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First- and second-order clustering transitions for a system with infinite-range attractive interaction
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We consider a Hamiltonian system made ofN classical particles moving in two dimensions, coupled via an
infinite-range interactiongauged by a parameterA. This system shows a low energy phase with most of the
particles trapped in a unique cluster. At higher energy it exhibits a transition towards a homogenous phase. For
sufficiently strong couplingA, an intermediate phase characterized by two clusters appears. Depending on the
value ofA, the observed transitions can be either second or first order in the canonical ensemble. In the latter
case, microcanonical results differ dramatically from canonical ones. However, a canonical analysis, extended
to metastable and unstable states, is able to describe the microcanonical equilibrium phase. In particular, a
microcanonical negative specific heat regime is observed in the proximity of the transition whenever it is
canonically discontinuous. In this regime,microcanonically stablestates are shown to correspond tosaddlesof
the Helmholtz free energy, located inside the spinodal region.
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It is well known that thermodynamic quantities derive
within different statistical ensembles should coincide in
thermodynamic limit. However, this statement is valid on
if the interaction among the particles satisfies two conditio
~i! the pairwise interaction potential is integrable~i.e., it de-
cays faster than 1/r d, whered is the space dimension!; and
~ii ! the potential energy per particle is bounded from bel
@1#. Whenever one of these conditions is violated, ensem
inequivalence and thermodynamical instabilities can oc
An extreme situation is represented by the gravitational
tential for which neither condition is satisfied. Indeed, f
gravitating systems the usual laws of equilibrium thermo
namics are expected not to hold: one of the most strik
anomalies is related to the negative values taken by the
cific heat @2–4#. Discrepancies between results obtained
the microcanonical and canonical ensembles, with an ass
ated negative specific heat regime, have been observed i
thermodynamic limit for several systems with attractive p
tentials violating either condition~i! @5–7# or condition~ii !
only @8,9#. Similar anomalies are also present for syste
with a finite number of particles, e.g., for nuclear multifra
mentation@10#, as well as for atomic clusters@11#. In all
these cases, preliminary results suggest that ensembl
equivalence can be observed in proximity of a canonica
first-order phase transition@6,12,13#.

In this paper we aim at better clarifying the origin of su
inequivalence by considering a generalization of a previou
studiedN-body classical Hamiltonian system with infinite
range attractive interactions@5#. The novelty of the presen
model consists in the presence of a tunable couplingA that
allows us to change the nature and the order of the tra
tions. These are investigated analytically within the cano
cal ensemble and numerically via microcanonical molecu
dynamics simulations. This system shows three differ
phases: a clustered phase (CP1) occuring at low internal en-
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ergyU ~temperatureT), with most of the particles trapped i
a unique cluster, a second clustered phase (CP2), exhibiting
two clusters, at intermediate energy~temperature! and suffi-
ciently strong couplingA, and a homogenous phase~HP!,
with particles uniformly distributed, at high values ofU (T).
The canonical equilibrium solutions are computed from
lowest-lying extrema of the Helmholtz free energy and
veal that the system undergoes either first- or second-o
transitions, depending on the value of the coupling cons
A. In particular, we have focused our attention on first-ord
transitions separating the ordered phase CP1 and the HP and
between the two clustered phases. In both cases cano
and microcanonical equilibrium predictions differ drama
cally near the transition, revealing a negative specific h
regime within the microcanonical ensemble. No discrepa
between microcanonical and canonical results appear at
tinuous phase transitions, at least for what concerns
temperature-energy equilibrium relation@14#.

Irrespectively of the nature of the phases involved in
transition, the microcanonical negative specific heat reg
can be well reproduced even within the canonical ensem
if not only the absolute minima of the Helmholtz free ener
are taken into account, but also the relative extrema co
sponding to canonically metastable and unstable states.

