The generalized mean-field solution r0(K, Ω0) is able to well reproduce the
numerically obtained paths connecting the synchronization curves (I) and (II)
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Italian High Voltage Power Grid

Each node is described by the phase:

φi(t) = ωACt + θi(t)

where ωAC = 2π 50 Hz is the standard
AC frequency and θi is the phase devi-
ation from ωAC .
Consumers and generators can be
distinguished by the sign of parameter
Pi:

Pi > 0 (Pi < 0)

corresponds to generated (consumed)
power.

θ̈i = α

2

4−θ̇i + Pi + K
X

ij

Ci,j sin(θj − θi)

3

5

Average connectivity < Nc >= 2.865

[ Filatrella et al., The European Physical Journal B (2008)]
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Italian High Voltage Power Grid

We do not observe any hysteretic behavior or multistability down to K = 9

For smaller coupling an intricate behavior is observable depending on initial
conditions

Generators and consumers compete in order to oscillates at different frequencies

The local architecture favours a splitting based on the proximity of the oscillators

Several small whirling clusters appear characterized by different phase velocities

The irregular oscillations in r(t) reflect quasi-periodic motions
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Main Results

We have studied the synchronization transition for a globally coupled Kuramoto model
with inertia for different system sizes and inertia values.

The transition is hysteretic for sufficiently large masses

Clusters of locked oscillators of any size coexist within the hysteretic region

A generalization of TLO theory is capable to reproduce all the possible
synchronization/desynchronization hysteretic loops

The presence of clusters composed by drifting oscillators induces oscillatory
behaviour in the order parameter

The properties of the hysteretic transition have been examined also for random diluted
network.

The main properties of the transition are not affected by the dilution

The transition appears to become continuous only when the number of links per
node becomes of the order of few units

S. Olmi, A. Navas, S. Boccaletti, A. Torcini, submitted to PRE
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Extension of the Mean Field Theory

In principle one could fix the discriminating frequency to some arbitrary value Ω0 and
solve self-consistently

r = rL + rD

rI,II
L = Kr

Z θ0

−θ0

cos2 θg(Kr sin θ)dθ rI,II
D ≃ −mKr

Z ∞

−Ω0

1

(mΩ)3
g(Ω)dΩ

This amounts to obtain a solution r0 = r0(K, Ω0) by solving

Z θ0

−θ0

cos2 θg(Kr0 sin θ)dθ − m

Z ∞

−Ω0

1

(mΩ)3
g(Ω)dΩ =

1

K

with θ0 = sin−1(Ω0/Kr0). The solution exists if Ω0 < ΩD = Kr0.

⇒ A portion of the (K, r) plane delimited by the curve rII(K) is filled with the curves
r0(K) obtained for different Ω0 values.
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Hysteretic Behavior

Fully Coupled Networks

A step-wise structure emerges at larger masses do to the break down of the
independence of the whirling oscillators

The number of locked oscillators NL follows the same step-wise structure

NL remains constant until it reaches the descending curve
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Italian High Voltage Power Grid

By following Protocol II

the system stays in one cluster up to K = 7

at K = 6 wide oscillations emerge in r(t) due to the locked clusters that have
been splitted in two (is this also the origin for the emergent multistability?)

By lowering further K several whirling small clusters appear and r becomes
irregular
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