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ABSTRACT

We report on collective excitable events in a highly diluted random network of non-excitable nodes. Excitability arises thanks to a
self-sustained local adaptation mechanism that drives the system on a slow timescale across a hysteretic phase transition involving states
with different degrees of synchronization. These phenomena have been investigated for the Kuramoto model with bimodal distribution of
the natural frequencies and for the Kuramoto model with inertia and a unimodal frequency distribution. We consider global and partial
stimulation protocols and characterize the system response for different levels of dilution. We compare the results with those obtained in the
fully coupled case showing that such collective phenomena are remarkably robust against network diluteness.
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Collective excitable phenomena in a system of coupled elements
may arise either when the single nodes display excitable dynam-
ics or not. The latter case, more surprisingly, is possible when the
entire ensemble of nodes is subject to a global feedback depending
self-consistently on the level of synchronization of the network.
In this case, a global excitable response to an external stimulus
can be observed, which corresponds, at the microscopic level, to
a transient partial synchronization of the nodes. Mathematically,
this is related to hidden geometric structures that organize the
mean field trajectories in the phase space. These events have been
observed in two paradigmatic classes of globally coupled oscilla-
tors, namely, the Kuramoto model with and without inertia. In
this paper, we analyze the robustness of the collective excitability
in highly diluted random networks by gradually decreasing the
percentage of coupled nodes. We consider global and partial stim-
ulation protocols, and we characterize the response with respect
to that achievable in the corresponding fully coupled network.
Our findings demonstrate remarkable robustness of the collective

excitability, which we expect to inspire new research in the study
of emergent phenomena in networks of interacting elements at
the mesoscopic scale.

I. INTRODUCTION

Excitable systems appear in many scientific fields; in particular,
they have been studied in the context of neuroscience as simplified
neural models1 as well as in cardiac dynamics for pulse propagation.2

Several low-dimensional models have been introduced to reproduce
the excitable properties of the cells. All these models are charac-
terized by few common features: They all present a linearly stable
fixed point that, once stimulated with a sufficiently large perturba-
tion, displays a large excursion in the phase space corresponding
to the emission of a pulse of well-defined amplitude and duration.
These low-dimensional slow–fast systems show a very rich dynam-
ical repertoire, characterized by regular and chaotic spiking and
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bursting behaviors, and joined to extremely complex bifurcation
structures.3–8

Collective excitable responses and bursting activities have been
previously reported in networks of excitable nodes for globally
coupled populations9,10 as well as for spatially extended systems,
where they appear in the form of excitable waves11 and as transient
synchronization states.12,13

A few studies14–17 have recently shown that collective excitable
dynamics can emerge also in networks of non-excitable units, such
as oscillators, in the presence of a global linear feedback. In particu-
lar, in Ref. 16, the effect of a global linear feedback on the dynamics
of the Kuramoto model with and without inertia has been investi-
gated. Thanks to the feedback, the system originally characterized by
hysteretic first-order transitions18–22 reveals collective dynamical fea-
tures typical of excitable models, despite a nonexcitable single-node
dynamics. The origin of these behaviors is related to the competition
of the fast synchronization/desynchronization phenomena triggered
by the slow adaptation.

All the previous studies14–17 have been devoted to globally
coupled networks, where the coupling among the oscillators was
dynamically adjusted based on a single feedback loop dependent on
the level of synchronization in the whole system. The global nature
of the coupling has allowed us to derive an exact low-dimensional
mean field formulation for the Kuramoto model with bimodal fre-
quency distributions by applying the Ott–Antonsen ansatz in this
context,23 thus making possible to explain the collective excitability
of the model in terms of the stability properties of a slow invariant
one dimensional manifold and to demonstrate a strict analogy with
the dynamical behavior of the Hindmarsh–Rose model for a single
neuron.16,17

Despite the fact that globally coupled systems are amenable of
extremely effective analytical treatments, more realistic networks,
as the brain circuits, are characterized by sparse random connec-
tions. The randomness in the connections can change drastically the
nature of the synchronization transition24,25 and have a strong influ-
ence on the collective behaviors.26 Therefore, it is of extreme interest
to study if the phenomenon of collective excitability observed in
globally coupled systems is robust to random pruning of the con-
nections and how the dynamics is modified due to the sparseness
of the connections. To our knowledge, the case of nonglobal inter-
actions has been addressed only in one study reported in Ref. 15.
In such a case, the authors considered a random network with
power-law distributed degrees, where each oscillator was subject to
a local feedback involving its random neighbors. A detailed analysis
of the parameter space revealed the emergence of regimes similar
to those observed in the globally coupled case (bistable, synchro-
nized, excitable, oscillatory, and incoherent states). However, the
considered network was not particularly diluted since each oscilla-
tor was connected on average to 18% of the whole oscillators, and,
in general, the number of connections is never less than 10% of the
oscillators.

In the present paper, starting from Ref. 16, we investigate how a
highly diluted random network of non-excitable nodes can become
collectively excitable thanks to a self-sustained local adaptation
mechanism. In particular, we have studied in detail the excitabil-
ity response of the network to perturbations by considering global
and partial stimulation protocols for different levels of dilution. This

analysis has been performed for the Kuramoto model with a bimodal
distribution of the natural frequencies and for the Kuramoto model
with inertia with a unimodal frequency distribution. This paper
is structured as follows. The investigated models and the indica-
tors employed to characterize the excitability features of the system
as well as the stimulation protocols are described in Sec. II. The
results of the numerical investigations are reported in Sec. III, for
the bimodal Kuramoto model (BKM) and the Kuramoto model
with inertia (KMI), by considering the response of the network to
global stimulations and to stimulation affecting only a fraction of
the oscillators. Finally, in Sec. IV, a brief discussion on the results is
reported.

