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Abstract. Stable chaos is a generalization of the chaotic behaviour exhibited by
cellular automata to continuous-variable systems and it owes its name to an under-
lying irregular and yet linearly stable dynamics. In this review we discuss analogies
and differences with the usual deterministic chaos and introduce several tools for
its characterization. Some examples of transitions from ordered behavior to stable
chaos are also analyzed to further clarify the underlying dynamical properties. Fi-
nally, two models are specifically discussed: the diatomic hard-point gas chain and
a network of globally coupled neurons.

1 Introduction

Chaos is associated with an exponential sensitivity of the evolution to tiny
perturbations in the initial conditions, so that the presence of at least one pos-
itive Lyapunov exponent is considered as a necessary and sufficient condition
for the occurrence of irregular dynamics in deterministic dynamical systems
[1]. In fact, the first observation in coupled-map models of stochastic-like
behaviour accompanied by a negative maximum Lyapunov exponent came
as a big surprise [2,3]. In order to highlight the unexpected coexistence of
local stability and chaotic behaviour, the phenomenon was called stable chaos

(SC). Although the definition sounds like an oxymoron, in practice, there is
no logical inconsistency, as the irregular behaviour is a transient phenomenon
that is restricted to finite-time scales. In spite of this restriction, SC is both
a well defined and meaningful concept, because the transient duration di-
verges exponentially with the system size and is therefore infinite in the
thermodynamic limit. Moreover, the stationarity of SC [3] suggests that it
can represent an interesting platform for studying non-equilibrium phenom-
ena. A better understanding of SC can be gained by exploring the analogy
with the chaotic behaviour exhibited by elementary cellular automata [4],
another phenomenon that can be formally defined only in the thermody-
namic limit. In fact, as we clarify in this review, SC is a sort of extension
of cellular-automaton dynamics to continuous-variable systems. In particu-
lar, the spreading velocity of localized perturbations, a standard indicator
used to quantify the degree of chaoticity in cellular automata, proves rather
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fruitful also to characterize SC. However, in this latter case it is necessary
to distinguish between finite and infinitesimal perturbations (the latter ones
cannot even be defined in cellular automata, because of the discreteness of
the local variable) and it is thereby possible to define two conceptually differ-
ent propagation velocities. This allows giving a fairly general definition of SC
as that of a dynamics dominated by “finite amplitude” pertubations [5,6].

Altogether, one can express the relevant difference between deterministic
chaos and SC by referring to the relevant flux of information: while in the
former context, information flows from the least towards the most significant
digits, in the latter, it flows from the boundaries towards the core of the
system. It would be therefore desirable to develop a general formalism able
to encompass both phenomena. A promising idea is based on the introduction
of “non democratic” norms which attribute increasingly small weights to the
sites that are increasingly “far” from the region of interest. Although this
approach allows quantifying the spatial information flow, it can be hardly
extended to account for perturbations that have locally a finite amplitude,
the analysis of which would require a genuine nonlinear treatment. In fact,
a tool like finite amplitude Lyapunov exponents (FALEs) [7] appears to be
more appropriate for characterizing SC, although it is not clear how to go
beyond the maximal exponent (for the absence of a proper scalar product
definition in this context).

As we have mentioned above, in systems with a finite number of degrees
of freedom, SC is a transient phenomenon. One might therefore think of
using tools and ideas developed for the characterization of transients such
as those extensively discussed in the nice review by Tèl and Lai [8]. One
must however distinguish between SC and standard chaotic transients (for
a seminal paper on the subject, see [9]). In the former case, the maximum
Lyapunov exponent is positive and formulas such as Kapral-Yorke and Pesin
relations can be invoked to express some properties of the invariant measure
in terms of the Lyapunov exponents [10]. In SC, a straightforward application
of the same formulas yields manifestly useless predictions, as they do not take
into account the spatial information flow that is the key mechanism of SC.
Accordingly, one must still heavily rely on direct numerical simulations to
infer the structure of the invariant measure. Nevertheless, we suspect that
a possible common property of chaotic transients and SC is the presence of
a strange repeller. In fact, chaotic transients are almost by definition the
manifestation of trajectories evolving in the vicinity of a repeller, possibly
characterized by a small escape rate [8,10]. This property seems to clash with
the absense of unstable orbits in most of the models exhibiting SC. However,
such models are also characterized by discontinuities in phase-space and here
below we argue that their smoothing gives birth to a web of unstable orbits.
We are thereby lead to conjecture that even though SC is accompanied by
a negative Lyapunov exponent, its very existence requires the presence of
topological chaos, i.e. of a finite topological entropy. When and whether the
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resulting transient dynamics is linearly stable or unstable remains however
to be clarified.

The review is organized in the following way. In Sec. 2 we briefly introduce
the reference models that have mostly used to characterize SC. In section 3
we properly define SC from the scaling behaviour of the transient length and
discuss its properties in terms of space-time correlations and fractal dimen-
sions. Then, in Sec. 4, we discuss the relationship with cellular automata
by suitably encoding the space-time pattern. In particular, we focus our at-
tention on the indeterminacy of the next symbol as a way to quantify the
difference between the original dynamics and that of a suitable deteministic
automaton rule. We also introduce and estimate the propagation velocity of
localized perturbations. In Sec. 5, we compare SC with the usual determin-
istic chaos. This is done by smoothing an otherwise discontinuous coupled-
map model and studying the dependence of standard indicators such as the
maximum Lyapunov exponent on the smoothness of the dynamic rule. As a
result, we identify two thresholds: (i) the first one separates the regions with
postive and negative Lyapunov exponent; (ii) the second, larger, threshold
separates the region where finite-amplitude perturbations propagate faster
than infinitesimal ones, from that where the two velocities coincide with one
another (which is the signature of a standard chaotic evolution). Moreover,
we compute the multifractal spectrum of the Lyapunov exponent, showing
that it has a positive tail even when the average exponent itself is negative.
In section 6 we discuss various order-to-chaos transitions. In fact, the anal-
ogy with cellular automata reminds us that such rules are not necessarily
chaotic. The intrinsic absence of a continuous parameter makes it impossi-
ble to investigate order-to-chaos transitions in the cellular-automata context.
As this restriction does not apply to SC, it makes sense and it is desirable
to investigate the onset of chaotic dynamics in this latter context. We first
study a coupled-map lattice, the coupling strength being the relevant control
parameter. The analysis reveals the existence of a fuzzy transition region,
where regular and irregular dynamics alternate in a complex manner [11]. A
simple stochastic model is then introduced to gain some further insight. In
the new setup, the transition is of directed-percolation type [12].

