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Abstract. We study conserved models of crystal growth in one dimension (∂t z(x, t) =
−∂xj (x, t)) which are linearly unstable and develop a mound structure whose typical sizeL

increases in time (L ∼ tn). If the local slope (m = ∂xz) increases indefinitely,n depends on
the exponentγ characterizing the large-m behaviour of the surface currentj (j ∼ 1/|m|γ ): n = 1

4
for 16 γ 6 3 andn = (1 +γ )/(1 + 5γ ) for γ > 3.

The conserved dynamics of a solid surface growing under the action of an external flux of
particles is described by the continuum equation

∂tz(x, t) = −∂xj (x, t) + δF (x, t) (1)

wherez(x, t) is the local height of the surface in a comoving frame (so that the average value
z̄ is set to 0) andδF (x, t) is the shot noise.

Thermodynamic and kinetic mechanisms contribute toj and its actual expression depends
on the details of the growth process. Here we are interested in the growth of a high-symmetry
surface by molecular beam epitaxy, where the instability has a purely kinetic origin: the
reduced interlayer diffusion [1]. Nonetheless, our treatment will be as general as possible.

A wide class of models is described by the current

j = Km′′(x) + jES(m) (2)

wherem = ∂xz is the local slope. The first term generally describes a thermally activated
relaxation of the surface, but kinetic mechanisms can also contribute toK [2].

The second term is responsible for the instability and its origin is an asymmetry in the
sticking process of an adatom to a step (the Ehrlich–Schwoebel (ES) effect): sticking from the
upper terrace is hindered and this implies an uphill current [3] which is called the ES current
(jES). Also, other (generally stabilizing) processes can contribute tojES and this explains the
different expressionsjES may take [4].

Whatever these processes are,jESis linear inm at small slopes (jES∼ νm) and therefore in
the early stages of the growth it prevails on the first term (Km′′) at sufficiently large wavelengths.

∗ Dedicated to the Peanuts cartoon strip on the occasion of its 50th birthday.
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This means that the linear stability of the flat surface will be decided by the sign ofν, a positive
one meaning instability. In fact, in the limitm→ 0 we have

∂tz = −K∂4
x z− ν∂2

x z (3)

whose solution isz(x, t) = exp(ωqt) cos(qx)with ωq = νq2−Kq4. An uphill current means
thatjES has the same sign as the slope, soν is positive and the flat surface is unstable (ωq > 0)
against modulations of wavevector smaller thanq̄ = √ν/K; the instability appears after a
typical time of ordert∗ ' (νq̄2)−1 = K/ν2.

The later evolution of the surface depends on the nonlinear form of the unstable current
jES(m). By taking the spatial derivative of (1), we obtain

∂tm = ∂2
x (−j) + ∂x(δF ) (4)

and a parallel with a phase-ordering process is easily made, once we remark that the current
can be obtained by a pseudo free energyF :

j = −δF
δm

F [m] =
∫

dx

[
K

2
(∂xm)

2 + V (m)

]
V ′(m) = −jES(m). (5)

The instability of the flat surface(j ′ES(0) > 0) means that the potentialV (m) has a
maximum inm = 0 (V ′′(0) < 0). Contiguous regions of increasing and opposite slope are
formed. The usual phase-ordering process is obtained whenV (m)has the classical double-well
form: V (m) = −(ν/2)m2 + (ν/4m2

0)m
4, corresponding to a currentjES = νm(1− m2/m2

0).
After the slope has attained a fraction ofm0 the dynamics enters in the nonlinear regime: the
wavelengthL of the profile increases in time (coarsening process) and the slope saturates to
the constant values±m0. The coarsening law is known to be logarithmic [5] (L(t) ∼ ln t) in
the absence of shot noise and a power law [6] (L(t) ∼ t1/3) in the presence of it.

The aim of this paper is to analyse thedeterministic(δF (x, t) ≡ 0) growth process when
V (m) has no minima, corresponding to the absence of zeros at finite slopes in the currentjES.
We will consider the class of currents defined by

jES= νm

(1 + `2m2)α
with α > 1 (6)

and the corresponding models will be termedα models.
Model 1 has been studied numerically by Huntet al [7] and they found a coarsening

exponentn ≈ 0.22 (L(t) ∼ tn) which seems not to depend on the noise strength
(L M Sander, private communication).α models without noise have been studied analytically
by Golubovíc [8] through scaling arguments and he findsn = 1

4 irrespectively ofα. Finally,
qualitative considerations based on noise effects [9] given = 1/(2/α + 3), i.e. n = 1

5 for
model 1.

Our analytical approach is based on the linear stability analysis of the stationary
configurationsj [m(x)] ≡ 0. In this way, one can find the coarsening exponentn through the
determination of the lowest eigenvalue of the operator(−∂2

x )Ĥ , whereĤ is the Hamiltonian
corresponding to a particle in a periodic potential [5].