II. MODEL AND INDICATORS

A. Network model

We consider a heterogeneous network of N oscillators charac-
terized by their phases {θn(t)} and angular velocities {θ̇n(t)}, where
each oscillator is randomly coupled to M neighbors via an adaptive
coupling that is dependent on the level of synchronization among
the neighbors themselves. The evolution equations for the phases
are given by

mθ̈n + θ̇n(t) = ωn +
Sn(t)

M

N
∑

j=1

Cnj sin (θj − θn), (1)

Ṡn(t) = ε[−Sn + K − αQn(t)], (2)

where ωn is the natural frequency of the nth oscillator, m its mass,
and Sn(t) an adaptive coupling controlled via a linear feedback by
the modulus Qn(t) of the local Kuramoto order parameter, which is
defined as

Qn(t) =
1

M

∣

∣

∣

∣

∣

∣

N
∑

j=1

Cnj eiθj(t)

∣

∣

∣

∣

∣

∣

. (3)

This quantity characterizes the level of synchronization among the
M neighbors of the nth oscillator and its value ranges from Qn = 1,

if they are fully synchronized, to Qn ' O

(

1/
√

M
)

in case they are

completely asynchronous. The gain of the feedback loop is con-
trolled by the real positive parameter α, its bandwidth by ε, which
usually sets to ε = 0.01, while K > 0 represents the asymptotic cou-
pling to which Sn would relax in the absence of any synchronization
among the neighbors. The stationary value of the adaptive cou-
pling ranges from SFS = K − α, for a fully synchronized case, to
SAS ' K − d α√

M
for an asynchronous state, where d is some positive

constant O(1). Therefore, when the system is fully synchronized,
the adaptive coupling will relax toward SFS, a coupling value corre-
sponding to asynchronous dynamics in the original system without
adaptation, while, when it is desynchronized, it will relax toward SAS

that, for M >> 1, is definitely larger than SFS, and it corresponds
to a bistable regime in the original setup.16 However, for a small M
degree, the latter is no more verified. In particular, it is evident that

SAS will change sign at Mc '
(α

K

)2
, thus indicating a passage from

a repulsive (M < Mc) to an attractive (M > Mc) adaptive coupling.
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The matrix {Cnj} is an adjacency matrix, where Cnj = 1 (Cnj = 0) if an
undirected link exists (non-exists) among oscillators n and j. Simi-
larly, to the Erdös–Rényi random graph,27 the adjacency matrix {Cnj}
is constructed by connecting labeled nodes randomly, where each
link is included in the graph independently from every other link.
However, at variance with the Erdös–Rényi graph, here, the degree
of each oscillator n is fixed exactly to M =

∑N
j=1 Cnj =

∑N
j=1 Cjn.

Since collective excitable behaviors emerge in (1) and (2) for
a fully coupled network (where M ≡ N) whenever the coexistence
of two stable regimes characterized by different levels of synchro-
nization exists,15,16 we will focus on systems exhibiting hysteretic
synchronization transitions. Therefore, to show the generality of our
results, we considered two quite different cases within this class of
systems: namely, the KMI (1) with a unimodal distribution of the
frequencies and the Kuramoto model [m = 0 in (1)] with a bimodal
distribution of the natural frequencies (BKM). In order to compare
with the results reported in Ref. 16 for the fully coupled case, we
will consider for the KMI m = 2 and Gaussian distributed frequen-
cies with zero mean and a unitary standard deviation and for the
BKM bimodal Lorentzian distributed frequencies. The Lorentzian
distributed frequencies are fixed deterministically as follows:

ωj = −ω0 + 1 tan
[π

2
ξj

]

, ξj =
2j − N

2 − 1
N
2 + 1

, j = 1, . . . ,
N

2
,

(4)

ωj = ω0 + 1 tan
[π

2
ξj

]

, ξj =
2j − 3N

2 − 1
N
2 + 1

, j =
N

2
+ 1, . . . , N,

where ±w0 is the position of the two peaks, each characterized by the
same half-width half-maximum 1. The deterministic choice in (4)
allows us to reduce finite size effects due to the imbalance between
positive and negative frequencies that can have dramatic effects for
Lorentzian distributions when randomly sampled.28 The parameters
entering in (4) have been fixed to w0 = 1.8 and 1 = 1.4.

All the numerical simulations have been performed by employ-
ing a fourth order Runge–Kutta integration scheme with a time step
δt = 0.1; the system has been usually investigated for a time duration
tD = 800.

B. Coherence measure

The microscopic evolution of the oscillators has been visualized
via a sort of a raster plot, commonly used in the context of neural
dynamics. To be more specific, for each oscillator, we depict a dot in
correspondence with the time instant the oscillator phase crosses a
fixed threshold; in our case, the threshold has been fixed to θth = 0.