For a long time, SC has been found only in abstract mathematical models,
characterized by the presence of discontinuities or nearly discontinuous 1

evolution rules. This restriction has therefore casted some doubts on the
physical relevance of this phenomenon. In Sec. 7 we discuss a mechanism that
can generically lead to discontinuities in physically meaningful contexts. The
mechanisms requires just the presence of δ-like events such elastic collisions
between particles or spike emissions by neurons. The “non-commutativity”
of such events represents a genuine source of discontinuities, which may, in
turn, give rise to SC. A diatomic hard-point gas and a network of coupled
neurons are discussed in Sec. 7 as examples of such dynamical systems. The

1 See the next section for a clarification of this concept.
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neural network model allows us also to discuss an order-to-chaos transition
that appears to be of “standard” type (the critical region reduces to a single
point), although the universality class has not yet been identified [13]. Finally
the still open problems are briefly summarised in Sec. 8.

2 Models

Most of the numerical studies of stable chaos have been carried out in a 1D
lattice of diffusively coupled maps [14],

xi(t + 1) = (1 − ε)f(xi(t)) +
ε

2
[f(xi−1(t) + f(xi+1(t))] (1)

where ε ∈ [0 : 1] is the coupling constant and the map of the interval f is
piecewise linear,

f(x) =











p1x + q1 0 ≤ x ≤ xc

1 − (1 − q2)(x − xc)/η xx < x < xc + η

q2 + p2(x − xc − η) xc + η < x ≤ 1,

(2)

where xc = (1−q1)/p1. The model [5] is a continuous generalization of the sys-
tems analysed in [2] and [3], which basically correspond to η = 0, i.e. to a two-
branch maps. The map is continuous because the left and right limits in the
both connecting points do coincide (f(x−

c ) = f(x+
c ), f(x−

c +η) = f(x+
c +η)).

Occasionally in this review we speak of “quasi-discontinuous” models, imply-
ing the presence of large but localized (in phase-space) amplifying regions. In
this context, this amounts to assuming a small but non-zero width η for the
middle branch. In next the section we restrict our analysis to the case η = 0.

Since this model is rather artificial (no specific physical problem lies be-
hind the choice of f , which has been mostly selected for simplicity reasons and
for coherence with the seminal paper [15]), we find it convenient to consider
a second type of model, namely a chain of Duffing oscillators

ẍi = −γẋi − x3
i + D(xi−1 + xi+1) + (1 + G(t) sin 2πt/T1)xi (3)

where γ controls the dissipation, D the diffusion between nearby sites and
G(t) is the modulation amplitude that is periodically switched on and off;
G = A for mod (t, T ) < T1 and zero otherwise. As discussed in [4], for T2

long enough, the Lyapunov exponent is negative, so that the evolution must
eventually converge towards a periodic orbit, as it indeed does.

3 Definition and characterization of stable chaos

Simulations of the above defined map have revealed the existence of long-
lasting transients followed by a sudden convergence towards some periodic
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orbit. This suggests, and simulations confirm, that the basin of attraction
of such orbits is so intricate that the convergence is exponential only for
distances homogeneously smaller than some threshold θ. However, since there
exist many different periodic orbits, one cannot estimate the transient length
by determining the distance from an a priori unknown final state. One can
nevertheless determine the distance d(t, τ) of the configuration {xi(t)} (i =
1, N) at time t from any previous configuration at time τ < t. As soon as
there exists a τ -value such d(tc, τ) < θ, we can conclude that d(t + t′, τ +
t′) will tend to 0, indicating that the dynamics converges towards an orbit
of period t − τ . As shown in Fig. 1, the average (over different choices of
the initial conditions) transient time may increase exponentially with the
chain length, i.e. with the phase space dimension. This indicates that in the
thermodynamic limit, the relevant dynamical regime is not the asymptotic
periodic behavior that is practically unreachable, but what one would naively
consider a transient regime. This scenario is reminiscent of the disordered
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Fig. 1. Average transient duration versus the chain length for the diffusively cou-
pled lattice of maps (2), for p1 = 2.7, q1 = 0., η = 0, q2 = 0.07, p2 = 0.1, and for
the coupling strength ε = 2/3.

regime in directed percolation, which, in finite systems, has necessarily a finite
lifetime, as the dynamics sooner or later is absorbed by the homogeneous
state [16,17]. Irrespective of this difficulty, the disordered regime is a true
“phase” in the statistical-mechanics sense, as it is stable in infinite systems,
i.e. when the thermodynamic limit is taken before the infinite-time limit. It
should, however, be noticed that in SC the “absorbing state” is not just a
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single homogenous configuration, but may be a set of different and possibly
exponentially long orbits.

A second striking character of the transient is that the maximum Lya-
punov exponent turns out to be negative. Like for the very existence of SC,
this statement is formally correct only under the assumption of taking first
the thermodynamic limit. In practice, it is sufficient that the transient du-
ration is long enough to guarantee a good statistical convergence. From the
data reported in Fig. 1, one can see that this is not a limitation at all, since
already in a lattice of 100 maps, the periodic state is practically unreachable.

The very fact that the transient is Lyapunov-stable makes it substan-
tially different from the chaotic transients that have been often found and
attributed to the existence of some chaotic saddle of high dimensionality [8].
This is all the way more surprising once we notice that the “transient” dy-
namics is far from regular. In fact, simulations reveal that both spatial and
temporal correlations decay exponentially. An example is reported in Fig. 2,
where we plot

C(j) =
|〈xi(t)xi+j(t)〉|

〈xi(t)2〉
, C(τ) =

|〈xi(t)xi(t + τ)〉|
〈xi(t)2〉

(4)

where 〈·〉 denotes an ensemble average
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Fig. 2. Spatial and temporal (smoother curve) correlations for the same parameter
values of the single map as in Fig. 1 and ε = 0.608.

