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ABSTRACT

Dynamical balance of excitation and inhibition is usually invoked to explain the irregular low firing activity observed in the cortex. We
propose a robust nonlinear balancing mechanism for a random network of spiking neurons, which works also in the absence of strong
external currents. Biologically, the mechanism exploits the plasticity of excitatory–excitatory synapses induced by short-term depression.
Mathematically, the nonlinear response of the synaptic activity is the key ingredient responsible for the emergence of a stable balanced
regime. Our claim is supported by a simple self-consistent analysis accompanied by extensive simulations performed for increasing network
sizes. The observed regime is essentially fluctuation driven and characterized by highly irregular spiking dynamics of all neurons.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0199298

Neurons in the cortex fire irregularly and with a low firing rate
despite being subject to a continuous stimulation (bombard-
ment) from thousands of pre-synaptic neurons. This seemingly
counter-intuitive evolution has been explained in terms of the
theory of dynamical balance of excitation and inhibition,1 con-
sidered as one of the major contributions of theoretical physics to
neuroscience. However, this theory has been recently criticized,
because it requires unphysically large external currents, exper-
imentally unjustified. Here, we propose a nonlinear balancing
mechanism based on a biologically plausible form of synaptic
plasticity (short-term depression) which works also with weak
external currents.

I. INTRODUCTION

Inferring the collective behavior of large ensembles of oscil-
lators is a highly challenging task, since it requires combining
concepts and tools of nonlinear dynamics with those of statistical
mechanics.2 Already the classification of proper “thermodynamic”
phases and of the conditions for their emergence is a non-trivial
task: what are the qualitative differences among the various regimes?
A preliminary difficulty is posed by the identification of appropriate
model classes. Typically (but not exclusively), the coupling is

assumed to result from the linear composition of two-body inter-
actions. However, already within this simplified setup, a question
arises in the case of massive coupling, when the number K of con-
nections is proportional to the number N of oscillators (mean-field

models being the ultimate example). In fact, a meaningful thermo-
dynamic limit requires the coupling term to be finite for K → ∞.
This is typically ensured by assuming a coupling constant of order
1/K: we call this type-I coupling and the Kuramoto model is per-
haps the most famous example.2,3 An alternative approach can be
adopted, when the single two-body coupling terms are, on average,
equal to zero. In such cases, it makes sense to assume that the cou-

pling constant is of order 1/
√

K. We call it type-II coupling and the
XY spin-glass model4,5 is one of the most famous representatives of
this class.

The Hamiltonian-mean-field6 is an enlightening example,
which encompasses both options. This extension of the Kuramoto
model, if equipped with type-I coupling, proves useful to describe
chaotic properties of the synchronized (magnetized) phase;7 if
equipped with type-II coupling, it has helped to discover nontrivial

properties of the asynchronous (unmagnetized) regime.8

A paradigmatic system where oscillator networks find
applications is represented by the mammalian brain, whose
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dynamics follows from a complex interplay between microscopic
(single neuron) and macroscopic features. In particular, pulse-
coupled phase oscillators,9–11 purposely introduced to describe neu-
ronal dynamics, reproduce a large variety of phenomena.12–17

In this context, for mean-field models of globally coupled oscil-
lators with type-I coupling, the stationary regime is often found
to be asynchronous, i.e., characterized by constant collective fea-
tures (such as the local field potential) possibly accompanied by
tiny fluctuations resulting from the finiteness of the neuronal pop-
ulation. Partial synchrony may manifest itself as either periodic
macroscopic oscillations,13,18 or irregular fluctuations.19,20 Anyway,
the corresponding single-neuron firing activity is typically regular
[the coefficient of variation (CV) of the interspike intervals is small],
contrasting the experimental evidence that cortical neurons in vivo
operate erratically and with a relatively low firing rate21 in spite of
receiving stimulations from thousands of pre-synaptic neurons.22–24