In order to characterize the collective dynamics of the system,
we will rely on the global Kuramoto order parameter29

R(t) =
1

N

∣

∣

∣

∣

∣

∣

N
∑

j=1

eiθj(t)

∣

∣

∣

∣

∣

∣

. (5)

In the absence of coupling adaptation, one typically observes
an asynchronous (partially synchronous) regime characterized by
R ' O(1/

√
N) (finite R) for small (large) coupling strengths.30

C. Stimulation protocols

In this work, since we want to analyze the excitable properties
of the system, we are interested in observing the response of the sys-
tem to perturbations. In particular, we will perturb instantaneously
the adaptive coupling term Sn(t) of the oscillator n by increasing its
value of a constant amount A at time t: i.e., Sn(t

+) = Sn(t
−) + A.

If all oscillators are perturbed at the same time, this corresponds
to perform a global stimulation of the system; instead, if only a
percentage P of oscillators is perturbed, this will be termed partial
stimulation.

In particular, we usually stimulate the oscillators irrespectively
of their natural frequencies for the KMI, while, for the BKM, we usu-
ally stimulate by starting from the central node with index N/2 and
then moving symmetrically toward nodes with larger and smaller
indices (protocol zero). For the BKM besides this protocol, we also
consider two other different stimulation protocols defined as fol-
lows: (protocol one) the oscillators are stimulated by considering
first the ones with natural frequencies ωi ' |w0| in proximity of the
two peaks of the frequency distribution function and then, symmet-
rically, the oscillators with larger values of |ωi − ω0| and |ωi + ω0|;
(protocol two) is the same protocol as protocol one, but referred
only to one peak, namely, the one located at −ω0; therefore, the
oscillators are stimulated asymmetrically starting from the ones in
proximity of only one of the two peaks of the distribution.

The excitable response of the system to the stimulations has
been characterized in terms of the global Kuramoto order param-
eter R(t); a collective burst is identified whenever R(t) overcomes
a threshold value Rth within a given time window Wtest after the
perturbation deliverance. Furthermore, we measured the maximum
value Rm at the burst peak as well as the time Tm needed to reach
such a peak after the stimulation. For the BKM, we fixed Rth = 0.4
to distinguish bursting events from the underlying collective oscilla-
tions of amplitude ' 0.2 − 0.3, while for the KMI, we set Rth = 0.2
since the stationary dynamics, in this case, is asynchronous apart
from finite size fluctuations. In both cases, Wtest = 200.

III. RESULTS

In the following, we will consider parameter values for which
the fully coupled adaptive networks (M = N) display collective
excitable properties for BKM and KMI, as reported in Ref. 16,
and we will examine the response of the randomly diluted systems
(M << N) to global and partial stimulations by varying M as well as
the percentage P of stimulated oscillators.

In particular, for the BKM, by following Ref. 16, we analyze a
situation where the fully coupled system displays collective periodic
oscillations, characterized by the alternation of partially synchro-
nized phases with abrupt desynchronization events. These collective
solutions are usually termed standing waves19 in the context of net-
works of coupled oscillators and spikes for the analogy with the
Hindmarsh–Rose model developed in Ref. 16. This regime per-
sists also for diluted systems, as shown in Fig. 1(a) (black trace)
for K = 6.9, α = 5, M = 1000, and N = 5000. For what concerns
the collective excitable properties of the KMI, we will consider a
purely asynchronous phase, where R(t) shows irregular fluctuations
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FIG. 1. BKM: (a) Global order parameter R vs time for a network with random connectivity (degree M = 1000) in the spiking regime (black solid line). The system
responses to global perturbations for different amplitudes A are also displayed: a subthreshold response for A = 0.150 (blue solid line) and two excitable responses for
A = 0.200 (green dashed line) and for A = 0.375 (red dotted line). The system response of the fully coupled network for A = 0.375 is shown in gray. (b) Raster plot for the
diluted network obtained as a response to a perturbation of amplitude A = 0.375; here, the oscillators are sorted by frequency in an ascending order. Other parameters:
ε = 0.01,1 = 1.4,ω0 = 1.8,α = 5, K = 6.9, and network size N = 5000. KMI: (c) Global order parameter R vs time for a network with random connectivity (M = 50)
in the asynchronous regime (black solid line). In the same panel, the system responses to global perturbations of different amplitudes A are also displayed: a subthreshold
response for A = 4.2 (blue solid line) and two excitable responses for A = 5 (green dashed line) and for A = 6 (red dotted trace). In the inset, the response to a perturbation
of amplitude A = 6 is displayed for different values of the degrees:M = 50 (red dotted line),M = 100 (black dashed line),M = 500 (green dots), andM = N (gray shaded
curve). (d) Raster plot for the diluted network withM = 50 and for a stimulation of amplitude A = 6; also, in this case, the oscillators are sorted by frequency in an ascending
order. Other parameters: ε = 0.01,α = 30, K = 4.5,m = 2, ω0 = 0 and network size N = 20 000. The cyan arrows and the cyan dashed lines denote the time of the
instantaneous stimulation.

of amplitude O(1/
√

N); this occurs for α = 30 and K = 4.5, as
shown in Fig. 1(c) (black solid line) for M = 50 and N = 20 000.