It is natural to characterize the invariant measure also in terms of its frac-
tal dimension. Since the whole Lyapunov spectrum is negative, one cannot
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invoke the Kaplan-Yorke [18] formula to predict the number of active de-
grees of freedom. Actually, such a formula would imply that the dimension is
equal to zero and this is in fact true for the asymptotic attractor. Therefore,
we must rely only on direct numerical computations. More precisely, we have
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Fig. 3. Correlation dimension of the spatial embedding for ε = 0.6008 (upper
panel) and ε = 0.608 (lower panel). Dotted, dashed and solid curves correspond to
embedding dimension e = 1, 2, and 3, respectively.

decided to compute the correlation dimension [19] of spatial sequences of vari-
ables [20]. In other words, we have constructed embedding spaces of the type
xi(t), xi+1(t), . . . , xi+e(t), for e = 1, 2, 3. In each case, we have counted the
number of pairs of points N (e, δ) that are separated by a distance larger than
∆ in a space of dimension e. Afterwards, we have determined the dimension
as the effective derivative, i.e.

D2(e, ∆) =
∂ logN
∂ log ∆

(5)

Formally, the correlation dimension is the limit of D2(e, ∆) for ∆ → 0. As
for small ∆, N is affected by statistical fluctuations due to the finite number
of points, the relevant question is whether the limiting behaviour sets in for
distances that are numerically accessible. In Fig. 3 we report the results for
two different values of the coupling strength, ε = 0.6008 and ε = 0.608, which
correspond to an ordered and chaotic regime, respectively. Even in the or-
dered regime, the fractal dimension is finite, as revealed by the plateau, whose
height is independent of the embedding dimension. The non-zero value of the
dimension reflects the disordered spatial structure, i.e. the existence of spatial
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chaos. Therefore, already from this simple case we can conclude on the neces-
sity to go beyond the standard Lypapunov-exponent analysis. In the chaotic
regime, the effective dimension is larger and grows with the embedding di-
mension e (see lower panel in Fig. 3). However, in the absence of theoretical
arguments, we cannot definitely conclude whether the dimension will satu-
rate for e → ∞, indicating the existence of a low-dimensional attractor, or
whether it diverges, suggesting some form extensivity [20].

4 Relationship with cellular automata

The existence of a stochastic-like dynamics accompanied by an exponential
contraction of infinitesimally close trajectories suggests an analogy with the
so-called chaotic cellular automata (CA) rules [21]. In fact, in a finite lattice,
any CA rule must eventually produce a periodic orbit, since the number of
distinct states is finite, namely BN , where B is the number of states of the
local variable and N is the number of lattice sites. What makes a chaotic rule
different from an ordered one is precisely the time needed to cycle through
previously visited states: such a time is exponentially long in chaotic rules
[21].

A binary representation of the dynamics observed in the the coupled map
lattice (1) confirms these expectations. The pattern plotted in Fig. 4 are
indeed very reminiscent of those obtained by iterating CA rules.

Fig. 4. Two patterns generated by iterating Eq. (1) with the function f defined as
in Eq. (2) with the same parameter values as in the previous figures and coupling
strength ε = 0.55 (left panel) and 0.7 (right panel). Time flows downwards; black
corresponds to xi(t) < 1/2.

The relationship with CA can be put on more firm grounds, as we dis-
cuss in the following with reference to the chain of Duffing oscillators (3).
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The bistable character of the single oscillators suggests a natural way to
encode the underalying dynamics and thereby to explore possible connec-
tions with CA rules. An appropriate indicator to do so is the indeterminacy
∆h(m) of the symbol s′ = si(t + 1), under the assumption that the sequence
S(m) = {si−r(t), si−r+1(t), . . . , si(t), . . . , si+r(t)}, is observed at time t (time
being measured in periods of the forcing term) and where m = 2r + 1. The
indeterminacy is formally defined as [22]

∆h(m) =
∑

S

P (S(m))
∑

s′

P (s′|S(m)) log P (s′|S(m)) (6)

where the first sum extends over all sequences of length m generated by
the chain dynamics, and the second sum to the two values of the sym-
bol s′. P (S(m)) is the probability to observe anywhere the sequence S(m);
P (s′|S(m)) is the conditional probability that the observation of the symbol
s′ at time t + 1 on the site i is preceded by the sequence S at time t in a
window of length m centered around the site i. When the knowledge of S(m)
allows to perfectly predict s′, then the indeterminacy is zero. In this case,
the symbolic dynamics is perfectly equivalent to that of a CA defined over
a window of length m. In Fig. 5 we report the data for T2 = 8, 18 and 20.
∆h is a non decreasing function of m, since the more we assume to know on
the past, the smaller must be the uncertainty on the future. If ∆h becomes
exactly equal to 0 for a finite m, then we can conclude that the dynamics
is perfectly reconstructible from a CA with a finite interaction range. In all
cases we see that for m larger than 15, the curves saturate revealing the ex-
istence of a residual uncertainty. This does neither imply that the dynamics
contains some degree of stochasticity, nor that the model has to include longer
memory terms. One striking such example was discussed in Ref. [22], where
Crutchifield applied this approach to the pattern generated by an elementary
CA, after it was suitably encoded. The indeterminacy of the encoded pattern
revealed the presence of a residual uncertainty even though the CA rule is
deterministic and requires only the memory of one past step, while the en-
coding is even memoryless. The identification of the “optimal machine” in
generic cases is a typical example of the hardness of inverse problems.

The analogy with CA suggests to quantify the degree of chaos also in
SC by determining the velocity vF of propagation of perturbations. Let us
consider two configurations that initially differ in the interval [−r, r] and let
il(t) (ir(t)) denote the leftmost (rightmost) site where they differ more than
some threshold. Accordingly, we can define the front velocity as

vF = lim
t→∞

ir − il
2t

. (7)

Within CAs, a finite spreading velocity is considered as an evidence of chaotic
behaviour [21]. In fact, this is true also in the context of SC, as it can be seen
in Fig. 6, where we plot the spreading of an initial difference for parameter
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Fig. 5. Indeterminacy in the chain of Duffing oscillators (3) with γ = 0.103, D =
0.0263, ω = 0.56, T1 = T2/16 and T2 = 8, 18, 20 (from top to bottom).

values that correspond to ordered and irregular behaviour. There we see that
the perturbation spreads only in the latter case (see the right panel). In the

Fig. 6. Propagation of initially localized perturbations in the coupled map lattice
for the same values as in Fig. 4. Time flows downwards.