An irregular firing activity is generated if the neurons oper-
ate in the so-called fluctuation-driven regime, when they stay in
proximity of the firing threshold, crossed at random times thanks
to self-generated fluctuations.25 This can happen when inhibition is
strong and accompanied by a random connectivity which suppresses
coherence across the neuronal population.26

Altogether, it is widely accepted that all these features can
dynamically emerge whenever the underlying dynamics is in the
so-called balanced regime,1 observed in excitatory-inhibitory net-
works characterized by type-II coupling, an assumption consis-
tent with optogenetic experiments in vitro.27 A balanced state can
be, e.g., found, by assuming: (i) a sufficiently large in-degree K;

(ii) coupling strengths of order 1/
√

K; (iii) external currents of order√
K.1,28–35 If the external currents are of order O(1), excitation and

inhibition still balance each other, but the firing activity decreases

as 1/
√

K, suggesting that strong external currents are a necessary
ingredient. However, this latter hypothesis has recently received sev-
eral criticisms36,37 based on experimental evidences that the external
inputs are O(1).38–40

In this paper, we show that the introduction of nonlinearities
can robustly sustain and stabilize a balanced regime, where the irreg-
ular firing of excitatory and inhibitory neurons compensate each
other, without neither the inclusion of strong external currents, nor
the ad hoc adjustment of parameter values. The nonlinear mecha-
nism, herein invoked is the well known short-term synaptic depres-
sion (STD),41 arising from the finitude of available resources.42 It
has been shown that depression has a prevalent effect on excitatory
synapses in the visual cortex, inducing dynamical variations of the
balance between excitation and inhibition.43

More precisely, we consider a plastic network of pulse-coupled
phase-oscillators, where STD modifies nonlinearly the synaptic
inputs. For the sake of simplicity and consistently with experimental
indications,43,44 STD is assumed to act only on the synapses connect-
ing excitatory neurons. We show that this little adjustment suffices
to ensure the self-sustainment of an irregular activity.

A. The model

We consider two coupled populations each composed of N

neurons. The evolution of the membrane potential v
e/i
j of the jth

neuron within the excitatory/inhibitory population follows from the

equation

v̇
e/i
j = F

(

v
e/i
j

)

+ G′H
(

v
e/i
j

)

C
e/i
j , v

e/i
j ∈ (−∞; 1], (1)

where we assume that the time is measured in physical units (s),

while the membrane potential is adimensional. Whenever v
e/i
j

reaches the threshold 1, it is reset to 0, and, simultaneously, a
smooth post-synaptic α-pulse qα(t) = α2te−αt is delivered to all
the connected neurons, mimicking a non-istantaneous synaptic
transmission.12,45,46 For large α-values, qα is well approximated by
a δ-pulse.13 F(v) > 0 describes the bare neuron velocity field (s−1)
under the action of a weak constant external current, such that it
operates slightly supra-threshold; C

e/i
j denotes the incoming synap-

tic current measured in s−1 (see below for its definition); H(v)
(adimensional) gauges the impact of the current, which may depend
on the value of the membrane potential; finally, G′ (adimensional)
denotes the overall coupling strength. For the sake of simplicity,
F(v) and H(v) are taken to be the same for all neurons; the differ-
ence between excitatory and inhibitory neurons is encoded in their
mutual couplings.

Without loss of generality, F(v) can be assumed to be constant.
In fact, if we introduce the new variable φ obtained by integrating
the O.D.E. (ordinary differential equation) dφ/dv = ω/F(v) [under
the condition φ(0) = 0], Eq. (1) can be rewritten as

φ̇
e/i
j = ω + GZ

(

φ
e/i
j

)

C
e/i
j , (2)

where Z(φ) = ηωH(v(φ))/F(v(φ)) and η is a normalization con-
stant suitably chosen to set the maximum of Z(φ) equal to one
(hence, G = G′/η). The value of ω is determined by imposing
φ(1) = 1 (this condition is equivalent to ω = 1/T, where T is the
period of the bare neuron activity). Hence, φ is a phase-like vari-
able, while Z(φ) can be viewed as an effective phase response curve
(PRC).47,48