A. Global stimulation

1. Bimodal Kuramoto model

Let us first consider the BKM in the standing wave regime,
characterized by periodic sequences of collective spike events, where
the corresponding time evolution of R(t) is reported as a solid line in
Fig. 1(a). In this situation, the system displays collective excitability
when globally stimulated despite that the oscillators are randomly

connected with high dilution M � N. Indeed, small contemporary
perturbations of all the feedback variables Sn(t) elicit rapidly decay-
ing responses in R(t) [blue trace in Fig. 1(a)], while sufficiently
large stimuli induce a synchronized activity in a considerable part
of the network, characterized by an evolution of R(t) corresponding
to a large amplitude oscillation with a well-defined shape, ampli-
tude, and duration (green trace). This collective event can be seen
as an oscillation connecting a tonic spiking regime to a silent (rest-
ing) state, and it is analogous to the so-called burst, typical of
the dynamics of several neurons.31 Furthermore, a larger pertur-
bation gives rise to a bigger burst (red dotted line) that involves
more synchronized oscillators and approaches an asymptotic shape,
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essentially corresponding to that observed in the fully coupled
network for the same perturbation amplitude A0 (gray curve). This
is despite the system being diluted with a clustering coefficient
c = M/N = 20%.32

The mechanism leading to the emergence of a burst can be bet-
ter understood by examining the corresponding raster plot reported
in Fig. 1(b). In the period before the moment of the stimulation
(denoted by a cyan arrow and a dashed cyan line), one observes a
regime characterized by standing waves propagating from oscilla-
tors with natural frequencies ±ω0 toward the oscillators with zero
frequency. Immediately after the stimulation, a wider group of oscil-
lators with natural frequencies in the interval [−ω0 − 1; ω0 + 1]
phase lock, while the remaining oscillators with larger natural fre-
quencies (in absolute value) are not entrained to the big synchro-
nized cluster. This is the origin of the burst, as measured by the order
parameter R(t), and it corresponds to the silent state reached during
a neuronal burst. The number of the synchronized oscillators slowly
decreases in time, but it remains essentially unmodified for a dura-
tion td ' 30, soon after the burst disappears and the standing waves
re-emerge in the network.

It is important to remark that, for M < 50, spikes are hardly
discernible from the fluctuations of R due to the network spar-
sity, thus setting the minimal degree that can be analyzed, for
the BKM, to M = 50, corresponding to a clustering coefficient
c = M/N = 1%.

2. Kuramoto model with inertia

In the case of the KMI, the unperturbed state is asynchronous,
in contrast to the BKM, as evident from the evolution of R(t)
reported as a solid black line in Fig. 1(c). However, also in this

case, the system displays collective excitability when globally stimu-
lated, even in the very diluted case: namely, we considered M = 50,
corresponding to a clustering coefficient c = 0.25% for N = 20 000.
Indeed, small perturbations of amplitude A = 4.2 elicit no collective
response (blue solid line), while larger perturbations ignite bursts,
as shown in Fig. 1(c) for A = 5 (green dashed line) and A = 6 (red
dotted line). This demonstrates the existence of a threshold value A0,
which should be overcome to observe an excitable response when
globally perturbing the system. Furthermore, as shown in the inset
of Fig. 1(c), the shape of the burst approaches that obtained in the
globally coupled case by increasing M; already for M = 500 (green
dots), the asymptotic profile corresponding to M = N is essentially
recovered.

On the other hand, the collective response of the system to a
stimulation is quite different for the KMI with respect to the BKM, as
shown in Fig. 1(d). In particular, there is a transient period of dura-
tion tT ' 15 before the onset of the burst that was definitely shorter
in the BKM case. During the burst, at variance with the BKM almost
all oscillators are phase locked. At its disappearance, we observe that,
due to inertia, the oscillators with natural frequencies in proximity
of the peak of the distribution located at ω0 = 0 relax faster to the
asynchronous regime than those far away in the distribution itself
characterized by higher natural frequencies |ωi|.

3. Comparison of BKM and KMI analysis

As a first analysis, we investigate the value of the minimal
perturbation amplitude A0 needed to ignite a collective burst as a
function of the network degree M. The results of the analysis are
reported in Fig. 2 for both the BKM and KMI. While in the BKM,
we cannot consider M < 50, otherwise, the spiking activity will be

FIG. 2. Minimal perturbation amplitude A0 required to observe a collective burst as a function of the degree M: (a) BKM and (b) KMI. The red dashed lines represent the

values A
(FC)

0 of the minimal perturbation amplitude for the corresponding fully coupled networks. The blue solid line denotes a nonlinear fitting to the data A0 ' A
(FC)

0 + a/Mβ

A
(FC)

0 ' 0.155 ('0.299), a ' 57.86 ('22.66) and β ' 1.30 ('0.40) for the BKM in (a) [KMI in (b)]. In the inset of panel (b), the green (orange) dashed lines refer to a

power-law fit 1A = A0 − A
(FC)

0 ' a/Mβ to the data for the interval 3 ≤ M ≤ 20 (20 ≤ M ≤ 1200) with an exponent β ' 0.95 (β ' 0.41). For the BKM for M < 1000,
we averaged A0 over 50–100 network realizations, while for greater values of M, we averaged over 10 realizations due to higher computational time; for the KMI, we always
averaged over 20 network realizations. In both panels, the error bars correspond to the standard deviation of the mean. Parameters as in Fig. 1, apart from K = 4.0 for
the KMI.