CA language, the velocity vf is often named the “Lyapunov exponent” [21].
In fact the evolution equation of an elementary CA can be formally written
as a mapping of R2 into itself,

ul(t + 1) = F l(ul(t), ur(t)) ur(t + 1) = F r(ul(t), ur(t)) (8)
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where ur(t) =
∑

≥0 si(t)2
−i, ul(t) =

∑

i<0 si(t)2
i and si(t) = 0, 1 (for the

sake of simplicity we refer to binary automata). In general F l and F r are
highly singular functions, but this does not forbids to define a sort of Lya-
punov exponent from the growth rate of an arbitrarily small perturbation
δ. In practice, if two configurations differ only in the interval [−r, r], we can
equivalently say that the representation points in R2 are separated by a dis-
tance δ ≈ 2−r. Moreover, if the spatial region where the two configurations
differ increases with a velocity vf , we can state that the R2 distance grows
as exp[(vf log 2)t], thus confirming that, apart from a multiplicative factor,
the velocity plays the role of a Lyapunov exponent. In coupled map lattices,
the local variable is continuous rather than binary, but this does not change
the substance of the argument.

5 Relationship with deterministic chaos

The original model where SC has been observed for the first time has a
peculiarity, namely, the discontinuity of the mapping [3]. As a result, the
distance between two arbirarily close trajectories can suddenly become of
order O(1), when they find themselves on opposite sides of the discontinuity.
It is therefore reasonable to study the continuous version of the model, i.e. to
assume η 6= 0 in (2). In the limit η → 0, the map (2) reduces to the original
discontinuous system.

Already at the level of the single map (i.e. without invoking any spatial
coupling), the introduction of an additional branch may drastically modify
the structure of the corresponding dynamical system. This is clear in the
simple case q1 = q2 = 0, p1 = p2 = 2. For η = 0, the topological entropy is
H = ln 2, as the map corresponds the Bernoulli shift; however, for any ar-
bitrarily small, but finite, η-value, the appearance of a third branch induces
a jump to H = ln 3. For the parameter values that correspond to the SC
regime discussed in the previous section, the consequence of a finite η-value
is even more striking, as H is strictly equal to zero for η = 0, while it is
finite for η = 0+. This can be understood, by performing a slightly noncon-
ventional symbolic analysis. Let us start by recalling that for the original
parameter values, there exists a stable period-3 orbit, whose points are or-
dered as p1 < p2 < x1 < x2 < p < 3 < 1. Because of the third contracting
branch, the interval [x2, 1] is asymptotically squeezed to a point, so that we
can identify the leftmost point x2, with the right border of asymptotically
distinct trajectories. Analogously, the interval [0, p1] is also squeezed to zero
and we can accordingly interpret p1 as the right border of the relevant inter-
val. Finally [p2, x1] is also squeezed to zero and can be neglected as well. As
a result, the relevant dynamics is described by the mapping of I1 = [p1, p2]
and I2 = [x1, x2]: f(I1) = I2 and f(I2) = I1 ∪ I2. It is easy to show that the
corresponding topological entropy is the golden mean H = log[(1 +

√
5)/2].



12 A. Politi and A. Torcini

Therefore, we can at least conclude that the introduction of a finite but arbi-
trarily small η induces topological chaos in an otherwise stable environment.

In the single map, the existence of a fractal chaotic repellor can induce
long transients only for those trajectories that are carefully selected in the
vicinity of the repellor itself. It is reasonable to conjecture that in spatially
extended systems, the stable manifold of the repellor forces generic trajecto-
ries to follow an intricate arrangement of “channels” before landing on some
periodic orbits. What are, however, the dynamical properties of the lattice,
when finite η-values are assumed?

0 0.0002 0.0004 0.0006 0.0008 0.001
η

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

λ

Fig. 7. Maximum Lyapunov exponent of the map lattice (2) as a function of η,
while the other parameter values are the same as in Fig. 1. The results have been
obtained for N = 200, but are practically independent of the system size.

First of all, it important to notice that while the topological enropy jumps
abruptely to a finite value, the Lyapunov exponent exhibits a smooth be-
haviour (see Fig. 7), i.e. for sufficiently small η-values (η < η∗ < 3.10−4)
it stays negative. This implies that the phenomenon of SC is generic (in
the mathematical sense), even though the window of existence is (at least
in this context) rather narrow. More accurate information can be extracted
by performing a multifractal analysis of the Lyapunov exponent [23,24]. In
particular, we have computed the probability distribution P (λ, t) of the max-
imum Lyapunov exponent λ over a time span t. For sufficiently large t, the
probability P (λ, t) is expected to scale as P (λ, t) = exp[−G(λ)t] where G
is a dynamical invariant whose operative definition is obtained by inverting
this scaling relation, G = −(log P )/t. In Fig. 8 we have plotted the results
obtained for t = 20 and 40. Even though the most probable and average
Lyapunov exponent is negative (the spectra refer to η = 10−4 < η∗), there is



Stable chaos 13

a positive tail, in agreement with the conjectured existence of a web of un-
stable orbits. The smoothed steps on the right of the maximum correspond
to the number of times a sample trajectory is actually visiting the expand-
ing branch. The two spectra do reasonably overlap, suggesting that the time
t = 40 is already in the scaling regime, although finite-size corrections are
still large (notice, in fat, that the maximum of G has to be, by definition,
equal to 0).

-0.5 0 0.5
λ

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

ln
 P

(λ
,t)

/t

t = 20
t = 40

Fig. 8. Multifractal distribution of Lyapunov exponents for η = 1.10−4, where the
average Lyapunov exponent is still negative.

Altogether, SC appears to be somehow complementary to the blow-out
phenomenon discovered in the study of synchronization transitions [25]. While
analysing the stability of the synchronization manifold, it has been discov-
ered that in some circumstances, the corresponding (multifractal) Lyapunov
spectrum altough mostly confined to the negative semi-axis, may exhibit a
positive tail. In such a case, one has to go beyond the linear stability analysis,
because whenever the distance is amplified, nonlinear terms are responsible
for either bringing the trajectory back towards the manifold or letting it es-
cape away. In the context of SC, nonlinear terms bring the trajectory back
towards the “invariant manifold”, although the mechanism is perfectly effi-
cient only in the infinite dimensional limit.

