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We consider a Hamiltonian system madeNbtlassical particles moving in two dimensions, coupled via an
infinite-range interactiorgauged by a parameté: This system shows a low energy phase with most of the
particles trapped in a unique cluster. At higher energy it exhibits a transition towards a homogenous phase. For
sufficiently strong coupling\, an intermediate phase characterized by two clusters appears. Depending on the
value ofA, the observed transitions can be either second or first order in the canonical ensemble. In the latter
case, microcanonical results differ dramatically from canonical ones. However, a canonical analysis, extended
to metastable and unstable states, is able to describe the microcanonical equilibrium phase. In particular, a
microcanonical negative specific heat regime is observed in the proximity of the transition whenever it is
canonically discontinuous. In this reginmajcrocanonically stablstates are shown to correspondstaidlesof
the Helmholtz free energy, located inside the spinodal region.
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It is well known that thermodynamic quantities derived ergyU (temperaturdl), with most of the particles trapped in
within different statistical ensembles should coincide in thea unique cluster, a second clustered phase,) G#hibiting
thermodynamic limit. However, this statement is valid only two clusters, at intermediate ener@gmperatureand suffi-
if the interaction among the particles satisfies two conditionsgiently strong couplingA, and a homogenous phagéP),

(i) the pairwise interaction potential is integralfie., it de-  with particles uniformly distributed, at high values Gf(T).

cays faster than 1Y, whered is the space dimensignand  The canonical equilibrium solutions are computed from the
(i) the potential energy per particle is bounded from belowlowest-lying extrema of the Helmholtz free energy and re-
[1]. Whenever one of these conditions is violated, ensemblgeal that the system undergoes either first- or second-order
inequivalence and thermodynamical instabilities can occutransitions, depending on the value of the coupling constant
An extreme situation is represented by the gravitational poA. In particular, we have focused our attention on first-order
tential for which neither condition is satisfied. Indeed, fortransitions separating the ordered phase @il the HP and
gravitating systems the usual laws of equilibrium thermody-between the two clustered phases. In both cases canonical
namics are expected not to hold: one of the most strikingind microcanonical equilibrium predictions differ dramati-
anomalies is related to the negative values taken by the speally near the transition, revealing a negative specific heat
cific heat[2—4]. Discrepancies between results obtained inregime within the microcanonical ensemble. No discrepancy
the microcanonical and canonical ensembles, with an assodpetween microcanonical and canonical results appear at con-
ated negative specific heat regime, have been observed in tlisuous phase transitions, at least for what concerns the
thermodynamic limit for several systems with attractive po-temperature-energy equilibrium relatiptd].

tentials violating either conditioii) [5—7] or condition (ii) Irrespectively of the nature of the phases involved in the
only [8,9]. Similar anomalies are also present for systemdransition, the microcanonical negative specific heat regime
with a finite number of particles, e.g., for nuclear multifrag- can be well reproduced even within the canonical ensemble
mentation[10], as well as for atomic clustedd1]. In all  if not only the absolute minima of the Helmholtz free energy
these cases, preliminary results suggest that ensemble iare taken into account, but also the relative extrema corre-
equivalence can be observed in proximity of a canonicallysponding to canonically metastable and unstable states.
first-order phase transitioi,12,13. The model we consider is a classit&body Hamiltonian

In this paper we aim at better clarifying the origin of such system defined on a two-dimensional periodic cell. The in-
inequivalence by considering a generalization of a previouslyerparticle potential is infinite ranged and all the particles are
studiedN-body classical Hamiltonian system with infinite- identical with unitary mass. The Hamiltonian of the model is
range attractive interactiof$]. The novelty of the present H,=K+V, where K=EiN=1[(pfyi+p)2,Yi)/2] is the kinetic
model consists in the presence of a tunable coupfintbat  energy and the potential energy reads as
allows us to change the nature and the order of the transi-
tions. These are investigated analytically within the canoni- 1
cal ensemble and numerically via microcanonical molecular Va=5N .21 [2+A—cogx;—x;)—cody;—Y))
dynamics simulations. This system shows three different
phases: a clustered phase (LBccuring at low internal en- —Acogx;—Xj)cody;i—Y;)] (1)