Chaos 32, 103108 (2022); doi: 10.1063/5.0102880 32, 103108-5

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

no more discernible from the background noise; for the KMI, the
dynamics remains asynchronous even for vanishingly small M. In
the latter case, it is possible to observe a collective response up to
M = 3 with a sufficiently large perturbation A0 [as shown in the
inset of Fig. 2(b)]. However, no response was observable for M = 1
and 2 even for extremely large A0. This is probably due to the exis-
tence (or not) of a giant component in our random network. As a
matter of fact, for the random network we are analyzing, where the
degree is always exactly M, the giant component emerges via a phase
transition occurring at M = 2, while for an Erdös–Renyi network,
the giant component appears whenever M ≥ 1.32,33

On one hand, for the BKM, the minimal amplitude A0

approaches the fully coupled value A(FC)
0 ' 0.155 with a power-

law decay as A0 ' A(FC)
0 + a/Mβ , with an exponent β ' 1.30.

The fitting to the data is reasonably good and reported as
a blue solid line in Fig. 2(a). On the other hand, for the
KMI, the approach to the fully coupled case seems definitely
more complex. In this case, A0 decreases quite rapidly at
small M ≤ 20, decaying as ∝ 1/M, while at larger M, we still
observe a power-law decay of A0 ∝ M−β , but with a definitely
smaller exponent β ' 0.4. This crossover from a fast to slower
decay of A0 with the degree is clearly visible in the inset
of Fig. 2(b), where 1A0 = A0 − A(FC)

0 is reported for 3 ≤ M
≤ 1200.

The fact that the exponent β is definitely larger for the BKM
with respect to the KMI case, when approaching the fully coupled
case, can be probably related to the fact that it is easier to elicit a
collective burst in a system presenting already a partial synchroniza-
tion associated with the standing waves (spiking activity) than in a
system finding itself in asynchronous dynamics.

Furthermore, we characterize the emergence of the burst in
terms of two indicators associated with the global order parameter
R(t), as shown in the inset of Fig. 3(a): the value of the maximum
Rm reached by the order parameter, once performed the stimula-
tion, and the time Tm needed to reach such a maximum after the
stimulation. As a first analysis, we consider diluted systems with
different degrees M, and we globally stimulate the system with per-
turbations of amplitude A sufficiently large to lead the network
with the smallest considered M to a collective burst. In particular,
for the BKM (KMI), the minimal considered degree is M = 100
(M = 50) and A = 0.4 (A = 6.0). For each fixed M, we measured
the average values of Rm and Tm, obtained by considering 100 dif-
ferent realizations of the random network. The results are reported
in Figs. 3(a) and 3(b) for the BKM and in Figs. 3(c) and 3(d) for the
KMI.

In both cases, we observe that, for increasing M, Rm approaches
the corresponding value obtained in the fully coupled case R(FC)

m

for the same stimulation amplitude A. The fully coupled valued is
approached with a scaling law consistent with R(FC)

m − a/Mβ , where
β ' 1.0 − 1.3. Analogously, by increasing M, the time needed to
reach the maximum of the burst decreases toward the fully cou-
pled value T(FC)

m , with a power-law decay consistent with T(FC)
m

+ b/Mβ , where β ' 1.0 − 1.4. The disorder in the distribution of
the links, responsible for the intrinsic fluctuations present in the
dynamics, makes it extremely hard (numerically) to validate more
rigorously the reported nonlinear fitting. However, these results
suggest that the finite size corrections for the measured quantities,

due to the dilution, should vanish as ∝ M−β with β ' 1.0 − 1.4 by
approaching the fully coupled limit. This prediction should be valid
at least at the leading order.

IV. PARTIAL STIMULATION

In this section, we extend the analysis previously performed
to take into account the response of the system to partial stimu-
lations. In particular, we investigate the response of the system to
perturbations involving different percentages P of the oscillators for
different levels of network dilution (measured by the degree M) and
for different amplitude stimulations A.

A. Bimodal Kuramoto model

Let us first consider the BKM; in this case, we fix the degree to
M = 200, and we measure the percentage of bursts elicited by the
stimulation for different percentages P of the stimulated oscillators
and a certain stimulation amplitude A. In particular, the numeri-
cal analysis is performed by considering 1000 different realizations
of the network. The corresponding results are reported in Fig. 4(a).
As a first insight, we estimated the percentage of bursts emitted in
the absence of any stimulation by varying P. The bursts sponta-
neously emitted correspond to 0.9% of the considered realizations
[dashed horizontal line in Fig. 4(a)]. Therefore, below this percent-
age, the system response will be considered not reliable since we
cannot distinguish between spontaneous emission and response to
the stimulation. As shown in Fig. 4(a), for any considered value of
0.2 ≤ A ≤ 0.7, the number of elicited bursts is below this threshold
whenever the number of stimulated oscillators is below 10% of the
nodes of the network, corresponding, in this specific case, to 500
oscillators.

From Fig. 4(a), we observe that the number of elicited bursts
increases with the percentage P of the stimulated oscillators for any
considered amplitude A. However, for A = 0.2, even by stimulating
all the oscillators, we obtain bursts only in 40% of the realizations.
Indeed, this is related to the fact that A = 0.2 is slightly below
the minimal stimulation amplitude needed to observe a burst for
M = 200, which corresponds to A0 = 0.217 ± 0.007.

For larger amplitudes A > 0.2, it is possible to observe a burst
for each delivered stimulation (corresponding to 100 % of elicited
bursts), whenever P is larger than a critical value Pf = Pf(A), which
decreases quadratically with A (Pf(A) ∝ A−2) for A ≥ 0.5.