In order to clarify the mechanisms by which nonlinearities contribute to
stabilizing the chaotic dynamics, it is convenient to analyse the propagation
of perturbations. We start by briefly recalling the concept of convective Lya-
punov exponents [26]. Given a unidimensional lattice model in the stationary
regime, let us introduce a δ-like perturbation at time t = 0 in the origin
i = 0 and imagine to monitor the perturbation amplitude wi(t). Kaneko and
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Deissler [26] suggested that

wi(t) = exp[Λ(i/t)t] (9)

where Λ(v) represents the (exponential) growth rate of a perturbation in
a frame moving with the velocity v. It is a priori obvious that for v = 0,
one recovers the usual Lyapunov exponent, and that for large velocities one
has to expect negative growth rates. In fact, Λ(v) has a typically parabolic
shape with the maximum in zero. All velocities for which Λ(v) > 0 corre-
spond to growing perturbations. The limit velocity for linearly propagating
perturbations is fixed by the marginal stability criterion Λ(vL) = 0. Instead
of determining directly Λ(v), it is more convenient to exploit the chronotopic
approach set in [27,28], and formally introduce a perturbation with a spatial
amplification factor

wi(t) = e−µiui(t) (10)

In our lattice model, the evolution rule for ui(t) reads

ui(t + 1, µ) =
ε

2
e−µif ′(xi−1(t))ui−1(t, µ) + (11)

(1 − ε)f ′(xi(t))ui(t, µ) +
ε

2
eµif ′(xi+1(t))ui+1(t, µ)

By iterating this recursive equation with suitable boundary conditions (pe-
riodic conditions are typically optimal, as they reduce finite-size effects), we
obtain the chronotopic growth rate λ(µ). Altogether, an infinitesimal pertur-
bation wi(t) = exp[λ(µ)t − µi] with a spatial growth rate µ grows in time
with an exponent λ(µ). The evolution of the initially localized perturbation
is connected to λ(µ) by a Legendre transform

Λ(v) = λ(µ) − µλ′(µ) ; v = λ′ (12)

In order to determine the velocity corresponding to a given µ-value, it is
necessary to compute the derivative of λ(µ). Since the numerical computation
of derivates is always affected by large numerical errors, it is convenient to
perform a few more analytical steps [27]. By introducing,

ui(t, µ + dµ) = ui(t, i) + zi(t, µ)dµ (13)

in the recursive relation (11), we obtain an equation for the deviation zi(t, µ),

zi(t + 1, µ ) =
ε

2
e−µif ′(xi−1(t))(zi−1(t, µ) − ui−1(t, µ)) (14)

+ (1 − ε)f ′(xi(t))ui(t, µ) +
ε

2
eµif ′(xi+1(t))(zi+1(t, µ) + ui+1(t, µ)) .

The knowledge of zi and of ui allows determining λ′. In fact, by taking the
µ derivative in the definition of the chronotopic Lyapunov exponent,

λ(µ) =
1

2
lim

t→∞

||u(t)||2
t

(15)
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one obtains

λ′(µ) = lim
t→∞

u(t) · z(t)
t||u(t)||2 (16)

where · stands for the scalar product. In order to better understand the
selection process of the propagation velocity, it is convenient to go back to the
evolution of a single exponential profile wi(t) = exp[λ(µ)t − µi]. Its velocity
is obviously V (µ) = λ/µ. From the Legendre transform we have that

dV

dµ
=

1

µ

(

dλ

dµ
− λ

µ

)

= − Λ

µ2
. (17)

Since the perturbation velocity is identified by the equation Λ = 0, we see also
that it corresponds to the minimum of V (µ0). In other words, as long as the
evolution is controlled by linear mechanisms, the slowest among all possible
fronts is selected. Let us now turn our attention to fronts delimiting finite
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Fig. 9. Linear (vL, solid curve) and front (vF , dashed curve) velocity versus η.
Deterministic chaos exists only for η > η∗. Beyond ηc, vL = vF .

perturbations. Since even such fronts must have a leading infinitesimal edge,
vF will be vF (µ∗) for some µ∗. It is hard to imagine that µ∗ is smaller than µ0:
accordingly, either vF = vL or vF > vL. This scenario is perfectly confirmed
by the study of the model (2). Solid and dashed curves in Fig. 9 correspond
to vF and VL, respectively. There we see that vF is strictly larger than vL for
η < ηc ≈ 1.210−3, while above ηc the two coincide within numerical accuracy.
One can also notice that the linear velocity is not defined for η < η∗, where
the system is linearly stable and no propagation of infinitesimal perturbations
can occur.
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As discussed in Ref. [6], the mechanism responsible for the finite dif-
ference between vL and vF is that perturbations of increasing amplitude
(starting from infinitesimal ones) tend to propagate faster and thereby to
push the corresponding front. These results are indeed fairly general and not
just restricted to the model considered in this section [29]. Moreover, this
phenomenology is conceptually equivalent to that observed in the context
of front propagation (see, e.g. fronts connecting steady states in reaction-
diffusion systems [30,31]), that is effectively described by the famous Fisher-
Kolmogorov-Petrovsky-Piskunov equation [32].

Altogether we can conclude by stating that the front velocity proves to
be a useful indicator to identify the presence of SC (in spatially extended
systems) from the presence of nonlinear propagation mechanisms that cannot
be accounted for by linear stability analysis [6]. In such a sense, the results
in Fig. 9 indicate that SC persists up to the second threshold and not just to
the first one [5].

6 From order to chaos

Once ascertained that SC is a sort of extension of CA chaos to systems
characterized by continuous variables, it is natural to investigate the possible
phase transitions, a question that cannot even be posed in CAs, where all
variables are discrete. The front propagation velocity vF provides the right
tool to assess the relative stability of the two phases. Let us, in fact, consider
two initial conditions: a reference trajectory {x0

i }, and a perturbed one {xi}
differing only in a finite interval −L < i < L, where it is randomly set. If
the interval where v(i) is of order O(1) increases by eating the region where
the field was initially equal to zero, we can conclude that the chaotic phase
is thermodynamically stable.

In Fig. 10 we plot the results of careful computations performed with the
coupled map lattice (1) for different values of the coupling strength ε. The
ε-range has been selected so as to include both the ordered and the chaotic
phase. In fact, we see that the front velocity is equal to zero (finite) in the left
(right) part of the figure. However, these two clearly distinct phases are not
separated by a point-like transition. We find instead a fuzzy region, where
chaos and order alternate in a seemingly irregular manner. Is this an evidence
of the complexity that is sometimes invoked to exist at the edge of chaos?
Pure numerics alone is not sufficient to provide a convincing answer to such
a difficult question.