with (X;,y;) e]—m 7] X]— 7] representing the coordi-
*Also at INFM and INFN, Firenze, Italy. nates of thei particle and p,;,py;) the conjugated mo-
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menta. ForA=0, the two spatial directions andy are un-

coupled and the Hamiltonian reduces to the sum of two

independent one-dimensional mean-field mo@&H. In this
case, as shown ifil5], a second-order phase transition ap-

pears, both in the microcanonical and in the canonical en-

semble, connecting a single clustered phase, (C& suffi-
ciently low specific energyU=H/N to a homogeneous
phase(HP) at high energy. For nonzero values/Afthe two
spatial directions are coupled. Previous investigations wer
limited to the valueA=1 [5] and a transition was also ob-
served from a CPto a HP phase. This transition is first order

in the canonical ensemble, while microcanonical simulations
are compatible with a continuous transition associated with a

negative specific heat regime. Both fA=0 andA=1, at

low energies, all particles are trapped in a cluster, while, for

sufficiently high energies, they are uniformly distributed in
the cell.

In order to better investigate the origin of ensemble in-
equivalence within a unique framework, we have introduce
model (1) which allows, by continuously varying parameter
A, to pass from a situation where the microcanonical an
canonical results coincideAE0) to a situation where the

two ensembles disagree over a finite energy range near th

transition. As we will show, this model is indeed richer than
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FIG. 1. Phase diagrams of moddl) reporting the transition

demperatures versus the coupling paraméteia) and the corre-

sponding specific energyy =H/N versusA (b). The solid lines
indicate the canonical transition lines and the dots the points where
he nature of the transitions chandsg., A,, andAg; are the thresh-

old coupling constants that determine the transition scenario |
€iv displayed above the graphs. The gray shaded ardh)im-

—=

dicates the domain where two phases coexist. Inside this area, the

expected because it reveals also more complicated transitioRgshed curves are the two spinodal lines.

than those previously studied B,15].

Due to the long-range nature of the interactions, the col-
lective behavior of the particles can be described in terms of

the following mean-field vectorsM,= ((cosg))y (Sin@))x)
=M, (cos(p,),sin(¢,)) where ¢,e[0,77/2] and z=x or vy;
P,=((cos@)n (sin@)n) = P,(cos@).sink) where i,
e[0,7/2] andz=x*xy. The average over all the particles is
indicated by(...)y. It can be shown that on averadé,
~My~M and P,,,~P,_,~P (for more details se¢5]).
Therefore, the potential energy can be rewritten, in the mea
field limit N—o, asV,=[2+A—2M2—AP?]/2.

ForU~0 (or equivalently at low temperaturghe system
described by mode(l) is in the CR, particles have all the
same location in a single pointlike cluster, akt=P~1,
whereas at large enough energgmperaturethe system is
in the HP andM ~ P=0(1/{N). For sufficiently high values
of A>A,~3.5, a third intermediate phase £Rexhibiting

=0 half-plane. The transition lines, obtained by considering
the absolute minima df, are reported as solid lines in Fig.
1. The minima can be easily associated with the three ob-
served phases, since HP will correspondvie-P=0, CR,
to [M|>0, |P|>0, and CR to M=0 and|P|>0.

Let us describe the observed phase transitions within the
canonical ensemble with the help of Fig. 1: the line referred

r{_o asT), in the inset(a) indicates the transition temperatures

whereM vanishes and where the phase,Gddses its stabil-
ity, while the line Tp is whereP—0 and the CP leaves
place to the HP. The phase diagraimversusA reported in
the inset(b) gives clearer hints for what concerns first-order
transitions, indicating the corresponding energy jurfignt
heats. Depending on the value &, four different scenarios

two clusters, appears. In this phase, due to the symmetrfédn be distinguishedl): [0<A=<A;=2/5]—in this case one

location of the two clusterm ~O(1/y/N) andP~0O(1).

