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Abstract – We study the dynamics of two symmetrically coupled populations of identical leaky
integrate-and-fire neurons characterized by an excitatory coupling. Upon varying the coupling
strength, we find symmetry-breaking transitions that lead to the onset of various chimera states
as well as to a new regime, where the two populations are characterized by a different degree of
synchronization. Symmetric collective states of increasing dynamical complexity are also observed.
The computation of the the finite-amplitude Lyapunov exponent allows us to establish the
chaoticity of the (collective) dynamics in a finite region of the phase plane. The further numerical
study of the standard Lyapunov spectrum reveals the presence of several positive exponents,
indicating that the microscopic dynamics is high-dimensional.
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Introduction. – Understanding the collective
motion of ensembles/networks of oscillators is crucial
in many contexts, starting from neuronal circuits [1].
So far, most of the efforts have been devoted to the
characterization of strong forms of synchronization.
However, more subtle phenomena, like the onset of
collective motion in an ensemble of (chaotic) units,
which behave in a seemingly uncorrelated way can
also play a relevant role for information encoding.
Collective chaos, meant as irregular dynamics of coarse-
grained observables, has been found in ensembles
of fully coupled one-dimensional maps [2,3] as well as in
two-dimensional continuous-time oscillators [4–6]. In both
classes of models, the single dynamical unit can behave
chaotically under the action of a periodic forcing (in
non-invertible maps, there is even no need of a periodic
forcing). What does it happen in ensembles of phase-
oscillators which cannot become chaotic under the action
of any forcing? The evolution of a (formally infinite) popu-
lation of oscillators is ruled by a self-consistent (nonlinear)
functional equation for the probability density. Given
the infinite dimensionality of the model, the population
could, in principle, behave chaotically, irrespective of
the “structure” of the single oscillators. In spite of this
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potentiality, only a few examples of low-dimensional
chaotic collective motion have been found in ensembles
of phase oscillators [7,8]. One reason is that most of the
models so far investigated are based on sinusoidal force
fields (in the following we refer to them as to sinusoidal
oscillators); in this setup, there is little space for a
high-dimensional dynamics, since no matter how many
oscillators are involved, there are always N − 3 constants
of motion [8]. This “degeneracy” is not present in typical
pulse-coupled networks of neurons, where different force
fields are usually assumed. A prototypical example is that
of leaky integrate-and-fire (LIF) neurons, characterized
by a linear force field. It is, in fact, not suprising that
the first instance of a nontrivial collective motion has
been found in an ensemble of LIF neurons. We refer to
Partial Synchronization (PS) [9], a regime characterized
by a periodic macroscopic dynamics and a quasi-periodic
microscopic motion, with the additional subtlety that
the average inter-spike interval of the single neurons
differs from the period of the collective variable. More
recently, this type of behaviour has been observed also in
a population of sinusoidal oscillators, in the presence of a
suitable nonlinear coupling [10].
The only and quite striking evidence of an irregular

collective dynamics has been recently found in an ensemble
of LIF neurons in the presence of a random distribution
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of the input currents [11] (this setup, where the single
neurons are characterized by different spiking rates, is
analogous to that of the usual Kuramoto model, where
the single oscillators have different bare frequencies). On
the other hand, the model studied in [11] has the further
peculiarity of exhibiting a negative maximal Lyapunov
exponent —it is, in fact, an example of stable chaos [12].
However, in the absence of disorder, no example of
irregular dynamics has yet been found.
A slightly more complex but meaningful setup is that

of two symmetrically coupled populations of identical
oscillators. This is the simplest instance of “network-of-
networks” that is often invoked as a paradigm for neural
systems [13]. With reference to sinusoidal oscillators, this
setup has revealed the onset of chimera states (one of the
two populations is fully synchronized, while the oscillators
of the other one are not synchronized at all [14]), as well
as more complex macroscopic states with periodic [15] and
quasi-periodic [16] collective oscillations. In the present
letter we study the two-population setup with reference to
LIF neurons for different values of the coupling strengths
between and within the two populations. We find various
kinds of symmetry broken states some of which are similar
to those observed in [15,16] and a new one, where the two
populations are both partially synchronized, but with a
different degree. More interesting is the parameter region
where the collective motion is chaotic, as indicated by
the finite-amplitude Lyapunov exponent (FALE) [17] and
confirmed by the computation of the standard Lyapunov
spectrum which reveals the existence of several positive
exponents.