An exact formulation and solution of this problem requires to control
simultaneously two trajectories, a task that is nearly impossible. A simpler
formulation which can nevertheless help to gain some insight on the transition
consists in assuming a random evolution for the reference trajectory, and thus
reducing the problem to that of characterizing the stochastic evolution of the
difference field vi(t) [12]. In mathematical terms, this amounts to studying



Stable chaos 17

0.595 0.6 0.605 0.61
ε

0

0.1

0.2

v
F

Fig. 10. Front propagation velocity in the coupled map lattice (1,2) for the same
parameter values as in Fig. 1.

the equation,

vi(t + 1) = (1 − ε)wi(t + 1) +
ε

2
[wi−1(t + 1) + wi+1(t + 1))] (18)

where

wi(t + 1) =

{

vi(t)/η w.p. p = aη

avi(t) w.p. 1 − p
if vi(t) < η (19)

wi(t + 1) =

{

1 w.p. p = avi(t)

avi(t) w.p. 1 − p
if vi(t) ≥ η (20)

The stochastic 1/η amplification simulates the effect of visiting the expanding
interval of the map (2). The amplification saturates to take into account the
boundedness of the dynamics. This is the only element breaking the linearity
of vi(t) dynamics. Moreover, for the sake of simplicity, we assume that a
uniform contraction rate a (an assumption that is basically equivalent to
set p1 = p2 < 1). At variance with the original deterministic model, here a
detailed numerical analysis of the parameter space (a, η), reveals that ordered
and chaotic phases are separated by a standard phase transition (see Fig. 11)
that belongs to the directed percolation (DP) type for small enough values
of η [33] and seems to be of multiplicative noise type beyond some critical η
value [34].
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Fig. 11. Phase diagram of the stochastic model Eq. (20).

Notice that this stochastic model is even more closely related to the prob-
lem of synchronization between mutually coupled map lattices (see Refs. [35–
40] for a more detailed discussion), since the assumption of a stochastic evo-
lution is appropriate everywhere in parameter space including the critical
region separating the two phases.

In the SC context, the DP transition is the most relevant one, as it occurs
precisely in the regime where the evolution is characterized by a negative
Lyapunov exponent. DP was introduced and is usually discussed in systems
where the local variable has just two states: 0, and 1. Moreover, the dynamical
rule is such that 1’s cannot spontaneously appear in a sea of 0’s. This is the
key difference with respect to the present context, where the variable vi is
continuous and thereby the 0-state is never perfectly reached (in finite times).
It is therefore necessary to introduce a threshold to decide whether the 0-state
has been reached, with the related problem of having to clarify whether the
results are truly independent of the threshold. In order to settle this issue,
we find it convenient to determine the Finite Amplitude Lyapunov Exponent
(FALE) [7]. We do so by first introducing τ(W ), the average time needed by
the field norm

||w(t)|| =
1

L

L
∑

i

|wi| (21)

to become for the first time smaller than a preassigned threshold W.
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The FALE can be thereby defined with reference to a sequence of expo-
nentially spaced thresholds Wn (Wn/Wn−1 = r < 1) as

Λ(Wn) =
log r

τ(Wn+1 − Wn)
. (22)

In the limit r → 1

Λ(W ) =

[

dτ(W )

d log W

]−1

. (23)

In the further limit W → 0, Λ(W ) reduces to the usual Lyapunov exponent.
In Fig. 12, we see that the FALE while being almost equal to zero at suffi-
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Fig. 12. Finite amplitude Lyapunov exponent of the stochastic model for two differ-
ent sets of parameter values, both at criticality: circles refer to ∆ = 0.01, L = 256,
ac = 0.6055, squares to ∆ = 0, L = 128, and ac = 0.6063.

ciently large scales, becomes equal to the true Lyapunov exponent below a
certain threshold Wc. Accordingly, since for W < Wc, the dynamics is dom-
inated by the usual Lyapunov exponent, we can safely conclude that when
the norm becomes smaller than Wc, the absorbing state will be reached with
probability one and this solves the problem of an unambigious identification
of the threshold. Moreover, detailed numerical simulations have revealed that
Wc decreases faster than 1/L, where L is the system size [33]. In discrete-
variable systems, the minimal non-zero value that W can meaningfully take
is 1/L (which corresponds to just one active site). As Wc < 1/L, one can con-
clude that in this stochastic system the scaling range is even broader than in
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usual discrete systems. Now a comment about the reason why the linear sta-
bility analysis may not apply at vanishing distances. In fact, when the above
defined norm of a vector is small, the field can nevertheless be sporadically
of O(1). The behaviour of such bursts may represent an obstruction to the
validity of the linear stability analysis and this is what tells Fig. 12.

Finally, we recall that FALE have been employed to characterize single
maps of the type (2) revealing that for sufficiently small η and for some fi-
nite W , the FALE is indeed larger (positive) than the standard Lyapunov
exponent [29]. Moreover, a generalization of the FALE to a comoving refer-
ence frame allows to formulate a marginal stability criterion that is able to
predict the velocity on both cases of linear and nonlinear propagation [29].
Moreover, coupled maps (2) with η = 0 have been also analyzed by Letz
& Kantz [41] who introduced an indicator similar to the FALE (i.e. able to
quantify the growth rate of non infinitesimal perturbations). This indicator
turns out to be negative for infinitesimal perturbations and becomes positive
for finite perturbations. This means that a sufficiently large perturbation can
propagate along the system due to nonlinear effects. This confirms previous
observations for marginally stable systems [6].

7 More realistic models

In order to test how general stable chaos is, it is natural to start by asking
when discontinuities or quasi-discontinuities can be expected to arise in the
physical world. In fact, we have seen that the source of indeterminacy is the
sudden amplification of the distance between two nearby trajectories, once
they fall on opposite sides of a discontinuity. In such a case, no matter how
small the initial distance is, the separation is suddenly amplified to a value
of O(1), that is determined by the size of the discontinuity.

Before exploring the possible occurence of such phenomena, it is impor-
tant to stress that the discontinuity we are referring to is not a discontinuity
in time of the type associated, e.g., to collisions. A δ-like collision induces
an abrupt change of a variable (specifically, the velocity), but this affects
the difference between two nearly identical trajectories only for a short (in-
finitesinal) time lapse, after which the trajectories come close again. This is
illustrated in Fig. 13, where we have plotted the time evolution of a point-like
particle bouncing elastically on the floor. In the lower panel the time evo-
lution of the Euclidean distance is represented: only within the short time
window between the collisions of the two trajectories with the floor, the rela-
tive distance becomes of order O(1). This is at variance with the map lattice
model (1,2), where the distance, once amplified, remains large.