In the mean-field limit, the equilibrium properties of
model (1) can be derived analytically within the canonical
ensemble following the approach of REE]. In particular,
the Helmholtz free energy reads as

F(M,P;T,A)

T 2

=T(M?+P?)—In[T G(M,P;A)]

with G=[271,[M + J2AP cosg)]exdMcosg)]ds wherel,

observes a continuous transition from a,GB a HP; the
critical line is located at,,=1/2 (U, = 3/2+ A). Along this

line, atA,=2/5, there is a tricritical point: here the transition
becomes discontinuoufl!): [ A;<A<A,~ 3.5]—the transi-

tion between CPand HP is first order in all this range of
parameters with a finite energy junigray shaded area in
Fig. 1(b)]. (I1): [A,<A<Az~5.7]—in this region the third
phase begins to play a role and two successive transitions are
observed: first CPdisappears af), via a first-order transi-

tion that gives rise to the biclustered phase, Ghich ends

is the modified Bessel function of zero order. Since we araip in the HP due to a continuous transition. The critical line
interested also in metastable and unstable states we will nassociated with this last transition & =A/4 (Up=3A/4

restrict ourselves to the study of the lowest-lying minima of
F, but we will keep track of all the other extrema. Due to the
P— — P symmetry ofF, we can limit our analysis to the

+1).(IV): [A>Az]—finally, region(lV) differs from region
(1) just for the nature of the transition connecting the two
clustered phases that becomes second order.
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102 A4 ' ' ' ' HP o FIG. 3. Schematic representation of the extrema of the free en-
1 ® g ergy for a fixed temperature in the intervals reported in the figures
CP for A=1 (a) and A=4 (b). Circles denote the positions of the
= 0.98 2 minima, while the crosses represent the saddles. The motion of the
096 | (iPl __—0 O-oe, b ] extrema for increasing temperatures is indicated by the arrows.
Qg
0.94 / S
&0
092, 3 22 a4 38 an 4 Let us first consider the cage=1 for 1/2<T<0.551, which

U is reported in Fig. @). For T<1/2 the free energy has a
o _ ~ unique minimum corresponding to the Cphase, while at
FIG. 2. Temperature-energy relation in the coexistence regiorr — 1/2 a second relative minimum emergedvet P=0 as-
for A=1 (@) andA=4 (b). Lines indicate canonical analytical re- (fociated with a metastable HP state. Exactly at the same

sults, while circles correspond to microcanonical simulations. Soli emperature also two symmetric saddles appear inkhé]
thick lines are equilibrium results, solid thin lines metastable states, P y PP

and dashed thin lines unstable states. The straight dot-dashed thi[?lkane in between the GFand the HP_mlnlma. For |ncrea5|_ng
line is the Maxwell constructior(a) refers to a canonical first-order temperature the depth of the CRinimum decreases while
transition from CR to HP, (b) to a canonical discontinuous transi- that of the HP minimum increases and, simultaneously, the
tion connecting the two clustered phases(Bhthe canonical and saddles and the GPminima approach each other. At
microcanonical second-order transitionlat=4 is also shown. The =Ty,=0.54 the CP and HP mimima reach exactly the same
microcanonical results have been obtained via molecular dynamicgepth and this singles out the canonical transition tempera-
simulations of mode(1) with N=5000 particleg 16]. ture. At T=0.551 the saddles and the CRinima finally
merge and disappear. If the energies and temperatures denot-
] - _ing these unstable and metastable states are reported in a
Let us now concentrate on first-order phase transitions; inyanh together with the equilibrium solutions, one observes
particular we will compare microcanonical results obtalned.[hat they connect continuously the Cequilibria to the HP

e Tleculr Qynanics Suaofac] i Sanonical 1 onesisee Fg. 2 Moreove, a5 shoun again i Fg, e
" gray T microcanonical results essentially coincide with the meta-
canonical results coincide everywhere, but inside such a re-

) : . . table and unstabl nonical solutions in th xisten
gion strong discrepancies are observed. This can be clear able and unstable canonical solutions © coexistence

seen in Fig. 2, wher@ is plotted as a function dfl near the gion. In particular, the negative specific heat regime is as-
discontinuous’ transition for two different values o sociated with the saddles bridging the metastable minima.