The model. – We consider two fully coupled networks,
each made of N LIF oscillators. Following ref. [18],

the membrane potential x
(k)
j (t) of the j-th oscillator

(j = 1, . . . , N) of the k-th population (k= 0, 1) evolves
according to the differential equation

ẋ
(k)
j (t) = a−x

(k)
j (t)+ gsE

(k)(t)+ gcE
(1−k)(t), (1)

where a> 1 is the suprathreshold input current, while
gs > 0 and gc > 0 gauge the self- and, respectively, cross-
coupling strength of the excitatory interaction. Whenever

the membrane potential reaches the threshold x
(k)
j = 1,

it is reset to x
(k)
j = 0, while a so-called α-pulse is sent

and instantaneously received by all the neurons. The field
E(k)(t) represents the linear superposition of the pulses
emitted within the population k in the past. It can be
shown [18] that E(k)(t) satisfies the differential equation

Ë(k)(t)+ 2αĖ(k)(t)+α2E(k)(t) =
α2

N

∑

j,n

δ(t− t
(k)
j,n), (2)

where t
(k)
j,n is the n-th spiking time of the j-th neuron

within the population k, and the sum is restricted to
times smaller than t. In the limit case gs = gc = g, the
two populations can be seen as a single one made of 2N
neurons with an effective coupling constant G= 2g.

The degree of synchronization can be quantified by
introducing the typical order parameter used for phase

oscillators r(k)(t) = |〈exp[iθ
(k)
j (t)]〉|, where θ

(k)
j is the phase

of the j-th oscillator, that can be properly defined by

suitably rescaling the time variable [19], θ
(k)
j (t) = 2π(t−

t
(k)
j,n)/(t

(k)
q,n− t

(k)
q,n−1), where n identifies the last spike emit-

ted by the j-th neuron, while q indicates the neuron that
has emitted the last spike. One can verify that this phase is
bounded between 0 and 2π, as it should. It is interesting to
see that the application of this definition to the PS regime
described by van Vreeswijk [9] reveals that the order para-
meter fluctuates periodically. In other words PS differs
from the regime observed in the Kuramoto model above
the synchronization threshold, where the order parameter
is constant in time [20].

Phase diagram. – The equations have been inte-
grated by extending the event-driven approach described
e.g. in [18]. In practice, the (linear) equations of motion
are solved analytically in between two consecutive spike-
emissions, obtaining a suitable map. Since the ordering of
the single-neuron potentials does not change within each
population, the next firing event can be easily determined
by comparing the neurons that are closest to threshold
within each of the two populations. In spite of the concep-
tual simplicity and the effectiveness of the code, one must
be nevertheless careful in handling nearly singular cases,
when many neurons almost cluster together. In order to
avoid the spurious clustering, due to numerical roundoff,
we have changed variables, introducing and monitoring
the logarithm of the difference of the membrane poten-
tials of two successive neurons. This requires some care
in defining the right number of variables: given N poten-
tials, one naturally has N − 1 differences that have to be
complemented by a proper N -th variable (for more details
see [21]).
The phase plane (gc, gs) shown in fig. 1 has been

obtained by studying the model (1, 2) for a= 1.3 and
α= 9. The diagram is semiquantitative in the sense that
a much more detailed work would be needed to identify
exactly the stability borders of the different regimes. Along
the diagonal (g= gs = gc) the model reduces to that for a
single population with coupling strength G= 2g. For our
choice of a and α values, the system exhibits PS, since we
are below the critical value G0 = 0.425 [18] above which
the splay state is stable (the splay state is a regime char-
acterized by a constant spiking rate and thereby a constant
field, i.e. no collective dynamics). Below the diagonal,
the evolution is still symmetric but fully synchronized
(FS), i.e. all neurons of both populations fire together.
More intriguing is the region above the diagonal, that is
characterized by a spontaneous symmetry breaking: one
population fully synchronizes, while the other is in a PS
regime, i.e. we are in presence of a generalized chimera
state (here termed PS-FS). This can be appreciated by
looking at the synchronization parameter r(k) of the two
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Fig. 1: (Color online) Phase diagram in the (gc, gs)-plane of
the model (1, 2) for a= 1.3 and α= 9. FS indicates Full
Synchronization (both populations fire at the same time);
PS-FS indicates that the two populations are is the FS
and PS regimes, respectively; PS1-PS2 indicates that both
populations are in a PS regime, although with a different
degree of synchronization; APS indicates Antiphase Partial
Synchronization, i.e. the two fields exhibit the same behaviour
though being in antiphase; TORUS indicates a collective quasi-
periodic motion; finally, CHAOS indicates collective chaotic
motion.