Leaky Integrate-and-Fire (LIF) neurons are among the most
popular models used in computational neuroscience (see, e.g.,
Ref. 49). For current based coupling, they are characterized by
FLIF(v) = a − v (with a > 1) and HLIF(v) = 1. If we introduce
φ = ω ln[a/(a − v)] where ω = [ln [a/(a − 1)]−1, the LIF model
can be recast in the equivalent representation (2), where ZLIF(φ)

= e(φ−1) [see the blue curve in Fig. 1(a)].
In this paper, we have considered also ZI(φ) = 12(1 − φ)/[5

+ (2 − 2φ)6] [see the red curve in Fig. 1(a)] for its vanishing at
threshold, as usually assumed in realistic PRCs,50 and its resem-
blance to PRC for type I membrane excitability.51

Finally, the incoming synaptic currents are defined as

Ce
j ≡

ge
e√
Ke

E
e
j −

ge
i√
Ki

Ij,

Ci
j ≡

gi
e√
Ke

E
i
j −

gi
i√
Ki

Ij,

(3)

where the coefficients (ge
e, g

e
i , g

i
e, g

i
i) quantify the specific intra and

inter synaptic strengths of excitatory and inhibitory populations,

while Ke/i is the average in-degree, and Ij and E
e/i
j represent the

incoming inhibitory and (effective) excitatory fields. The inhibitory
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FIG. 1. (a) The PRC Z(φ) vs the phase-like variable φ for ZI (red curve) and ZLIF (blue curve); (b) the population firing rates νe = 〈Ei
j 〉 and ν i = 〈Ij〉 vs N; (c) the average

unbalance |1e/i | vs N, the blue dashed line denotes a power law decay as 1/
√
N. In (b) and (c) the black (red) color refers to excitatory (inhibitory) neurons and the solid

lines in (b) to the self-consistent approximations. The results in (b) and (c) refer to ZI.

field obeys the differential equation

Ïj + 2αİj + α2
Ij = α2

′
∑

n,m|ti(n,m)<t

δ(t − ti(n, m)), (4)

where α is the inverse pulse width, while ti(n, m) denotes the deliv-
ery time of the mth spike from the n-th inhibitory neuron to the
jth neuron. The sum

∑′
n is restricted to the Ki neighbors of neu-

ron j. This representation amounts to assuming that Ij(t) is the
linear superposition of the α-pulses received by the neuron j from
inhibitory neurons until time t. The excitatory field is treated in a
slightly different way,

Ë
e/i
j + 2αĖ

e/i
j + α2

E
e/i
j = α2

′
∑

n,m|te(n,m)<t

xe/i
n δ(t − te(n, m)), (5)

where n identifies the excitatory neuron sending the m-th spike to
the jth neuron; xe/i ∈ [0, 1] represents the synaptic efficacy. If the
receiving neuron is inhibitory xi ≡ 1, while xe is affected by the STD
acting on excitatory-to-excitatory connections. By following Ref. 52
and assuming depression-dominated synapses, where facilitation is
negligible, xe evolves according to the equation41

ẋe
n =

(1 − xe
n)

τd

− uxe
n

∑

m|te(n,m)<t

δ(t − te(n, m)), (6)

where te(n, m) identifies the time of the mth spike emitted by the nth
neuron itself. Whenever the neuron spikes, the synaptic efficacy xe

n

is reduced by a factor 1 − u, representing the fraction of resources
consumed to produce a post-synaptic spike. So long as the nth exci-
tatory neuron does not spike, the variable xe

n increases toward 1 over
a time scale τd.