In Figs. 4(b) and 4(c), we report the values of Rm and Tm

averaged over all the observed bursts for the same amplitudes and
percentages of stimulated oscillators analyzed in panel (a). As a
general remark, we observe that Rm (Tm) grows (decreases) mono-
tonically with the percentage of the stimulated oscillators only when
this value is beyond 30%. As we will see in the following, this is due
to finite size effects. Furthermore, for sufficiently large amplitudes
(A ≥ 0.4), the maximal value of the burst tends toward the one mea-
sured in the fully coupled network R(FC)

m for the same amplitude. As
expected, R(FC)

m is reached when all the oscillators are simultaneously
stimulated. The same is essentially true for Tm. For low amplitudes
A ≤ 0.3, the asymptotic shape observed in the fully coupled network
is never reached, because the stimulation amplitudes are smaller or
of the order of the minimal one required to elicit a burst in the fully
coupled network.
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FIG. 3. BKM: System response to a global stimulation of amplitude A = 0.4: (a) maximum value of the order parameter Rm and (b) time Tm needed to reach it as a function
of the degree M. KMI: System response to a global stimulation of amplitude A = 6: (c) maximum value of the order parameter Rm and (d) time Tm needed to reach it as a
function of the degree M. In the inset in (a), a schematic picture explains how Rm and Tm are estimated in the case of the BKM, and the unperturbed (perturbed) evolution
of R(t) is displayed as a dashed violet (solid green) line. The red dashed lines represent, in all panels, the values obtained for the fully coupled network averaged over ten

different initial conditions. The blue lines are nonlinear fitting to the data. For the maximum value of the order parameter, we employed the expression Rm ' R
(FC)
m − a/Mβ

with R
(FC)
m ' 0.6135 ('0.9672), where a ' 15.86 ('4.75) and β ' 1.34 ('1.00) for the BKM in (a) [KMI in (c)] and for the time needed to reach Rm Tm ' T

(FC)
m + b/Mβ

with T
(FC)
m ' 5.70 ('16.39), where b ' 2638.60 ('385.23) and β ' 1.43 ('1.00) for the BKM in (b) [KMI in (d)]. In the inset in (c), the data for 1Rm = R

(FC)
m − Rm are

reported vs M for the KMI in a log–log plot together with the corresponding power-law fitting a/Mβ (blue solid line) with a ' 4.75 and β = 1.00. Data are averaged over 100
realizations, and the error bars correspond to the standard deviation of the mean. Other parameters are fixed as in Fig. 1, apart from K = 4.0 for the KMI.

All the analyses for the BKM have been so far performed for
N = 5000. However, it is important, in at least one case, to eval-
uate the relevance of the finite size effects. Therefore, for a fixed
degree M = 200 and perturbation amplitude A = 0.5, we examine
the response of the network for different system sizes: N = 1250,
2500, 5000, and 10 000. The results of this analysis, reported in Fig. 5,
show clear finite size effects for N = 1250 and N = 2500 whenever
a percentage P of stimulated oscillators is chosen below 30%. As
shown in the inset, the finite size effects become less and less relevant
for increasing P; in particular, for small P-values (P < 30%), the per-
centage of elicited bursts displays a power-law decay ' N−γ with an
exponent γ strongly dependent on P. A linear extrapolation of the

decay of this exponent γ = γ (P) provides us with a critical value
Pc(A = 0.5) ' 28.7% below which no burst can be elicited for suf-
ficiently large system sizes. This represents an activation threshold
to observe excitable properties in the system in the thermodynamic
limit. Obviously, this threshold depends on the value of A, but
this is a generic feature of the studied random network present
for any perturbation amplitude A ≥ A0. On the other hand, above
this threshold value, the finite size effects can be assumed to be
negligible. Furthermore, since for P = 30%, we have elicited bursts
already in the 75%–77% of cases, we can affirm that the transition
from no elicited bursts to a finite number of bursts should occur
in an extremely narrow interval of P values in the thermodynamic
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FIG. 4. BKM: System response to stimulations of various amplitudes applied to a different percentage P of oscillators for a fixed degree (M = 200). (a) Percentage of elicited
bursts vs the percentage P of perturbed oscillators. Different curves represent simulations for different perturbation amplitudes A; the dashed horizontal line represents the
percentage of spontaneous emissions. (b) Maximum value of the order parameter Rm, measured at the burst peak, vs P for different A values. (c) Tm is the time value for
the system to reach the burst peak vs P for different A values. The dashed lines in panels (b) and (c) represent the values obtained from the simulations of the fully coupled
networks for the corresponding stimulation amplitude A. The colors identify the different A values as reported in the legend in panel (a). In all panels, data are averaged over
1000 different realizations, and the error bars correspond to the standard deviation of the mean. See Fig. 1 for the parameters.

limit. The analysis of the nature of this transition, continuous or
discontinuous, is left for future analysis.