populations, one of which is equal to one, while the other
oscillates periodically close to 0.8. By following [15], this
state can be classified as a periodically breathing chimera.
In this regime, the two populations are characterized by
a microscopically periodic and quasi-periodic behaviour,
respectively. In spite of this qualitative difference, the two
(macroscopic) fields E(0) and E(1) are both periodic and
phase locked (see fig. 2(a)). This means that the neurons
subject to two different linear combinations of E(0) and
E(1) behave differently: a population locks with the forc-
ing field, while the other one behaves quasi-periodically.
Another even more interesting symmetry-broken state can
be observed for larger gs-values and gc < 0.055; in this
case both populations exhibit PS, but their dynamics
take place over two different attractors with two different
degrees of synchronization (PS1-PS2 regime), as shown in
fig. 3(a). Like in the PS-FS regime, the two fields behave
periodically (with the same period) and are phase locked,
as it can be appreciated by looking at the closed curve
E(0) vs. E(1) in fig. 2(b). However, at variance with PS-FS,
here both populations exhibit quasi-periodic motions. In
other words we are in the presence of a different symme-
try breaking, where two populations with distinct quasi-
periodic motions spontaneously emerge. For yet larger gs
values, the equivalence between the collective dynamics of
the two population is restored, the only difference being
a phase shift between the two fields, which oscillate in
antiphase and this is why we term this regime Antiphase
Partial Synchronization (APS). In the APS phase, for
finite N , the instantaneous maximum Lyapunov exponent

Fig. 2: The macroscopic attractors displayed by reporting
the fields E(0) vs. E(1) for four different non-chaotic phases,
namely (a) PS-FS (gc = 0.07, gs = 0.1), (b) PS1-PS2 (gc = 0.02,
gs = 0.17), (c) APS (gc = 0.07, gs = 0.35) and (d) TORUS
(gc = 0.07, gs = 0.3) (for the exact definitions see the text). The
grey curves reported in the panel (d) are the Poincaré sections
obtained by imposing that the sum E(0)+E(1) is maximal.

strongly fluctuates and we cannot rule out the possible
existence of some form of weak chaos, analogous to the one
discussed in [22] for a model of diluted neural network, i.e.
a chaotic behaviour that disappears in the thermodynamic
limit. In a strip above the chaotic region (discussed below),
one can observe collective quasi-periodic motion. This
means that the quasi-periodic motion of the fields is
accompanied by a dynamics of the single neurons along
a torus T 3. An analogous regime has been previously
reported in [5] in the context of a population of coupled
Stuart-Landau oscillators. Here, we find it in a model
where the single units are described by a single variable.
Furthermore, we have characterized the motion on the
macroscopic T 2 attractor reported in fig. 2, by estimating
the winding numbers for various values of the coupling
strengths. We find that the winding number is typically
quite small —on the order of ∼10−2— but independent
of the system size, indicating that the torus survives in
the thermodynamic limit. Finally, for yet larger gs-values
both populations converge towards a splay state. This is
not surprising, as we already know that for the chosen
α- and a-values, the splay state is stable in a single
population of neurons for G>G0 ≡ 0.425.

Collective chaos. – In a limited region above the diag-
onal and for gc > 0.055 the collective behaviour is irregu-
lar, this is clearly seen by observing the two macroscopic
attractors, corresponding to the two populations, reported
in fig. 3(b). Nonetheless, from fig. 3(c) it appears that
the associated order parameters behave almost periodi-
cally, but this periodicity is only apparent since it reflects
only the larger time scale present in the system, the one
associated to the modulation of the fields E(k), while the
irregularity of the dynamics are more evident at smaller
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Fig. 3: (Color online) Macroscopic attractors displayed by
reporting P ≡E+αĖ vs. E for a PS1-PS2 state (a) and a
chaotic phase (b), the time evolution of the corresponding order
parameters r(0) and r(1) is also reported in (c) and (d). The
variables corresponding to population 0 (respectively, 1) are
shown as black solid lines (respectively, red dashed lines) in (c)
and (d); while in (a) the internal black (respectively, external
red) curve refers to population 0 (respectively, 1) and in (b)
an unique attractor has been reported for clarity reasons, since
the two attractors are overlapping. The data reported in (a)
and (c) refer to gc = 0.02 and gs = 0.17, while those shown in
(b), (d) to gc = 0.08 and gs = 0.16.

