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Abstract. We study conserved models of crystal growth in one dimensia(x,t) =
—dyj(x,1)) which are linearly unstable and develop a mound structure whose typical.size

increases in timeI{ ~ t"). If the local slope f1 = 9,z) increases indefinitely; depends on

the exponeny characterizing the large-behaviour of the surface currepfj ~ 1/|m|”): n = %

forl<y <3andn=(1+y)/(1+5y)fory > 3.

The conserved dynamics of a solid surface growing under the action of an external flux of
particles is described by the continuum equation

0;z(x, 1) = —0,j(x,t) +6F(x, 1) Q)

wherez(x, 1) is the local height of the surface in a comoving frame (so that the average value
Zis setto 0) and F (x, t) is the shot noise.

Thermodynamic and kinetic mechanisms contributgdad its actual expression depends
on the details of the growth process. Here we are interested in the growth of a high-symmetry
surface by molecular beam epitaxy, where the instability has a purely kinetic origin: the
reduced interlayer diffusion [1]. Nonetheless, our treatment will be as general as possible.

A wide class of models is described by the current

j=Km"(x)+ jes(m) 2

wherem = 0,z is the local slope. The first term generally describes a thermally activated
relaxation of the surface, but kinetic mechanisms can also contribéig2¢.

The second term is responsible for the instability and its origin is an asymmetry in the
sticking process of an adatom to a step (the Ehrlich—Schwoebel (ES) effect): sticking from the
upper terrace is hindered and this implies an uphill current [3] which is called the ES current
(jes). Also, other (generally stabilizing) processes can contribufigd@and this explains the
different expressiong=s may take [4].

Whatever these processes ggg,is linear inm at small slopesjes ~ vm) and therefore in
the early stages ofthe growth it prevails on the first tekim(') at sufficiently large wavelengths.

* Dedicated to the Peanuts cartoon strip on the occasion of its 50th birthday.
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This means that the linear stability of the flat surface will be decided by the sigragfositive
one meaning instability. In fact, in the limi — O we have

dz=—Kdlz —vd?; 3)

whose solution is(x, ) = exp(w,?) cosgx) with w, = vg? — Kg*. An uphill current means
that jes has the same sign as the slopey $®positive and the flat surface is unstatbig ¢ 0)
against modulations of wavevector smaller tigae= /v/K; the instability appears after a
typical time of order* ~ (vg%)~! = K /v2.

The later evolution of the surface depends on the nonlinear form of the unstable current
Jes(m). By taking the spatial derivative of (1), we obtain

dm = 82(— ) + 3, (8F) @)

and a parallel with a phase-ordering process is easily made, once we remark that the current
can be obtained by a pseudo free enefgy

i=—p = [a | Gamevon] Vi = —jestn, ©

The instability of the flat surfac¢jis(0) > 0) means that the potentid(m) has a
maximum inm = 0 (V”(0) < 0). Contiguous regions of increasing and opposite slope are
formed. The usual phase-ordering process is obtained Wkenhas the classical double-well
form: V(m) = —(v/2)m? + (v/4m3)m*, corresponding to a currefigs = vm (1 — m?/m3).

After the slope has attained a fractionm§ the dynamics enters in the nonlinear regime: the
wavelengthL of the profile increases in time (coarsening process) and the slope saturates to
the constant valuesm,. The coarsening law is known to be logarithmic [B){) ~ Int) in

the absence of shot noise and a power law [8}{ ~ ¢%/3) in the presence of it.

The aim of this paper is to analyse ttieterministic(s F (x, r) = 0) growth process when
V (m) has no minima, corresponding to the absence of zeros at finite slopes in the gggrent
We will consider the class of currents defined by

yvm
T (L +2m2)
and the corresponding models will be termethodels.

Model 1 has been studied numerically by Hwattal [7] and they found a coarsening
exponentn =~ 0.22 (L(t) ~ t") which seems not to depend on the noise strength
(L M Sander, private communicationy. models without noise have been studied analytically
by Golubovt [8] through scaling arguments and he fimds- 211 irrespectively ofx. Finally,
qualitative considerations based on noise effects [9] give 1/(2/a + 3), i.e.n = % for
model 1.

Our analytical approach is based on the linear stability analysis of the stationary
configurationsj[m(x)] = 0. In this way, one can find the coarsening expometirough the
determination of the lowest eigenvalue of the operétei?) H, whereH is the Hamiltonian
corresponding to a particle in a periodic potential [5].