The in-degrees of the two populations are distributed as in
a massively coupled Erdös–Renyi random graph,53 i.e., setting Ke/i

= pe/iN, where pe/i ∈ [0, 1] is the probability to have a pre-synaptic
connection. We have chosen pe = 0.08 and pi = 0.02. This cor-
responds to assuming that each neuron has a 10% probability
to be connected to the others and it ensures that 80% (20%) of
these connections are excitatory (inhibitory) as in the cerebral
cortex.54

For the STD parameters, we set u = 0.5 (a single spike
emission halves the synaptic resources) and τd = 1 s. The over-
all coupling strength has been fixed to G = 1. For the ZI(φ)

(ZLIF(φ)) PRC, we considered synapses with α−1 = 0.2 ms
(α−1 = 0.04 ms). This is in order to check the specificity of the pulse
width.

B. Self-consistent approach

Before discussing the direct numerical simulations, we present
a simple self-consistent approach to explain how STD can actually
stabilize a balanced state even in the absence of strong external cur-

rents. In the above defined setup, E
e/i
j and Ij, being proportional

to the in-degree, are also proportional to N, so that the two terms

in Eq. (3) are both proportional to
√

N. It is useful to make this
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dependence explicit, by writing

C
e/i
j = [βe/i

e E
e/i
j − β

e/i
i Ij]

√
N = 1

e/i
j

√
N, (7)

where βe/i
e = ge/i

e

√
pe, β

e/i
i = g

e/i
i

√

pi. Ij = Ij/(p
iN) (Ei

j = E
i
j /(p

eN))

represent the average firing rates of the inhibitory (excitatory)
pre-synaptic spike trains stimulating the jth neuron; finally,
Ee

j = E
e
j /(p

eN) is the effective firing rate of an excitatory neuron

scaled to account for the reduced efficacy due to STD. The approxi-
mation consists in neglecting neuron-to-neuron fluctuations, as well
as temporal variations so that we can drop the j dependence of both
the fields and the input currents and assume that they are con-
stant. Within this approximation, a balanced regime can exist if Ce/i

remains finite for N → ∞, or, equivalently, if the terms in square

brackets in Eq. (7) converge to 0 (as 1/
√

N). Accordingly,

Ei
◦=

β i
i

β i
e

I◦ and Ee
◦=

βe
i

βe
e

I◦, (8)

where the subscript “◦” here and elsewhere means that the variable
refers to the N → ∞ limit. Hence,

Ee
◦

Ei
◦

=
βe

i β
i
e

βe
eβ

i
i

=
ge

i g
i
e

ge
eg

i
i

. (9)

In the absence of STD, since Ee
◦ = Ei

◦, Eq. (9) is satisfied only when
the rightmost hand side is set equal to 1 from the outset: hence,
the balanced regime is highly non-generic. In the literature, a way
out is typically found by assuming that the external current ω is

of order
√

N, so that it must be included in the balance conditions
(8) as additional given terms. As a result, the two equations com-
pose a generically solvable, linear, inhomogeneous system,1 the only
condition for its validity being that the fields must turn out positive.

In the present context, instead, the novelty is that the ratio
between Ei and Ee is not a priori equal to 1, but depends on the activ-
ity of the excitatory neurons. In fact, Ee = θEi, where θ is the value
of the synaptic efficacy when the excitatory neurons reach threshold
during their periodic firing activity.

Hence, in the thermodynamic limit, the balance condition
requires

θ◦=
ge

i g
i
e

ge
eg

i
i

< 1, (10)

where the inequality follows from the fact that θ◦ must, by definition,
be smaller than 1. In other words, a balanced regime is generic as it
can arise for a broad range of coupling constants. In this paper, since
we set ge

e = 1, ge
i = 1/2, gi

e = 1, and gi
i = 2, the inequality is satisfied

(1/4 < 1).
The equality between the first two terms in (10) allows deter-

mining the value of synaptic efficacy and, in turn, of the interspike
interval Te

◦ of the excitatory neurons. In fact, from the integration of
Eq. (6) in between two consecutive spikes,