time scales. In particular, at least two other time scales
are present: a scale O(1) associated to the firing period
of each specific neuron and a scale O(1/N) correspond-
ing to the interspike interval between two successive spike
emissions in the network. In order to make a quantita-
tive assessment of the chaoticity we have first studied the
FALE λF . The FALE can be determined from the growth
rate of a small finite perturbation for different amplitudes
Δ of the perturbation itself (after averaging over different
trajectories) [17]. This is done by randomly perturbing
the coordinates (both fields and the membrane potentials
of the two populations) of a generic configuration on the
attractor. The results for gs = 0.16, gc = 0.08 and three
different system sizes are plotted in fig. 4. For small Δ
values, λF grows with Δ, since the perturbation needs
first to converge towards the most expanding direction,
while the final drop is a manifestation of the saturation of
the perturbation amplitude. It is the height of the inter-
mediate plateau which measures the amplitude of the
FALE. Since the height is independent of N , one can
conjecture that the collective motion is chaotic and stays
chaotic in the thermodynamic limit. Besides the data
reported in fig. 4, we have checked that the plateau height
is not influenced by changing the amplitude of the initial
perturbation and by performing tests up to N=6400.
It is instructive to compare λF with the maximum λ1

of the standard Lyapunov spectrum. For small Δ values,
the two indicators should coincide, but there is no reason

-20 -15 -10 -5

ln ∆

0.00

0.01

0.02

λ
F

N=400
N=800
N=1,600

Fig. 4: (Color online) Finite-amplitude Lyapunov exponents
λF vs. the logarithm of the perturbation amplitude Δ for three
different system sizes: namely, N = 400 (black circles), N = 800
(green squares) and N = 1600 (blue triangles). The amplitudes
Δ have been estimated by considering the Euclidean distance
among the perturbed and unperturbed fields. The dashed
(magenta) line indicates the maximal microscopic Lyapunov
exponent λ1 forN = 1600 obtained by following the orbit over a
time span containing 108 spikes and after discarding a transient
composed by 106 spikes. λF has been estimated by averaging
over 25000–50000 different trajectories. The results have been
obtained for gc = 0.08 and gs = 0.16.

for the agreement to persist at larger amplitudes. In fact,
a second plateau has been detected in the context of
globally coupled maps [2,3]. The plateau occurring for
larger Δ’s has been interpreted as an indication that the
chaoticity of collective variables differs from that of the
microscopic ones. Since, in the present case, we observe
only a single plateau, it is crucial to verify its compatibility
with λ1. The horizontal dashed line in fig. 4 corresponds to
the Lyapunov exponent determined for N=1600 (for the
dependence of λ1 on N , see below). The two indicators are
consistent with each other and this means that collective
variables are as chaotic as the microscopic ones.
Having established the existence of one unstable direc-

tion, the next question is to determine how many such
directions are present. Unfortunately, the concept of FALE
allows to determine just one exponent. As a consequence,
we turn our attention to the usual Lyapunov spectrum,
well aware that the “microscopic” exponents do not
necessarily reproduce the chaoticity of the “macroscopic”
variables.
In the present model, the Lyapunov spectrum {λi}

is composed of N +3 exponents (i= 1, . . . , N +3). The
phase space dimension is in fact equal to N +4 (N poten-
tials plus 2 two-dimensional equations for the fields), but
the direction corresponding to the zero Lyapunov expo-
nent is implicitly eliminated as a consequence of taking
the Poincaré section [18]. In fig. 5 we have plotted the
first part of the spectrum (with the exception of λ1, for
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Fig. 5: (Color online) Lyapunov spectra λi vs. i/N for three
N values: namely, N = 50 (filled black circles), N = 100 (empty
red squares) and N = 200 (empty green triangles). In the inset
the first three Lyapunov exponents are reported as a function
of N : λ1 (blue circles), λ2 (turquoise squares) and λ3 (magenta
triangles). The Lyapunov esponents have been obtained by
following the dynamics in the real and tangent space for a time
span containing 108–5× 109 spikes, after discarding a transient
period of 106 spikes. The reported results refer to gc = 0.08 and
gs = 0.16.