Let us now examine the response of the system for a fixed
perturbation amplitude for various degree values M ∈ [100 : 900]
corresponding to clustering coefficients in the range c ∈ [2% :
18%] by varying the percentage P of stimulated oscillators. The

FIG. 5. BKM: Finite size effects for fixed degree M = 200 and amplitude of
perturbation A = 0.5. Percentage of elicited bursts vs the percentage P of per-
turbed oscillators for various system sizes: N = 1250 (black circles), N = 2500
(red ones), N = 5000 (blue ones), and N = 10 000 (green ones). The dashed
lines are a guide for the eyes. The percentage of elicited bursts for different
system sizes for various percentage P of stimulated oscillators is reported in
the inset: namely, P = 22% (black squares), P = 24% (red squares), P = 26%
(green squares), and P = 28% (blue squares). The dotted lines are power-law
fitting to the data of the type a + bN−γ , and the values of the estimated expo-
nents are γ ' 1.82 (P = 22%), γ ' 1.49 (P = 24%), γ ' 0.75 (P = 26%),
and γ ' 0.25 (P = 28%). The data are averaged over 1000 different realiza-
tions, apart from N = 10 000, where only 200 realizations are considered. Other
parameters as in Fig. 1.

corresponding results are reported in Fig. 6(a). The perturbation
amplitude A = 0.4 has been chosen in order to be larger than the
minimal excitability threshold A0 already at M = 100. As a first
remark, we observe that, below a stimulation threshold involving
at least a percentage Pm = 20% of oscillators, almost no burst is
elicited. Furthermore, the increase of M leads to a larger number of
emitted bursts, once fixed the percentage of stimulated oscillators P.
However, we observe 100% of elicited bursts only when at least a per-
centage Pf = 80% of oscillators is perturbed, irrespective of M, apart
from M = 100 where a one to one correspondence between stim-
ulation and burst occurrence is never achieved for this stimulation
amplitude. Similarly, for M ≥ 200, the quantities Rm and Tm, charac-
terizing the burst, approach their fully coupled values for increasing
P values that are reached whenever P ≥ Pf [see Figs. 6(b) and 6(c)].

In order to understand if the order of stimulation of the oscil-
lators is relevant, we consider besides the standard protocol zero,
employed in the rest of the article, also two other protocols (one and
two), previously defined in Sec. II C. In particular, we analyze the
excitable response of the network to these partial stimulations pro-
tocols for fixed degree M = 200 and fixed amplitude stimulation,
namely, A = 0.4. The results of this analysis are displayed in Fig. 7.
It is clear that the most effective protocol to induce excitable bursts
is the protocol one, this because, by stimulating the oscillators with
natural frequencies in correspondence with the peaks of the fre-
quency distribution, favors the formation of synchronized clusters.
On the other hand, the protocol two is the less effective one since
the stimulations of oscillators with natural frequencies in proximity
of only one peak result in an asymmetric recruitment of oscilla-
tors, which do not favor global synchronization. The protocol zero
shares a similar problem by recruiting first the oscillators located in
the minimum of the probability distribution function between the
two peaks; indeed, the results are quite similar to protocol two apart
from very large percentage P of stimulated oscillators (beyond 70%),
where protocol zero performs better.

This is evident also by looking at the values obtained for Rm

[shown in Fig. 7(b)], which are definitely smaller for protocols
zero and two with respect to protocol one for the same percentage
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FIG. 6. BKM: System response to stimulations with fixed amplitude (A = 0.4) for different degreesM: percentage of elicited bursts (a),Rm (b), and Tm (c) vs the percentage P
of perturbed oscillators. The black dashed lines represent the values for the fully coupled networkM = N. Data are averaged over 1000 different realizations of the networks,
and the error bars correspond to the standard deviation of the mean. See Fig. 1 for the other parameters.

FIG. 7. BKM: Comparison among different perturbation protocols: protocol zero (red line with diamonds), protocol one (black line with circles), and protocol two (blue line
with squares). Percentage of elicited bursts (a), Rm (b), and Tm (c) vs the percentage P of perturbed oscillators. The black dashed lines represent the values for the fully
coupled network M = N. Data are averaged over 1000 realizations of the network, and the error bars correspond to the standard deviation of the mean. A = 0.4, M = 200;
other parameters as in Fig. 1.

FIG. 8. KMI: System response to partial stimulation protocols with fixed amplitude (A = 6) for different degreesM: percentage of elicited bursts (a), Rm (b), and Tm (c) vs the
percentage P of perturbed oscillators. The black dashed lines represent the fully coupled value. The data refer to an average over 100 different realizations of the network,
and the error bars correspond to the standard deviation of the mean. See Fig. 1 for the other parameters.
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P of stimulated oscillators. Indeed, the values of Rm for proto-
col one are already comparable to the fully coupled result for
P = 40%. Also, the activation of the oscillators involved in the burst
is faster for protocol one than for the other two protocols, as shown
in Fig. 7(c).

These results clearly indicate that a stimulation of oscillators
guided by their natural frequency distribution is the optimal one to
elicit more bursts involving more oscillators.

B. Kuramoto model with inertia

Finally, we present the results for the partial stimulation of
KMI, where we investigate the response of the system for a fixed
perturbation amplitude, while varying the degree M of the consid-
ered networks (see Fig. 8). We have chosen an amplitude A = 6
definitely larger than the minimal amplitude A0 needed to ignite
a burst for the KMI for any M ≥ 100. At variance with the BKM
case, the minimal percentage Pm of the stimulated oscillators, which
is needed to observe a burst, as well as the critical percentage Pf

required to observe 100% of elicited bursts, strongly depends on
M. This is true at least for M ≤ 500, corresponding to clustering
coefficients c ≤ 0.25%, definitely smaller than those examined in the
BKM case where c ≥ 2%. Indeed, for M = 100, one needs to stim-
ulate 50% of the population to elicit a burst, while Pm decreases to
20% only for M ≥ 700. Furthermore, we observe in this case that
Pf ' Pm + 30%; therefore, after the bursts’ activation, a moderate
increase in P leads to a one to one response to the stimulation.
However, this is not connected with the achievement of the char-
acteristics of the burst displayed in the fully coupled case. As shown
in Figs. 8(b) and 8(c), the approach to the fully coupled values for Rm

and Tm is quite gradual, and these are achieved only when essentially
the whole network is stimulated. These effects are clearly due to the
inertia present in the model that makes the single oscillators more
resilient to stimulation.