(namely,A=1 andA=4). Within the canonical ensemble, The limits of exi;tence of these unstable gtate; are typically
first-order phase transitions occur at a given temperature arf§ferréd to as spinodals and are reported in Fig. 1 as dashed
the coexistence region is bridged with a horizontal fjife  lines[17]. A similar behavior is observed for the €B CP,
=Ty in Fig. 2a) andT=Tp in 2(b)], according to the Max- transition, in this case fof <0.93 the unique minimum d¥
well construction. is again associated with the €¢Rnd atT=0.93 two sym-
However, this region is accessible via microcanonicalmetric minima appear on thkl=0 axis with|P|+#0, and
simulations and the corresponding equilibrium results aréhese metastable states are clearly associated with the CP
shown as circles in Fig. 2. Within this region these resultsAlso two saddle points appear in theprofile separating the
disagree with the canonical ones, the transition is now con€P; minima from the metastable GPninimum in the posi-
tinuous, and a negative specific heat region appears. It igve P semiplane. Folr >Tp=0.95 the CR minima become
remarkable that both in the transition connecting the clusthe stable ones. For increasing temperatures thenGRima
tered phase CPto the HP as well as in that connecting the and the saddles approach each other and finally vanish at the
two clustered phases the essential features of the transiti@pinodal(located atT=0.965). For higher temperatures the
are the same. CP,’s approach the origin symmetrically where a saddiet
We will now show that the microcanonical results can beinvolved in the first-order transitigris present, correspond-
obtained even within the canonical ensemble by consideringhg to the HP unstable phase. At=Ty=1 the two minima
also the relative minima and the saddlesFofA schematic  merge with the saddle at the origin, giving rise to a unique
sketch of the relevant extrema Bfin the (M,P) plane close minimum for F corresponding to a stable HP. This second
to the two transitions discussed above is reported in Fig. 3ransition is clearly continuous. Also in this case, the micro-
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canonical continuous transition is well reproduced by thenonically stable states correspond to saddles of the free en-
metastable and unstable states involved in the discontinuowsgy. We have validated this scenario by considering two
transition[see Fig. 2b)]. different discontinuous transitions connecting the one cluster
In conclusion, we have shown that a study of the absolut@hase either to the homogeneous one or to the two cluster
and relative extrema of the Helmholtz free energy is suffi-phase. o ]
cient to provide a complete microcanonical and canonical We believe that the results reported in this article are not
description of the equilibrium behavior of abody Hamil- limited to systems with infinite-range interactions, but they
tonian with infinite-range attractive interaction. DependingShould be applicable also to systems with power-law decay-
on the value of the tuning paramet&rcanonically first- or 1Ng Potentials(as shown i(18]) and to finite systems with

second-order transitions are observed. The comparison éport-ranged forcegsee[12])).

the canonical results with the microcanonical ones shows The MPIPKS Institute in Dresden is acknowledged for
that ensemble inequivalence occurs in proximity of canoniproviding computational faciliies and F. Chauvet and H.
cally discontinuous transitions. Irrespective of the phaseScherrer for their advice. We thank J. Barie Bouchet,
involved in the transitions a negative specific heat regimep.-H. Chavanis, T. Dauxois, and D. Mukamel for useful dis-
has been observed. In particular, this regime is always asseussions. This work is part of the MURST-COFINQO re-
ciated with the existence of a spinodal region for the canonisearch project “Chaos and Localization in Classical and
cal solutions. For energy values within this region microca-Quantum Mechanics.”
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