In the following two subsections, we illustrate some arguments supporting
the idea that a natural source of such a type of discontinuities is associated
with an exchange between non-commuting δ-like events.
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Fig. 13. Separation between two nearly equal trajectories of a point particle collid-
ing elastically against the floor. The distance δ = sqrt(δy2 + δv2) is plotted versus
time.

7.1 A Hamiltonian model: diatomic hard-point chain

Before introducing the model, it should be remarked that in Hamiltonian
systems, conservation of volumes implies that the maximum Lyapunov expo-
nent cannot be negative; at most, all Lyapunov exponents are exactly equal
to zero. In fact, the Hamiltonian version of SC is the world of marginally sta-
ble and yet ergodic models and it often goes under the name of pseudochaos

(see, e.g. [42]). Here, we are moslty interested in emphasizing the analogies
with SC and for this reason the diatomic hard point gas (HPG) turns out to
be rather appropriate also for its relationship with billiard-like models, that
are often invoked in the analysis of pseudochaos.

The diatomic HPG is a unidimensional system of point-like particles with
masses m and M that alternate along a line and undergo elastic collisions.
In the limit m = M , the model is perfectly integrable, since the velocities of
the two particles involved in any collision are simply interchanged. Therefore
there is no mechanism leading to a diffusion in velocity space. However, as
soon as the masses are assumed to be different, all numerical simulations
suggest that the dynamics is ergodic. On the other hand, it is easy to convince
oneself that the maximum Lyapunov exponent is still exactly equal to zero.
The argument is pretty straightforward [43]: since the collision rule is linear,

u′ =
(m − M)u + 2Mv

m + M
(24)

v′ =
2mu − (m − M)v

m + M
(25)
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Fig. 14. Evolution of two nearly equal set of initial condition in a diatomic hard-
point gas. By slihgly shifting the position of the middle particle, the final velocities
change abruptly when passing across the three-body collision.

both real- and tangent-space dynamics follow the same rule. As a result, the
kinetic energy conservation (

∑

i miv
2
i = E, where mi = m or M , depending

on the parity of i) translates into the conservation of a suitably weighted
Euclidean norm of the perturbation field, namely,

∑

i miδv
2
i . This means that

the Euclidean norm of any vector is conserved, irrespective of its direction,
so that all Lyapunov exponents are equal to zero.

In the absence of deterministic chaos, which is, therefore, the source of the
stochastic-like behaviour exhibited by diatomic HPG chains? As illustrated
in Fig. 14, we argue that the source are the discontinuities occurring around,
e.g., three-body collisions. Let us consider an initial condition like that in
the left panel of Fig. 14: it gives rise to a sequence of three collisions, 1 − 2,
2 − 3, 1 − 2 before the particles separate out. By shifting the position of the
central particle (this is equivalent to moving the initial xi variable in the
CML), we pass to the condition depicted in the right panel, which gives rise
to the collisions 2 − 3, 1 − 2, 2 − 3. Accordingly, the sequence of two-body
collisions changes abruptly in correspondence of a three-body collision, when
the three particles find themselves in the same place at the same time. As a
consequence of this sudden modification, the three final velocities differ in the
two cases, as it can be appreciated by comparing the two panels in Fig. 14.
Only in the limit case of equal velocities, there is no discontinuity, since the
final set is the same for both sequences. In the former case, when starting
from the sequence v1, v2, v3, one passes first to v2, v1, v3, then to v2, v3, v1,
and finally to v3, v2, v1. One can easily verify that the final state is the same
in the latter case too.
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Fig. 15. Billiard-like representation of the dynamics of a chain of two particles
moving in an interval with reflecting boundaries. Horizontal and vertical axes cor-
respond to the coordinates of the first and second particle respectively. Two slightly
different trajectories are plotted in each panel until the 5th collision. Left and right
panels correspond to m = M , and M = 2m, respectively.

The model dynamics can be further clarified by exploring the analogy
with billiard models. The connection was first discovered in Ref. [44], where
the authors considered the slightly different model of hard rods. Here, we il-
lustrate the relatively simple case of a gas of two particles P1 and P2 bounded
to move between two fixed barriers Bl and Br, located in x = 0 and x = 1,
respectively. The linear position of the two particles can be represented as the
position of a point-particle in the plane and the constraints 0 ≤ x1 ≤ x2 ≤ 1
imply that the motion is restricted to the triangular region depicted in Fig. 15.
Collisions with the two mutually orthogonal triangular edges correspond to
collisions with either the left or the right barrier, while those with the diag-
onal correspond to interparticle collisions. Finally, the three angular points
correspond to the only two possible three-body collisions, BlP1P2, P1P2Br

and to the synchronous occurrence of the two-body collisions BlP1 andP2Br.
In the equal mass case, there is a perfect correspondence between hard point
gas and the triangular billiard. Accordingly, we can invoke the conjecture
raised in [45] that billiards with rational angles (expressed in π units) are
necessarily ergodic. The crucial difference that appears as soon as the two
masses are assumed to differ from one another is that in the billiard-like
representation, the mass itself assumes a vectorial character. In particular,
incoming and outgoing velocities are not mutually symmetric in correspon-
dence of a collsion with the diagonal. However, the most relevant consequence
is the appearance of true discontinuities. This is illustrated by comparing two
nearby trajectories which undergo a different sequence of collisions. In the left
panel of Fig. 15, which refers to equal masses, we see that the small difference
in the initial velocity generates a slow linear increase of the mutual distance.
In the right panel, which refers to M = 2m, the two trajectories, although
starting from the same initial conditions, drastically separate out and find
themselves very far apart after as few as 5 collisions (see the arrows).
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7.2 Neural networks

A perhaps more interesting example of a model exhibiting stable chaos is a
network of leaky-integrate-and-fire neurons, where exponentially long tran-
sients have been identified in various set-ups [46,13,47,48]. By following [13],
the model dynamics for a network of N neurons can be written as a set of N
differential equations

v̇i = c − vi − (vi + w)

N
∑

j=1

∑

m

gijδ(t − t
(m)
j ) (26)

where the connectivity matrix gij is defined as

gij =

{

G/ℓi if i and j are coupled

0 otherwise,
(27)

ℓi is the number of neurons that are connected to the ith neurons, and G is
the coupling strength. Here, we will limit to consider the case of inhibitory
coupling, that, in these notations, corresponds to a positive G value. All
variables are dimensionless and suitably rescaled: the “action potential” vi ∈
[−∞, 1] whenever reaches the limit value vj = 1, is reset to 0 and a δ-spike is
thereby emitted and received by all the connected neurons. The parameter c
controls the relaxation velocity, while w quantifies indirectly the dependence
of the effect of the spike on the instantaneous value of the action potential.