V. CONCLUSIONS

Excitability is an important property of many living cells, such
as neurons, whereby a large, rapid change in the membrane potential
is generated in response to a very small stimulus. While its mecha-
nisms are reasonably well understood at the level of the single ele-
ments, the origin of collective excitable phenomena in mesoscopic
populations is less clear.

Of particular interest is the case of adaptive networks of glob-
ally coupled non-excitable units, in which the emergent macroscopic
dynamics cannot be deduced in any way from the individual proper-
ties of the nodes. A key role here is played by the adaptive feedback,
which allows for the coupling to slowly evolve as a function of the
degree of synchrony of the system; thus, the network is perma-
nently driven across a hysteretic phase transition.14–16 The result
is collective slow–fast dynamics, such as bursting and excitabil-
ity via canard explosions, that arise even for small population
sizes.17

In this work, we provided evidence of emergent collective
excitability in highly diluted random networks of oscillators. This
phenomenon has been studied for the Kuramoto model with and

without inertia, considering different global and partial stimulation
protocols and different levels of dilution.

In the case of global stimulation, we can observe excitable
responses down to the dilution level of 1% for the BKM and
0.015% for the KMI by increasing the perturbation amplitude. Quite
astonishingly, the KMI with a linear feedback can exhibit excitable
responses down to a degree M > 2 for which the giant component
emerges in the corresponding random network in the absence of
adaptation.32,33 This is in line with what was reported in Ref. 21,
where it was shown that the hysteretic transition for the KMI per-
sists down to a degree M = 5, but for a smaller network size, namely,
N = 5000, where finite size fluctuations are larger than in the net-
work of size N = 20 000 here considered. As a general effect, the
dilution reduces the level of synchronization Rm achieved during the
collective burst and increases the time Tm needed to reach the peak
of the burst for the same stimulation amplitude. In the limit M → N,
the fully coupled results are recovered and the finite size correc-
tions due to the dilution vanish at the leading order as ∝ 1/Mβ , with
β ' 1.0 − 1.4, by approaching the fully coupled limit.

For partial stimulation protocols, where only a certain per-
centage P of the oscillators is stimulated, the collective excitability
emerges for P ≥ 20 − 30% only. A detailed finite size analysis per-
formed for the BKM at fixed dilution and perturbation amplitude
suggests the existence of a phase transition from a nonexcitable
to an excitable regime occurring for a finite percentage of stimu-
lated oscillators Pc. The exact nature of the transition, continuous
or discontinuous, is left to future analysis; however, it appears to be
quite abrupt. Furthermore, for P > Pc, we observe that the excitable
response of the system becomes more and more reliable, and finally,
for P ≥ Pf, elicited bursts are observable for any considered net-
work realization. The threshold value Pf depends slightly on the
level of dilution; however, it decreases strongly by increasing the
amplitude A of the perturbation: namely, Pf ∝ 1/A2 for A ≥ 0.5 and
M = 200.

Another interesting aspect revealed by the analysis of the BKM
is that the more effective way to induce collective excitable responses
is to stimulate the oscillators accordingly to the distribution of
their natural frequencies. In the case of bimodal distributions, this
amounts to stimulate symmetrically the oscillators with frequencies
in correspondence with the two peaks of the probability distribution
function.

The inertia plays a fundamental role when partial stimula-
tions are considered; indeed, at variance with the BKM case for a
fixed stimulation amplitude, the minimal percentage Pm of oscil-
lators to stimulate in order to observe at least one burst, as well
as the threshold value Pf, strongly depends on M. Furthermore, an
excitable response, analogous to that of a fully coupled network, is
achieved only when the entire network is stimulated simultaneously,
while for the BKM, this was already observable in most cases for
P ≥ 80%.

Collective self-sustained behaviors characterized by irregular
alternation between synchronized and desynchronized regimes have
been previously reported for spiking neural networks in the presence
of spike timing dependent plasticity (STDP).34,35 The neurons con-
sidered in Ref. 35 were supra-threshold in a regime of tonic firing;
therefore, they can be considered de facto as phase oscillators, even
though in such a context, the emergent dynamics was not analyzed
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in terms of collective excitability. In order to render our findings
more general, it would be worth extending our analysis to plastic
neural networks as well as to adaptive networks of phase oscillators
with co-evolving pairwise couplings mimicking somehow Hebbian
learning or STDP.36,37

Our work generalizes previous studies on globally coupled
systems14–17 to the case of highly diluted random networks and
demonstrates remarkable robustness of macroscopic excitability
induced by adaptive feedback. These results establish a bridge
between the microscopic and mesoscopic dynamics, showing how
sub-groups of oscillators can coherently combine themselves to pro-
duce a macroscopic burst, similarly to that of a single excitable cell.
We expect that our work will inspire new research in the study of
emergent phenomena in networks of interacting elements at the
mesoscopic scale or even in more complex systems, such as net-
works composed of different kinds of functional units or networks
of networks.
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