θ ≡ xe(Te) = 1 − (1 − xe(0))e−Te/τd . (11)

The still unknown initial condition xe(0) can be determined by
imposing xe(0) = uxe(Te) (u is the depletion factor), obtaining

θ =
1 − e−Te/τd

1 − ue−Te/τd
. (12)

By then solving for Te, we find, in the thermodynamic limit,

Te
◦= ln

1 − uθ◦

1 − θ◦
, (13)

which means that the ISI and thereby the amplitude of the excitatory
field Ei

◦ = 1/Te
◦, are independent of the PRC (within this approxi-

mation). Finally, the amplitude I◦ of the inhibitory field is obtained
from the first of Eq. (8).

C. Mean firing rates

The self-consistent analysis is useful to identify the necessary
conditions for the onset of a balanced regime, but it unavoidably
predicts a current-driven regime. In order to analyze the actual net-
work behavior, it is necessary to perform numerical simulations.
Here below, we report the results for a homogeneous network, where
the bare firing rate is set to ω = 50 Hz and the PRC is ZI(φ).

In Fig. 1(b) we plot the population firing rates of excitatory
νe = 〈Ei

j〉 and inhibitory ν i = 〈Ij〉 neurons (〈·〉 denotes an average

over all neurons of a given population) vs N. The data are well fitted

by the law ν
e/i
0 + µe/i/

√
N, with νe

0 ' ν i
0 ' 5.78 Hz, µe ' 399 Hz,

and µi ' 762 Hz (curves not shown). This indicates that the single-
neuron activity remains finite for N → ∞, a clear signature of a
balanced regime. This conclusion is confirmed by the N-dependence

of the average unbalance 1e/i = 〈1e/i
j 〉, reported in Fig. 1(c), where

a clear 1/
√

N decrease is visible, implying that the average value of
Ce/i stays constant for N → ∞.

It is instructive to compare the numerical results with the
semi-analytical perturbative implementation of the self-consistent
approximation. In the previous section, we have shown how
to determine the values of the excitatory and inhibitory fields
for N → ∞. For our parameter values, I◦ = Ei

◦ = 1/ log(7/6)Hz
' 6.487 Hz.55 In the supplementary material, we show how to go
beyond the asymptotic values, determining finite-size corrections.
Here, we sketch the procedure. From the knowledge of the asymp-
totic fields, one can determine the input currents Ce/i

◦ responsible
for those fields, by integrating Eq. (2) under the assumption of a
constant current. Then, the definition (7) of Ce/i can be used as a
consistency relationship to determine the finite-size corrections for

both fields, which turn out to be proportional to 1/
√

N. The result-
ing analytic expressions are reported in the supplementary material
and plotted in Fig. 1(b) (see the solid curves). They overestimate the
numerical values, but are not too far from them.

D. Fluctuations

We start investigating whether the collective dynamics of the
network remains asynchronous even for large system sizes, as
expected in brain circuits.28 The raster plot for N = 16 000, reported
in the inset of Fig. 2(a), does not reveal any population oscilla-
tion. A more quantitative analysis has been made by computing
the time-average of the standard deviation of the incoming fields
(i.e., of the instantaneous population firing rates), here denoted with
σ e/i. The values computed for different network sizes, reported in
Fig. 2(a), decrease consistently with the 1/

√
N scaling expected from

the central limit theorem for an asynchronous dynamics.
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FIG. 2. (a) Standard deviation σ e/i of the population firing rates vs N, the blue dashed line indicates a power law decay as 1/
√
N. The inset displays a raster plot for

N = 16 000 over a time window of 20ms. PDF of the coefficients of variation CVi (b) and of the firing rates νe
j (c) for excitatory neurons. In the inset of (c), the synaptic

efficacy at threshold θj is displayed vs the corresponding firing rate νe
j : the dashed line is the self-consistent estimation (14). (d) Time averaged values C

e

j (C
i

j ) vs the

corresponding firing rates νe
j (ν

i
j ) for N = 16 000. The dashed line denotes the value Ce/i = −50 Hz discriminating fluctuation from current driven dynamics. The black (red)

color in (a)–(d) refers to excitatory (inhibitory) neurons, while the colors in (b) and (c) to different system sizes : namely, N = 8000 (black); N = 16 000 (red); N = 32 000
(green); N = 64 000 (blue) and N = 128 000 (magenta). The reported data refer to ZI.