When all connections are active, the dynamics rapidly converges towards
a stationary state characterized by a sequence of evenly spaced spikes (this
is a so called splay state [49,50]). In the presence of disorder, such as, e.g., a
small fraction of randomly broken links, the evolution may signficantly differ,
depending on the coupling strength G. Below a certain critical value, there
is still a fast convergence towards an ordered state where the neurons fire
in a fixed order (in agreement with Jin’s theorem [51]); for sufficiently large
coupling constants, the average (over different realizations of the disorder)
transient length T is exponentially large with the number of neurons [13].
This is illustrated in Fig. 16, where we have plotted the average transient
for different system sizes: squares and circles correspond to G = 0.5 and 1.8,
respectively. The solid lines are the result of a linear and an exponential fit,
respectively. The exponential increase of the transient is a clear indication of
SC, since at the same time, the maximum Lyapunov exponent (after removing
the zero exponent corresponding to a shift along the trajectory) is definitely
negative (as shown in [13]).

Which is the source of such long transients? In between the spikes, the
single potentials relax independently towards c (a value that is not reached,
since c > 1). Therefore, like in the diatomic hard point gas, the evolution
is piecewise linear and one can derive an analytic expression for the map
as rigorously done in Ref. [13]. In the absence of jumps between different
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Fig. 16. Transient length for the neural network model (26) for c = 2, w = 4/7 and
5% of broken links. Squares (circles) correspond to G = 0.5 and (G = 1.8). The
solid lines have been obtained by means of a linear and exponential fit, respectively.

branches, the dynamics would be globally stable; the negativity of the Lya-
punov exponent is a reminiscence of such a stability. However, like in the
previous cases, there are discontinuities associated with abrupt changes in
the firing order of the neurons. Let us indeed consider two neurons i and j
such that gji = 0, while gij 6= 0 and consider two different initial conditions:
(i) vi(0) = vj(0)− ε, (ii) vi(0) = vj(0)+ ε. A schematic view of the evolution
is presented in Fig. 17, where the solid line corresponds to the dynamics of
the ith-neuron, while dashed and dotted line denote the former and latter
trajectories, respectively. There, one can see that for times larger than t2 the
two trajectories are separated by a finite distance, as a result of a disconti-
nuity in the dynamical law. This is due to the dependence of the inhibitory
effect of a spike on the actual value of v (see the multiplicative factor (u+w)
in Eq. (26)). Being the size of the discontinuity of the same order of the cou-
pling strength (O(1/N)), one might argue that this is negligible for N large
enough. This is not the case, because it has to be compared with the changes
induced by the smooth dynamics in between two consecutive spikes that is
of the same order. Moreover, the distance between the two trajectories is
even amplified to O(1) in the time interval [t1, t2]. As t2 − t1 is, by definition
of the same order of the interspike interval, this effect too is, in principle,
nonnegligible.

More recently, stable and yet irregular behaviour has been reported also in
the context of a slightly different neural network, where the spike are assumed
to be received with a finite delay τ and the spike effects are independent of
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Fig. 17. Evolution of two neurons with nearly the same potential and asymmetric
coupling: neuron i couples to j, but not vice versa. The dotted line corresponds
to the evolution of neuron i; solid (dashed) curve corresponds to the evolution of
neuron j in case its action potential is initially smaller (larger) than that of neuron
j.

v (see [47]). From the point of view of discontinuities, this latter property
inhibits a persistent amplification of distances between nearby trajectories.
Nevertheless, the finite-time amplification mechanism is still present and the
very fact that long-stable transients have been observed is an indication that
it lasts enough to yield “avalanches” and thereby to a self-sustained irregu-
lar behaviour. However, one should also notice that “discontinuities” are a
necessary but not sufficient condition for the onset of SC.

8 Conclusions

In the present Review we have thoroughly discussed the phenomenon of sta-

ble chaos, a type of irregular behaviour occurring in deterministic systems
that manifests itself as an exponentially (with the system size) long and sta-
tionary transient. SC differs from usual chaos in that it is characterized by
negative Lyapunov exponents, but still reatins some features that are remi-
niscent of deterministic chaos. In fact, by smoothing out the discontinuities
present in the most typical SC models, induces the multifractal spectrum of
the maximum Lyapunov exponent to extend to positive values. This, in turn,
suggests that topological chaos (i.e. a strictly positive topological entropy) is
a prerequisite for the observation of SC. However, we have shown that lin-
ear stability analysis does not to provide a convincing description of relevant
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properties such as the propagation of finite perturbations. In this respect, a
promising indicator is represented by the finite amplitude Lyapunov expo-
nent, although there are conceptual difficulties in extending this approach
beyond the maximum exponent.

A further interesting question concerns the transition from ordered be-
haviour to SC. A detailed numerical analysis of a coupled-map lattice reveals
the existence of a fuzzy region, where behaviour that is neither strictly or-
dered nor clearly chaotic has been detected. Is this just a difficulty due to
strong finite size effects, or this phenomenon hides the presence of a genuinely
“complex” (uncomputable) evolution? In an almost globally-coupled neural
network, the transition appears to be a standard point-like phenomenon,
whose universality class is however still unclear.

The most important question concerns the generality of SC. All models
where SC has been observed do possess strong localized nonlinearities that
may reduce to true discontinuities in phase space. The first models where SC
has been observed are somehow artificial systems with no direct relationship
with the physical world. However, the discussion of the diatomic hard point
gas and of the network of pulse coupled neurons, has contributed to clarify
that discontinuities may spontaneously emerge in models characterized by the
presence of non communting “δ-like” events (such as two-body collisions or
spike emissions). Moreover, since we have seen that SC survives a smoothing
of the coupled-map model, we may also conjecture that the same holds true
in these latter contexts, once we assume finite collision times or finite pulse-
widths.
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