The model we consider is a classicalN-body Hamiltonian
system defined on a two-dimensional periodic cell. The
terparticle potential is infinite ranged and all the particles
identical with unitary mass. The Hamiltonian of the model
HA5K1VA where K5( i 51

N @(px,i
2 1py,i

2 )/2# is the kinetic
energy and the potential energy reads as

VA5
1

2N (
i , j 51

N

@21A2cos~xi2xj !2cos~yi2yj !

2A cos~xi2xj !cos~yi2yj !# ~1!

with (xi ,yi)P] 2p:p] 3] 2p:p] representing the coordi
nates of thei particle and (px,i ,py,i) the conjugated mo-
©2002 The American Physical Society03-1
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menta. ForA50, the two spatial directionsx andy are un-
coupled and the Hamiltonian reduces to the sum of t
independent one-dimensional mean-field models@15#. In this
case, as shown in@15#, a second-order phase transition a
pears, both in the microcanonical and in the canonical
semble, connecting a single clustered phase (CP1), at suffi-
ciently low specific energyU5H/N to a homogeneous
phase~HP! at high energy. For nonzero values ofA, the two
spatial directions are coupled. Previous investigations w
limited to the valueA51 @5# and a transition was also ob
served from a CP1 to a HP phase. This transition is first ord
in the canonical ensemble, while microcanonical simulatio
are compatible with a continuous transition associated wi
negative specific heat regime. Both forA50 andA51, at
low energies, all particles are trapped in a cluster, while,
sufficiently high energies, they are uniformly distributed
the cell.

In order to better investigate the origin of ensemble
equivalence within a unique framework, we have introduc
model ~1! which allows, by continuously varying paramet
A, to pass from a situation where the microcanonical a
canonical results coincide (A50) to a situation where the
two ensembles disagree over a finite energy range nea
transition. As we will show, this model is indeed richer th
expected because it reveals also more complicated transi
than those previously studied in@5,15#.

Due to the long-range nature of the interactions, the c
lective behavior of the particles can be described in term
the following mean-field vectors:MW z5„^cos(z)&N ,^sin(z)&N…

5Mz„cos(fz),sin(fz)… where fzP@0,p/2# and z5x or y;
PW z5„^cos(z)&N ,^sin(z)&N…5Pz„cos(cz),sin(cz)… where cz
P@0,p/2# andz5x6y. The average over all the particles
indicated by^ . . . &N . It can be shown that on averageMx
'M y'M and Px1y'Px2y'P ~for more details see@5#!.
Therefore, the potential energy can be rewritten, in the me
field limit N→`, asVA5@21A22M22AP2#/2.

For U'0 ~or equivalently at low temperature!, the system
described by model~1! is in the CP1, particles have all the
same location in a single pointlike cluster, andM'P'1,
whereas at large enough energy~temperature! the system is
in the HP andM'P5O(1/AN). For sufficiently high values
of A.A2;3.5, a third intermediate phase CP2, exhibiting
two clusters, appears. In this phase, due to the symm
location of the two clustersM;O(1/AN) andP;O(1).

In the mean-field limit, the equilibrium properties o
model ~1! can be derived analytically within the canonic
ensemble following the approach of Ref.@5#. In particular,
the Helmholtz free energy reads as

F~M ,P;T,A!

T
5T~M21P2!2 ln@T G~M ,P;A!# ~2!

with G5*0
2pI 0@M1A2AP cos(s)#exp@Mcos(s)#ds, whereI 0

is the modified Bessel function of zero order. Since we
interested also in metastable and unstable states we wil
restrict ourselves to the study of the lowest-lying minima
F, but we will keep track of all the other extrema. Due to t
P→2P symmetry ofF, we can limit our analysis to theP
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>0 half-plane. The transition lines, obtained by consider
the absolute minima ofF, are reported as solid lines in Fig
1. The minima can be easily associated with the three
served phases, since HP will correspond toM5P50, CP1

to uM u.0, uPu.0, and CP2 to M50 anduPu.0.
Let us describe the observed phase transitions within