Before proceeding, we render adimensional the growth equation by rescalingx with 1/q̄,
t with t∗ andz with 1/q̄`:

∂tz = −∂xj j = m′′ + m

(1 +m2)α
. (7)

Stationary configurations are the solutions of the differential equationj [m(x)] = m′′ +
jES(m) ≡ 0. Therefore, they correspond to the periodic orbits of a particle in the potential
−V (m) = −[ 1

2(α − 1)](1 +m2)1−α for α > 1 and in the potential−V (m) = ( 1
2) ln(1 +m2)

for α = 1. In the former case the potential is upper bounded and the solution corresponding
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to the boundary conditionsm→±∞ whenx →±∞ does exist, while it doesnot for α = 1
because the corresponding energy would be infinite. Stationary solutions may be labelled with
their period, i.e. the wavelengthL: mL(x).

Let us now perform a linear stability analysis around these stationary and periodic
solutions:m(x, t) = mL(x) +ψ(x, t). It is easily found that

∂tψ = ∂2
x [−ψ ′′(x, t) +UL(x)ψ ] (8)

whereUL(x) ≡ −j ′ES(mL(x)). By puttingψ(x, t) = φ(x) exp(−εt) we obtain

(−∂2
x )[−φ′′(x) +UL(x)φ] ≡ DxĤφ(x) = εφ. (9)

Negative eigenvalues mean thatmL(x) is linearly unstable and this induces the coarsening
process; moreover,ε(L) → 0− whenL → ∞. The dependence of the ground state (GS)
energy on the distanceL determines the timescale of the coarsening process:t ∼ 1/|ε(L)|.
For the moment we will assumeDx ≡ 1, i.e. we will consider thenonconservedmodel:
∂tm = −δF/δm.

First of all we observe that in the limit of largeL the energy shiftε(L) for the periodic
potential is equal (up to a numerical factor) to the shift for a single couple of potential wells†.
The solution of the problem is given [11] in terms ofφ0 andφ1, respectively the GS for the
single wellU1(x), centred inx = L, and for the double wellU2(x), centred inx = ±L. In
fact, the Schr̈odinger equations are

−φ′′0 +U1φ0 = 0 (10a)

−φ′′1 +U2φ1 = εφ1 (10b)

and by evaluating the quantity
∫∞

0 dx [φ1× (10a)− φ0 × (10b)] = 0, we obtain

φ1(0)φ
′
0(0) = −ε

∫ ∞
0

dx φ0(x)φ1(x) (11)

where we have made use ofU1 = U2 for x > 0.
Before proceeding we must determine the asymptotic expressions ofφ0(x) andφ1(x).

The potentialU(x) = −j ′ES(m) is given, forα models, by

U(x) = (2α − 1)m2 − 1

(1 +m2)α+1
→ (2α − 1)

m2α
. (12)

The asymptotic behaviour of the single-mound profile is obtained by integrating the
equationm′′(x) + jES(m) = 0 and taking the limitx →∞:

( 1
2)(m

′)2 − V (m) = 0⇒ dm

dx
≈ 1√

α − 1

1

|m|α−1
. (13)

The resultmα(x) ≈ (α/√α − 1)x, when inserted in (12) gives

U(x) ≈ (2α − 1)(α − 1)

α2

1

x2
≡ a

x2
(14)

with a increasing betweena = 0 (for α = 1) anda = 2 (for α = ∞).
The solution of the Schrödinger equation (10a) forU1(x) ≈ a/(x−L)2 gives apower-law

decaying wavefunction (φ0(x) ∼ |x − L|−β), with an exponentβ = (1− 1/α).
If α 6 2 thenβ 6 1

2 and therefore the GSφ0(x) of the single well is not a bound state,
since

∫∞
−∞ dx φ2

0(x) = ∞. On the other hand, forα > 2 φ0(x) is a bound state andφ1(x) can

† If ε2 is the energy shift for a couple of wells, the shiftεn for n wells isεn = 2ε2(1− 1/n).
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Figure 1. Analytical (full curve) and numerical
(crosses) values for the exponent 1/n governing
the asymptotic energy shift|ε2| ∼ 1/L1/n

(nonconserved model).

be approximated [11] with the expressionφ1(x) = [φ0(x)+φ0(−x)]/
√

2. This way, from (11),
we easily obtain the relation

ε ' −2φ0(0)φ
′
0(0) ≈ −L−(2β+1) [α > 2 andDx = 1]. (15)

If α < 2, we can putφ1(x) = [φ̃0(x)+ φ̃0(−x)]/
√

2 whereφ̃0 is a generalization ofφ0 to a
negative eigenvalue:−φ̃′′0(x)+ (a/x2)φ̃0(x) = εφ̃0(x). In fact, even ifφ0 is not a bound state,
φ1 is bounded, because the GS energyε is strictly lower thanU2(±∞) = 0. The previous
expression forφ1 may be used even ifφ0 itself is bounded (i.e. forα > 2) and the result for
the coarsening exponent does not change.