Next, we focus on temporal fluctuations at the single-neuron
level. They are disregarded a priori by the self-consistent approach,
but the probability distribution density (PDF) of the coefficient of
variations CVj reported in Fig. 2(b) for the excitatory neurons gives
a clear evidence of irregularity. Some neurons are characterized by a
CV even larger than 1, the value expected for a Poisson distribution,
and the irregularity tends to increase with N. A similar scenario is
exhibited by inhibitory neurons (data not shown).

Finally, we turn our attention to ensemble fluctuations. The fir-
ing rates themselves are broadly distributed from nearly vanishing
values (almost silent neurons) up to 50–60 Hz, with a pronounced
peak around 5–10 Hz. When N is increased, the PDF widths remain
finite and their shapes appear to converge to a given asymptotic
form, as clearly visible in Fig. 2(c) where the data refer to excita-
tory neurons. This manifestation of heterogeneity is not surprising
in a massively coupled Erdös–Renyi network. In fact, the single-

neuron connectivity is expected to exhibit fluctuations of order
√

N,

which transform themselves into fluctuations of O(1) for the C
e/i
j ,

and therefore for the firing rates.
The distribution of firing rates νe

j induces a distribution of

synaptic efficacies θj (taken in correspondence of the spiking times).
Under the approximation of negligible temporal fluctuations, one

can reformulate Eq. (12) as

θj =
1 − e

−1/(νe
j τd)

1 − ue
−1/(νe

j τd)
. (14)

The inset in Fig. 2(c) reveals good agreement with the numerical
simulations.

The PDF shapes reported in Fig. 2(c) are similar to those
measured experimentally in the cortex and hippocampus,56–60 with
many neurons exhibiting a low firing rate and a high-frequency
long tail, akin to a lognormal distribution. These shapes are typi-
cally interpreted as an indication of fluctuation-driven dynamics.61

It is therefore convenient to test whether the neurons, in our model,
operate either above or below threshold. This can be done as fol-
lows. From Eq. (2), since the maximum of Z(φe/i) is 1, φ̇e/i may
have a stable zero, only if ω + GCe/i < 0. Hence, a neuron char-

acterized by an average current C
e/i

is typically below threshold

if C
e/i

< −ω/G = −50 Hz. The data reported in Fig. 2(d) reveal a
mixed behavior: depending on their effective firing rate, neurons
may be either fluctuation- or current-driven. By further averag-
ing over the entire population, we find that while the inhibitory

neurons are significantly fluctuation-driven with 〈Ci〉 = −101.5 Hz,
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FIG. 3. (a) The average population firing rates νe (black circles) and ν i (red circles) vs N; PDF of the inhibitory firing rates ν i
j (b) and of the corresponding CVj (c). In (a) the

black (red) solid line indicates the self-consistent approximation for excitatory (inhibitory) neurons and the colors in (b) and (c) different system sizes coded as in Figs. 2(b)
and 2(c). The results here reported refer to the LIF model.

on average the excitatory neurons operate slightly below threshold

being 〈Ce〉 = −55.5 Hz. Altogether, the network self-stabilizes in a
regime, where fluctuations play a major role, consistently with the
observation of a pseudo lognormal distribution of the firing rates.61

E. Robustness of the mechanism

Additional simulations performed for different parameter val-
ues and even introducing heterogeneity in the external currents have
shown the generality of the mechanism. Details can be found in
the supplementary material. Here we focus on the most important
test, made by using the PRC of LIF neurons, ZLIF. The simulations
are performed by integrating Eq. (2) with ZLIF. As shown analyti-
cally (and verified numerically) this model is fully equivalent to a
standard current-driven spiking LIF network (1) with a = e/(e − 1)
' 1.582 and G′ = 1/(e − 1) ' 0.582.