canonical ensemble with the help of Fig. 1: the line referr
to asTM in the inset~a! indicates the transition temperature
whereM vanishes and where the phase CP1 looses its stabil-
ity, while the line TP is where P→0 and the CP2 leaves
place to the HP. The phase diagramU versusA reported in
the inset~b! gives clearer hints for what concerns first-ord
transitions, indicating the corresponding energy jumps~latent
heats!. Depending on the value ofA, four different scenarios
can be distinguished.~I!: @0<A<A152/5#—in this case one
observes a continuous transition from a CP1 to a HP; the
critical line is located atTM51/2 (UM53/21A). Along this
line, atA152/5, there is a tricritical point: here the transitio
becomes discontinuous.~II !: @A1,A,A2'3.5#—the transi-
tion between CP1 and HP is first order in all this range o
parameters with a finite energy jump@gray shaded area in
Fig. 1~b!#. ~III !: @A2,A,A3'5.7#—in this region the third
phase begins to play a role and two successive transitions
observed: first CP1 disappears atTM via a first-order transi-
tion that gives rise to the biclustered phase CP2, which ends
up in the HP due to a continuous transition. The critical li
associated with this last transition isTP5A/4 (UP53A/4
11). ~IV !: @A.A3#—finally, region~IV ! differs from region
~III ! just for the nature of the transition connecting the tw
clustered phases that becomes second order.

FIG. 1. Phase diagrams of model~1! reporting the transition
temperatures versus the coupling parameterA ~a! and the corre-
sponding specific energyU5H/N versusA ~b!. The solid lines
indicate the canonical transition lines and the dots the points wh
the nature of the transitions change.A1 , A2 , andA3 are the thresh-
old coupling constants that determine the transition scenar
→IV displayed above the graphs. The gray shaded area in~b! in-
dicates the domain where two phases coexist. Inside this area
dashed curves are the two spinodal lines.
3-2



;
e

r
a

,
a

ca
ar
lt
o
It
us
e
iti

be
rin

.

a

me

g

the

e
era-

enot-
in a

ves

ta-
nce
as-
ma.
ally
shed

CP

t the
e

-

ue
nd
ro-

io
-

oli
te
th
r
i-

mi

en-
res
e
f the
.

RAPID COMMUNICATIONS

FIRST- AND SECOND-ORDER CLUSTERING . . . PHYSICAL REVIEW E66, 025103~R! ~2002!
Let us now concentrate on first-order phase transitions
particular we will compare microcanonical results obtain
via molecular dynamics simulations@16# with canonical re-
sults. Outside the gray area in Fig. 1~b! the microcanical and
canonical results coincide everywhere, but inside such a
gion strong discrepancies are observed. This can be cle
seen in Fig. 2, whereT is plotted as a function ofU near the
discontinuous transition for two different values ofA
~namely,A51 andA54). Within the canonical ensemble
first-order phase transitions occur at a given temperature
the coexistence region is bridged with a horizontal line@T
5TM in Fig. 2~a! andT5TP in 2~b!#, according to the Max-
well construction.

However, this region is accessible via microcanoni
simulations and the corresponding equilibrium results
shown as circles in Fig. 2. Within this region these resu
disagree with the canonical ones, the transition is now c
tinuous, and a negative specific heat region appears.
remarkable that both in the transition connecting the cl
tered phase CP1 to the HP as well as in that connecting th
two clustered phases the essential features of the trans
are the same.

We will now show that the microcanonical results can
obtained even within the canonical ensemble by conside
also the relative minima and the saddles ofF. A schematic
sketch of the relevant extrema ofF in the (M ,P) plane close
to the two transitions discussed above is reported in Fig