The asymptotic expression for̃φ0 is φ̃0(x) =
√
xKµ(

√|ε|x) whereKµ is the modified
Bessel function of orderµ = β − ( 1

2). The functionφ̃0 decays as a power law (φ̃0(x) ≈
|ε|−β/2−1/4x−β) if a/x2 � |ε| and exponentially (̃φ0(x) ≈ |ε|−1/4 exp(−√|ε|x)) in the
opposite limit,a/x2� |ε|. Equation (11) now gives us

ε

∫ ∞
0

dx φ0(x)φ̃0(x) = −2φ̃0(0)φ
′
0(0) [α 6 2 andDx = 1] (16)

whereφ̃0(x) depends onε. Note that the integralI on the left-hand side does converge even
if φ0 is not a bound state.

The evaluation of the two sides of (16) is a bit lengthy and we report here the result only:
|ε| ln(1/|ε|) ∼ 1/L2 if α = 2 and|ε| ∼ 1/L2 if 1 < α < 2. In figure 1 we compare the
analytical results for the exponent characterizing the energy shift|ε(L)| ∼ L−1/n with those
obtained through its direct numerical evaluation† and the agreement is very good.

Therefore, for the nonconserved model we can conclude that

(nonconserved) n = 1
2 (1< α 6 2) and n = 1

3− 2/α
(α > 2) (17)

with a logarithmic correction forα = 2 (L ∼ (t/ ln t)1/2).
The reason why the coarsening exponentn keeps constant forα < 2 is the following:

if α > 2 the single-well wavefunction is a bound state, the integralI is a constant while
the ‘superposition’ betweenφ0(x) andφ0(−x) (that is to say the right-hand side of (16))
decreases at increasingα, which implies a decreasingn. Conversely, whenα < 2 the integral

† We have considered the single-well potentialU(x) = −E0 for |x| < 1 andU(x) = a/x2 for |x| > 1, whereE0(a)

is chosen so as to provide a zero GS energy. Afterwards the energyε2 of the double well problem may be determined
by joining the solutions of the Schrödinger equation in each separate ‘piece’ of the potentialU2(x).
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Figure 2. Coarsening exponentn for the
conserved model. In the inset we enlarge the
small-α region. The full curve is the analytical
result (18). Points are the exponents found by
integrating numerically (7) for a system size
M = 1024 (spatial resolution1x = 0.25)
and a total time 400 000< T < 1600 000
(time step:1t = 0.05). A few tests have also
been done with a smaller time step (1t =
0.025) and longer chains (M = 2048–4096),
obtaining consistent results. Bars indicate the
numerical fit errors.

I becomesα-dependent and decreases withα: this dependence counterbalances the reduction
of the right-hand side of (16).

For theconservedgrowth model,Dx = −∂2
x and (11) must be replaced by a more

complicated expression. It has not been possible to carry out a rigorous calculation because
[φ1×DxĤφ0−φ0×DxĤφ1] is no longer integrable. Nonetheless, there are strong indications
that the right-hand sides of (15), (16) acquire a factorL−2: the origin of this scaling factor
is thatφ0(x) has a power-like behaviour (and therefore derivation corresponds to dividing
by x) and also thatU(x) ∼ x−2. Furthermore, since we need the single-well wavefunction,
corresponding to a zero energy, a solution of the Schrödinger equationĤφ(x) = 0 is also
solution ofDxĤφ(x) = 0.

As a consequence of such a factor, the coarsening exponent for the conserved case is easily
obtained from the nonconserved one:(1/n)→ [(1/n) + 2]. Therefore,

(conserved) n = 1
4 (1< α 6 2) and n = 1

5− 2/α
(α > 2). (18)

In order to check numerically the validity of the results reported in (18) and therefore the
dependence of the coarsening exponentn on the parameterα, detailed numerical simulations
have been performed. In particular, we have numerically integrated equation (7) by employing
a pseudospectral time-splitting code†.

The values ofL(t), whose log–log plot gives the exponentn, are evaluated through the
power spectrum (PS) ofz(x, t): the weighted average of the wavevectors corresponding to
the most relevant components of the PS is 2π/L(t). A different method using the spatial
correlation function gives consistent results. In figure 2, the numerical findings forn(α) by
direct integration of (7) are shown together with the theoretical expression (18) and a good
agreement is found.

In conclusion, we have found the analytic expression for the coarsening exponentsn(α),
both for the nonconserved model (17) and for the conserved one (growth model), (18).
Coarsening varies withα and it is not logarithmic (i.e.n = 0) even forα = ∞.

† The algorithm here employed is analogous to the leapfrog scheme introduced in [10] for the integration of the
complex Ginzburg–Landau equation (CGLE). Here the integration of the nonlinear term cannot be treated analytically
as for the CGLE, so we resort to a second-order Adams–Bashford scheme. A detailed discussion of these types of
algorithms can be found in [12].
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