Before proceeding, we render adimensional the growth equation by resecaliitig 1/,
¢ with r* andz with 1/g¢:

JES with o >1 (6)

m

Armoye ()

Stationary configurations are the solutions of the differential equafiarix)] = m” +
jes(m) = 0. Therefore, they correspond to the periodic orbits of a particle in the potential
—V(m) = —[3(a — D](L +m?)>~@ for « > 1 and in the potentiat-V (m) = (3) In(1 +m?)
for o = 1. In the former case the potential is upper bounded and the solution corresponding

"

0z = —0y]j Jj=m
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to the boundary conditions — +oo whenx — oo does exist, while it doesotfor o = 1
because the corresponding energy would be infinite. Stationary solutions may be labelled with
their period, i.e. the wavelengttx m (x).

Let us now perform a linear stability analysis around these stationary and periodic
solutions:m(x, t) = m(x) + ¥ (x, t). Itis easily found that

Y = [~y (x, 1) + UL (x)¥] 8
whereU, (x) = — jig(m o (x)). By puttingy (x, 1) = ¢ (x) exp(—et) we obtain
(—3D)[—¢"(x) + Ur(x)¢] = D Ho(x) = €. )

Negative eigenvalues mean that (x) is linearly unstable and this induces the coarsening
process; moreoveg(L) — 0~ whenL — oo. The dependence of the ground state (GS)
energy on the distance determines the timescale of the coarsening process:1/|e(L)|.

For the moment we will assumP, = 1, i.e. we will consider thenonconservednodel:
om = —6F [ém.

First of all we observe that in the limit of large the energy shift (L) for the periodic
potential is equal (up to a numerical factor) to the shift for a single couple of potential wellst.
The solution of the problem is given [11] in terms¢@f and ¢, respectively the GS for the
single wellU1(x), centred inx = L, and for the double well/>(x), centred ink = +L. In
fact, the Schidinger equations are

—¢o + U1 =0 (108)
—¢y +Uzpy = €y (10p)
and by evaluating the quantiyﬁf‘) dx [¢1 x (10a) — ¢g x (10b)] = 0, we obtain
$1(0)¢(0) = —e f dx ¢o(x)1(x) (11)
0
where we have made use©f = U, for x > 0.

Before proceeding we must determine the asymptotic expressiopg0f and ¢1(x).
The potentiall (x) = — jts(m) is given, fora models, by
Qe —1Dm?—-1 (2u—1)

1+ mZ)a+l mee

The asymptotic behaviour of the single-mound profile is obtained by integrating the
equationm” (x) + jes(m) = 0 and taking the limitt — oo:

1 1

Ux) =

12)

G —V(m)=0= dm

N ——. 13
dx Vo —1|m|*1 (13)
The resultn®(x) =~ (@/+/a — L)x, when inserted in (12) gives
20 — (-1 1
vy~ - Ve-H1 _a (14)

a? X2~ x2
with a increasing betweem = 0 (fora¢ = 1) anda = 2 (fora = o).
The solution of the Sclidinger equation (1) for U (x) ~ a/(x — L)? gives gpower-law
decaying wavefunctionpp(x) ~ |x — L|~#), with an exponeng = (1 — 1/«).
If « < 2thens < % and therefore the G@y(x) of the single well is not a bound state,
since [ dx ¢3(x) = co. On the other hand, far > 2 ¢o(x) is a bound state angh (x) can

T If €2 is the energy shift for a couple of wells, the skiftfor n wells ise, = 2e2(1 — 1/n).
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be approximated [11] with the expressipiix) = [¢o(x)+¢o(—x)]/~/2. Thisway, from (11),
we easily obtain the relation

€ > —2¢p(0)¢p(0) ~ — L~ @D [ > 2 andD, = 1]. (15)

If « < 2, we can pudy(x) = [¢o(x) +do(—x)]/+/2 Wherepg is a generalization afg to a
negative eigenvalue:gg (x) + (a/x?)do(x) = ego(x). In fact, even ifpo is not a bound state,
¢1 is bounded, because the GS enetgy strictly lower thanU,(+o0) = 0. The previous
expression fogp; may be used even i itself is bounded (i.e. for > 2) and the result for
the coarsening exponent does not change.