the clarity of presentation) with the usual normalization
i/N of the x-axis. The figure clearly indicates that the
spectrum becomes increasingly flat and converges to zero.
This can be understood in the following way. In the
thermodynamic limit, the dynamics of globally coupled
identical oscillators can be viewed as that of single
oscillators forced by the same (self-consistent) field [5].
As a result, in a first approximation, we expect all
Lyapunov exponents to be equal to the conditional
Lypunov exponent λc obtained by forcing a single LIF
neuron (identical to the others) with the self-consistent
fields (obtained by integrating the whole ensemble). We
have found that λc = 0 (within numerical accuracy). This
justifies why the increasingly flat Lyapunov spectrum
converges towards zero. Moreover, since a LIF neuron is
described by a single variable, under no circumstance, λc
can be strictly positive. On the other hand, λc can be
negative, and we expect this to occur whenever the given
population exhibits full synchronization. Since we know
that no synchronization is observed in the chaotic regime,
we can conclude that λc is not just very small, but it
must be exactly equal to zero.
Having established that the Lyapunov spectrum

converges to zero, it is interesting to investigate its
scaling behaviour. By comparing the spectra obtained
for different system sizes, it turns out that they scale as
1/Nβ , although we are unable to extrapolate the value of
β from the analysis of the relatively small systems that
we have simulated. By comparing the spectra obtained
for N = 100 and 200 we can at most guess that β ≈ 1.5.
This value is not far from β = 2, found analytically while

studying the splay-state stability in single populations of
LIF neurons [23] and numerically for the PS state [22].
Finally, we turn our attention to the first part of

the spectrum, where the flatness hypothesis does not
hold. More precisely, we investigate the N -dependence
of the first three Lyapunov exponents which can be
computed for larger lattices (up to N = 1600). The
maximal Lyapunov exponent appears to converge to
a finite asymptotic value λ1 = 0.0195(3). On the other
hand, the second and third exponents grow system-
atically with N , both becoming positive for N > 200,
with no clear evidence of an eventual saturation.
These results suggest that the microscopic chaos is high-
dimensional (there is no reason to believe that the number
of positive exponents is just equal to three). However, we
cannot tell whether the number of positive exponents is
extensive (proportional to N) or sub-extensive.

Conclusions. – We have studied two symmetrically
coupled populations of leaky integrate-and-fire neurons for
different values of the self-(gs) and cross-(gc) coupling-
strength. Some of the collective phenomena that we have
identified are quite similar to those observed in the two-
population setup of Kuramoto-like oscillators1. This is
not surprising, since it is known that an ensemble of
LIF neurons is equivalent, in the weak-coupling limit,
to the Kuramoto model [24], the only difference being
that the coupling function is not purely sinusoidal. The
onset of PS in both classes of models suggests that the
equivalence can be extended to larger coupling strengths.
However, since PS can be obtained in the Kuramoto setup
only by invoking a more general kind of coupling [10],
it is legitimate to conclude that the relationship is more
complicated than that suggested by the study of the weak-
coupling limit. In fact, in this letter we have found new
dynamical regimes, such as a different PS dynamics for
the two populations. A yet more intriguing phenomenon
is the collective chaos that we have recognized as such
from the computation of the finite-amplitude Lyapunov
exponent. Altogether, a general question still stands: To
what extent are pulse-coupled oscillators equivalent to
Kuramoto-like models? The identification of the mutual
relationship would be highly beneficial in both areas.
Another still open question is that of the degree of

chaoticity of the collective dynamics. This problem is
also connected to that of the asymptotic structure of
the Lyapunov spectrum in the thermodynamic limit.
A rough argument suggests that the spectrum should
be flat and this is indeed approximately seen in the
numerics. However, the evident deviations observed in
the vicinity of the maximum strongly suggest that the
argument need be refined. Altogether, we observe that the
Lyapunov spectrum includes the FALE. This means that
the evolution of not so small perturbations does not add
anything, to that of infinitesimal ones and implies that

1By Kuramoto-like we mean sinusoidal oscillators with some sort

of continuous-time coupling that depends on the phase differences.
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the standard Lyapunov analysis is rich enough to account
for the collective behaviour as well. This was not a priori
obvious. The computation of the FALE λF in globally
coupled maps [3] reveals a different scenario, where λF
differs from the maximum Lyapunov exponent. On the
other hand, the most recent study of globally coupled
Stuart-Landau oscillators [25] provides an example where,
like here, the chaoticity of the collective motion can be
inferred from the Lyapunov spectrum. Moreover, what
can we say about the role of the second and third
exponents that are found to be positive as well? Do they
contribute to the microscopic dynamics only, or also to the
macroscopic one? A careful analysis based on the study
of the corresponding covariant Lyapunov vectors [26]
might help to clarify this point. An alternative and more
direct approach could be that of (numerically) integrating
the self-consistent dynamical equation for the probability
densities of the membrane potentials in the two families.
However, it is not easy to pursue this latter perspective:
because of the occasional formation of strongly clusterized
states, it is necessary to partition the phase space into a
huge number of small cells.
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