In Fig. 3(a) we report the firing rates of the two populations
(black and red dots), together with the outcome of the self-consistent
approach (solid curves). The theoretical curves converge, as they
should, to the same value 1/T◦, which coincides with the previous
asymptotic value since, from its definition, it does not depend on the
PRC shape. Also the numerically determined firing rates converge to

the same value, again following the law νe/i ' ν0 + µe/i/
√

N, where
ν0 ' 5.72 Hz, µe ' 480 Hz, and µi = 803 Hz (curves not shown).
The smallness of the discrepancy with the previous asymptotic value
(' 1%) indicates that the irrelevance of the PRC extends to the

complete model, where all kinds of fluctuations are automatically
included.

In Fig. 3 we also report the PDF of the firing rates of inhibitory
neurons ν i

j (panel b) and of the corresponding coefficients of vari-

ations CVj (panel c) for different network sizes. The distributions
of the firing rates display a long tail toward vanishing rates, a typ-
ical feature of neurons which operate below threshold and that are
therefore fluctuation driven, as confirmed by the values of the corre-
sponding CVj. Analogous results have been found for the excitatory
neurons (data not shown). We can safely state that the data obtained
for the LIF network confirm the scenario of a balanced regime as for
the ZI(φ) PRC.

II. CONCLUSIONS

The typical setup studied in the literature to discuss dynam-
ically balanced regimes requires the presence of strong external
inputs.1 An alternative layout, which does not suffer this limitation,
was proposed in Ref. 37 together with the concept of sparse balance.
It, however, requires an anomalously broad distribution of synaptic
strengths and leads to a vanishing fraction of active neurons (in the
thermodynamic limit).

The mechanism proposed here is more robust and general: it
exploits the dynamical adjustment of the synaptic currents, result-
ing from short-term synaptic depression (STD). STD is a much
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studied mechanism, already invoked to explain fundamental cog-
nitive functions, such as working memory62–64 and the internal
representation of spatiotemporal information.65–68 Whenever the
coupling strengths are such that an undamped excitatory current is
too strong to ensure a balanced activity, STD actively reduces the
synaptic efficacy of the corresponding connections until a balanced
regime is attained and self-sustained.

The setup proposed in this paper has the merit of having
relaxed the typical requirement of strong external currents. How-
ever, weak external currents are still necessary to allow isolated
neurons to operate slightly supra-threshold. As a matter of fact,
the recurrent connections induce an effective inhibition leading the
most part of the neurons to operate in the fluctuation-driven regime
as visible in Fig. 2(d).

Mathematically, the balanced regime is made possible by the
nonlinear dependence of one excitatory current on the amplitude
of the corresponding field. In practice, the homogeneous set of lin-
ear conditions (8), which emerges for weak external currents, is
transformed into a nonlinear one. While the former one admits a
meaningful solution only for a special combination of the coupling
constant, the latter is generically solvable for a broad range of param-
eter values. Once this has been understood, it is straightforward to
infer that other nonlinear mechanisms may play the same role as
STD in the absence of strong inputs. In fact, other sources of natu-
rally expected nonlinearities have been recently investigated in com-
putational neuroscience although, always in the presence of strong
external currents. Spike-frequency adaptation is one such mecha-
nism, studied in networks with highly heterogeneous in-degrees.69

Similarly, facilitation has been found to promote the emergence of
bistable balanced regimes.70,71 It is time to move on and to investigate
all such mechanisms in the absence of strong external currents.

SUPPLEMENTARY MATERIAL

See the supplementary material for further details on the self-
consistent analysis, for the results on heterogeneous networks and
on further possible dynamical regimes.
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