The asymptotic expression f@p is ¢o(x) = +/x K, (v/]€lx) whereK,, is the modified
Bessel function of orden = 8 — (%). The functiong, decays as a power lawpd(x) ~
le|~P/2-1/4x =B if a/x? > |e| and exponentially do(x) ~ |e|~Y*exp(—/J€]x)) in the
opposite limit,a/x? < |e|. Equation (11) now gives us

€ /0 dx ¢o(x)Po(x) = —2¢0(0)¢5(0) [ < 2andD, =1] (16)

wherego(x) depends om. Note that the integral on the left-hand side does converge even
if ¢o is not a bound state.

The evaluation of the two sides of (16) is a bit lengthy and we report here the result only:
le|In(1/]e]) ~ 1/L? if « = 2 and|e| ~ 1/L?if1 < a < 2. In figure 1 we compare the
analytical results for the exponent characterizing the energy|skify| ~ L~Y" with those
obtained through its direct numerical evaluationt and the agreement is very good.

Therefore, for the nonconserved model we can conclude that

1
(nonconserved) n=3% 1<a<2 and n= (@ > 2) (17)
3—-2/a

NI

with a logarithmic correction for = 2 (L ~ (¢/In1)%?).

The reason why the coarsening exponeikeeps constant far < 2 is the following:
if « > 2 the single-well wavefunction is a bound state, the intedgri a constant while
the ‘superposition’ betweeng(x) and ¢o(—x) (that is to say the right-hand side of (16))
decreases at increasingwhich implies a decreasing Conversely, when < 2 the integral

t We have considered the single-well potentigk) = —Eq for x| < 1 andU (x) = a/x? for |x| > 1, whereEq(a)
is chosen so as to provide a zero GS energy. Afterwards the eneofyhe double well problem may be determined
by joining the solutions of the Scbdinger equation in each separate ‘piece’ of the potebtiat).
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Figure 2. Coarsening exponent for the
conserved model. In the inset we enlarge the
small« region. The full curve is the analytical
result (18). Points are the exponents found by
integrating numerically (7) for a system size
M = 1024 (spatial resolutiomx = 0.25)
and a total time 400006< T < 1600000
(time step:Ar = 0.05). A few tests have also
been done with a smaller time steps( =
0.025) and longer chaing{ = 2048-4096),
obtaining consistent results. Bars indicate the
numerical fit errors.

I becomesv-dependent and decreases withthis dependence counterbalances the reduction
of the right-hand side of (16).

For the conservedgrowth model,D, = —32 and (11) must be replaced by a more
complicated expression. It has not been possible to carry out a rigorous calculation because
[¢1 x Dy Ho— o x D, He1]is no longer integrable. Nonetheless, there are strong indications
that the right-hand sides of (15), (16) acquire a fadtof: the origin of this scaling factor
is that¢o(x) has a power-like behaviour (and therefore derivation corresponds to dividing
by x) and also that/ (x) ~ x~2. Furthermore, since we need the single-well wavefunction,
corresponding to a zero energy, a solution of the &dimger equatior¢ (x) = 0 is also
solution of D, H¢ (x) = 0.

As a consequence of such a factor, the coarsening exponent for the conserved case is easily
obtained from the nonconserved onig/n) — [(1/n) + 2]. Therefore,

1

1
(conserved) n=7 (l<a<? and n= Y

(a > 2). (18)

In order to check numerically the validity of the results reported in (18) and therefore the
dependence of the coarsening exponeoh the parameter, detailed numerical simulations
have been performed. In particular, we have numerically integrated equation (7) by employing
a pseudospectral time-splitting codet.

The values ofL(¢), whose log—log plot gives the exponentare evaluated through the
power spectrum (PS) af(x, 7): the weighted average of the wavevectors corresponding to
the most relevant components of the PSigR2(r). A different method using the spatial
correlation function gives consistent results. In figure 2, the numerical findinggdgrby
direct integration of (7) are shown together with the theoretical expression (18) and a good
agreement is found.

In conclusion, we have found the analytic expression for the coarsening expanents
both for the nonconserved model (17) and for the conserved one (growth model), (18).
Coarsening varies witk and it is not logarithmic (i.ez = 0) even forae = oo.

t The algorithm here employed is analogous to the leapfrog scheme introduced in [10] for the integration of the
complex Ginzburg—Landau equation (CGLE). Here the integration of the nonlinear term cannot be treated analytically
as for the CGLE, so we resort to a second-order Adams—Bashford scheme. A detailed discussion of these types of
algorithms can be found in [12].
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