FIG. 2. Temperature-energy relation in the coexistence reg
for A51 ~a! andA54 ~b!. Lines indicate canonical analytical re
sults, while circles correspond to microcanonical simulations. S
thick lines are equilibrium results, solid thin lines metastable sta
and dashed thin lines unstable states. The straight dot-dashed
line is the Maxwell construction.~a! refers to a canonical first-orde
transition from CP1 to HP, ~b! to a canonical discontinuous trans
tion connecting the two clustered phases. In~b! the canonical and
microcanonical second-order transition atU'4 is also shown. The
microcanonical results have been obtained via molecular dyna
simulations of model~1! with N55000 particles@16#.
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Let us first consider the caseA51 for 1/2<T<0.551, which
is reported in Fig. 3~a!. For T,1/2 the free energy has
unique minimum corresponding to the CP1 phase, while at
T51/2 a second relative minimum emerges atM5P50 as-
sociated with a metastable HP state. Exactly at the sa
temperature also two symmetric saddles appear in the (M ,P)
plane in between the CP1 and the HP minima. For increasin
temperature the depth of the CP1 minimum decreases while
that of the HP minimum increases and, simultaneously,
saddles and the CP1 minima approach each other. AtT
5TM.0.54 the CP1 and HP mimima reach exactly the sam
depth and this singles out the canonical transition temp
ture. At T50.551 the saddles and the CP1 minima finally
merge and disappear. If the energies and temperatures d
ing these unstable and metastable states are reported
graph together with the equilibrium solutions, one obser
that they connect continuously the CP1 equilibria to the HP
ones~see Fig. 2!. Moreover, as shown again in Fig. 2~a!, the
microcanonical results essentially coincide with the me
stable and unstable canonical solutions in the coexiste
region. In particular, the negative specific heat regime is
sociated with the saddles bridging the metastable mini
The limits of existence of these unstable states are typic
referred to as spinodals and are reported in Fig. 1 as da
lines @17#. A similar behavior is observed for the CP1 to CP2

transition, in this case forT,0.93 the unique minimum ofF
is again associated with the CP1 and atT50.93 two sym-
metric minima appear on theM50 axis with uPuÞ0, and
these metastable states are clearly associated with the2.
Also two saddle points appear in theF profile separating the
CP1 minima from the metastable CP2 minimum in the posi-
tive P semiplane. ForT.TP.0.95 the CP2 minima become
the stable ones. For increasing temperatures the CP1 minima
and the saddles approach each other and finally vanish a
spinodal~located atT.0.965). For higher temperatures th
CP2’s approach the origin symmetrically where a saddle~not
involved in the first-order transition! is present, correspond
ing to the HP unstable phase. AtT5TM.1 the two minima
merge with the saddle at the origin, giving rise to a uniq
minimum for F corresponding to a stable HP. This seco
transition is clearly continuous. Also in this case, the mic

n

d
s,
ick

cs

FIG. 3. Schematic representation of the extrema of the free
ergy for a fixed temperature in the intervals reported in the figu
for A51 ~a! and A54 ~b!. Circles denote the positions of th
minima, while the crosses represent the saddles. The motion o
extrema for increasing temperatures is indicated by the arrows
3-3
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canonical continuous transition is well reproduced by
metastable and unstable states involved in the discontinu
transition@see Fig. 2~b!#.

In conclusion, we have shown that a study of the abso
and relative extrema of the Helmholtz free energy is su
cient to provide a complete microcanonical and canon
description of the equilibrium behavior of anN-body Hamil-
tonian with infinite-range attractive interaction. Dependi
on the value of the tuning parameterA canonically first- or
second-order transitions are observed. The compariso
the canonical results with the microcanonical ones sho
that ensemble inequivalence occurs in proximity of cano
cally discontinuous transitions. Irrespective of the pha
involved in the transitions a negative specific heat regi
has been observed. In particular, this regime is always a
ciated with the existence of a spinodal region for the cano
cal solutions. For energy values within this region microc
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nonically stable states correspond to saddles of the free
ergy. We have validated this scenario by considering t
different discontinuous transitions connecting the one clu
phase either to the homogeneous one or to the two clu
phase.

We believe that the results reported in this article are
limited to systems with infinite-range interactions, but th
should be applicable also to systems with power-law dec
ing potentials~as shown in@18#! and to finite systems with
short-ranged forces~see@12#!.
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